Installation von Hometop HT3

Für folgende Hard und Software: Raspberry Pi 3b ht_pitiny Adpater Raspbian Stretch minimal Image stand September

\$ sudo nano /boot/config.txt

Basis dient die Anleitung von Norbert, entsprechend von mir angepasst.

```
3.1 Betriebssystem
Aktualisierung des Betriebssystem mit:
$ sudo apt-get update
Den letzten Ausgabestand aktivieren:
$ sudo apt-get upgrade
Python3 installieren
$ sudo apt-get install python3
Seriellen Treiber für Python3 laden:
$ sudo apt-get install python3-serial
setuptools und GPIO Treiber für Python3 laden:
$ sudo apt-get install python3-setuptools
$ sudo apt-get install RPI.GPIO
TK (GUI) Treiber für Python3 laden:
$ sudo apt-get install python3-tk
Perl objekt-orientiertes RRDTool Interface installieren:
$ sudo apt-get install librrdtool-oo-perl
anschliessend
$ sudo apt-get autoremove
RRDTool Datenbank installieren:
$ sudo apt-get install rrdtool
User in Gruppe <dialout> aufnehmen:
$ sudo adduser pi dialout
Deaktivieren der default eingeschalteten TTY-Systemausgaben (RaspberryPI):
$ sudo nano /boot/cmdline.txt
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200 console=tty1
dwc_otg.lpm_enable=0 console=tty1 root=PARTUUID...
ändern. danach Datei speichern
Deaktivieren des default eingeschalteten Bluetooth-Moduls
```

```
hinzugefügt am Ende
```

dtoverlay=pi3-disable-bt

reboot

3.1.1 Komponenten für MQTT

Key für zukünftige Updates holen / installieren

\$ sudo wget http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key

\$ sudo apt-key add mosquitto-repo.gpg.key

\$ cd /etc/apt/sources.list.d

\$ sudo wget http://repo.mosquitto.org/debian/mosquitto-stretch.list

System aktualisieren

\$ sudo apt-get update

Installation des MQTT-Broker

Vorab müssen folgende Kommandos ausgeführt warden, da wir sonst auf folgenden Konflikt stoßen werden:

mosquitto : Depends: libssl1.0.0 (>= 1.0.1) but it is not installable

Depends: libwebsockets3 (>= 1.2) but it is not installable

Daher führen wir vorab folgendes aus:

\$ wget

http://ftp.us.debian.org/debian/pool/main/libw/libwebsockets/libwebsockets3 1.2.2-1 armhf.deb

\$ wget http://ftp.us.debian.org/debian/pool/main/o/openssl/libssl1.0.0 1.0.2I-1~bpo8+1 armhf.deb

\$ sudo dpkg -i libwebsockets3 1.2.2-1 armhf.deb

\$ sudo dpkg -i libssl1.0.0_1.0.2l-1~bpo8+1_armhf.deb

Dann wie gewohnt fortfahren

\$ sudo apt-get install mosquito

\$ sudo apt-get autoremove

Installation der MQTT Clients (mosquitto_sub und mosquitto_pub) \$ sudo apt-get install mosquitto-clients

Testen ob der Broker läuft

\$ ps -aux | grep mosquitto

Resultat aus der ps - Anzeige:

... ... /usr/sbin/mosquitto -c /etc/mosquitto/mosquitto.conf

Installation Tool 'pip'

\$ sudo apt-get install python3-pip

Holen von paho-mqtt, git etc.

\$ sudo pip3 install paho-mqtt

\$ sudo apt-get install git

\$ sudo apt-get install insserv

```
Neustart des Raspberry Pi:
$ sudo reboot
Die aktuelle Software mit Dokumentation von github.com holen (als user 'pi'):
$ git clone https://github.com/norberts1/hometop_HT3.git
$ Folder: HT3 zu ~/. verschieben
$ mv ~/hometop_HT3/HT3 ~/.
3.1.2 rrdtool_draw.pl anpassen
$ sudo nano /HT3/sw/etc/ rrdtool draw.pl
%2.lf\l ändern in %2.0lf\l (3 Positionen)
Beispiel:
        format => '%2.1f\1',
                                                          => 'Brennerleistung_last',
                                                    draw
 ändern in
               format => '%2.01f\1',
                                                    draw
                                                           => 'Brennerleistung_last',
%6.lf ändern in %6.0lf (1 Position)
 gprint
 {
                           format => ' Brenner ein
                                                          \: %6.lf Zähler',
                           draw => 'brennereinheiz last',
Ändern in
 gprint
 {
                           format => '
                                                          \: %6.0lf Zähler',
                                       Brenner ein
                           draw => 'brennereinheiz_last',
Wer will, kann die Zeitleiste zur besseren Übersicht anpassen:
Wir bleiben in der rrdtool draw.pl
 # Set
 Starttime
                               = time()-2880*60;
             my $start time
Der Wert 2880 kann nach belieben eingestellt werden.
Ich habe dort 720 stehen.
Erklärung:
Gewünschte Stunden, die im Zeitstrahl angezeigt werden sollen * 60
Beispiele:
2880 = 48 Stunden
720 = 12 Stunden
360 = 6 Stunden
```

```
# Set
Starttime
my $start_time = time()-720*60;
```

Speichern

Ab hier kann dann wie von Norbert beschrieben fortgefahren werden.

EXTRAS

Desktop Environment

WICHTIG!

Da ich das Minimalimage als Grundlage nutze, fehlt der Desktop! Ohne Desktop kann später kein

HT3 Systemstatus

Bzw.

HT3_Analyser

ausgeführt werden. Diese setzen einen aktiven Desktop zur Grafikausgabe voraus.

Dazu gehen wir wie folgt vor:

1. XOrg installieren:

\$sudo apt-get install --no-install-recommends xserver-xorg

2a.Mate Gui installieren - nutze ich!

\$ sudo apt-get install mate-desktop-environment-core oder

2b. XFCE GUI

\$ sudo apt-get install xfce4 xfce4-terminal oder

2c. LXDE GUI

\$ sudo apt-get install lxde-core lxappearance

3. LightDM login manager

\$ sudo apt-get install lightdm

Zum Starten

\$ startx

Damit der Desktop später auch aufgerufen werden kann, installieren wir uns noch einen

TightVNCserver

```
$ sudo apt-get update
```

\$ sudo apt-get install tightvncserver

\$ vncpasswd

Kommando zum Starten einer VNC-Session:

\$ vncserver:1

Zum Aufruf über einen Client geben wir dann z.B. 192.168.0.2:5901

Die :1 ist der jeweilige VNC Server und der resultierende Port = 5901

Haben wir einen zweiten VNCServer mit vncserver :2 gestartet ist er über z.B.

192.168.0.2:5902 erreichbar

Der VNC Server stoppen wir über

\$ vncserver :1 -kill

Erweiterung: Autostart von TightVNCServer per systemd-Service

Zuerst erstellen wir eine neue Datei im systemd-Systemverzeichnis: \$ sudo nano /etc/systemd/system/vncserver@.service Und kopieren folgenden Inhalt in das Fenster:

[Unit]

Description=VNC mit TightVNCServer After=syslog.target network.target

[Service]

Type=forking

User=pi

PAMName=login

PIDFile=/home/pi/.vnc/%H:%i.pid

ExecStartPre=-/usr/bin/vncserver -kill :%i > /dev/null 2>&1

ExecStart=/usr/bin/vncserver -depth 24 -geometry 1280x800 :%i

ExecStop=/usr/bin/vncserver -kill:%i

[Install]

WantedBy=multi-user.target

Die Zeile "ExecStart..." enthält VNC-Parameter "-depth" und "-geometry", die man nach eigenen belieben anpassen kann.

Dann speichern und schließen: Strg + O, Return, Strg + X

Dann muss man systemd noch mitteilen, dass es einen neuen Service/Daemon gibt.

\$ sudo systemctl daemon-reload

Automatisches Starten beim Booten einschalten:

\$ sudo systemctl enable vncserver@1.service

Anzeigen, ob der VNC-Dienst beim Booten automatisch gestartet wird:

\$ sudo systemctl is-enabled vncserver@1.service

Steuern kann man den Dienst mit folgenden Kommandos:

VNC-Dienst starten:

\$ sudo systemctl start vncserver@1.service

Laufenden VNC-Dienst stoppen:

\$ sudo systemctl stop vncserver@1.service

Status des VNC-Dienstes anzeigen:

\$ sudo systemctl status vncserver@1.service

Automatisches Starten beim Booten ausschalten:

\$ sudo systemctl disable vncserver@1.service

Das sollte es gewesen sein.

Viel Erfolg

URBANSUNITED