6 Eddy Current Inspection

- 6.1 Fundamentals
- 6.2 Eddy Currents
- 6.3 Impedance Diagrams
- 6.4 Inspection Techniques
- 6.5 Applications

6.1 Fundamentals

Electric Field and Potential

 $W_{AB} = -Q \int_{A}^{B} \mathbf{E} \cdot d\mathbf{\ell}$ $\Delta U = U_{B} - U_{A} = W_{AB}$ U = VQ $\Delta V = V_{B} - V_{A} = -\int_{A}^{B} \mathbf{E} \cdot d\mathbf{\ell}$

 $dW = -\mathbf{F}_{\mathbf{e}} \cdot d\mathbf{\ell}$

- *W* work done by moving the charge
- **F**_e Coulomb force
- د path length
- E electric field
- Q charge
- U electric potential energy of the charge
- *V* potential of the electric field

Current, Current Density, and Conductivity

$I = \frac{dQ}{dt}$
$I = \int \mathbf{J} \cdot d\mathbf{A}$
$dI = \mathbf{J} \cdot d\mathbf{A}$
$dQ = -ne\mathbf{v}_{\mathbf{d}} \cdot d\mathbf{A} dt$
$\mathbf{J} = -ne\mathbf{v}_{\mathrm{d}}$
$\frac{\mathbf{v}_{\mathrm{d}}}{\tau} = -\mathbf{E}\frac{e}{m}$
$\tau = \frac{\Lambda}{v}$
$\frac{1}{2}mv^2 = \frac{3}{2}kT$
$\mathbf{J} = \frac{ne^2\tau}{m}\mathbf{E} = \sigma\mathbf{E}$

Ι	current			
~		0		

- *Q* transferred charge
- t time
- J current density
- A cross section area
- *n* number density of electrons
- \mathbf{v}_{d} mean drift velocity
- *e* charge of proton
- *m* mass of electron
- τ collision time
- Λ free path
- *v* thermal velocity
- *k* Boltzmann's constant
- *T* absolute temperature
- σ conductivity

Resistivity, Resistance, and Ohm's Law

$$V = V_{+} - V_{-} = -\int_{S_{-}}^{S_{+}} \mathbf{E} \cdot d\boldsymbol{\ell}$$
$$V = \int_{S_{-}}^{L} d\boldsymbol{\ell} = I \int_{S_{-}}^{L} d\boldsymbol{\ell}$$

$$V = \int_{0}^{L} \frac{J}{\sigma} d\ell = I \int_{0}^{L} \frac{d\ell}{\sigma A}$$

$$R = \frac{V}{I}$$

$$P = \frac{dU}{dt} = V\frac{dQ}{dt} = VI$$

- V voltage
- *I* current
- *R* resistance
- *P* power
- σ conductivity
- ρ resistivity
- L length
- *A* cross section area

$$R = \int_{0}^{L} \frac{d\ell}{\sigma A} = \int_{0}^{L} \frac{\rho d\ell}{A}$$

$$\rho = \frac{1}{\sigma}$$

$$R = \sum \frac{\rho_i L_i}{A_i}$$

$$R = \frac{\rho L}{A}$$

Maxwell's Equations

Field Equations:

Ampère's law:	$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$
Faraday's law:	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$
Gauss' law:	$\nabla \cdot \mathbf{D} = q$
Gauss' law:	$\nabla \bullet \mathbf{B} = 0$

Constitutive Equations:

conductivity	$\mathbf{J} = \mathbf{\sigma} \mathbf{E}$
permittivity	$\mathbf{D} = \mathbf{\varepsilon} \mathbf{E}$

permeability $\mathbf{B} = \mu \mathbf{H}$

$$\varepsilon = \varepsilon_0 \varepsilon_r \qquad (\varepsilon_0 \approx 8.85 \times 10^{-12} \text{ As/Vm})$$
$$\mu = \mu_0 \mu_r \qquad (\mu_0 \approx 4\pi \times 10^{-7} \text{ Vs/Am})$$

Electromagnetic Wave Equation

Maxwell's equations:

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} = -i\omega\mu\mathbf{H} \qquad \nabla \times (\nabla \times \mathbf{E}) = -i\omega\mu(\sigma + i\omega\varepsilon)\mathbf{E}$$
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} = (\sigma + i\omega\varepsilon)\mathbf{E} \qquad \nabla \times (\nabla \times \mathbf{H}) = -i\omega\mu(\sigma + i\omega\varepsilon)\mathbf{H}$$
$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$
$$\nabla \cdot \mathbf{E} = 0 \qquad \nabla^2 \mathbf{E} = i\omega\mu(\sigma + i\omega\varepsilon)\mathbf{E}$$
$$\nabla^2 \mathbf{H} = i\omega\mu(\sigma + i\omega\varepsilon)\mathbf{H}$$

Wave equations:

$$(\nabla^2 + k^2)\mathbf{E} = \mathbf{0}$$
$$(\nabla^2 + k^2)\mathbf{H} = \mathbf{0}$$
$$k^2 = -i\omega\mu(\sigma + i\omega\varepsilon)$$

Example plane wave solution:

$$\mathbf{E} = E_y \mathbf{e}_y = E_0 e^{i(\omega t - kx)} \mathbf{e}_y$$
$$\mathbf{H} = H_z \mathbf{e}_z = H_0 e^{i(\omega t - kx)} \mathbf{e}_z$$

Wave Propagation versus Diffusion

$$k^2 = -i\omega\mu(\sigma + i\omega\varepsilon)$$

k wave number

Propagating wave in free space:

$$k = \frac{\omega}{c} \qquad \mathbf{E} = E_0 e^{i\omega(t - x/c)} \mathbf{e}_y$$
$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \qquad \mathbf{H} = H_0 e^{i\omega(t - x/c)} \mathbf{e}_z$$

c wave speed

Propagating wave in dielectrics:

$$c_{\rm d} = \frac{1}{\sqrt{\mu_0 \varepsilon_0 \varepsilon_{\rm r}}} \qquad n = \frac{c}{c_{\rm d}} = \sqrt{\varepsilon_{\rm r}}$$

n refractive index

Diffusive wave in conductors:

$$k = \sqrt{-i\omega\mu\sigma} = \frac{1}{\delta} - \frac{i}{\delta} \qquad \mathbf{E} = E_0 e^{-x/\delta} e^{i(\omega t - x/\delta)} \mathbf{e}_y$$
$$\delta = \frac{1}{\sqrt{\pi f \mu\sigma}} \qquad \mathbf{H} = H_0 e^{-x/\delta} e^{-i(\omega t - x/\delta)} \mathbf{e}_z$$

 δ standard penetration depth

6.2 Eddy Currents

Air-core Probe Coils

$$\mathbf{H} = \frac{I d\ell}{4\pi r^2} \mathbf{e}_{\ell} \times \mathbf{e}_r$$
$$H_{\text{center}} = \frac{I}{2a}$$

L coil length *a* coil radius

 $\oint \mathbf{H} \cdot d\mathbf{s} = I_{\text{enc}}$

$$\lim_{L/a \to \infty} H_{\text{center}} = \frac{NI}{L}$$

Eddy Currents, Lenz's Law

$$\nabla \times \mathbf{E}_{s} = -\mu \frac{\partial}{\partial t} (\mathbf{H}_{p} - \mathbf{H}_{s}) \qquad V_{s} = -\frac{d}{dt} (\Phi_{p} - \Phi_{s})$$
$$\mathbf{J}_{s} = \sigma \mathbf{E}_{s} \qquad I_{s} \propto \sigma V_{s}$$
$$\nabla \times \mathbf{H}_{s} = \mathbf{J}_{s} \qquad \Phi_{s} \propto \mu I_{s} \Lambda_{s}$$

Field Distributions

air-core pancake coil ($a_i = 0.5 \text{ mm}$, $a_o = 0.75 \text{ mm}$, h = 2 mm), in Ti-6Al-4V ($\sigma = 1 \text{ %IACS}$)

Eddy Current Penetration Depth

- $\mathbf{E} = E_0 f(x) e^{i\omega t} \mathbf{e}_v$
- $\mathbf{H} = H_0 f(x) e^{i\omega t} \mathbf{e}_z$

$$f(x) = e^{-x/\delta} e^{-ix/\delta}$$

 δ standard penetration depth

aluminum ($\sigma = 26.7 \times 10^6$ S/m or 46 %IACS)

6.3 Impedance Diagrams

Magnetic Coupling

$$\frac{\Phi_{12}}{\Phi_{22}} = \frac{\Phi_{21}}{\Phi_{11}} = \kappa$$
$$V_1 = N_1 \frac{d}{dt} (\Phi_{11} + \Phi_{12})$$
$$V_2 = N_2 \frac{d}{dt} (\Phi_{21} + \Phi_{22})$$

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = i \omega \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$
$$\Phi_{11} = \frac{I_1 L_{11}}{N_1} \qquad \Phi_{22} = \frac{I_2 L_{22}}{N_2}$$
$$\Phi_{21} = \kappa \Phi_{11} = \kappa \frac{I_1 L_{11}}{N_1} \qquad \Phi_{12} = \kappa \Phi_{22} = \kappa \frac{I_2 L_{22}}{N_2}$$
$$L_{21} = \kappa \frac{N_2}{N_1} L_{11} \qquad L_{12} = \kappa \frac{N_1}{N_2} L_{22}$$
$$L_{12} = L_{21} = \kappa \sqrt{L_{11} L_{22}}$$

Probe Coil Impedance

 \tilde{Z}_n

$$V_{2} = -I_{2} R_{e} = i\omega L_{12} I_{1} + i\omega L_{22} I_{2}$$

$$I_{2} = \frac{-i\omega L_{12}}{R_{e} + i\omega L_{22}} I_{1}$$

$$V_{1} = i\omega L_{11} I_{1} + i\omega L_{12} I_{2}$$

$$V_{1} = (i\omega L_{11} + \frac{\omega^{2} L_{12}^{2}}{R_{e} + i\omega L_{22}}) I_{1}$$

$$\tilde{Z}_{coil} = i\omega L_{11} + \frac{\omega^{2} L_{12}^{2}}{R_{e} + i\omega L_{22}}$$

$$\tilde{Z}_{n} = i + \kappa^{2} \frac{\omega L_{22}}{R_{e} + i\omega L_{22}} \frac{R_{e} - i\omega L_{22}}{R_{e} - i\omega L_{22}}$$

$$\tilde{Z}_{n} = i + \kappa^{2} \frac{\omega L_{22}}{R_{e} + i\omega L_{22}} \frac{R_{e} - i\omega L_{22}}{R_{e} - i\omega L_{22}}$$

$$= \kappa^{2} \frac{\omega L_{22} R_{e}}{R_{e}^{2} + \omega^{2} L_{22}^{2}} + i(1 - \kappa^{2} \frac{\omega^{2} L_{22}^{2}}{R_{e}^{2} + \omega^{2} L_{22}^{2}}$$

Impedance Diagram

$$\zeta = \omega L_{22}/R_e$$

$$R_n = \operatorname{Re}\{\tilde{Z}_n\} = \kappa^2 \frac{\zeta}{1+\zeta^2} \qquad X_n = \operatorname{Im}\{\tilde{Z}_n\} = 1-\kappa^2 \frac{\zeta^2}{1+\zeta^2}$$

lift-off trajectories are straight:

 $X_{\rm n} = 1 - R_{\rm n} \zeta$

conductivity trajectories are semi-circles

$$R_n^2 + \left(X_n - 1 + \frac{\kappa^2}{2}\right)^2 = \left(\frac{\kappa^2}{2}\right)^2$$

$$\lim_{\omega \to 0} R_n = 0 \text{ and } \lim_{\omega \to 0} X_n = 1$$
$$\lim_{\omega \to \infty} R_n = 0 \text{ and } \lim_{\omega \to \infty} X_n = 1 - \kappa^2$$
$$R_n(\zeta = 1) = \frac{\kappa^2}{2} \text{ and } X_n(\zeta = 1) = 1 - \frac{\kappa^2}{2}$$

Electric Noise versus Lift-off Variation

Conductivity Sensitivity, Gauge Factor

 $L_{22} = 3 \,\mu\text{H}, f = 1 \,\text{MHz}, R_e = 10 \,\Omega, \Delta R_e = \pm 1 \,\Omega$

6.4 Inspection Techniques

Coil Configurations

rotated

parallel

coaxial

Single-Frequency Operation

6.5 Applications

- conductivity measurement
- permeability measurement
- metal thickness measurement
- coating thickness measurements
- flaw detection

Conductivity versus Probe Impedance

constant frequency

Conductivity versus Alloying and Temper

IACS = International Annealed Copper Standard $\sigma_{IACS} = 5.8 \times 10^7 \ \Omega^{-1} m^{-1} at 20 \ ^{\circ}C$ $\rho_{IACS} = 1.7241 \times 10^{-8} \ \Omega m$

Various Aluminum Alloys

Apparent Eddy Current Conductivity

- high accuracy ($\leq 0.1 \%$)
- controlled penetration depth

Magnetic Susceptibility

paramagnetic materials with small ferromagnetic phase content

moderately high susceptibility

low susceptibility

increasing magnetic susceptibility decreases the apparent eddy current conductivity (AECC)

Magnetic Susceptibility versus Cold Work

cold work (plastic deformation at room temperature) causes martensitic (ferromagnetic) phase transformation in austenitic stainless steels

Thickness versus Normalized Impedance

thickness loss due to corrosion, erosion, etc.

Non-conducting Coating

conducting substrate

Impedance Diagram

apparent eddy current conductivity (AECC) decreases apparent eddy current lift-off (AECL) increases

Eddy Current Images of Small Fatigue Cracks

0.5" × 0.5", 2 MHz, 0.060"-diameter coil

Al2024, 0.025" crack

Ti-6Al-4V, 0.026"-crack

Grain Noise in Ti-6Al-4V

$1"\times1"$, 2 MHz, 0.060"-diameter coil

solution treated and annealed

heat-treated, very coarse

heat-treated, coarse

equiaxed beta annealed

heat-treated, large colonies

as-received billet material

Eddy Current versus Acoustic Microscopy

1" × 1", coarse grained Ti-6Al-4V sample

5 MHz eddy current

40 MHz acoustic

Inhomogeneity

AECC Images of Waspaloy and IN100 Specimens

inhomogeneous Waspaloy 4.2" × 2.1", 6 MHz conductivity range ≈1.38-1.47 %IACS ±3 % relative variation homogeneous IN100 2.2" × 1.1", 6 MHz conductivity range \approx 1.33-1.34 %IACS \pm 0.4 % relative variation

