
fe at u re

Tasker
a

Almost all embedded systems are event-driven; most
of the time they wait for some event such as a time
tick, a button press, a mouse click, or the arrival of
a data packet. After recognizing the event, the sys-
tems react by performing the appropriate computa-

tion. This reaction might include manipulating the hardware or gen-
erating secondary, “soft” events that trigger other internal software
components. Once the event-handling action is complete, such reac-
tive systems enter a dormant state in anticipation of the next event.1

Ironically, most real-time kernels or RTOSes for embedded sys-
tems force programmers to model these simple, discrete event reac-
tions using tasks structured as continuous endless loops. To us this
seems a serious mismatch—a disparity that’s responsible for much
of the familiar complexity of the traditional real-time kernels.

In this article we’ll show how matching the simple discrete event
nature typical of most embedded systems with a simple run-to-
completion (RTC) kernel or “tasker” can produce a cleaner, smaller,
faster, and more natural execution environment. In fact, we’ll show
you how (if you model a task as a discrete, run-to-completion ac-
tion) you can create a prioritized, fully preemptive, deterministic
real-time kernel, which we call Super-Simple Tasker (SST), with only
a few dozen lines of portable C code.2

Such a real-time kernel is not new; similar kernels are widely
used in the industry. Even so, simple RTC schedulers are seldom de-
scribed in the trade press. We hope that this article provides a con-
venient reference for those interested in such a lightweight sched-
uler. But more importantly, we hope to explain why a simple RTC
kernel like SST is a perfect match for execution systems built around

Free operating system! This large and detailed article spells out how to create
your own real-time task switcher. The results of years of testing and develop-
ment, this elegant software might be all that many projects ever need.

Super-
Simple

MIRO SAMEK AND ROBERT WARD

18 JULY 2006 embedded systems design www.embedded.com

Build

state machines including those based
on advanced UML statecharts. Because
state machines universally assume RTC
execution semantics, it seems only nat-
ural that they should be coupled with a
scheduler that expects and exploits the
RTC execution model.

We begin with a description of how
SST works and explain why it needs
only a single stack for all tasks and in-
terrupts. We then contrast this ap-
proach with the traditional real-time
kernels, which gives us an opportunity
to re-examine some basic real-time
concepts. Next, we describe a minimal
SST implementation in portable ANSI
C and back it up with an executable ex-
ample that you can run on any x86-
based PC. We conclude with references
to an industrial-strength single-stack
kernel combined with an open-source
state machine-based framework, which
together provide a deterministic execu-
tion environment for UML state ma-
chines. We’ll assume that you’re famil-

iar with basic real-time concepts, such
as interrupt processing, context switch-
es, mutual exclusion and blocking,
event queues, and finite state machines.

PREEMPTIVE MULTITASKING
WITH A SINGLE STACK
Conventional real-time kernels main-
tain relatively complex execution con-
texts (including separate stack spaces)
for each running thread or task, as
noted in Jean Labrosse’s book on Mi c

roC/OS-II.3 Keeping track of the de-tails
of these contexts and switching among
them requires lots of bookkeeping and
sophisticated mechanisms to
implement the context switch magic.
The kernel we’ll describe can be ultra
simple because it doesn’t need to man-
age multiple stacks and all of their asso-
ciated bookkeeping.

By requiring that all tasks run to
completion and enforcing fixed-priori-
ty scheduling, we can instead manage

all context information using the ma-
chine’s natural stack protocol. Whenev-
er a task is preempted by a higher-pri-
ority task, the SST scheduler uses a
regular C-function call to build the
higher-priority task context on top of
the preempted-task context. Whenever
an interrupt preempts a task, SST uses
the already established interrupt stack
frame on top of which to build the
higher-priority task context, again us-
ing a regular C-function call. This sim-
ple form of context management is ad-
equate because we’re insisting that
every task, just like every interrupt,
runs to completion. Because the pre-
empting task must also run to comple-
tion, the lower-priority context will
never be needed until the preempting
task (and any higher-priority tasks that
might preempt it) has completed—at
which time the preempted task will nat-
urally be at the top of the stack, ready
to be resumed.

The first con s equ en ce of this exec u-

fe at u re

20 JULY 2006 embedded systems design www.embedded.com

PRIORITIZATION OF TASKS AND INTERRUPTS IN SST
It’s interesting to observe that
most prioritized interrupt con-
trollers (for example, the 8259A
inside the x86-based PC, the AIC
in AT91-based ARM MCUs from
Atmel, the VIC in LPC2xxx MCUs
from Philips, the interrupt con-
troller inside M16C from Rene-
sas, and many others) implement
in hardware the exact same asyn-
chronous scheduling policy for in-
terrupts as SST implements in soft-
ware for tasks. In particular, any
prioritized interrupt controller al-
lows only higher-priority inter-
rupts to preempt the currently ac-
tive interrupt. All interrupts must
run to completion and cannot
block. All interrupts nest on the
same stack.

In the SST execution model,
tasks and interrupts are nearly symmetrical: both tasks and interrupt service routines are one-shot, run-to-comple-
tion functions. In fact, SST views interrupts very much like tasks of “super high” priority, as shown in Figure 1,
except that interrupts are prioritized in hardware (by the interrupt controller), while SST tasks are prioritized in
s o f t w a r e .

ti on profile is that an SST task cannot
be an en dless loop, u n l i ke most tasks in
the trad i ti onal kern el s .3 In s te ad , an SST
task is a regular C-functi on that runs to
com p l eti on and retu rn s , t hus rem ovi n g
i t s el f f rom the exec uti on stack as it
com p l ete s . An SST task can be activa ted
on ly by an ord i n a ry C-function call
f rom the SST sch edu l er and alw ays re-
tu rns to the sch edu l er upon com p l e-
ti on . The SST sch edu l er itsel f is also an
ord i n a ry C-function that’s call ed each
time a preem ptive event occ u rs and that
runs to com p l eti on and retu rns on ce all
tasks with pri ori ties high er than the
preem pted task have com p l eted .

The second consequence of the SST
execution profile is that events associat-
ed with lower-priority tasks must be
queued until the higher-priority tasks
complete. You can certainly come up
with many methods of assigning
queues and priorities to SST tasks, but
we assume here the simplest case of
each SST task having a separate event
queue with a unique priority (a priority
queue). For the sake of this discussion
we’ll assume a priority numbering
scheme in which SST tasks have priori-
ties numbered from 1 to
SST_MAX_PRIO, inclusive, and a higher
number represents a higher urgency.
We reserve the priority level 0 for the
SST idle loop, which is the only part of
SST structured as an endless loop.

Simply calling a task function for
every preemption level may seem too
naïve to work, but the following analy-
sis will show that it works perfectly, for
exactly the same reason that a
prioritized hardware-interrupt system
works.

SYNCHRONOUS AND ASYNCHRO-
NOUS PREEMPTIONS
As a fully preemptive kernel, SST must
ensure that at all times the CPU exe-
cutes the highest-priority task that’s
ready to run. Fortunately, only two sce-
narios can lead to readying a higher-
priority task:

• A lower- p ri ori ty task posts an
event to a high er- p ri ori ty task:

SST must immed i a tely su s pen d
the exec uti on of the lower- pri ori-
ty task and start the high er- pri or-
i ty task. We call this type of pre-
em pti on synchronous preemption
because it happens synch ron o u s ly
with po s ting an event to the task’s
event qu eu e .

• An interru pt posts an event to a
h i gh er- p ri ori ty task than the in-
terru pted task: Upon com p l eti on
of the interru pt servi ce ro uti n e
(I S R) , the SST must start exec u-
ti on of the high er- pri ori ty task
i n s te ad of re suming the lower-
pri ori ty task. We call this type of
preem pti on asynchronous preemp-
tion because it can happen any
time interru pts are not ex p l i c i t ly
l ocked .

Figure 2 illustrates the synchronous
preemption scenario caused by posting
an event from a low-priority task to a
high-priority task. Initially a low-prior-
ity task is executing (1). At some point

during normal execution, the low-pri-
ority task posts an event to a high-pri-
ority task, thus making the high-priori-
ty task ready for execution. Posting the
event engages the SST scheduler (2).
The scheduler detects that a high-prior-
ity task has become ready to run, so the
scheduler calls (literally a simple C-
function call) the high-priority task (3).
Note that because the SST scheduler
launches the task on its own thread, the
scheduler doesn’t return until after the
higher-priority task completes. The
high-priority task runs (4), but at some
time it too may post an event to other
tasks. If it posts to a lower-priority task
than itself (5), the SST scheduler will
again be invoked (again a simple C
call), but will return immediately when
it doesn’t find any ready tasks with a
higher priority than the current task.
When this second call to the scheduler
returns, the high-priority task runs to
completion (6) and naturally returns to
the SST scheduler (7). The SST sched-
uler checks once more for a higher-pri-

fe at u re

www.embedded.com embedded systems design JULY 2006 22

ority task to start (8), but it finds none.
The SST scheduler returns to the low-
priority task, which continues (9).

Obviously, synchronous preemp-
tions are not limited to only one level.
If the high-priority task were to post an
event to a still higher-priority task at
point (5) of Figure 2, the high-priority
task would be synchronously preempt-
ed and the scenario would recursively
repeat itself at a higher level of priority.

Figure 3 illustrates the asynchro-
nous preemption scenario caused by an
interrupt. Initially a low-priority task is
executing and interrupts are unlocked
(1). An asynchronous event interrupts
the processor (2). The processor imme-
diately preempts any executing task and
starts executing the ISR (interrupt serv-
ice routine). The ISR executes the SST-
specific entry (3), which saves the pri-
ority of the interrupted task on the
stack and raises the current priority to
the ISR level. The ISR performs its
work (4) which includes posting an
event to the high-priority task (5).
Posting an event engages the SST
scheduler, but the current priority (that
of the ISR) is so high that the scheduler
returns immediately, not finding any
task with priority higher than an inter-
rupt. The ISR continues (6) and finally
executes the SST-specific exit (7). The
exit code sends the end-of-interrupt
(EOI) instruction to the interrupt con-
troller, restores the saved priority of the
interrupted task, and invokes the SST
scheduler (8). Now, the scheduler de-
tects that the high-priority task is ready
to run, so it enables interrupts and calls
the newly ready, high-priority task (9).
Note that the SST scheduler doesn’t re-
turn. The high-priority task runs to
completion (10) unless it also gets in-
terrupted. After completion, the high-
priority task naturally returns to the
scheduler (11). The scheduler checks
for more higher-priority tasks to exe-
cute (12) but doesn’t find any and re-
turns. The original interrupt returns to
the low-priority task (13), which has
been asynchronously preempted all
that time. Note that the interrupt re-
turn (13) matches the interrupt call
(2). Finally, the low-priority task runs

fe at u re

23 JULY 2006 embedded systems design www.embedded.com

INTERRUPT DURATION IN TRADITIONAL KERNELS AND SST
If you have some experience with traditional preemptive kernels, you’ll
notice that the SST confronts some of our assumptions and changes the
rules.

For example, most of us have been taught that an ISR should be as
short as possible and that the main work should always be done at the
task level. In the SST, however, everything appears to be done at the
ISR context and nothing at the task context. It seems to be backwards.

But really, the problem centers on the distinction between an inter-
rupt and a task. SST forces us to revise the naïve understanding of in-
terrupt duration as beginning with saving interrupt context on a stack
and ending with restoring the interrupt context followed by IRET be-
cause, as it turns out, this definition is problematic even for traditional
kernels.

Figure 4 shows the per-task data structures maintained by a tradi-
tional preemptive kernel where each task has its own stack and a task
control block (TCB)3 for the execution context of each task. In general,
an interrupt handler stores the interrupt context on one task’s stack and
restores the context, from another task’s stack. After restoring a task’s
context into the CPU registers, the traditional scheduler always issues
the IRET instruction. The key point is that the interrupt context remains
saved on the preempted task’s stack, so the saved interrupt context out-
lives the duration of the interrupt handler. Therefore defining the dura-
tion of an interrupt from saving the interrupt context to restoring the
context is problematic.

The situation is not really that much different under a single-stack
kernel, such as the SST. An ISR stores the interrupt context on the stack,
which happens to be common for all tasks and interrupts. After some
processing, the ISR calls the scheduler, which internally unlocks inter-
rupts. If no higher-priority tasks are ready to run, the scheduler exits im-
mediately, in which case the ISR restores the context from the stack
and returns to the original task exactly at the point of preemption. Oth-
erwise, the SST scheduler calls a higher-priority task and the interrupt
context remains saved on the stack, just as in the traditional kernel.

The point here is that the ISR is defined from the time of storing in-
terrupt context to the time of sending the EOI (End Of Interrupt) com-

CONTINUED ON PAGE XX

to completion (14).
It’s important to point out that

conceptually the interrupt handling
ends in the SST-specific interrupt exit
(8), even though the interrupt stack
frame still remains on the stack and the
IRET instruction has not yet executed.
(The IRET instruction is understood
here generically to mean a specific CPU
instruction that causes hardware inter-
rupt return.) The interrupt ends be-
cause the EOI instruction is issued to
the interrupt controller and the inter-
rupts get re-enabled inside the SST
scheduler. Before the EOI instruction,
the interrupt controller allows only in-
terrupts of higher priority than the cur-
rently serviced interrupt. After the EOI
instruction and followed by the call to
the SST scheduler, the interrupts get
unlocked and the interrupt controller
allows all interrupt levels, which is ex-
actly the behavior expected at the task
level.

Consequently, asynchronous pre-
emption is not limited to only one lev-
el. The high-priority task runs with in-
terrupts unlocked, shown as segment
(10) in Figure 3, so it too can be asyn-
chronously preempted by an interrupt,
including the same-level interrupt that
launched the task at point (9). If the in-
terrupt posts an event to a still higher-
priority task, the high-priority task will
too be asynchronously preempted and
the scenario will recursively repeat itself
at a higher-level of priority.

VERSUS TRADITIONAL KERNELS
By managing all contexts in a single
stack, SST can run with significantly
less RAM than a typical blocking ker-
nel. Because tasks don’t have separate
stacks, no unused private stack space is
associated with suspended tasks. SST
task switches also tend to incur less exe-
cution overhead; a traditional kernel
doesn’t distinguish between the syn-
chronous and asynchronous preemp-
tions and charges you a uniformly high
price for all context switches. Finally,
SST uses much simpler and smaller task
control blocks (TCBs) for each task.

Because of this simplicity, context
switches in SST (especially the synchro-

nous preemptions) can involve much
less stack space and CPU overhead than
under any traditional kernel. But even
the asynchronous preemptions in SST
end up typically using significantly less
stack space and fewer CPU cycles.

Here’s why.
Upon an interrupt, a traditional

kernel must establish a strictly defined
stack frame on each private stack into
which it saves all CPU registers. Unlike
SST, which can exploit the compiler’s

fe at u re

www.embedded.com embedded systems design JULY 2006 24

mand to the interrupt controller followed by invoking the scheduler that
internally enables interrupts, not necessarily to the point of restoring
the interrupt context. This definition is more precise and universal, be-
cause under any kernel the interrupt context remains stored on one
stack or another and typically outlives the duration of an interrupt’s
processing. Of course, you should strive to keep the ISR code to the
minimum, but you should keep in mind the true duration of the ISR as
defined above.

The definition of ISR duration is not purely academic, but has im-
portant practical implications. In particular, debugging at the ISR level
can be much more challenging than debugging at the task level, espe-
cially when debugging is accomplished through a ROM monitor. Even
though in an SST some interrupt context might nest already on the
stack, debugging SST tasks is as easy as debugging the main() task,
because the interrupts are unlocked at the CPU level and the interrupt
priority at the interrupt controller level is set to enable all interrupts.

CONTINUED FROM PAGE XX

natural register-management strategy, a
traditional kernel must be prepared to
restore all registers when it resumes the
preempted task. Often the construction
and destruction of these stack frames
must be programmed in assembly, be-
cause a traditional kernel cannot leave
the context switch magic to the C com-
piler. In contrast, SST doesn’t really care
about any particular stack frame or
whether the registers are stored imme-
diately upon the ISR entry or stepwise,
as needed. The only relevant aspect is
that the CPU state be restored exactly
to the status before the interrupt, but
it’s irrelevant how this happens. This
means that the compiler-generated in-
terrupts that most embedded C com-
pilers support are typically adequate for
SST, but are often inadequate for tradi-
tional kernels. Not only does SST not
require any assembly programming,
but in this case the compiler-generated
interrupt entry and exit code is often
superior to custom assembly, because
the C compiler is in a much better posi-
tion to globally optimize interrupt
stack frames for specific ISRs. In this re-
spect, SST allows you to take advantage
of the C compiler’s capabilities, some-
thing a traditional kernel can’t do.

The last point is perhaps best illus-
trated by an example. All C compilers
for ARM processors, for instance, ad-
here to the ARM Procedure Call Stan-
dard (APCS) that prescribes which reg-
isters must be preserved across a
C-function call and which can be clob-
bered. The C-compiler-generated ISR
entry saves initially only the registers
that might be clobbered in a C func-
tion, which is only about half of all
ARM registers. The rest of the registers
get saved later, inside C functions in-
voked from the ISR, if and only if such
registers are actually used. This example
of a context save occurring in several
steps is perfectly suited to the SST. In
contrast, a traditional kernel must save
all ARM registers in one swoop upon
ISR entry, and if the assembly ISR
“wrapper” calls C functions (which it
typically does) many registers are saved
again. Needless to say, such policy re-
quires more RAM for each private stack

and more CPU cycles (perhaps by fac-
tor of two) than SST.

On a side note, we would like to
emphasize that all traditional blocking
kernels in the industry share the prob-
lems we’ve described. We refer here ex-
tensively to Labrosse’s excellent book
MicroC/OS-II: The Real Time Kernel,
2nd Edition, just because this is the best
and most comprehensive reference on
the subject matter.3

SST IMPLEMENTATION
We first present a minimal standalone
implementation of SST. The presented
code is portable ANSI C, with all CPU
and compiler-specific parts clearly sep-
arated out. However, the implementa-
tion omits some features that might be
needed in real-life applications. The
main goal at this point is to clearly
demonstrate the key concepts while let-
ting you execute the code on any Win-
dows-based PC. We’ve compiled the ex-
ample with the legacy Turbo C++ 1.01,
available for a free download from the
Borland Museum.4

The example
The SST example demonstrates the
multitasking and preemption capabili-
ties of SST. This example, shown in Fig-
ure 5, consists of three tasks and two
ISRs. The clock tick ISR produces a
“tick event” every 5ms, while the key-
board ISR produces a “key event” every
time a key is depressed or released, and
at the auto-repeat rate of the keyboard
when a key is depressed and held. The
two “tick tasks”: tickTaskA() and
tickTaskB() receive the “tick events”
and place a letter A or B, respectively, at
a random location in the right-hand
panel of the screen. The keyboard task
kbdTask(), with the priority between
tickTaskA() and tickTaskB(), re-
ceives the scan codes from the keyboard
and sends “color events” to the tick
tasks, which change the color of the dis-
played letters in response. Also, the kb-
dTask() terminates the application
when you depress the Esc key.

The left-hand side of the screen in
Figure 5 shows the basic statistics of the
running application. The first two

columns display the task names and
priorities. Note that there are many un-
used priority levels. The “Calls” column
shows the number of calls with 3-digit
precision. The last “Preemptions” col-
umn shows the number of asynchro-
nous preemptions of a given task or
ISR.

The SST example application inten-
tionally uses two independent inter-
rupts (the clock tick and keyboard) to
create asynchronous preemptions. To
further increase the probability of an
interrupt preempting a task, and of an
interrupt preempting an interrupt, the
code is peppered with calls to a busy-
Delay() function, which extends the
run-to-completion time in a simple
counted loop. You can specify the num-
ber of iterations through this loop by a
command line parameter to the appli-
cation. You should be careful not to go
overboard with this parameter, though,
because larger values will produce a
task set that is not schedulable and the
system will (properly) start losing
events.

The following subsections explain
the SST code and the application struc-
ture. The complete SST source code
consists of the header file sst.h located
in the include\ directory and the im-
plementation file sst.c located in the
source\ directory. The example files
are located in the example\ directory,
which also contains the Turbo C++
project file to build and debug the ap-
plication. (NOTE: because the standard
keyboard ISR is replaced by the custom
one, debugging this application with
the Turbo C++ IDE might be difficult.)

Critical sections in SST
SST, just like any other kernel, needs to
perform certain operations indivisibly.
The simplest and most efficient way to
protect a section of code from disrup-
tions is to lock interrupts on entry to
the section and unlock the interrupts
again on exit. Such a section of code is
called the critical section.

Processors generally provide in-
structions to lock/unlock interrupts,
and your C compiler must have a
mechanism to perform these opera-

fe at u re

25 JULY 2006 embedded systems design www.embedded.com

tions from C. Some compilers allow
you to include inline assembly instruc-
tions in your C source. Other compilers
provide language extensions or at least
C-callable functions to lock and unlock
interrupts from C.

To hide the actual implementation
method chosen, SST provides two
macros to lock and unlock interrupts.
Here are the macros defined for the
Turbo C++ compiler:

#define SST_INT_LOCK() \
disable()
#define SST_INT_UNLOCK() \
enable()

In the minimal SST version, we as-
sume the simplest possible critical sec-
tion: one that unconditionally locks in-
terrupts upon entry and
unconditionally unlocks interrupts
upon exit. Such simple critical sections
should never nest, because interrupts
will always be unlocked upon exit from
the critical section, regardless of
whether they were locked or unlocked
before the entry.

The SST scheduler is designed to
never nest critical sections, but you
should be careful when using macros
SST_INT_LOCK() and SST_INT_UN-
LOCK() to protect your own critical
sections in the applications. You can
avoid this limitation by using smarter
(though somewhat more expensive)

code to lock and unlock interrupts.
Please note, however, that the in-

ability to nest critical sections does not
necessarily mean that you can’t nest in-
terrupts. On processors equipped with
an internal or external interrupt con-
troller, such as the 8259A PIC in the
x86-based PC, or the AIC in the AT91
ARM microcontroller, you can unlock
the interrupts inside ISRs at the proces-
sor level, thus avoiding nesting of the
critical section inside ISRs, and let the
interrupt controller handle the inter-
rupt prioritization and nesting before
they even reach the CPU core.

Interrupt processing in SST
One of the biggest advantages of SST is
the simple interrupt processing, which
is actually not much more complicated
with SST than it is in a simple “super-

loop” (a.k.a., main+ISRs). Because SST
doesn’t rely in any way on the interrupt
stack frame layout, with most embed-
ded C compilers, the ISRs can be writ-
ten entirely in C.

One notable difference between a
simple “super-loop” and SST ISRs is
that SST requires the programmer to
insert some simple actions at each ISR
entry and exit. These actions are imple-
mented in SST macros SST_ISR_EN-
TRY() and SST_ISR_EXIT(). The code
snippet in Listing 1 shows how these
macros are used in the clock tick and
keyboard ISRs from the example appli-
cation defined in the file
example\bsp.c.

Note in Listing 1, the compiler spe-
cific keyword “interrupt”, which di-
rects the Turbo-C compiler to synthe-
size appropriate context saving,

fe at u re

www.embedded.com embedded systems design JULY 2006 26

Listing 1: SST ISRs from the example application
void interrupt tickISR() { /* every ISR is entered with interrupts locked */

uint8_t pin; /* temporary variable to store the initial priority */
SST_ISR_ENTRY(pin, TICK_ISR_PRIO);

SST_post(TICK_TASK_A_PRIO, TICK_SIG, 0); /* post the Tick to Task A */
SST_post(TICK_TASK_B_PRIO, TICK_SIG, 0); /* post the Tick to Task B */

SST_ISR_EXIT(pin, outportb(0x20, 0x20));
}
/*..*/
void interrupt kbdISR() { /* every ISR is entered with interrupts locked */

uint8_t pin; /* temporary variable to store the initial priority */
uint8_t key = inport(0x60);/*get scan code from the 8042 kbd controller */
SST_ISR_ENTRY(pin, KBD_ISR_PRIO);

SST_post(KBD_TASK_PRIO, KBD_SIG, key); /* post the Key to the KbdTask */

SST_ISR_EXIT(pin, outportb(0x20, 0x20));
}

Listing 2: Definition of the SST interrupt entry/exit macros

#define SST_ISR_ENTRY(pin_, isrPrio_) do { \
(pin_) = SST_currPrio_; \
SST_currPrio_ = (isrPrio_); \
SST_INT_UNLOCK(); \

} while (0)

#define SST_ISR_EXIT(pin_, EOI_command_) do { \
SST_INT_LOCK(); \
(EOI_command_); \
SST_currPrio_ = (pin_); \
SST_schedule_(); \

} while (0)

restoring, and interrupt return pro-
logues and epilogues. Please also note
the SST interrupt-entry and interrupt-
exit macros at the beginning and end of
each ISR. (If the interrupt source re-
quires clearing, this should be done be-
fore calling SST_ISR_ENTRY()).

The mac ros S S T _ I S R _ E N T R Y ()
and S S T _ I S R _ E X I T () a re defin ed in
the i n c l u d e s \ s s t . h h e ader file as
s h own in Listing 2. (Th e
d o . . w h i l e (0) l oop around the
m ac ros is on ly for syntacti c a lly correct
grouping of the instru cti on s .)

The SST_ISR_ENTRY() macro is
invoked with interrupts locked and per-
forms the following 3 steps:

(1) Saves the initial SST pri ori ty into
the stack va ri a ble ‘pin_’

(2) Sets the current SST pri ori ty to
the ISR level

(3) Un l ocks the interru pts to all ow

i n terru pt nesti n g

The SST_ISR_EXIT() macro is in-
voked with interrupts unlocked and
performs the following four steps:

(1) Locks the interru pt s
(2) Wri tes the EOI command to the

i n terru pt con tro ll er (for ex a m p l e ,
outportb(0x20, 0x20) wri te s
the EOI to the master 8259A PIC)

(3) Re s tores the initial SST pri ori ty
(4) Ca lls the SST sch edu l er, wh i ch

performs the “a s y n ch ronous pre-
em pti on ,” i f n ece s s a ry

The task control blocks
Like other real-time kernels, SST keeps
track of tasks in an array of data struc-
tures called task control blocks (TCBs).
Each TCB contains such information as
the pointer to the task function, the
task mask (calculated as (1 << (pri-

ority - 1))), and the event queue
associated with the task. The TCB takes
only 8 to 10 bytes, depending on the
size of the function pointer. Additional-
ly, you need to provide an event queue
buffer of the correct size when you cre-
ate a task.

The TCB used here is optimized for
a small, fixed number of priority levels
and simple events—restrictions that
make sense in a classic embedded envi-
ronment. Neither of these limitations,
however, is required by the SST sched-
uling algorithm.

Posting events to tasks
In this minimal version of SST, events
are represented as structures containing
two byte-size elements: an event type
identifier (for example, the key-press
occurrence), and the parameter associ-
ated with the occurrence (for example,
the scan code of the key). The events
are stored in event queues organized as
standard ring buffers.

SST maintains the status of all
event queues in the variable called the
SST ready-set. As shown in Figure 6, the
SST ready-set SST_readySet_ is just a
byte, meaning that this implementation
is limited to eight priority levels. Each
bit in the SST_readySet_ represents
one SST task priority. The bit number
‘n’ in the SST_readySet_ is 1 if the

fe at u re

27 JULY 2006 embedded systems design www.embedded.com

Listing 3: Event posting in SST

uint8_t SST_post(uint8_t prio, SSTSignal sig, SSTParam par) {
TaskCB *tcb = &l_taskCB[prio - 1];
SST_INT_LOCK();
if (tcb->nUsed__ < tcb->end__) {

tcb->queue__[tcb->head__].sig = sig; /* insert the event at the head */
tcb->queue__[tcb->head__].par = par;
if ((++tcb->head__) == tcb->end__) {

tcb->head__ = (uint8_t)0; /* wrap the head */
}

(1) if ((++tcb->nUsed__) == (uint8_t)1) { /* the first event? */
(2) SST_readySet_ |= tcb->mask__; /* insert task to the ready set */
(3) SST_schedule_(); /* check for synchronous preemption */

}
SST_INT_UNLOCK();
return (uint8_t)1; /* event successfully posted */

}
else {

SST_INT_UNLOCK();
return (uint8_t)0; /* queue full, event posting failed */

}
}

event queue of the task of priority ‘n+1’
is not empty (bits are numbered 0..7).
Conversely, bit number ‘m’ in
SST_readySet_ is 0 if the event queue
of the task of priority ‘m+1’ is empty, or
the priority level ‘m+1’ is not used.

Listing 3 shows the event posting
function SST_post(), which uses a
standard ring buffer algorithm (FIFO).
If the event is inserted to an empty
queue (1), the corresponding bit in
SST_readySet_ is set (2), and the SST
scheduler is invoked to check for the
“synchronous preemption” (3).

The SST scheduler
The SST scheduler is a simple C-func-
tion SST_schedule_() whose job is to
efficiently find the highest-priority task
that is ready to run and, if its priority is
higher than the currently serviced SST
priority. To perform this job, the SST
scheduler uses the already described
SST_readySet_ and the cur-

rent priority level SST_currPrio_
shown in Figure 6. Both variables
SST_currPrio_ and SST_readySet_
are always accessed in a critical section
to prevent data corruption. (See also
the SST_ISR_ENTRY/SST_ISR_EXIT
macros.)

Listing 4 shows the complete SST
scheduler implementation. (Yes, it real-
ly is that small.) The function
SST_schedule_() must be called with
interrupts locked and returns also with
interrupts locked.

Just as the hardware-interrupt con-
troller does when servicing an inter-
rupt, the SST scheduler starts by saving
the initial priority into a stack variable
‘pin’ (1). Next, this initial priority is
compared to the highest priority of all
tasks ready to run (computed from the
SST ready-set SST_readySet_.) This
latter computation is efficiently imple-
mented as a binary-logarithm lookup
(more precisely log-base-2(x) + 1),
which delivers the bit number of the

most-significant 1-bit in the
SST_readySet_ byte (2).

If the new priority ‘p’ is higher than
the initial value, the scheduler needs to
start the task of priority ‘p’. First, the
scheduler removes the event from the
tail of the queue (3), and if the queue
becomes empty clears the correspon-
ding bit in SST_readySet_ (4). Subse-
quently, the current priority SST_cur-
rPrio_ is raised to the new level ‘p’ (5),
the interrupts are unlocked (6) and the
high-priority task is called (7). When
the task completes and returns, the in-
terrupts are locked (8), and the while
loop again computes the highest-prior-
ity task ready to run based on the po-
tentially changed SST_readySet_ (2).
The loop continues until no more tasks
above the initial priority level ‘pin’ are
ready to run. Before the exit, the sched-
uler restores the current priority
SST_currPrio_ from the stack variable
‘pin’ (9).

fe at u re

www.embedded.com embedded systems design JULY 2006 28

Listing 4: The SST scheduler

void SST_schedule_(void) {
static uint8_t const log2Lkup[] = { /* log-base-2 lookup table */

0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
. . .
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
. . .

};
(1) uint8_t pin = SST_currPrio_; /* save the initial priority */

uint8_t p; /* the new priority */
/* is the new priority higher than the initial? */

(2) while ((p = log2Lkup[SST_readySet_]) > pin) {
TaskCB *tcb = &l_taskCB[p - 1];

 /* get the event out of the queue */
(3) SSTEvent e = tcb->queue__[tcb->tail__];

if ((++tcb->tail__) == tcb->end__) {
tcb->tail__ = (uint8_t)0;

}
if ((—tcb->nUsed__) == (uint8_t)0) {/* is the queue becoming empty?*/

(4) SST_readySet_ &= ~tcb->mask__; /* remove from the ready set */
}

(5) SST_currPrio_ = p; /* this becomes the current task priority */
(6) SST_INT_UNLOCK(); /* unlock the interrupts */

(7) (*tcb->task__)(e); /* call the SST task */

(8) SST_INT_LOCK(); /* lock the interrupts for the next pass */
}

(9) SST_currPrio_ = pin; /* restore the initial priority */
}

Mutual exclusion in SST
SST is a preemptive kernel, and as with
all such kernels, you must be very care-
ful with any resource sharing among
SST tasks. Ideally, SST tasks should not
share any resources, limiting all inter-
task communication to events. This
ideal situation allows you to program
all SST tasks with purely sequential
techniques, while the SST encapsulates
all the details of thread-safe event ex-
change and queuing.

However, at the cost of i n c re a s ed
coupling among tasks, you migh t
ch oose to share sel ected re s o u rce s . If
you go this path, you take the bu rden on
yo u rs el f to synch ron i ze access to su ch
re s o u rces (shared va ri a bles or devi ce s) .

One option is to guard access to the
shared resource with a critical section.
This requires the programmer to con-

sistently lock and unlock interrupts
around each access. For very short ac-
cesses this might well be the most effec-
tive synchronization mechanism.

However, SST also provides a more
selective mechanism: a priority-ceiling
mutex. Priority-ceiling mutexes are im-
mune to priority inversions,5 but still
allow hardware interrupts and higher-
priority tasks to run as usual. The SST
implementation of the priority-ceiling
mutex is remarkably simple. Recall that
the SST scheduler can only launch tasks
with priorities higher than the initial
priority with which the scheduler was
entered. This means that temporarily
increasing the current SST priority
SST_currPrio_ blocks any tasks with
priorities lower than this priority “ceil-
ing.” This is exactly what a priority-ceil-
ing mutex is supposed to do. Listing 5

shows the SST implementation.
Unlike the simple INT_LOCK

macros, the SST mutex interface allows
locks to be nested, because the original
SST priority is preserved on the stack.
Listing 6 shows how the mutex is used
in the SST example to protect the non-
reentrant DOS random number gener-
ator calls inside the clock-tick tasks
tickTaskA() and tickTaskB().

Starting multitasking and the SST idle
loop
Listing 7 shows the SST_run() func-
tion, which is invoked from main()
when the application transfers control
to SST to start multitasking.

The SST_run() function calls the
SST_start() callback (1), in which the
application can configure and start in-
terrupts (see file examples\bsp.c). Af-

fe at u re

29 JULY 2006 embedded systems design www.embedded.com

Listing 5: Priority-ceiling mutex locking and unlocking

uint8_t SST_mutexLock(uint8_t prioCeiling) {
uint8_t p;
SST_INT_LOCK();
p = SST_currPrio_; /* save the original SST priority to return */
if (prioCeiling > SST_currPrio_) {

SST_currPrio_ = prioCeiling; /* set the SST priority to the ceiling */
}
SST_INT_UNLOCK();
return p;

}
/*..*/
void SST_mutexUnlock(uint8_t orgPrio) {

SST_INT_LOCK();
if (orgPrio < SST_currPrio_) {

SST_currPrio_ = orgPrio; /* restore the saved priority to unlock */
SST_schedule_(); /* the scheduler unlocks the interrupts internally */

}
SST_INT_UNLOCK();

}

Listing 6: Priority-ceiling mutex used in the SST example to protect the non-reentrant random-
number generator

void tickTaskA(SSTEvent e) {
. . .
uint8_t x, y;
uint8_t mutex; /* mutex object preserved on the stack */

mutex = SST_schedLock(TICK_TASK_B_PRIO); /* mutex lock */
x = random(34); /* call to non-reentrant random number generator */
y = random(13); /* call to non-reentrant random number generator */
SST_schedUnlock(mutex); /* mutex unlock */ . . .

}

ter locking interrupts (2), the current
SST priority SST_currPrio_ is set to
zero, which corresponds to the priority
of the idle loop. (The SST priority is
statically initialized to 0xFF.) After low-
ering the priority the SST scheduler is
invoked (4) to process any events that
might have accumulated during the
task initialization phase. Finally, inter-
rupts are unlocked (5), and the
SST_run() enters the SST idle loop (6),
which runs when the CPU is not pro-
cessing any of the one-shot SST tasks or
interrupts. The idle loop continuously
calls the SST_onIdle() callback (7),
which the application can use to put
the CPU into a power-saving mode.

WHERE TO GO FROM HERE
The minimal SST implem en t a ti on pre-
s en ted in this arti cle is rem a rk a bly pow-
erf u l , given that it takes on ly 421 bytes of
code (see Figure 5), 256 bytes of l oo k u p
t a bl e s , and a several bytes of RAM per
task (for the TCB and the event qu eu e
bu f fer) plu s , of co u rs e , the stack . Th i s
m i ght be all you need for small er proj-
ect s . Wh en you tackle bi gger sys tem s ,
h owever, you wi ll inevi t a bly discover
s h ortcom i n gs in this implem en t a ti on .
From our ex peri en ce , these limitati on s
h ave little to do with the mu l ti t a s k i n g
m odel and mu ch to do with the infra-
s tru ctu re su rrounding the kern el , su ch
as the limited event para m eter size , l ack
of error handl i n g, and the ra t h er pri m i-
tive event-passing mech a n i s m .

One thing that you’ll surely discov-
er when you go beyond toy applications
suitable for publication in an article is

that your task functions will grow to
contain more and more conditional
code to handle various modes of opera-
tion. For example, a user-interface task
for a digital camera must react differ-
ently to button-press events when the
camera is in the playback mode than to
the same button-press events in the pic-
ture-taking mode. The best-known
method of structuring such code is
through a state machine that explicitly
captures the different modes of opera-
tions as different states of the system.

And here is the most important sig-
nificance of SST. The inherent run-to-
completion (RTC) execution model re-
sponsible for the simplicity of this
kernel perfectly matches the RTC exe-
cution semantics universally assumed
in all state machine formalisms, includ-
ing advanced UML statecharts. Simply
put, SST and state machines are born
for each other. We would even go so far
as to suggest that if you’re using any
other type of real-time kernel for exe-
cuting concurrent state machines, you
are probably paying too much in ROM,
RAM, and CPU usage.

While the full integration of SST
into a generalized, state machine-based
system is beyond the scope of this arti-
cle, you can explore the fit yourself in
an open-source system produced by
one of the authors. You can download
complete code, examples, and docu-
mentation from www.state-
machine.com/doc.

Miro Samek is the founder and
president of Quantum Leaps, LLC, a
provider of real-time, state machine-
based applica-tion frameworks for
embedded systems. He is the author of
Practical Statecharts in C/C++ (CMP
Books, 2002), has writ-
ten numerous articles for magazines,
and is a regular speaker at the Embed-
ded Systems Conference. He welcomes
contact at miro@quantum-leaps.com.

Robert Ward, in a former life, founded
The C Users Journal and its sister publi-
cations. He is now a principal software
engineer at Netopia, Inc, where he de-
signs and builds Java-based servers to
support web-based collaboration. You
can reach him at rward@
codecraftsman.com.

ENDNOTES:
1 . Sel i c , Bra n . “The Ch a ll en ges of Re a l - Ti m e

Sof t w a re De s i gn ,” Em bed d ed Sys tems Pro-
gra m m i n g,O ctober 1996.

2 . Wa rd , Robert .“ Practical Re a l - Time Tech-
n i qu e s ,” Proceed i n gs of the Embed ded Sys-
tems Con feren ce , San Fra n c i s co, 2 0 0 3 .

3 . L a bro s s e , Jean J. Mi croC/OS-II: The Re a l
Time Kern el , 2nd Ed i ti o n. CMP Boo k s
2 0 0 2 .

4 . Borland Devel oper Net work ,“An ti qu e
Sof t w a re : Tu rbo C++ vers i on 1.01”
h t tp : / / b d n . b o rl a n d . co m / a rti-
cl e / 0 , 1 4 1 0 , 2 1 7 5 1 , 0 0 . h tml

5 . Ka l i n s ky, D avi d .“ Mutexes Prevent Pri ori ty
Invers i on s ,” Em bed d ed Sys tems Pro gra m-
m i n g,August 1998.

fe at u re

www.embedded.com embedded systems design JULY 2006 30

Listing 7: Starting SST multitasking

void SST_run(void) {
(1) SST_start(); /* start ISRs */

(2) SST_INT_LOCK();
(3) SST_currPrio_ = (uint8_t)0; /* set the priority for the SST idle loop */
(4) SST_schedule_(); /* process all events produced so far */
(5) SST_INT_UNLOCK();

(6) for (;;) { /* the SST idle loop */
(7) SST_onIdle(); /* invoke the on-idle callback */

}
}

