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Abstract

In contrast to conventional pitch-shifting effects which attempt to maintain harmonic relationships

in the signal, a frequency shifter translates all the component frequencies of the input signal by an

equal amount, disrupting the harmonic relationships and radically altering the sonic qualities of the

signal.  Ring modulation is a generalization of double-sideband suppressed-carrier modulation, and

the frequency shifter is equivalent to a single-sideband modulator.  Applications of the frequency

shifter include the creation of bizarre distortions, phaser, and rotating speaker effects.  An

implementation is presented that is suitable for fixed-point digital hardware.

1  Introduction

Amplitude modulation effects have a long history of

application in electronic and amplified music.

Perhaps the most familiar of these is the tremelo

effect, which is built into many popular electric guitar

and keyboard amplifiers.  Tremolo effects typically

have sub-sonic modulating waveforms.  If the

frequency of the modulating waveform is within the

audible range, the effect becomes what is called "Ring

Modulation", which has been used extensively by

experimental composers such as Stockhausen.  With

the addition of a Hilbert Transformer, it is possible to

maintain the original envelope of the signal, while

shifting all its component frequencies by an equal

amount.

2  Ring Modulation

The basic ring modulator multiplies two signals

together in the time domain.  For input signal x(t) and

modulating waveform w(t), the output y(t) = x(t)w(t).

The envelope of the resulting signal is the product of

the envelopes of the two inputs.  The name given to

this effect comes from the original implementation

which used a "ring" of diodes to effectively multiply

the input signal with a bipolar square wave[1].  The

operation of multiplication in the time domain

translates to convolution in the frequency domain[1].

Therefore, if the modulating waveform w(t) is a

sinusoid, the operation of the ring modulator in the

time and frequency domains has the pictorial

representation shown in Figure 1. Both the

positive(upper sideband) frequencies and the

negative(lower sideband) frequencies of the signal

x(t) are shifted by the frequency of the

sinusoid(carrier).  In the communications literature,

this is called "double-sideband suppressed-carrier

modulation"[1].

3  Single-Sideband Modulation

The positive and negative frequencies of the input

signal can be isolated from each other by calculating

the Hilbert Transform of the signal, which is defined

in the time and frequency domains by equations (1a)

and (1b)[1].
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The analytic signal derived from x(t) is defined in

equation (2)[2].
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      Ring Modulator

Input: x(t)            output:  y(t)

Modulator: w(t)

(e.g. cos(ωct))

       |X(ω)|
 lower sideband    upper sideband

        -ωmax        ωmax

       |Y(ω)|

  -ωc -ωmax       -ωc           -ωc+ωmax ωc -ωmax      ω c         ωc +ωmax

Figure 1. Double-Sideband Amplitude

Modulation (Ring Modulation) in the time and

frequency domains.



The analytic signal is a useful representation because

it has only positive frequencies, as shown in equations

(3a)-(3c) [2].
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The analytic signal can be expressed in polar form as

in equations (4a)-(4c)[2].
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Multiplying the analytic signal by a complex

exponential and taking the real part produces a signal

which consists of just the upper sideband (positive

frequencies) of x(t) shifted as shown in equations

(5a)-(5d).
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The single-sideband(SSB) modulator is represented in

the time and frequency domains as shown in Figure 2.

Equation (5d) shows that the SSB modulator retains

the signal's envelope, producing a smoother-sounding

effect than the ring modulator.  For carrier

frequencies which are no more than a few percent of

the fundamental frequency of the input signal, the

SSB modulator produces a pitch-shift of reasonable

quality.  But as the carrier frequency increases

relative to the fundamental frequency of the input, the

harmonic relationships between the component

frequencies are disrupted, producing discordant

effects.  A piano or guitar note becomes like a bell's

chime, and a human voice sounds extraterrestrial.

5  Digital Implementation

The forgoing exposition has been in terms of

idealized, continuous-time operations.  Fortunately,

discrete-time Hilbert transformation and complex

exponential generation are both thoroughly covered in

the digital signal processing literature[3][4][5][6].

5.1 Digital Quadrature Oscillator

A simple oscillator which simultaneously generates

sine and cosine is the following pair of equations:
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   sin(ωct)
      Hilbert             -1

Input: x(t)     Transform           yssb(t)

       Filter

         yssb'(t)

   cos(ωct)

 |S(ω)|
       upper sideband

 ωmax

 |Yssb(ω)|

  -ωc -ωmax       -ωc      ω c         ωc +ωmax

Figure 2. Single-Sideband(SSB) Modulation,

time and frequency domain representations.
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When the initial conditions are {x(0),y(0)}={1,0},

then x(n+1) = cos(nω) and y(n+1) = sin(nω). It can be

shown, however, that this oscillator gradually decays

to zero whenever there are roundoff errors in

computing the products of the cos(ω) and sin(ω)

coefficients with the state variables[3].  However,

with a 32-bit processor such as the E-Mu 10K1, the

decay rate is slow enough that this oscillator, in

conjunction with a simple periodic re-initialization

scheme, is still useful.

5.2 Generating 90-degree Phase Shifts

Discrete-time Hilbert Transformers have often been

designed as FIR filters[6].  An alternate approach is

to use a class of elliptic halfband IIR filters which can

be expressed as the sum of two allpass filters as in

equation (7)[5]:
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   x(n)

   A0(-z
2
)               y0(n)

  cos(ωcn)

        z
-1

  sin(ωcn)

   A1(-z
2
)             y1(n)

      -1

Figure 3. SSB Modulator using Allpass filters

to generate 90-degree phase difference.

It turns out that with a simple substitution of

variables(z Å -jz), the pair of allpass filters A0(-z
2
)

and z
-1

A1(-z
2
) will produce a pair of outputs which

have approximately 90-degree phase separation over

some portion of the frequency axis, and can thus be

used to implement a SSB modulator as shown in

Figure 3 [5]. Starting with a 13
th

-order elliptic

halfband filter, designed as discussed in [4], A0(-z
2
)

and A1(-z
2
) are each 6

th
-order allpass filters. The

resulting phase difference between the outputs of the

two filters is plotted in Figure 4.  The maximum

deviation of the phase difference from pi/2, denoted

∆φmax, obeys a relationship with the stopband

attenuation of the original elliptic filter G(z) that is

expressed by equation (8) [5].
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The 90-degree phase difference breaks down at DC

and at half the sampling rate, becoming zero and pi

radians, respectively.

6 Stereo Phaser Effect

When the input signal is added to the two outputs of

the SSB modulator and the carrier frequency is

subsonic, a stereo phaser effect is obtained.

Equations (9a-9d) express the outputs of the SSB

modulator in terms of the input and the carrier

frequency ωc.  Because the system is not linear and

time-invariant, it does not have a frequency response

per se.  However, allowing the input to be an impulse

with a variable delay gives some useful insight into

how the system's output evolves over time.  Figure 5

shows four successive snapshots of the time-varying

"frequency response" of one channel of the phaser

effect, taken at 1/12
th

 second intervals, when the

carrier frequency is 1 Hz.  Note that there are three

moving notches because A0(-z
2
) and A1(-z

2
) are each

6
th

-order filters.  The notches produced at the two

outputs of the effect recirculate across the frequency

axis at a rate equal to the carrier frequency.  The

notches on one channel's output move in the opposite

direction on the frequency axis from those on the

other channel's output, giving the illusion of spatial

panning when listened to over stereo headphones or

speakers.
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7 Rotating Speaker Effect

A rotating speaker effect can be implemented with the

system shown in Figure 3 by connecting output y0(n)

to one channel of a stereo amplification system and

output y1(n) to the other channel.  The resulting

system, including a listener's head-related transfer

functions (HRTFs), can be modeled as in Figure 6

and equations (10a-10d).

 TR(n)

      HRR(z)

          y0(n)

            SSB   HLR(z)

x(n)

           Modu-         HRL(z)

            lator

  HLL(z)

          y1(n) TL(n)

Figure 6. SSB Modulator used as a rotating

speaker effect, showing listener's HRTFs.

Three snapshots of the time-varying frequency

content of TR(ω) and TL(ω) are shown in Figure 7.

The deep moving notch at low frequencies alternates

between the left and right channels, causing the stereo

image to shift from side to side.
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7 Conclusions

The SSB Modulator provides a multitude of

compelling applications with minimal computational

requirements.



DF

∆φmax

Figure 4. Phase Difference between the outputs of allpass filters A0(-z
2
) and z

-

1
A1(-z

2
) connected as in Figure 3.

Figure 5. Four snapshots of time-varying frequency response, taken at 1/12
th

second intervals, of the phaser effect showing three moving notches.

Figure 6. Three snapshots of time-varying frequency content of TL(ω) and

TR(ω), taken at 1/24
th

 second intervals.
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