
Introduction

A transmission line can be broken down into a network of distributed L, 
C, and resistance (R) elements. It’s important to achieve an intuitive and 
physical understanding of how and why a transmission line behaves as it 
does, to demystify the reasons for its characteristics, and to gain an in-depth 
understanding in terms of its fundamental elements. In other words, L and C 
(for a lossless transmission line) is very important.

In order to gain a deeper understanding of the way that a transmission line 
functions and what makes it unique compared to a normal conductor, I 
performed some SPICE simulations, where I plugged in simple LC networks to 
model a transmission line. I experimented with different kinds of stimuli and 
observed the propagation of signals at each point on the transmission line. In 
this paper, I describe the experiments I’ve done and the deeper insights I’ve 
gained as a result of accurately modeling full transmission line behavior using 
a simple LC network. All of the expressions, such as the reflection coefficient, 
can be derived fully using fundamental properties of capacitors and inductors, 
as well as energy conservation principles. Such work provides a physical idea as 
to how the mechanism of reflections in the transmission line occur. 

Scope of Work

In addition to modeling the transmission line as a simple passive LC network, I 
also used PSpice® technology from Cadence to perform simulations (See Figure 
1 for a depiction of a typical transmission line circuit). I attempted to analyze 
both the forward and reflected traversals of the signal input. To understand 
the derivation of expression for the reflection coefficient for reflection at the 
load, I tapped into the principle of energy conservation. 

For this work, I examined the following cases: 

• Open transmission line

• Shorted transmission line
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• Transmission line terminated in resistance R=Z0

• Transmission line terminated in R>Z0

• Transmission line terminated in R<Z0

• Transmission line terminated in a capacitor

• Transmission line terminated in an inductor

𝑍𝑍𝗌𝗌𝑉𝑉𝗌𝗌
𝑍𝑍𝟢𝟢

𝑍𝑍L

Figure 1: A typical transmission line circuit

Characteristic Impedance

A good derivation for the characteristic impedance of a transmission line is available here. From the derivation, for 
a forward propagating wave, we see that V(x)/I(x) is not a function of t, nor even of x. For a lossless transmission 
line, at any x, V/I = √(L/C). As far as the source of V(0,t) is concerned, the transmission line behaves in exactly the 
same way as a resistor of value √(L/C). We call this resistance the characteristic impedance of the transmission line.

L and C are the distributed inductance/unit length and capacitance/unit length of the transmission line, 
respectively. A handy rule of thumb to determine if an interconnect trace should be considered a transmission line 
is if the interconnect delay is greater than 1/8th of the signal transition time; in this case, it should be afforded all 
of the attention required by a transmission line. 

If the propagation delay time is much smaller, the voltage gradient across the interconnect between the two ends 
of the interconnect for a given input signal will be much smaller. As a result, a lumped approach can be taken, and 
the interconnect need not be taken as a transmission line.

Model Used

For this work, I assumed a lossless transmission line. For the simulations, I used a network of 320 cascaded LC 
sections. A section of it is illustrated below in Figure 2.

Figure 2: A cascaded LC section used for simulations. 

The value of a single inductance element=0.05nH and that of a single capacitor element=0.02pF, such that the 
characteristic impedance Z0= √(L/C)=50ohms. The total one-way delay=n* √(LC)=320ps here (n=number of LC 
segments). A source resistance Rs=200 is used here to illustrate the case of reflections at the source side.

Please note that the values of the single inductance and capacitance elements for an ideal transmission line will be 
much smaller than the values used here; these values are used here for ease of simulation and for us to be able to 
better observe the results.
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A Step Voltage Input to a Transmission Line: Start of Travel of the Step

Let’s apply an input step of 0-1V by the voltage source at time t=100ps. The rise time assumed is 1fs for this step. 
As we saw before, for the step incident at the transmission line input, the transmission line behaves in exactly the 
same way as a resistor of value √(L/C)=Z0=50ohms. So, as far the source is concerned, the equivalent circuit right 
at the instant of application of the step is as depicted in Figure 3.

Source

Rs 200

R
=Z

0 
50

1V step

0.8V

V(x,t)=0.2V
(i.e., voltage at the entry point into the transmission line,
at the instant of application of the step input.)

Figure 3: An equivalent circuit at the step input.

So the 1V step is split as 0.8V across Rs and 0.2V across R=Z0 right at the entry point into the transmission line, by 
simple resistive voltage division action.

Now, let us examine the process of propagation of this step injected into the transmission line. As far as the 
advancing voltage step is concerned, on the transmission line, at any instant of its propagation to the other end 
until it reaches the end, the impedance=Z0=50 ohms.

Right at the entry point of the transmission line, the input current is a constant current=V/(Rs+Z0). Now, as far as 
the very first two LC segments in the transmission line are considered, the equivalent circuit as depicted in Figure 4.

L1 50p L2 50p

C
1 

20
f

C
1 

20
f

Constant Current I=V/(Rs+Z0)

L1 50p

C
1 

20
f

R
=Z

0 
50

Constant Current I=V/(Rs+Z0)

C
1 

20
f

R
=Z

0 
50

Constant Current I=V/(Rs+Z0)

Figure 4: First two LC segments in transmission line.

In other words, it is equivalent to a constant current source=V/(Rs+Z0) driving a parallel RC combination, where 
R=Z0 and C=the first unit capacitance.

Now the voltage across the first unit capacitor increases exponentially with a time constant=RC=Z0C, and the 
current taken by this capacitor decays exponentially to zero. At the same time, the current injected into the 
adjacent LC segment increases exponentially. The sum of the two currents is still V=(Rs+Z0).

The voltage waveform across the first unit capacitor C1 and the current waveform injected into the adjacent LC 
segment observed from simulation is illustrated below in Figure 5. The purple waveform is the voltage across 
the first unit capacitor C1, the green waveform is the current injected into the second LC segment, and the red 
waveform is the voltage step input applied at t=100ps, probed right at the input of the transmission line (0.2V):
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Figure 5: Voltage waveform across the first unit capacitor C1 and the current waveform injected into the adjacent LC segment

As seen earlier, the input current into the second LC segment is an exponential one with time constant=Z0C. Now 
the equivalent circuit for the second and third LC segments becomes:
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Figure 6: A step voltage input to a transmission line: Start of travel of the step (continued)

The current into the second unit capacitor C2 initially increases with an increasing exponential profile to a point, 
after which the current shunted away from it by R=Z0 starts becoming significant and the current into C2 starts 
reducing and finally becomes 0, at which point voltage across C2=V*Z0/(Rs+Z0) =0.2V in this case.

The voltage and current profiles for the first six capacitors in the transmission line are illustrated below in Figure 7. 
The screen shot shows that the rise time of the voltage waveform keeps on slowing down as we progress down 
the transmission line, due to the change in profile of the currents going into each capacitor as we move down the 
transmission line. In this manner, the step input injected into the transmission line propagates towards the end. 
Note that during this process, the nature of termination of the transmission line is immaterial until the propagating 
wave reaches at the end of the transmission line. Until that point, during its traversal, the propagating waveform is 
blind to the kind of termination on the transmission line and can only see Z0 at each point it reaches.

Figure 7: Voltage and current profiles for the first six capacitors in the transmission line (step applied at t=100ps)
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Derivation of the Reflection Coefficient Expression Using the Principle of Energy 
Conservation

As mentioned before, for a step input injected into the transmission line, the nature of termination of the 
transmission line is immaterial until the propagating wave reaches at the end of the transmission line. Until that 
point, during its traversal, the propagating waveform is blind to the kind of termination on the transmission 
line and can only see Z0 at each point it reaches. As far as the starting point x=0 of the transmission line is 
concerned, until a round trip delay time = 2Td=2n√(LC), the impedance seen by the voltage source at x=0 is Z0 
itself, irrespective of the type of termination. Hence, a constant current=V/(Rs+Z0) is continuously injected into 
the transmission line entry point all during this time (Td=transmission line delay, n is the number of LC segments, 
and L and C are the unit inductance and capacitance values per segment). The voltage at this point x=0, i.e., right 
at the entry point of the transmission line, it remains V*Z0/(Rs+Z0) during this time, irrespective of the kind of 
termination of the transmission line.

Starting right from the step input application instant, for a time duration= the round trip transmission line delay 
time = 2Td=2n√(LC), the energy injected by the voltage source into the transmission line is V*I*t=V1I12n√(LC), 
where V1,I1 are the voltage and current, respectively, at point x=0. That is, the entry point of the transmission line, 
n, is the number of LC segments, and L and C are the unit inductance and capacitance values per segment.

By the principle of energy conservation, this is the total available energy to be stored in the inductors and 
capacitors within the transmission line and to be dissipated in the final load resistance RL, with which the 
transmission line is terminated during this time duration. This is illustrated in Figure 8.

Voltage, current at this
point=V1,I1

Rs

Source

L1 L2

C1 C2
Ln

Cn

RL

Transmission line consisting of “n” LC segments

Total energy injected into the transmission line during time 2Td from step application = 
Total energy stored in the LC network durin ghtis time + Total energy dissipated in the
load resistance during this time.

Energy injected during
2Td=V*I*t=V1I12nξ(LC)

Figure 8: Transmission line illustrating use of the principle of energy conservation.

When the step input finally reaches the end of the transmission line, depending on the value of the termination 
resistance RL, the voltage at the end point becomes V2. Now the current drawn by the load resistance settles at 
I2=V2/RL. Starting from the

nearest LC segment to the output load, the current in the inductors and the voltage across the capacitors start 
settling to I2 and V2, respectively, and this keeps on happening on all the inductors and capacitors gradually 
moving towards the source. Actually, this is, in fact, the mechanism of reflection. I will discuss reflections more 
later on.

After a round dip delay time of around 2Td=2n√(LC), the currents in all the inductors and voltage across all 
the capacitors should have settled to I2 and V2, respectively. Now, the total energy stored at the end of 2Td 
in the LC network is given +ͪ

ͩ
ͪ
ͩLI2 CV2( )*n = +ͪ

ͩ
ͪ
ͩLI2 CV2

2( )*n , where n is the number of LC segments and 
L and C are the unit inductance and capacitance per segment, analogous to the inductance/unit length and 
capacitance/unit length. But I2=V2/RL, thus the total energy stored at the end of 2Td in the LC network is given by 

ͪ
ͩ

ܮܴ
𝑉𝑉2L( + ͪ

ͩ CV2
2 )*n ( )

2 .

Regarding the energy dissipated in the load resistance RL during 2Td, note that current starts flowing across RL only 
after the first Td has been completed, i.e. it is=0 for the first Td, and it only flows during a time period of Td after 
that. Thus, the energy dissipated in RL during this time period is given by: 

ܮܴ
𝑉𝑉2 *Td =  *n√(LC)

2

ܮܴ
𝑉𝑉2 2
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Now, using the principle of energy conservation as mentioned in the previous slide, the energy injected by the 
voltage source into the transmission line during 2Td is V*I*t=V1*I1*2n√(LC)= The total available energy stored 
in the inductors and capacitors within the transmission line during 2Td + total energy dissipated in the final load 
resistance RL during 2Td, i.e.:

1.  V1I12n√(LC)= { ͩL(𝑉𝑉2)
2
 + ͩCV2

2
}*n + 𝑉𝑉2

2
*n√(LC)ܴܮܴܮ ͪͪ

2. We know I1=V1/Z0. Thus, 𝑉𝑉1
2
2n√(LC)= { ͩL(𝑉𝑉2)2

 + ͩCV2

2
}*n + 𝑉𝑉2

2
*n√(LC)ܴܮܴܮ ͪͪ𝑍𝑍0

3. Dividing both sides by n√(LC), 𝑉𝑉1
2

𝑍𝑍0
𝑉𝑉22

𝑍𝑍0 ܮܴ
𝑉𝑉22*2 = *Z0 + +ͪ

ͩ
ͪ
ͩ(𝑉𝑉2 )

2

ܮܴ
 

4. i.e., 𝑍𝑍0
𝑉𝑉12

2𝑍𝑍0
1*2 = V2

2 * { }+
ܮܴ
1+𝑍𝑍0

ܮ2ܴ

2

2

5. 𝑍𝑍0
𝑉𝑉12

*2 = V2
2 * { }

+ 𝑍𝑍02ܮ2ܴ+ 3

3

ܮ2ܴ 𝑍𝑍0  ܮ24ܴ
𝑍𝑍0  ܮ4ܴ

6. 
 ܮ4ܴ

V12 V22 * { }
+ +𝑍𝑍02 2

2

ܮܴ =𝑍𝑍0  ܮ22ܴ

7. 
 ܮ4ܴ

V12 V22 * { }
+𝑍𝑍0

2

ܮܴ 2

=
( )

8. 
 ܮ2ܴ

V1 V2 * { }
+𝑍𝑍0 =ܮܴ

( )
          -I

9. Or,  2ܴܮ 
V2 V1 * 

+𝑍𝑍0 ܮܴ
=

( )
               -II

This is the expression for the voltage at the output of the transmission line V2 after the first delay Td, i.e., 
after the transmitted step input first reaches the output load. Reflection coefficient is given by the ratio of the 
amplitude of the reflected wave (V2-V1) to the incident wave (V1), i.e. reflection coefficient ɏ= (V2-V1) / V1. Setting 

V2 ܮ2ܴ V1 * 
+𝑍𝑍0 =ܮܴ

( )’ V1 ܮ2ܴ , V1 V1* -
+𝑍𝑍0 = ρܮܴ

( )
{ }/ , i.e., 2ܴܮ - 𝑍𝑍0 - ܴܮ

+𝑍𝑍0 }= ρܮܴ }. Thus, ܴܮ - 𝑍𝑍0
+𝑍𝑍0

ρ =(  ܮܴ(
        -III

 
When the Reflected Wave from the Load Side Reaches at the Source: Source Reflections 

We saw previously that when a step input is first injected into the transmission line, once it reaches the output end, 
the voltage at the output end reaches a value V2 depending on the value of the load termination resistance, whose 
expression was derived using the principle of energy conservation. Now, starting from the nearest LC segment to 
the output load, the current in the inductors and the voltage across the capacitors start settling to I2=V2/RL and 
V2, respectively, and this keeps on happening on all the inductors and capacitors gradually moving towards the 
source.

Actually, this is in fact the mechanism of reflection, and in this manner the new voltage V2 propagates towards 
the source end gradually, LC segment by LC segment. Thus, the voltage step which started out as V1 at the 
transmission line input gets modified to V2 upon reaching the end of the transmission line. The reflected step 
injected back into the transmission line from the load end has an amplitude of V2 - V1, and this step propagates 
towards the source end. The step on reaching the source end modifies the voltage at the source end, i.e. at 
the input of the transmission line from the source side, to a new voltage V3 due to reflection at the source end 
depending on the source resistance.

To find the expression for this new voltage V3 at the input of the transmission line after the first reflection at the 
source end, we can again make use of the principle of energy conservation and also the principle of superposition. 
There is already a voltage V1 right from the instant of application of the initial step input from the source at the 
input of the transmission line. This has to be superimposed with the voltage step at the source side due to source 
reflection, to find the net new voltage V3 at the input of the transmission line, i.e. at x=0. To find the step voltage 
change alone at the source end due to the effect of reflection at the source, let us first short out the main source. 
The effective circuit is illustrated in Figure 9. The amplitude of the step injected back into the transmission line due 
to reflection at the load is V2-V1=V2’:
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Source

L1 L2

C1 C2

Ln

V2’Cn

Transmission line consisting of “n” LC segments Step injected back into transmission
line due to reflection at load

Total energy injected into the transmission line during time 2Td from step reflected at load side = 
Total energy stored in the LC network during this time + Total energy dissipated in the source resistance

Energy injected during
2Td=V*I*t=V2’I2’2nξ(LC)

Original voltage source
shorted out to apply
superposition principle

Load endSource end

Figure 9: Effective circuit

Starting right from the reflected step input application instant from the load side, for a time duration = the round 
trip transmission line delay time = 2Td=2n√(LC), the energy injected by the reflected step into the transmission 
line is V*I*t=V2’I2’2n√(LC), where V2’,I2’ is V2-V1 and (V2-V1)/Z0, respectively. In other words, the amplitude 
of the voltage step injected back by reflection at the load end, and the effective current injected back due to this 
reflected step (this current is actually the delta between the current drawn by the output load and the current 
initially drawn by the transmission line from the main source = V/(Z0+Rs), due to the effect of load reflection), n is 
the number of LC segments, and L and C are the unit inductance and capacitance values per segment.

By the principle of energy conservation, this is the total available energy to be stored in the inductors and 
capacitors within the transmission line and to be dissipated in the source resistance Rs with which the transmission 
line is terminated. In this consideration, we are neglecting the energy stored within the LC network due to the main 
step from the source side. We are only considering the energy freshly injected into the LC network by the reflected 
load step, for applying the principle of superposition. Let the new voltage at the source end of the transmission line 
(due to the reflected load step alone, ignoring the effect of the main source by shorting it out) be V3’.

Following the same approach we used before:

• 
𝑉𝑉3’ *n+ *n√(LC)ͪ

ͩ
ͪ
ͩ

ܴܵV2’I2’2n√(LC) = { L( )
2 𝑉𝑉3’

ܴܵ
2

+ CV3’
2
}

• We know I2’=V2’/Z0. Thus,  
𝑉𝑉3’2n√(LC)={ *n√(LC)*n+ͪ

ͩ
ͪ
ͩ

ܴܵL( )
2 2𝑉𝑉3’

ܴܵ
𝑉𝑉2’
𝑍𝑍0

2
+ CV3’

2
}

• Dividing both sides by n√(LC), 
𝑉𝑉3’*2= *Z0 + +ͪ

ͩ
ͪ
ͩ

ܴܵ
( )

2 2𝑉𝑉3’ 2𝑉𝑉3’
ܴܵ𝑍𝑍0 𝑍𝑍0

𝑉𝑉2’ 2

• That is, *2 = V3’
2 + ͪ𝑍𝑍0

ͩ + ܴܵ
ͩ

2ܴܵ2𝑍𝑍0
𝑍𝑍0𝑉𝑉2’ 2 *{ 2 }

• 
2ܴܵ𝑍𝑍02

*2 = V3’
2 + +

𝑍𝑍0
𝑉𝑉2’ 2 *{ }

2ܴܵ3 4ܴܵ2𝑍𝑍0
4ܴܵ3𝑍𝑍0

• 𝑍𝑍02 + +*{ }
ܴܵ2 2ܴܵ𝑍𝑍0
4ܴܵ2

V2’
2 = V3’

2

• (𝑍𝑍0+*{ }
ܴܵ)2

4ܴܵ2
V2’

2 = V3’
2

• 
(𝑍𝑍0+*{ }

ܴܵ)
2ܴܵ

V2’= V3’           -IV

• Or,  (𝑍𝑍0+*{ }ܴܵ)
2ܴܵV2’=V3’ , where V2’=V2-V1         -V

This is the expression for new voltage at the source end of the transmission line (due to the reflected load 
step alone, ignoring the effect of the main source by shorting it out) after the first delay Td, i.e. after the load 
reflected step first reaches the source end. Superimposing the effect of the actual source, too, the actual voltage 
at the source end after the first source reflection is given by V3=V3’+V1, where V1 is VZ0/(Z0+Rs) (V being the 
amplitude of the original step from the main source). The reflection coefficient at the source side is given by 
the ratio of the amplitude of the reflected wave from the source end (V3-V2) to the incident wave (V2-V1), i.e. 
reflection coefficient at the source end ɏ= (V3-V2) / (V2-V1).

• Setting (𝑍𝑍0+* ܴܵ)
2ܴܵ

(𝑍𝑍0+ܴܵ)
2ܴܵ= = = (V3 V2-V1)*+ V1

+ V1
+ V1V3’ V2’

• Thus, (𝑍𝑍0+* ܴܵ)
2ܴܵ

(𝑍𝑍0+ܴܵ)
2ܴܵ- -V3- V2= -(V2-V1)+(V2-V1)*= (V2

+ V1V2 V1)

• So, reflection coefficient at the source end (𝑍𝑍0+ܴܵ)
2ܴܵρ =(V3-V2) / (V2-V1) = -1+ 
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• That is, 2ܴܵ - 𝑍𝑍0 - ܴܵ
𝑍𝑍0+ܴܵ

ρ = { }    

• Thus, 
ܴܵ – 𝑍𝑍0
ܴܵ + 𝑍𝑍0ρ = ( )       -VI

When the Step Reaches the End of the Transmission Line (Transmission Line Terminated 
in R=Z0)

The source resistance is 200ohms. As seen in the simulation waveform below (Figure 10), the final output across 
the 50ohm load R=Z0 (the green waveform) directly goes to the final voltage=0.2V after about 320ps from the 
input step edge at t=100ps (the red waveform). No reflection is observed.

NOTE: In an actual transmission line, the rise time of Vout will be much smaller than as seen in the waveform in 
Figure 10, and will almost look like a vertical edge, because the unit inductance and capacitance values are much 
smaller than the ones used in the LC model here.

Also, some amount of ringing is noted here both at the transmission line input point and at the load, due to 
the ultra fast rise time of the step inserted and the non-infinitesimally small values of L, C we have used in this 
simulation.

Figure 10: Simulation waveform for a transmission line terminated with R=Z0

When the Step Reaches the End of the Transmission Line (Transmission Line Terminated 
in R>Z0)

The source resistance is 200ohms. Here, the output of the transmission line is terminated with R>Z0=75 ohms. As 
seen in the simulation waveform below in Figure 11, the final output across the 75ohm load (the green waveform) 
as well as the voltage right at the input of the transmission line (the red waveform) arrives at a final settled voltage 
of around 272.73mV after a series of reflections.

Figure 11: Simulation waveform for a transmission line terminated with R>Z0

www.cadence.com 8

Accurately Modeling Transmission Line Behavior with  an LC Network-based Approach 



When the Step Reaches the End of the Transmission Line (Transmission Line Terminated 
in R<Z0)

The source resistance is 200ohms. Here, the output of the transmission line is terminated with R<Z0=25 ohms. As 
seen in the simulation waveform below in Figure 12, the final output across the 25ohm load (the green waveform) 
as well as the voltage right at the input of the transmission line (the red waveform) arrives at a final settled voltage 
of around 111.11mV after a series of reflections.

Figure 12: Simulation waveform for a transmission line terminated with R<Z0

When the Step Reaches the End of the Transmission Line (Open-Circuited Transmission 
Line)

The source resistance is 200ohms. Here, the output of the transmission line is open circuited. As seen in the 
simulation waveform below in Figure 13, the final output at the transmission line output node (the green 
waveform) as well as the voltage right at the input of the transmission line (the red waveform) arrives at a final 
settled voltage of 1V after a series of reflections.

Figure 13: Simulation waveform of an open-circuited transmission line

When the Step Reaches the End of the Transmission Line (Short-Circuited Transmission 
Line)

The source resistance is 200ohms. Here, the output of the transmission line is short-circuited. As seen in the 
simulation waveform below in Figure 14, the voltage right at the input of the transmission line (the red waveform) 
arrives at a final settled voltage of 0V after a series of reflections.
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Figure 14: Simulation waveform of a short-circuited transmission line

When the Step Reaches the End of the Transmission Line (Transmission Line Terminated 
in a Capacitor)

The source resistance is 200ohms. Here, the output of the transmission line is terminated in a capacitor of value 
C. This is a special scenario. When the transmission line is terminated in a resistance=R, the injected step input 
on reaching the end of the transmission line is met by a constant impedance=resistance R at that instant. But in 
the case of a capacitance termination, the capacitor provides a time-varying impedance to the injected step input 
arriving at the transmission line end. This is explained below.

Right at the instant the step reaches the capacitor, the impedance provided by the capacitor is zero because the 
capacitor acts as a short at that instant, preventing any instantaneous change of voltage across it. So, right at 
the instant the step reaches the capacitor, the system is analogous to a transmission line whose output is short-
circuited. Now as the capacitor starts charging, the impedance provided by the capacitor, i.e., the ratio of the 
current into the capacitor to the voltage, keeps on changing, as per the variation in the current into the capacitor 
and the voltage across it. It is possible to derive the equation governing the voltage across the load capacitor, 
which gives the nature of variation of this voltage with respect to time. This is a particularly important result. This 
derivation is shown later on. Please note that this equation holds true from t=T0+Td, (where T0 is the instant of 
application of the original step input) to t=T0+3Td. This is because the capacitor starts charging from the instant 
where the original step reaches the end of the transmission line, i.e., t=T0+Td, and it can charge exactly as per this 
equation for a duration=round-trip delay time 2Td, after which the waveform gets disturbed by the reflected wave 
from the source end in response to the wave initially reflected from the load end.

Derivation of the Equation for the Voltage Across the Capacitor Load at the Output of 
a Transmission Line

Let’s revisit equation num “II,” which was presented earlier: V2 V1* =ܮ2ܴ (𝑍𝑍0+ܴܮ) . This is the expression for the voltage 
at the output of the transmission line V2 after the first delay Td, i.e., after the transmitted step input first reaches 
the output load. V1 is the amplitude of the step initially injected into the transmission line, given by V*Z0/(Z0+RS), 
where V is the amplitude of the step from the main source. From the instant the originally injected step reaches the 
load end, to the instant when the reflected step from the source end in response to the reflection from the load 
end reaches back at the load end, the duration is 2Td. At any time during this time interval, if the value of the load 
resistance RL changes, V2 will change accordingly as per V2 V1* =ܮ2ܴ (𝑍𝑍0+ܴܮ) .

Let’s replace RL in the equation by a generic load impedance ZL, where ZL is given by V2/I2, i.e. the ratio of the 
voltage across the load to the current going into the load. In this derivation, we are going to make use of the idea 
that the capacitor presents itself as a time-variable impedance, which is dependent on the voltage across it. So, we 
have to consider the instantaneous impedance ZL(t).

1. Let V2(t) be the voltage across the capacitor at time t. Now, V2(t) V1* 2𝑍𝑍(ݐ)ܮ= (𝑍𝑍0+𝑍𝑍(ݐ)ܮ)

2. For a capacitor, the current through it I=CdV/dt, where V is the voltage across it. Thus, the impedance of the 
capacitor=V/I=V/(CdV/dt). Applying this principle for ZL(t), ZL(t)=V2(t)/(CdV2(t)/dt), where C is the value of the 
load capacitor, and V2(t) the instantaneous voltage across the capacitor at time t.

www.cadence.com 10

Accurately Modeling Transmission Line Behavior with  an LC Network-based Approach 



3. Substituting for ZL, 2V2(ݐ)/CdV2(ݐ)/dtV2(t) V1*= (𝑍𝑍0+V2(ݐ)/(CdV2(ݐ)/dt))

4. Z0+ V2(t)/(CdV2(t)/dt)=2V1/(CdV2(t)/dt)

5. Z0CdV2(t)/dt+V2(t)=2V1

6. Taking Laplace transform on both sides, we get V2(s) + sZ0CV2(s)=2V1(s)/s. Please note it is assumed initial 
voltage at time t=0 across the capacitor C is 0V here.

7. i.e., V2(s)(1+sZ0C)=2V1(s)/s

8. So V2(s) = 2V1(s)/(s(1+sZ0C)) = 2V1(s)/(sZ0C(s+1/Z0C)) 

9. Making use of partial fractions, 2V1(s)/(sZ0C(s+1/Z0C)) = A/sZ0C + B/(s+1/Z0C)

10. Thus, A(s+1/Z0C) + BsZ0C =2V1(s)

11. Letting s=0 and s=-1/Z0C, we get A=2V1(s)Z0C and B=-2V1(s)

12. Substituting for A and B in the equation for V2(s) , V2(s) =2V1(s)Z0C/sZ0C - 2V1(s)/(s+1/Z0C)

13. i.e., V2(s) =2V1(s)/s - 2V1(s)/(s+1/Z0C)

14. Taking inverse Laplace transform, V2(t) = 2V1(t) - 2V1(t)(e-t/Z0C) = 2V1 - 2V1(e-t/Z0C) , because V1 is a constant.

15. Thus, finally we get: V2(t) = 2V1(1-e-t/Z0C) 

This is the equation governing the voltage across the load capacitor, which gives the nature of variation of this 
voltage with respect to time. As noted before, this equation holds true from t=T0+Td, (where T0 is the instant of 
application of the original step input) to t=T0+3Td. This is because the capacitor starts charging from the instant 
where the original step reaches the end of the transmission line, i.e. t=T0+Td, and it can charge exactly as per this 
equation for a duration=round-trip delay time 2Td, after which the waveform gets disturbed by the reflected wave 
from the source end in response to the wave initially reflected from the load end. Thus, it is clear that capacitor 
charging follows a typical simple RC-type exponential charging, with the time constant being Z0C. We know that 
for such a charging profile, the voltage across a capacitor varies as per Vfinal(1-e-t/RC), and the current into it varies 
as per Iinitial(e

-t/RC). Now, taking the ratio, the impedance provided by the capacitor follows a profile given by k(et/

RC-1), where k is a constant=Vfinal/ Iinitial. The simulated waveform for this impedance variation profile is given for a 
load cap of 2pF below in Figure 15:

Figure 15: Simulated waveform for impedance variation profile for a load cap of 2pF

Even this impedance sees an exponential time-variation profile, with a time constant=Z0C itself. Thus, at the output 
of the transmission line, the voltage exponentially charges from 0V (what the output voltage of the transmission 
line would’ve been for a shortened transmission line) to whatever voltage the output end would have gone to were 
the transmission line output open-circuited, with a time constant=Z0C.
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We can now predict the nature of the voltage variation at the output. Now, making use of the knowledge that 
the capacitor provides an exponentially varying impedance at the output with a time constant Z0C, we can also 
predict how the voltage at the source end of the transmission line changes once the reflected waveform from the 
load reaches it. Since the impedance provided by the capacitor starts off at 0 ohms, at first, as the reflected wave 
reaches back to the source end, the voltage at the source end would go to whatever voltage it would have gone to 
upon receiving the first reflection from the load side, for a short-circuited transmission line.

As the capacitive impedance increases exponentially with a time constant Z0C, the voltage at the source end 
would go to whatever voltage it would have gone to upon receiving the first reflection from the load side, for a 
transmission line terminated in a resistance R=the instantaneous impedance of the capacitor at that time. Thus, the 
voltage at the source end also follows an exponential RC charging profile with time constant=Z0C. Finally, since the 
impedance provided by the capacitor is infinity, i.e. open circuit, once it has charged to its final voltage, the voltage 
at the source end would go to whatever voltage it would have gone to upon receiving the first reflection from the 
load side, for an open-circuited transmission line. In this manner, source and load reflections continue until the 
output settles to the final value.

The simulation waveforms for the load end voltage (green waveform) and source end voltage (red waveform), for 
a 1V step injected into a 50ohm Z0 transmission line with delay=300ps, is given in Figure 16. A zoomed version 
of the initial portion of these waveforms is presented in Figure 17. Source resistance used is 200ohms, and output 
capacitor is 1pF.

Figure 16: Simulation waveform for the load-end voltage and source-end voltage

Figure 17: First 1ns of the previous waveform zoomed

One important thing we have to consider here is the transmission line delay Td. It is to be noted that the output 
capacitor starts charging only after a time period= Td after the instant of injection of the original step input into 
the transmission line. The total time available for the output capacitor to charge freely as per Z0C until the charging 
process gets disturbed by the reflected wave from the source end is equal to the time taken for the initial reflected 
wave from the load to reach the source and get reflected back to the load from the source, which equals a round 
dip delay time of 2*Td.
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Making use of this knowledge, we can easily predict the final voltage the output capacitor reaches before it gets 
disturbed by the reflected wave from the source end, for any given transmission line delay Td. We can use the basic 
capacitor RC charging equation, Vfinal(1-e-2Td/Z0C), where Vfinal is the voltage the output end of the transmission 
line would have reached for an open-circuited transmission line. This idea can be further extended to predict the 
profiles for each step in the reflected waveform both at the transmission line input as well as output. To illustrate 
an example, let’s consider a 1V step injected into a 50ohm Z0 transmission line with delay Td=70ps, with source 
resistance =200ohms and output capacitor 1pF. Here Vfinal expected is 0.4V just after step reaches the output end, 
for an open-circuited transmission line. Thus, we can predict that the final voltage the output capacitor reaches 
before it gets disturbed by the reflected wave from the source end is Vfinal(1-e-2Td/Z0C)= 0.4 (1-e-2*70ps/50*1pF)  
=~375.6mV. (This is observed to match the simulation result for the output waveform for this case, as observed in 
the waveform in Figure 18.)

The initial portion of the simulation waveforms for the load end voltage (green waveform), for a 1V step injected 
into a 50ohm Z0 transmission line with delay=70ps, with source resistance =200ohms and output capacitor 
1pF, showing the capacitor voltage charging to Vfinal(1-e-2Td/Z0C)= 0.4 (1-e-2*70ps/50*1pF) =~0.376V, before it gets 
disturbed by the reflection from the source side.

Figure 18: Simulation result for output waveform

When the Step Reaches the End of the Transmission Line (Transmission Line Terminated 
in an Inductor)

An approach similar to the capacitor termination case can be taken for a transmission line terminated in an 
inductor L, too. Only here, the time constant is L/Z0 and the impedance initially starts off as an open circuit, and 
decays exponentially to zero, finally following a time constant of L/Z0.

As shown in Figure 19, the simulation waveforms for the load-end voltage (green waveform) and source-end 
voltage (red waveform), for a 1V step injected into a 50ohm Z0 transmission line with delay=300ps, with source 
resistance =200 ohms and output inductor, is 10nH.

Figure 19: Simulation waveforms for load-end voltage and source-end voltage
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Figure 20: First 1ns of the previous waveform zoomed

Summary

As demonstrated in this paper, transmission line behavior can be accurately modeled using simple SPICE simulations 
in an LC network. A better understanding of transmission line behavior is important for achieving proper 
impedance matching and proper termination to minimize loss from reflections and also to maximize signal integrity. 
In addition, a deeper understanding of transmission lines will enable you to better understand and interpret results 
from signal integrity tools, such as those in the Cadence® Sigrity™ product line. 
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