
Application Report
SLAA382–December 2007

Using the USCI I2C Master
Uli Kretzschmar.. MSP430 Systems
Christian Hernitscheck ... MSP430 Application Europe

ABSTRACT
This document is an overview of the use of the I2C master function set for MSP430
devices with the USCI module. These functions can be used by MSP430 master
devices to ensure proper initialization of the USCI module and provide I2C transmit and
receive functionality. A similar version with DMA support has also been included. The
USCI I2C master function set only supports single-master transmitter/receiver mode
using 7-bit device addressing.

Note: The USCI I2C master package includes a demonstration application that
can be used on any MSP430 2xx device with the USCI module.

Contents
1 Introduction .. 2
2 Usage From C .. 3

2.1 Example With DMA.. 3
2.2 Example Without DMA .. 4

3 Compiling the USCI I2C Master Code ... 5
4 Included Files ... 5

4.1 Function Description .. 5
5 Examples of USCI I2C Master Usage.. 8

5.1 Receiving n Bytes ... 8
5.2 Transmitting n Bytes .. 8
5.3 Checking Presence of a Slave... 9

6 Code Size.. 9
7 References .. 9

All trademarks are the property of their respective owners.

SLAA382–December 2007 1Using the USCI I2C Master
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA382

www.ti.com

1 Introduction

START

Control byte containing slave address
and direction bit (transmit)

Data byte to slave More data bytes

STOP

Level controlled by master
Level controlled by slave

START

Control byte containing slave address
and direction bit (transmit)

Data byte to slave More data bytes

STOP

Level controlled by master
Level controlled by slave

Introduction

When using the MSP430 with peripherals, I2C is often used for communication. There are several
MSP430 devices that have an incorporated USCI module, which is capable of this communication
protocol.

The USCI I2C master function set offers sample code that make I2C communication easy. Instead of
having to configure the different registers of the UCSI module, the user can easily use the included
functions with well-defined parameters to start a communication. These functions serve only for setting up
the USCI module. The user is free to include low-power mode functionality to allow the CPU to be turned
off at the application level or continue calculations during I2C communication.

The USCI I2C master package includes functions that support both transmit and receive operations:
• Master transmitter (the master addresses a slave and transmits data to it)

Figure 1. Master Transmitter

• Master receiver (the master addresses a slave and receives data from it)

Figure 2. Master Receiver

Both of these functions support only 7-bit addressing.

2 SLAA382–December 2007Using the USCI I2C Master
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA382

www.ti.com

2 Usage From C

2.1 Example With DMA

Usage From C

The file TI_USCI_I2C_master.c or TI_USCI_I2C_master_dma.c must be added to the project. The first file
supports I2C communication using only the USCI module, while the second file supports I2C
communication using USCI and DMA module. The corresponding header file (TI_USCI_I2C_master.h or
TI_USCI_I2C_master_dma.h) must be included to access to the master function set.

The master program TI_USCI_I2C_master.c (or TI_USCI_I2C_master_dma.c) runs on an MSP430 master
device and is connected to an MSP430 slave running the slave program (TI_USCI_I2C_slave.c). [4]

Note: The master demostration applications were developed for use with the 2xx family. However,
they can be easily modified for use with any MSP430 device with the USCI module.

Note: One of two different source files for the USCI master can be used, depending on whether or
not DMA operation is desired. TI_USCI_I2C_master.c and TI_USCI_I2C_master.h must be
used for operation without DMA, and TI_USCI_I2C_master_dma.c and
TI_USCI_I2C_master_dma.h must be used for operation with DMA.

The usage of DMA causes some overhead in the initialization and interrupt routines for
cases when only a few bytes are sent within a protocol. Therefore, it is recommended to use
the DMA supported version if a large number of bytes are to be moved.

Note that these functions with DMA support work only if an MSP430 version with an integrated DMA
module is used.

#include "msp430x26x.h"
#include "TI_USCI_I2C_master_dma.h"

unsigned char array[9] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09 };

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Disable Watchdog

_EINT(); // enable interrupts

TI_USCI_I2C_DMA_transmitinit(0x48,0x3f); // initialize USCI and DMA module
while (TI_USCI_I2C_notready()); // wait for bus to be free
TI_USCI_I2C_DMA_transmit(8,array); // transmit the first 8 bytes of array

LPM0; // put CPU to sleep during
// communication

}

This short program transmits the slave address and eight bytes of data. During the transmission of the first
seven data bytes, the CPU is in Low-Power Mode 0, which is defined in the main program. The DMA
module manages loading the seven data bytes that need to be be sent. The master transmit function
configures the interrupt to trigger the transmission of the last data byte (eighth data byte in the previous
code example). This means that the CPU is running during the execution of the interrupt service routines.

SLAA382–December 2007 3Using the USCI I2C Master
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA382

www.ti.com

2.1.1 Initialization

2.1.2 Sending a Protocol Frame

2.2 Example Without DMA

Usage From C

As shown in the previous example, configuring the device in master-transmit mode with DMA support
requires that the function TI_USCI_I2C_DMA_transmitinit is called once before transmission begins.

Two parameters must be passed in this function. The first is the address of the slave in the I2C
communication, and the second is a prescale factor that is used to set the baud rate. The resulting baud
rate is the DCO frequency divided by the prescale value.

Calling the initialization routine while an I2C communication is still active can result in undefined behavior.

After initialization of the USCI module, a protocol frame can be sent. Sending a protocol frame is done
with the following steps:
1. Check whether or note the bus is free. This can be done using the TI_USCI_I2C_notready function,

which returns a number greater than zero if the bus is busy. The return value is zero when the bus is
free.

2. Use TI_USCI_I2C_DMA_transmit function to send an I2C frame. This function has two parameters: the
first determines the number of bytes to be sent, and the second is a pointer to a data array that holds
the data to be sent.

If the MSP430 device does not have an integrated DMA module, the following functions might be used.

#include "msp430x26x.h"
#include "TI_USCI_I2C_master.h"

unsigned char array[5] = { 0x1, 0x2, 0x3, 0x4, 0x5 };

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Disable Watchdog

_EINT(); // enable interrupts

TI_USCI_I2C_transmitinit(0x48,0x3f); // initialize USCI
while (TI_USCI_I2C_notready()); // wait for bus to be free
TI_USCI_I2C_transmit(3,array); // transmit the first 3 bytes

// of array

LPM0; // put CPU to sleep during
// communication

}

The usage of the USCI I2C function set without DMA support is the same as the usage of the functions
supporting DMA. The functions can be distinguished by their suffixes.
• Functions beginning with TI_USCI_I2C_DMA_ need a DMA for operation.
• Functions without DMA in their names (for example, TI_USCI_I2C_transmit) do not use DMA.

It is, of course, also possible to use the sample code without DMA support for devices with a DMA
module.

4 SLAA382–December 2007Using the USCI I2C Master
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA382

www.ti.com

3 Compiling the USCI I2C Master Code

4 Included Files

4.1 Function Description

4.1.1 General Functions (TI_USCI_I2C_master_dma.h and TI_USCI_I2C_master.h)

Compiling the USCI I2C Master Code

This application package is distributed as source code and is intended to be compiled with a project. To
accomplish this:
• Add TI_USCI_I2C_master.c (or TI_USCI_I2C_master_dma.c for DMA support) to the project.
• Include the necessary header definitions by adding #include "TI_USCI_I2C_master.h" (or

#include "TI_USCI_I2C_master_dma.h" for DMA support) to the user file.
• Change the MSP430 device-specific include file (MSP430 standard header file) in the C file of the

function set.
• Adjust the definitions of SDA_PIN and SCL_PIN in the header file (TI_USCI_I2C_master.h or

TI_USCI_I2C_master_dma.h).

TI_USCI_I2C_master.c This file contains all necessary functions to perform I2C communication
using the USCI module of the MSP430 without using the DMA.

TI_USCI_I2C_master.h This file includes the definitions of the functions and variables that are
used in TI_USCI_I2C_master.c. It also contains the precompiler
variables SDA_PIN and SCL_PIN that define which pins of the MSP430
are used for I2C. This file must be included in any C program that calls
the master function set. This file supports only USCI usage without
DMA.

TI_USCI_I2C_master_dma.c This file contains all necessary functions to perform I2C communication
using the USCI module of the MSP430 when using the DMA.

TI_USCI_I2C_master_dma.h This file includes the definitions of the functions and variables that are
used in TI_USCI_I2C_master_dma.c. It also contains the precompiler
variables SDA_PIN and SCL_PIN that define which pins of the MSP430
are used for I2C. This file must be included in any C program that calls
the master function set with DMA support.

• unsigned char TI_USCI_I2C_notready()
This function takes no parameters and returns zero if the I2C bus is not busy. If the I2C bus is busy, it
returns a value different from zero.

• unsigned char TI_USCI_I2C_slave_present(unsigned char slave_address)
This function checks whether or not a slave is connected to the I2C bus. It returns a number different
from zero if the slave replies to its address with acknowledge. Otherwise, it returns zero.
Unlike the other functions in this demonstration, this function blocks the CPU for as long as the
communication on the bus lasts. It has the following parameter:
– unsigned char slave_address

This is the slave address that is to be checked. This address may differ from the address provided
in the initialization procedure of the USCI module. Note that the 7-bit slave address is right justified.

SLAA382–December 2007 5Using the USCI I2C Master
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA382

www.ti.com

4.1.2 Functions With DMA Support (TI_USCI_I2C_master_dma.h)

Included Files

• void TI_USCI_I2C_DMA_receiveinit(unsigned char slave_address, unsigned char prescale)
This function initializes the USCI module for master-receive operation with usage of the DMA module.
It has the following parameters:
– unsigned char slave_address

This parameter sets the address of the slave in the communication. The 7-bit slave address is
right justified.

– unsigned char prescale
This parameter sets the desired baud rate. This works in an indirect manner, the resulting baud rate
is the quotient of DCO frequency and the prescale parameter.

• void TI_USCI_I2C_DMA_transmitinit(unsigned char slave_address, unsigned char prescale)
This function initializes the USCI module for master-transmit operation with usage of the DMA module.
It has the following parameters:
– unsigned char slave_address

This parameter sets the address of the slave in the communication. The 7-bit slave address is
right justified.

– unsigned char prescale
This parameter sets the desired baud rate. This works in an indirect manner, the resulting baud rate
is the quotient of DCO frequency and the prescale parameter.

• void TI_USCI_I2C_DMA_receive(unsigned char byteCount, unsigned char *field)
This function starts an I2C communication in master-receiver mode with usage of the DMA module. It
has the following parameters:
– unsigned char byteCount

This is the number of bytes that are to be received.
– unsigned char *field

This is a pointer into an array variable that is used to store the received bytes. Since I2C
communication works bytewise, it makes sense to use a field of bytes, for example, unsigned char
values.

• void TI_USCI_I2C_DMA_transmit(unsigned char byteCount, unsigned char *field)
This function starts an I2C communication in master-receiver mode with usage of the DMA module. It
has the following parameters:
– unsigned char byteCount

This is the number of bytes that are to be transmitted.
– unsigned char *field

This is a pointer into an array of values that are to be sent. Since I2C communication works
bytewise, it makes sense to use a field of bytes, for example, unsigned char values.

6 SLAA382–December 2007Using the USCI I2C Master
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA382

www.ti.com

4.1.3 Functions Without DMA Support (TI_USCI_I2C_master.h)

Included Files

• void TI_USCI_I2C_receiveinit(unsigned char slave_address, unsigned char prescale)
This function initializes the USCI module for master-receive operation without DMA support. It has the
following parameters:
– unsigned char slave_address

This parameter sets the address of the slave in the communication. The 7-bit slave address is
right justified.

– unsigned char prescale
This parameter sets the desired baud rate. This works in an indirect manner, the resulting baud rate
is the quotient of DCO frequency and the prescale parameter.

• void TI_USCI_I2C_transmitinit(unsigned char slave_address, unsigned char prescale)
This function initializes the USCI module for master-transmit operation without DMA support. It has the
following parameters:
– unsigned char slave_address

This parameter sets the address of the slave in the communication. The 7-bit slave address is
right justified.

– unsigned char prescale
This parameter sets the desired baud rate. This works in an indirect manner, the resulting baud rate
is the quotient of DCO frequency and the prescale parameter.

• void TI_USCI_I2C_receive(unsigned char byteCount, unsigned char *field)
This function starts an I2C communication in master-receiver mode without DMA support. It has the
following parameters:
– unsigned char byteCount

This is the number of bytes that are to be received.
– unsigned char *field

This is a pointer into an array variable that is used to store the received bytes. Since I2C
communication works bytewise, it makes sense to use a field of bytes, for example, unsigned char
values.

• void TI_USCI_I2C_transmit(unsigned char byteCount, unsigned char *field)
This function is used to start an I2C communication in master-transmit mode without DMA support. It
has the following parameters:
– unsigned char byteCount

This is the number of bytes that are to be transmitted.
– unsigned char *field

This is a pointer into an array of values that are to be sent. Since I2C communication works
bytewise, it makes sense to use a field of bytes, for example unsigned char values.

SLAA382–December 2007 7Using the USCI I2C Master
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA382

www.ti.com

5 Examples of USCI I2C Master Usage

5.1 Receiving n Bytes

5.2 Transmitting n Bytes

Examples of USCI I2C Master Usage

The following examples use the DMA for I2C communication. If the use of the DMA is not wanted or not
possible, the corresponding functions need to be chosen.

The usage of functions with and without DMA is the same. Only the function name differs by the suffix
DMA_.

#include "msp430x26x.h"
#include "TI_USCI_I2C_master.h"

unsigned char array[5] = { 0, 0, 0, 0, 0 };

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

_EINT(); // enable interrupts

TI_USCI_I2C_DMA_receiveinit(0x48,0x3f); // initialize USCI and DMA module
while (TI_USCI_I2C_notready()); // wait for bus to be free
TI_USCI_I2C_DMA_receive(3,array); // receive the first 3 bytes of

// array
LPM0; // put CPU to sleep during

// communication
}

#include "msp430x26x.h"
#include "TI_USCI_I2C_master.h"

unsigned char array[5] = { 0x1, 0x2, 0x3, 0x4, 0x5 };

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Disable Watchdog

_EINT(); // enable interrupts

TI_USCI_I2C_DMA_transmitinit(0x48,0x3f); // initialize USCI and DMA module
while (TI_USCI_I2C_notready()); // wait for bus to be free
TI_USCI_I2C_DMA_transmit(3,array); // transmit the first 3 bytes

LPM0; // put CPU to sleep during
// communication

}

8 SLAA382–December 2007Using the USCI I2C Master
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA382

www.ti.com

5.3 Checking Presence of a Slave

6 Code Size

7 References

Code Size

This example shows how to check whether or not a slave with a certain address is connected to the I2C
bus. This function differs from the functions described in Section 5.1 and Section 5.2, in that it blocks the
CPU during its execution and returns whether or not a slave has acknowledged the master.

void main(void)
{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

TI_USCI_I2C_transmitinit(transmit_cb,0x48,0x2f);
_EINT();

if (!TI_USCI_I2C_slave_present(0x11)) // check for slave
while (1); // trap cpu if slave with

// address 0x11 doesn’t answer
LPM0; // Enter LPM0 w/ interrupt

}

Table 1. Code Size (IAR)
Functions Size Without DMA (Bytes) Size With DMA (Bytes)

Transmit_Initialize and Transmit 172 254
Receive_Initialize and Receive 210 312

1. MSP430x2xx Family User’s Guide (SLAU144)
2. MSP430x261x data sheet (SLAS541)
3. I2C-Bus Specification and User Manual, NXP Semiconductors, 2007

(http://www.nxp.com/acrobat/usermanuals/UM10204_3.pdf)
4. Using the USCI I2C Slave (SLAA383)

SLAA382–December 2007 9Using the USCI I2C Master
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SLAU144
http://www-s.ti.com/sc/techlit/SLAS541
http://www.nxp.com/acrobat/usermanuals/UM10204_3.pdf
http://www-s.ti.com/sc/techlit/SLAA383
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA382

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Usage From C
	2.1 Example With DMA
	2.1.1 Initialization
	2.1.2 Sending a Protocol Frame

	2.2 Example Without DMA

	3 Compiling the USCI I2C Master Code
	4 Included Files
	4.1 Function Description
	4.1.1 General Functions (TI_USCI_I2C_master_dma.h and TI_USCI_I2C_master.h)
	4.1.2 Functions With DMA Support (TI_USCI_I2C_master_dma.h)
	4.1.3 Functions Without DMA Support (TI_USCI_I2C_master.h)

	5 Examples of USCI I2C Master Usage
	5.1 Receiving n Bytes
	5.2 Transmitting n Bytes
	5.3 Checking Presence of a Slave

	6 Code Size
	7 References

