

AVR231: AES Bootloader

Features
• Fits AVR Microcontrollers with Bootloader Capabilities and at least 1-KB SRAM
• Enables secure transfer of firmware and sensitive data to an AVR based application
• Includes easy-to-use configurable example applications:

- Encrypting binary files and data
- Creating target bootloaders
- Downloading encrypted files to target

• Implements the Advanced Encryption Standard (AES):
- 128-, 192- and 256-bit keys

• AES Bootloader fits into 2-KB
• Typical update times of a 64-KB application, 115200 baud, 3.69 MHz target

frequency:
- AES128: 27 seconds
- AES192: 30 seconds
- AES256: 33 seconds

Introduction
This application note describes how firmware can be updated securely on AVR
microcontrollers with bootloader capabilities. The method uses the Advanced
Encryption Standard (AES) to encrypt the firmware.

Figure 1. Overview
Bootloader

int main()
{
 ...
}

Plaintext Encrypted Programming
AlgorithmEncrypted Plaintext

Electronic designs with microcontrollers always need to be equipped with firmware,
be it a portable music player, a hairdryer or a sewing machine. As many electronic
designs evolve rapidly there is a growing need for being able to update products
that have already been shipped or sold. It may prove difficult to make changes to
hardware, especially if the product has already reached the end customer, but the
firmware can easily be updated on products based on Flash microcontrollers, such
as the AVR.

Many AVR microcontrollers are configured such that it is possible to implement a
bootloader able to receive firmware updates and to reprogram the Flash memory
on demand. The program memory space is divided in two sections: the Bootloader
Section (BLS) and the Application Section. Both sections have dedicated lock bits
for read and write protection so that the bootloader code can be secured in the BLS
while still being able to update the code in the application area. Hence, the update
algorithm in the BLS can easily be secured against outside access.

8-bit
Microcontrollers

Application Note

Rev. 2589D-AVR-08/06

2 AVR231
2589D-AVR-08/06

The problem remains with the firmware, which typically is not secure before it has
been programmed into Flash memory and lock bits have been set. This means that if
the firmware needs to be updated in the field, it will be open for unauthorized access
from the moment it leaves the programming bench or manufacturer’s premises.

This application note shows how data to be transferred to Flash and EEPROM
memories can be secured at all times by using cryptographic methods. The idea is to
encrypt the data before it leaves the programming bench and decrypt it only after it
has been downloaded to the target AVR. This procedure does not prevent
unauthorized copying of the firmware, but the encrypted information is virtually
useless without the proper decryption keys. Decryption keys are only stored in one
location outside the programming environment: Inside the AVR. The keys cannot be
regenerated from the encrypted data. The only way to gain access to the data is by
using the proper keys.

Figure 2 shows an example of how a product is first manufactured, loaded with initial
firmware, sold and later updated with a new revision of the firmware.

 AVR231

 3

2589D-AVR-08/06

Figure 2. An example of the typical production and update procedure

FIRMWARE
(INITIAL)

THIRD PARTYMANUFACTURER

BOOT-
LOADER

DECRYPTION
KEYS

FIRMWARE UPDATES

FIRMWARE
(UPDATE)

PRODUCT SOLD
PRODUCT BEING
MANUFACTURED

PRODUCT BEING
UPDATED

1

2

3

4

Notes: 1. During manufacturing, the microcontroller is first equipped with bootloader,
decryption keys and application firmware. The bootloader takes care of
receiving the actual application and programming it into Flash memory, while
keys are required for decrypting the incoming data. Lock bits are set to secure
the firmware inside the AVR.

2. The product is then shipped to a distributor or sold to the end customer. Lock bit
settings continue to keep the firmware secured inside the AVR.

3. A new release of the firmware is completed and there is a need to update
products, which already have been distributed. The firmware is therefore
encrypted and shipped to the distributor. The encrypted firmware is useless
without decryption keys and therefore even local copies of the software (for
example, on the hard drive of the distributor) do not pose a security hazard.

4. The distributor upgrades all units in stock and those returned by customers (for
example, during repairs). The encrypted firmware is downloaded to the AVR
and decrypted once inside the microcontroller. Lock bit settings continue to
keep the updated firmware secured inside the AVR.

4 AVR231
2589D-AVR-08/06

1 Cryptography Overview
The term cryptography is used when information is locked and made unavailable
using keys. Unlocking information can only be achieved using the correct keys.

Algorithms based on cryptographic keys are divided in two classes; symmetric and
asymmetric. Symmetric algorithms use the same key for encryption and decryption
while asymmetric algorithms use different keys. AES is a symmetric key algorithm.

1.1 Encryption
Encryption is the method of encoding a message or data so that its contents are
hidden from outsiders. The plaintext message or data in its original form may contain
information the author or distributor wants to keep secret, such as the firmware for a
microcontroller. For example, when a microcontroller is updated in the field it may
prove difficult to secure the firmware against illicit copying attempts and reverse
engineering. Encrypting the firmware will render it useless until it is decrypted.

1.2 Decryption
Decryption is the method of retrieving the original message or data and typically
cannot be performed without knowing the proper key. Keys can be stored in the
bootloader of a microcontroller so that the device can receive encrypted data, decrypt
it and reprogram selected parts of the Flash or EEPROM memory. Decryption keys
cannot be retrieved from the encrypted data and cannot be read from AVR
microcontrollers if lock bits have been programmed accordingly.

2 AES Implementation
This section is not intended to be a detailed description of the AES algorithm or its
history. The intention is rather to describe the AVR-specific implementations for the
various parts of the algorithm. Since memory is a scarce resource in embedded
applications, the focus has been on saving code memory. The bootloader application
will never be run the same time as the main code, and it is therefore not important to
save data memory (RAM) as long as the data memory requirements do not exceed
the capacity of the microcontroller.

If not interested in the AES implementation itself, the reader can skip right to Section
3 “Software Implementation and Usage” on page 12 without loss of continuity.

In the following subsections, some basic mathematical operations and their AVR-
specific implementations are described. Note that there are some references to finite
field theory from mathematics. Knowledge of finite fields is not required to read this
document, but the interested reader should study the AES specification.

2.1 Byte Addition
In the AES algorithm, byte addition is defined as addition of individual bits without
carry propagation. This is identical to the standard XOR operation. The XOR
operation is its own inverse; hence byte subtraction is identical to addition in the AES
algorithm. XOR operations are trivial to implement on AVR.

 AVR231

 5

2589D-AVR-08/06

2.2 Byte Multiplication
In the AES algorithm, byte multiplication is defined as finite field multiplication with
modulus 0x11B (binary 1 0001 1011). A suggested implementation is to repetitively
multiply the first factor by 2 (modulo 0x11B) and sum up the intermediate results for
each bit in the second factor having value 1. An example: If the second factor is 0x1A
(binary 0001 1010), then the first, third and fourth intermediate results should be
summed. Another example is shown in Figure 2-1. This method uses little memory
and is well suited for an 8-bit microcontroller.

Figure 2-1. Byte multiplication

B = 00110101

1

0

1

0

0

1

1

0

A = 01110010

*

*

*

*

*

*

*

*

A

A = 2A

A = 2A

A = 2A

A = 2A

A = 2A

A = 2A

A = 2A

01110010

0

11010011

0

01100001

11000010

0

0

00000010

=

=

=

=

=

=

=

=

Use multiplication
modulo 0x11B

Use addition modulo 2,
i.e. XOR

The multiplication algorithm can be described by the following pseudo code:

bitmask = 1
tempresult = 0
tempfactor = firstfactor
while bitmask < 0x100
 if bitmask AND secondfactor <> 0
 add tempfactor to tempresult using XOR
 end if
 shift bitmask left once
 multiply tempfactor by 2 modulo 0x11B
end while
return tempresult

2.3 Multiplicative Inverses
To be able to compute finite field multiplicative inverses, i.e. 1/x, a trick has been
used in this implementation. Using exponentiation and logarithms with a common
base, the following identity can be utilized:

Equation 2-1. Using exponentiation and logarithms to compute 1/x

x
a xa

1log =−

6 AVR231
2589D-AVR-08/06

In this case the base number 3 has been chosen, as it is the simplest primitive root.
By using finite field multiplication when computing the exponents and logarithms, the
multiplicative inverse is easy to implement. Instead of computing exponents and
logarithms every time, two lookup tables are used. Since the multiplicative inverse is
only used when preparing the S-box described in section 2.4 below, the memory used
for the two lookup tables can be used for other purposes when the S-box has been
prepared.

The lookup table computation can be described by the following pseudo code:

tempexp = 0
tempnum = 1
do
 exponentiation_table[tempexp] = tempnum
 logarithm_table[tempnum] = tempexp
 increase tempexp
 multiply tempnum by 3 modulo 0x11B
loop while tempexp < 256

2.4 S-boxes
The AES algorithm uses the concept of substitution tables or S-boxes. One of the
steps of the algorithm is to apply an invertible transformation to a byte. The S-box is
the precomputed results of this transformation for all possible byte values. The
transformation consists of two steps: (1) A multiplicative inverse as described in
section 2.3 above, and (2) a linear transformation according to the following equation,
where ia are the bits of the result and ib are the bits of the result from step 1.

Equation 2-2. Linear transformation used in the S-box

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
1
1
0
0
0
1
1

11111000
01111100
00111110
00011111
10001111
11000111
11100011
11110001

7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

b
b
b
b
b
b
b
b

a
a
a
a
a
a
a
a

A closer look at the matrix reveals that the operation can be implemented as the sum
(using XOR addition) of the original byte, the right-hand vector and the original byte
rotated left one, two, three and four times. This method is well suited for an 8-bit
microcontroller.

The inverse S-box, used for decryption, has a similar structure and is also
implemented using XOR additions and rotations. Refer to the AES specification for
the corresponding matrix and to the source code for implementation details.

2.5 The ‘State’
The AES algorithm is a block cipher, which means that data is managed in blocks.
For the AES cipher, the block size is 16 bytes. The AES block is often organized in a

 AVR231

 7

2589D-AVR-08/06

4x4 array called the ‘State’ or the ‘State array’. The leftmost column of the State holds
the first four bytes of the block, from top to bottom, and so on. The reader should also
be aware that in the AES specification, four consecutive bytes are referred to as a
word.

2.6 AES Encryption
Before discussing the steps of the encryption process, the concept ‘encryption round’
needs to be introduced. Most block ciphers consist of a few operations that are
executed in a loop a number of times. Each loop iteration uses a different encryption
key. At least one of the operations in each iteration depends on the key. The loop
iterations are referred to as encryption rounds, and the series of keys used for the
rounds is called the key schedule. The number of rounds depends on the key size.

The flowchart for the encryption process is shown in Figure 2-2 below. The following
subsections explain the different steps in the process. Each step is implemented as a
subroutine for convenience. Using an optimizing compiler removes unnecessary
function calls to save code memory.

Figure 2-2. Encryption flowchart

Add Round Key

Substitute Bytes

Shift Rows

Mix Columns

Add Round Key

Ready for the
last round ?

Substitute Bytes

Shift Rows

Add Round Key

Encrypt Block

Return

No

Yes

8 AVR231
2589D-AVR-08/06

2.6.1 Add Round Key

This step uses XOR addition to add the current round key to the current State array.
The round key has the same size as the State, i.e. 16 bytes or 4 words. This
operation is implemented as a 16-step loop.

Figure 2-3. Adding the round key to the current State

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

S'0,0

S'1,0

S'2,0

S'3,0

S'0,1

S'1,1

S'2,1

S'3,1

S'0,2

S'1,2

S'2,2

S'3,2

S'0,3

S'1,3

S'2,3

S'3,3

S S'xor(round key)

XOR
key3,2

2.6.2 Substitute Bytes

This step uses the precalculated S-box lookup table to substitute the bytes in the
State. Like section 2.6.1 above, this step is also implemented as a 16-step loop.

Figure 2-4. Substituting the bytes of the current State

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

S'0,0

S'1,0

S'2,0

S'3,0

S'0,1

S'1,1

S'2,1

S'3,1

S'0,2

S'1,2

S'2,2

S'3,2

S'0,3

S'1,3

S'2,3

S'3,3

S S'S-box lookup

S-box[S3,2]

2.6.3 Shift Rows

This step operates on the rows of the current State. The first row is left untouched,
while the last three are cycled left one, two and three times, respectively. To cycle left
once, the leftmost byte is moved to the rightmost column, and the three remaining
bytes are moved one column to the left. The process is shown in Figure 2-4.

 AVR231

 9

2589D-AVR-08/06

Figure 2-4. Cycling the rows of the current State
S S'cycle rows

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,33x left

2x left

1x left

0x left

The naive implementation would be to write a subroutine that cycles a row left one
time, and then call it the required number of times on each row. However, tests show
that implementing the byte shuffling directly, without any loops or subroutines, results
in only a small penalty in code size but a significant gain (3x) in speed. Therefore the
direct implementation has been chosen. Please refer to the ShiftRows() function in
the source code for details.

2.6.4 Mix Columns

This step operates on the State column by column. Each column is treated as a
vector of bytes and is multiplied by a fixed matrix to get the column for the modified
State.

Figure 2-5. Mixing the columns of the current State

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

S'0,0

S'1,0

S'2,0

S'3,0

S'0,1

S'1,1

S'2,1

S'3,1

S'0,2

S'1,2

S'2,2

S'3,2

S'0,3

S'1,3

S'2,3

S'3,3

S S'Matrix multiplication,
column by column

Matrix

The operation can be described by the following equation, where ia are the bytes of
the mixed column and ib are the bytes of the original column. Note that XOR addition
and finite field multiplication from sections 2.1 and 2.2 are used.

Equation 2-3. Matrix multiplication when mixing one column

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

3

2

1

0

2113
3211
1321
1132

b
b
b
b

a
a
a
a

10 AVR231
2589D-AVR-08/06

This step is implemented directly without any secondary function calls. From the
matrix equation one can see that every byte ia of the mixed column is a combination
of the original bytes ib and their doubles ib2 . Please refer to the MixColumns()
function in the source code for details.

2.7 Decryption
The flowchart for the decryption process is shown in Figure 2-6 below. The process is
very similar to the encryption process, except the order of the steps has changed. All
steps except “Add Round Key” have their corresponding inverses. “Inverse Shift
Rows” cycles the rows right instead of left. “Inverse Substitute Bytes” uses inverse S-
boxes.

“Inverse Mix Columns” also uses an inverse transformation. Please refer to the AES
specification for the corresponding matrix and to the source code for implementation
details.

Note that the key schedule used for decryption is the same as for encryption, but in
reverse order.

Figure 2-6. Decryption flowchart

Add Round Key

Inverse Shift Rows

Inverse Substitute
Bytes

Add Round Key

Inverse Mix Columns

Ready for the
last round ?

Inverse Shift Rows

Inverse Substitute
Bytes

Add round key

Decrypt Block

Return

No

Yes

 AVR231

 11

2589D-AVR-08/06

2.8 Key Expansion
Key expansion is the process of generating the key schedule from the original 128-,
196- or 256-bit cipher key. The flowchart for key expansion is shown in

Figure 2-7 below.

Figure 2-7. Key expansion flowchart

Cycle temporary
word left one byte

Key Expansion

Return

Current position
is a multiple of the key

length ?

Substitute each byte
in temporary word

Yes

Add current round
constant to

temporary word

Set round constant word
to {0x01 0x00 0x00 0x00}

Copy original key to start
of expanded key

Copy last 4 bytes of key to
temporary word

Set current position in
expanded key right after

copy of original key

Multiply round
constant by 2

Current position
is one block length past

a multiple of the key
length ?

No

Substitute each byte
in temporary word

Yes

Add word from one
key length before
current position to
temporary word

Copy temporary word to
current position and

advance to next word

No

Reached end of
expanded key ?

Yes

No

Only if key size is
larger than

192 bits

12 AVR231
2589D-AVR-08/06

The algorithm uses operations already described, such as XOR addition, finite field
multiplication, substitution and word cycling. Please refer to the source code for
details.

Note that the key expansion is identical for both encryption and decryption. Therefore
the S-box used for encryption is required even if only decryption is used. In the AVR
implementation, the ordinary S-box is computed prior to key expansion, and then its
memory is reused when computing the inverse S-box.

2.9 Cipher Block Chaining – CBC
AES is a block cipher, meaning that the algorithm operates on fixed-size blocks of
data. The cipher key is used to encrypt data in blocks of 16 bytes. For a known input
block and a constant (although unknown) encryption key, the output block will always
be the same. This might provide useful information for somebody wanting to attack
the cipher system.

There are some methods commonly used which cause identical plaintext blocks
being encrypted to different ciphertext blocks. One such method is called Cipher
Block Chaining (CBC).

CBC is a method of connecting the cipher blocks so that leading blocks influence all
trailing blocks. This is achieved by first performing an XOR operation on the current
plaintext block and the previous ciphertext block. The XOR result is then encrypted
instead of the plaintext block. This increases the number of plaintext bits one
ciphertext bit depends on.

3 Software Implementation and Usage
This section first discusses some important topics for improving system security.
These topics motivate many of the decisions in the later software design.

3.1 Motivation
This application note presents techniques that can be used when securing a design
from outside access. Although no design can ever be fully secured it can be
constructed such that the effort required to break the security is as high as possible.
There is a significant difference between an unsecured design that a person with
basic engineering skills can duplicate and a design that only few, highly skilled
intruders can break. In the unsecured case, the design is easily copied and even
reverse engineered, violating the intellectual property of the manufacturer and
jeopardizing the market potential for the design. In the secured case, the effort
required to break the design is so high that most intruders simply focus on developing
their own products.

There is only one general rule on how to build a secure system: It should be designed
to be as difficult to break as possible. Any mechanism that can be used to circumvent
security will be tried during a break attempt. A few examples of what must be
considered are given below.

• What will happen if power is removed during a firmware update? What is the state
of the microcontroller when power is restored back? Are lock bits and reset vectors
set properly at all times?

 AVR231

 13

2589D-AVR-08/06

• Are there any assumptions that can be made on what plaintext data will look like?
In order for AES to be broken, there must be a pattern to look for. The attack
software will have to be configured to search for a known pattern, such as interrupt
vectors at the start of program memory, memory areas padded with zero or one,
and so on.

• Is there any feedback that can be derived from the decryption process? Any such
feedback can help the attacker. For example, if the decryption algorithm inside the
bootloader would give an OK / Not-OK type of signal for each block processed,
then this signal could be used as feedback to the attacker.

• Should encrypted frames be sent in another order? If the first frame sent to the
bootloader always includes the first block of the encrypted file then the attacker can
make some assumptions from this. For example, it can be assumed that the first
frame maps program data starting from address zero and that it contains the
interrupt vector table. This information helps the attacker to refine the key search.
To increase the security of the system, send the frames in random order (the
decrypted frames will be mapped to their proper address, anyhow).

3.2 Usage Overview
This and the following subsections describe how to use and configure the
applications. The process is illustrated in Figure 3-1.

Figure 3-1. Overview of project flow

EEPROM
Data

Application Builder

Create

FirmwareConfiguration
File

Header
File Key File Encrypted

Firmware

Text Editor/GenTemp Miscellaneous Editor

IAR Embedded Workbench

Frames

Update

Bootloader
Source

Bootloader

Target AVR

Application Note

The main steps are as follows:

• Create an application for the target AVR. If required, create an EEPROM layout in
a separate file.

• Create a configuration file with project dependent information. The application
called gentemp can be used for creating a file frame.

• Run the application called create. This will create the header file, key file and the
encrypted file.

• Using IAR EW, configure and build the bootloader for the target AVR.
• Download bootloader to target AVR and set lock and fuse bits.
• Now the encrypted firmware may be downloaded to the AVR at any time.

14 AVR231
2589D-AVR-08/06

3.3 Configuration File
The configuration file contains a list of parameters, which are used to configure the
project. The parameters are described in the table below.

Table 3-1. Summary of Configuration File Options
Parameter Description Default Required

PAGE_SIZE Size of AVR Flash page in decimal bytes. This parameter is part
dependent. Please see datasheet.

N/A Yes

KEY1 First part (128 bit) of encryption key in hex. Should be 16 random
bytes, with odd-parity bits inserted after every 8th bit, making a total
of 18 bytes.

None: No
encryption

No, but strongly
recommended

KEY2 Second part (64 bit) of encryption key in hex. Should be 8 random
bytes, with odd-parity bits inserted after every 8th bit, making a total
of 9 bytes. If omitted, AES128 will be used.

None: Use
AES128

No, but
recommended

KEY3 Third part (64 bit) of encryption key in hex. Should be 9 random
bytes, with odd-parity bits inserted after every 8th bit, making a total
of 9 bytes. If omitted AES128 or AES192 will be used.

None: Use
AES128 or
AES192

No, but
recommended

INITIAL_VECTOR Used for chaining cipher blocks. Should be 16 random bytes in hex. 0 No, but strongly
recommended

SIGNATURE Frame validation data in hex. This can be any four bytes, but it is
recommended that the values be chosen at random.

0 No

ENABLE_CRC Enable CRC checking: YES or NO. If enabled, the whole application
section will be overwritten and the application must pass a CRC
check before it is allowed to start.

No No, but
recommended

MEM_SIZE Size of application section in target AVR (in decimal bytes). N/A Yes, if CRC is
used

The configuration file can be given any valid file name. The name is later given as a
parameter to the application that will create the project files. Below is a sample
configuration file for ATmega16. The KEY1 parameter is an example 128 bit key (hex
0123456789ABCDEF0123456789ABCDEF) with parity bits inserted.

PAGE_SIZE = 128
KEY1 = 0111914CE8955B35DE0111914CE8955B35DE
INITIAL_VECTOR = 00112233445566778899AABBCCDDEEFF
SIGNATURE = 89ABCDEF
ENABLE_CRC = YES
MEM_SIZE = 14336

Some of the parameters cannot be set without specific knowledge of the target AVR.
Table 3-2 below summarizes the features of some present AVR microcontrollers with
bootloader functionality. For devices not present in this table, please refer to the data
sheet of the device.

 AVR231

 15

2589D-AVR-08/06

Table 3-2. AVR Feature Summary
 M8 M16 M162 M169 M32 M64 M128
Flash Size, bytes 8192 16384 16384 16384 32768 65536 131072

Flash Page size, bytes 64 128 128 128 128 256 256

Flash Pages 128 128 128 128 256 256 512

BLS (max), bytes 2048 2048 2048 2048 4096 8192 8192

BLS Pages 32 16 16 16 32 32 32

MEM_SIZE, bytes 6144 14336 14336 14336 28672 57344 122880

PAGE_SIZE, bytes 64 128 128 128 128 256 256

3.4 PC Application – GenTemp
This application generates a template for the configuration file. The application
generates random encryption keys and initial vectors, leaving other parameters for
the user to be filled in (such as the Flash page size). It is recommended to always
start with creating a template using this application.

The application is used as follows:

gentemp FileName.Ext

FileName.Ext is the name of the configuration file to be created. After the file has
been generated it can be edited using any plain text editor.

3.5 PC Application – Create
This application reads information from the configuration file and generates key and
header files for the bootloader. It is also used for encrypting the firmware. Typically,
the application is run at least twice: (1) To generate key and header files for the
bootloader and (2) when new firmware is encrypted.

Note: It is very important that the same encryption information (configuration file) is used
when generating project files and when encoding the firmware. Otherwise, the
bootloader may not have the correct set of encryption keys and cannot decrypt the
data. It should also be noted that it is possible to use the information in the
configuration file to decrypt the encrypted firmware. Hence, the configuration file
must be kept safe at all times and should not be modified after it has been used for
the first time.

16 AVR231
2589D-AVR-08/06

3.5.1 Command Line Arguments

The following table shows the available command line arguments.

Table 3-3. Summary of Command Line Arguments
Argument Description

-c <filename.ext> Path to configuration file.

-d If set, contents of each Flash page is deleted before writing. Else,
previous data will be preserved if not specifically written to.

-e <filename.ext> Path to EEPROM file (data that goes into EEPROM).

-f <filename.ext> Path to Flash file (code that goes into Application Section).

-h <filename.ext> Name of output header file. This file is later included in the
bootloader.

-k <filename.ext> Name of output key file. This file is later included in the bootloader.

-l [BLB12] [BLB11]
[BLB02] [BLB01]

Lock bits to set. These lock bits are set after all data has been
transferred and before control is transferred to the updated
application.

-n Nonsense. Add random number of nonsense records to encrypted
file. As nonsense records are ignored by the bootloader, this setting
does not affect the application, only the predictability of the output
file.

-o <filename.ext> Output file name. This is the encrypted file that may be distributed
and sent to the target when it needs to be updated.

3.5.2 First Run

In the first run, typically, only key and header files for the bootloader are generated.
The generation of key and header files is requested using command line arguments.
For example:

create –c Config.txt –h BootLdr.h –k AESKeys.inc

The key and header files must be copied to the project directory of the bootloader
application and be included into the bootloader code.

Note: Please note that the bootloader project files are preconfigured to use the file
names mentioned above, i.e. BootLdr.h and AESKeys.inc. It is recommended
these file names are not changed.

3.5.3 Subsequent Runs

In subsequent runs, the application is used for encoding the firmware. Prior to
encryption, the source file must be compiled, assembled and linked into one code
segment file and/or one EEPROM segment file. Files must be of type Intel hex.

A file name is given at the command prompt and an encrypted file will be generated
according to data in the configuration file. For example:

create –c Config.txt –e EEPROM.hex –f Flash.hex –o Update.enc –l
BLB11 BLB12

The application software and EEPROM data files will be combined into a single
encrypted file.

 AVR231

 17

2589D-AVR-08/06

3.5.4 Program Flow

Figure 3-2. Flowchart for the create application

Create

Command line
arguments?

Give
instructions

Done

Read
config file

How many keys?

Use
AES128

Use
AES196

Use
AES256

Key file
name given?

Create key file

Header file
name given?

Create header file

Flash file
name given?

Include flash file
in encryption

EEPROM file
name given?

Include EEPROM file
in encryption

Output file
name given?

Create encrypted file

Done

No

Yes

1
2

3

Yes

No

No

Yes

No

Yes

No

Yes

Yes

No

18 AVR231
2589D-AVR-08/06

3.5.5 The Encrypted File

The Flash and EEPROM files are encrypted and stored in one target file. Before
encryption, however, data is organized into records. There are seven types of
records, as illustrated in Figure 3-3.

Figure 3-3. Record types for encrypted file

0

FLASH PAGE DATA (VARIABLE LENGTH)

2 NBAB

4 NBAB

3 NBAB

(VARIABLE LENGTH)5 NBAB

6 L R

7 R

FLASH PAGE PREPARE

END OF FRAME

FLASH PAGE PROGRAM

EEPROM SECTION DATA

LOCK BITS

RESET

RECORD TYPE LAYOUT

LEGEND

AB

L

NB

R

ADDRESS IN BYTES

LOCK BITS

LENGTH IN BYTES

RANDOM DATA

1 NBABFLASH PAGE ERASE

NNONSENSE

N ANY VALUE IN 8...255

The record type is given as the first byte in the record. The application data is broken
down to record types 1, 2, 3 and 4 (i.e., erase, prepare, load and write buffer page to
Flash). The data for the EEPROM section is formatted into record type 5. Lock bits
are sent in record type 6. Record types 0 and 7 are for ending a frame and
transmission, respectively.

All other records, i.e. those with a record identifier above 7, are of type nonsense.
When this option is enabled (see create tool), a random number of nonsense
records will be placed at random locations in the file.

The output file is created as illustrated in Figure 3-4.

Figure 3-4. Creating the encrypted file

CHAINED AND ENCRYPTED DATA

INITIAL VECTOR

STEP 1

STEP 2

C

FZ

C

STEP 3

STEP 4

STEP 5

FRAMEFILE

CIPHER BLOCK

RECORD

CIPHER BLOCK CIPHER BLOCK CIPHER BLOCK CIPHER BLOCK

RECORDRECORDRECORD

CHAINED AND ENCRYPTED DATA

CHAINED AND ENCRYPTED DATA

 AVR231

 19

2589D-AVR-08/06

The steps are described below (numbers refer to Figure 3-4):

1. Data is formatted into records, which are then lined up following the frame
signature (SIG). A zero (Z) is added to mark the end of the frame and the frame is
padded with random data (F) to create a frame size that is a multiple of 16 bytes.

2. The initial vector is attached to the frame. In the first frame, the vector is equal to
the one given in the configuration file. In subsequent frames, the initial vector is
equal to the last cipher block of the previous frame.

3. The initial vector and cipher blocks are chained and encrypted. The initial vector is
then removed from the frame.

4. A CRC-16 checksum (C) is calculated and added to the frame.
5. The length (L) of the frame, excluding the length information, is calculated and

saved at the start of the frame.
The frame is written to the output file and the procedure is repeated until all data has
been processed.

3.6 AVR Bootloader
The bootloader must reside in the target AVR before the device can be updated with
encrypted firmware. The bootloader communicates with the PC and is capable of
programming the EEPROM and the application area of the Flash memory. The
bootloader included with this application note has been created using IAR Embedded
Workbench, version 3.20c, but it can be ported to other C compilers. The program
flow is illustrated in the figure below.

20 AVR231
2589D-AVR-08/06

Figure 3-5. Flowchart for the AVR bootloader

Switch SW7
Pressed?

YESNO

Bootldr

Load Initial Vector for CBC

Calculate CRC of Appl. Section

Application
CRC Valid?

YES

NO

Read Frame Size (Two Characters)

Read Character, Store in RAM

Update Frame CRC Counter

Jump to Application

End of
Frame?

YES

NO

Frame CRC
Valid?

YES NO

Decrypt and Unchain Send Frame CRC Error

Signature
Valid?

YES NO

Ignore Frame BUT Send OK
Type?

Load
Data

Write
Page

Write
EEPROM

Write
Lock Bits

Set Initial
Vector

Prepare
Page

Send OK

PREPARE DATA PROGRAM EEPROM LOCKBITS RESET EOF

NOTE WELL: IF CRC IS VALID, FRAME IS
DECRYPTED. ANY INFORMATION SENT
ON DECRYPTION STATUS OTHER THAN
OK MAY BE USED IN AN ATTACK ATTEMPT

Erase
Page

ERASE

CRC Check
Enabled?

YES

NO

Do
Nothing

NONSENSE

 AVR231

 21

2589D-AVR-08/06

3.6.1 Key and Header Files

Before the bootloader can be compiled, there are some parameters that need to be
set up. To start with, the encryption key and target header files generated by the PC
application create must be copied to the directory of the bootloader. The files will be
included when they are referred to with the #include directive inside the bootloader
source code.

3.6.2 Project Files

The application note comes with device specific project files for the following devices:

• ATmega8
• ATmega16
• ATmega162
• ATmega169
• ATmega32
• ATmega64
• ATmega128

Use the predefined project files with the corresponding AVR. For AVR devices not
listed, use the project file for a device that matches the target device as close as
possible and modify as described in the two following sections.

3.6.3 Linker File

The IAR compiler requires a modified linker file because the bootloader will reside in
the upper memory area, i.e. in the Boot Loader Section (BLS). Linker files have an
extension of .xcl and are distributed with the IAR compiler for each AVR device
separately. This application note comes with the modified linker file bootldr.xcl.

The linker file is defined under “Project” – “Options”, category “XLINK”, tab “Include”,
field “XCL file name”. Note that the linker file is already set up in the device specific
project files that come with this application note.

22 AVR231
2589D-AVR-08/06

3.6.4 Other Compiler Settings

The following settings need to be defined in the dialog window found under “Project” –
“Options”. Note that all settings are already defined in the device specific project files.

Table 3-4. Required compiler settings
Cathegory Tab Set to Example

Set “Processor configuration” to match target AVR. -cpu=m8, AT90mega8

Set “Memory model” to Small.

Target

Uncheck “Configure system using dialogs (not in .XCL
file)”.

General

Library Configuration Check “Enable bit definitions in I/O-include files”.

Define symbol “INCLUDE_FILE” to match target AVR. INCLUDE_FILE=”iom8.h”

Define symbol SPMREG to match target. SPMREG=SPMCR

Define symbol __RAMPZ__ for devices with more
then 64-KB Flash memory

AAVR Preprocessor

Define symbol __MEMSPM__ for devices with SPM
control register located above address 0x3F

Output Define output file format such that the file can
programmed into the target. Set to Intel-Extended.

Define symbol BOOT_SIZE to match target boot
loader section. In hex bytes.

BOOT_SIZE=800

Define symbol FLASH_SIZE to match Flash size of
target. In hex bytes.

FLASH_SIZE=2000

Define symbol IVT_SIZE to match size of target
interrupt vector table. In hex bytes.

IVT_SIZE=26

Define symbol RAM_SIZE to match amount of RAM
on target. In hex bytes.

RAM_SIZE=400

Define symbol RAM_BASE to match start of SRAM
(following I/O area). In hex bytes.

RAM_BASE=60

#define

Define symbol APP_SRAM_USED to match the total
SRAM usage reported from the compile process. In
hex bytes.

APP_SRAM_USAGE=30A

Under section “XCL file name”, check “Override
default”.

XLINK

Includes

Under section “XCL file name”, enter file name in box. $PROJ_DIR$\bootldr.xcl

Table 3-5 below summarizes some of the compiler options for currently supported
AVR devices. Please note that bootloader start address depends on fuse settings, as
explained later (see Table 3-6).

 AVR231

 23

2589D-AVR-08/06

Table 3-5. Compiler setting reference
 M8 M16 M162 M169 M32 M64 M128
Linker file name bootldr.xcl

BOOT_SIZE 800 800 800 800 800 800 1000

FLASH_SIZE 2000 4000 4000 4000 8000 10000 20000

IVT_SIZE 26 54 70 5C 58 8C 8C

RAM_SIZE 400 400 400 400 800 1000 1000

RAM_BASE 60 60 100 100 60 100 100

APP_SRAM_USAGE 30A 31E 31E 31E 31E 41E 41E

SPMREG SPMCR SPMCR SPMCR SPMCSR SPMCR SPMCR SPMCSR

__RAMPZ__ X

__MEMSPM__ X X

Note: The symbols __RAMPZ__ and __MEMSPM__ should not be set equal to anything. If required, they should merely be
included in the defined symbols list.

3.6.5 Installing the Bootloader

Compile the boot loader and then download it to the target using AVR Studio. Before
running the boot loader, the following fuse bits must be configured:

• Size of Boot Loader Section. Set fuse bits so that the section size matches the
BOOT_SIZE setting, as described earlier. Note that the BLS is usually given in
words, but the BOOT_SIZE parameter is given in bytes.

• Boot reset vector. The boot reset vector must be enabled.
• Oscillator options. The oscillator fuse bits are device dependent. They may require

configuration (affects USART).

Note: Please pay special attention in setting oscillator options correctly. Even small
misadjustments could result in communication failure.

The table below lists the recommended fuse bit settings. See datasheet for detailed
explanation of device dependent fuse bits.

Table 3-6. Recommended fuse bits

M8, M8515, M8535, M16,
M162, M169, M32, M64

M128

BOOTSZ1:0 0:0 0:1

BOOTRST 0 0

Note: “0” means programmed, “1” means not programmed.

It is recommended to program lock bits to protect both application memory and the
bootloader, but only after fuse bits have been set. Lock bits can be programmed
using AVR Studio. BLS lock bits will also be set during firmware update, provided that
they have been defined as command line arguments when the firmware is encrypted.
The recommended lock bit settings are:

24 AVR231
2589D-AVR-08/06

• Memory lock bits: These should be set to prevent unauthorized access to memory.
Note that after the memory has been locked it cannot be accessed via in-system
programming without erasing the device.

• Protection mode for Boot Loader Section: SPM and LPM should not be allowed to
write to or read from the BLS. This will prevent the firmware in the application
section to corrupt the bootloader and will keep the decryption keys safe.

• Protection mode for application section: No restrictions should be set for SPM or
LPM accessing the application section, otherwise the bootloader cannot program it.

Note: It is important to understand that if the device is not properly locked then memory
can be accessed via an ISP interface and the whole point of encrypting the
firmware is gone.

The following table lists the recommended lock bit setting for present AVR
microcontrollers. See data sheet for detailed explanation of lock bits.

Table 3-7. Recommended lock bits

M8, M8515, M8535, M16,

M162, M169, M32, M64, M128
BLB12 : BLB11 0 0

BLB02 : BLB01 1 1

LB2 : LB1 0 0

3.7 PC Application – Update
This application is used for sending the encrypted file to the target. The data can be
sent via a serial port on the PC directly to the USART on the target hardware. The
program flow is illustrated in Figure 3-6 below.

The Update application reads in files generated with the Create application. The file
consists of one or more concatenated frames of encrypted data. The application
transmits data one frame at a time, pausing in between to wait for a reply from the
bootloader. The next frame is transmitted only after an acknowledgement has been
received, otherwise the application will either resend the frame or close
communication.

The update application is run from the command prompt. The command prompt
arguments are listed in the table below.

Table 3-8. Command line arguments for the update application
Argument Description
<filename.ext> Path to encrypted file to be transferred.

-COMn Serial port, where n is the serial port number.

It should be noted that the update system only updates those parts of the Flash and
EEPROM denoted in the application and EEPROM files. If CRC check of the
application section is enabled, or the erase option is selected in the create tool, all
application memory will be cleared before programming.

 AVR231

 25

2589D-AVR-08/06

Figure 3-6. Flowchart for the update application

Two
Arguments?

YESNO

Update

Give Instructions

Read All File Into Buffer

Done

Done

File
Exists?

YESNO

Port Number
Given?

YESNO

Port
Initializes?

YESNO

Show Error Message

Show Error Message

Initialize Buffer Pointer

Read Size of Next Frame

Flush Input of Serial Port

Send Frame

Byte
Received?

YES

NO

Byte
Value?

OKCRC

Retry < 4?
YESNO

Show CRC Error Message Increase Retry Counter

Reset Retry Counter

Show Error Message

Close Serial Port

Close File

Pointer < Size
of Buffer?

YESNO

Increase Pointer

Close File

26 AVR231
2589D-AVR-08/06

3.8 Hardware Setup
The target hardware must be properly set up before the encrypted firmware can be
sent to the bootloader. In this application note, it is assumed an STK500 is used as
the target platform, using an external 3.69 MHz crystal oscillator. The STK500 should
be configured as follows:

• Connect the STK500 (via connector labeled “RS232 CTRL”) to the PC using a
serial cable. Power on the STK500.

• Use AVR Studio to download the boot loader and set fuse and lock bits, as
described earlier. Power off the STK500.

• Move the serial cable to the connector labeled “RS232 SPARE”.
• Connect the device USART pins RXD and TXD to the corresponding pins on the

connector labeled “RS232 SPARE”.
• Connect PD7 (pin 8 of PORTD) to SW7 (pin 8 of SWITCHES).
• Press and hold down SW7 while switching on the STK500. This will start the boot

loader and set it in update mode.
• Release switch SW7.
• The update application on the PC can now be used to send encrypted data to the

target.

3.9 Performance
The following sections summarize system performance with respect to execution time
and code size.

3.9.1 Execution Time

The time required for the target device to receive, decode and program data depends
on the following factors:

• File size. The more data, the longer it takes.
• Baudrate. The higher the transmission speed, the shorter the transmission time.
• Target AVR speed. The higher the clock frequency, the shorter the decoding time.
• Programming time of Flash page. This is a device constant and cannot be altered.
• Keysize. AES128 is faster to decrypt than AES256. In fact, AES192 is slower than

AES256. It has something to do with 192 not being a power of 2.
• Miscellaneous settings. For example, CRC check of application section takes a

short while.

3.9.2 Code Size

Using the highest optimization setting for the compiler, the bootloader will fit nicely
into 2 kb of Flash memory.

It should be noted that if no encryption keys are given, the bootloader is built without
AES support. This application note then performs as a standard bootloader system
and can be used on any AVR with boot loader support.

 AVR231

 27

2589D-AVR-08/06

4 Summary
This application note has presented a method for transferring data securely to an
AVR microcontroller with bootloader capabilities. This document has also highlighted
techniques that should be implemented when building a secured system. The
following issues should be considered in order to increase the security of an AVR
design.

Implement a bootloader that supports downloading in encrypted form. When the
bootloader is first installed (during manufacturing) it must be equipped with decryption
keys, required for future firmware updates. The firmware can then be distributed in an
encrypted form, securing the contents from outsiders.

Use AVR lock bits to secure Application and Boot Loader Sections. When lock bits
are set to prevent reading from the device, the memory contents cannot be retrieved.
If lock bits are not set, there is no use encrypting the firmware.

Encrypt the firmware before distribution. Encrypted software is worthless to any
outside entity without the proper decryption keys.

Keep encryption keys safe. Encryption keys should be stored in two places only: in
the bootloader, which has been secured by lock bits and in the firmware development
bench at the manufacturer.

Chain encrypt data. When data is chained, each encrypted block depends on the
previous block. As a consequence, equal plaintext blocks produce different encrypted
outputs.

Avoid standard, predictable patterns in the firmware. Most programs have a common
framework and any predictable patterns, such as an interrupt vector table starting with
a jump to a low address, only serve to help the intruder. Also avoid padding unused
memory areas with a constant number.

Hide the method. There is no need to mention which algorithm is being used or what
the key length is. The less the intruder knows about the system, the better. It may be
argued that knowing the encryption method fends off some attackers, but knowing
nothing about the method increases the effort and may fend off even more.

The bootloader may also be used to erase the application section, if required. Many
attack attempts include removing the device from its normal working environment and
powering it up in a hacking bench. Detecting, for example, that an LCD is missing or
that there are CRC errors in memory, the bootloader may initiate a complete erase of
all memory (including the bootloader section and decryption keys).

In applications where it is not feasible or possible to use an external communications
channel for updates, the firmware can be stored in one of Atmel’s CryptoMemory®
devices. The memory can be packaged as a removable smart card, which can easily
be inserted in a slot of the device when an upgrade is needed. The microcontroller
can check for the presence of a CryptoMemory upon startup and retrieve a firmware
upgrade as needed.

Use secure hardware. A strong encryption protocol is useless if the hardware has
structural flaws. There are no reported security issues with AVR microcontrollers.

This list can be made much longer but the purpose of it is merely to set the designer
off in the right direction. Do not underestimate the wit or endurance of your opponent.

28 AVR231
2589D-AVR-08/06

5 Literature References
• Menezes, Oorschot & Vanstone, Handbook of Applied Cryptography
• AES Specification, http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
• Atmel Corporation, Application Note AVR230 DES Bootloader
• Brian Gladman, AES Implementation Example,

http://fp.gladman.plus.com/cryptography_technology/rijndael/index.htm

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://fp.gladman.plus.com/cryptography_technology/rijndael/index.htm

2589D-AVR-08/06

Disclaimer

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended
to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. ATMEL®, logo and combinations thereof, Everywhere You Are®, AVR®, and AVR Studio® are registered
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Cryptography Overview
	1.1 Encryption
	1.2 Decryption

	2 AES Implementation
	2.1 Byte Addition
	2.2 Byte Multiplication
	2.3 Multiplicative Inverses
	2.4 S-boxes
	2.5 The ‘State’
	2.6 AES Encryption
	2.6.1 Add Round Key
	2.6.2 Substitute Bytes
	2.6.3 Shift Rows
	2.6.4 Mix Columns

	2.7 Decryption
	2.8 Key Expansion
	2.9 Cipher Block Chaining – CBC

	3 Software Implementation and Usage
	3.1 Motivation
	3.2 Usage Overview
	3.3 Configuration File
	3.4 PC Application – GenTemp
	3.5 PC Application – Create
	3.5.1 Command Line Arguments
	3.5.2 First Run
	3.5.3 Subsequent Runs
	3.5.4 Program Flow
	3.5.5 The Encrypted File

	3.6 AVR Bootloader
	3.6.1 Key and Header Files
	3.6.2 Project Files
	3.6.3 Linker File
	3.6.4 Other Compiler Settings
	3.6.5 Installing the Bootloader

	3.7 PC Application – Update
	3.8 Hardware Setup
	3.9 Performance
	3.9.1 Execution Time
	3.9.2 Code Size

	4 Summary
	5 Literature References

