PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

TIP #3 Measuring Pulse Width
Figure 3-1: Pulse Width

TIP #4 Measuring Duty Cycle
Figure 4-1: Duty Cycle

< W

\ 4

1 t2

€ T

Y

e W

t1 t2 t3

. Configure control bits CCPxM3:CCPxMO0
(CCPxCON<3:0>) to capture every rising
edge of the waveform.

. Configure Timer1 prescaler so that Timer1
will run Wmax without overflowing.

. Enable the CCP interrupt (CCPXIE bit).

. When CCP interrupt occurs, save the
captured timer value (t1) and reconfigure
control bits to capture every falling edge.

. When CCP interrupt occurs again, subtract
saved value (t1) from current captured value
(t2) — this result is the pulse width (W).

. Reconfigure control bits to capture the next
rising edge and start process all over again
(repeat steps 3 through 6).

The duty cycle of a waveform is the ratio
between the width of a pulse (W) and the
period (T). Acceleration sensors, for example,
vary the duty cycle of their outputs based on
the acceleration acting on a system. The CCP
module, configured in Capture mode, can be
used to measure the duty cycle of these types
of sensors. Here’s how:

1. Configure control bits CCPxM3:CCPxM0
(CCPxCON<3:0>) to capture every rising
edge of the waveform.

2. Configure Timer1 prescaler so that Timer1
will run Tmax®™ without overflowing.

3. Enable the CCP interrupt (CCPXIE bit).

4. When CCP interrupt occurs, save the
captured timer value (t1) and reconfigure
control bits to capture every falling edge.

Note 1: Tmax is the maximum pulse period
that will occur.

5. When the CCP interrupt occurs again,
subtract saved value (t1) from current
captured value (t2) — this result is the pulse
width (W).

6. Reconfigure control bits to capture the next
rising edge.

7. When the CCP interrupt occurs, subtract
saved value (t1) from the current captured
value (t3) — this is the period (T) of the
waveform.

8. Divide T by W — this result is the Duty Cycle.
9. Repeat steps 4 through 8.

Page 3-4-DS01146B

© 2009 Microchip Technology Inc.

PIC® Microcontroller CCP and ECCP Tips ‘n Tricks

TIP #1 Measuring the Period of a
Square Wave

Figure 1-1: Period

< T

Y

]

t1 t2

1. Configure control bits CCPxM3:CCPxMO0
(CCPxCON<3:0>) to capture every rising
edge of the waveform.

2. Configure the Timer1 prescaler so Timer1
with run Tmax" without overflowing.

3. Enable the CCP interrupt (CCPXIE bit).
4. When a CCP interrupt occurs:

a) Subtract saved captured time (t1) from
captured time (t2) and store (use Timer1
interrupt flag as overflow indicator).

b) Save captured time (t2).
c) Clear Timer1 flag if set.

The result obtained in step 4.a is the period (T).

Note 1: Tmax is the maximum pulse period
that will occur.

TIP #2 Measuring the Period of a
Square Wave with Averaging

Figure 2-1: Period Measurement

< 16xT >

t1 T t2

1. Configure control bits CCPxM3:CCPxM0
(CCPxCON<3:0>) to capture every 16th
rising edge of the waveform.

2. Configure the Timer1 prescaler so Timer1 will
run 16 Twax™" without overflowing.

3. Enable the CCP interrupt (CCPxIE bit).
4. When a CCP interrupt occurs:

a) Subtract saved captured time (t1) from
captured time (t2) and store (use Timer1
interrupt flag as overflow indicator).

b) Save captured time (12).
c) Clear Timer1 flag if set.

d) Shift value obtained in step 4.a right four
times to divide by 16 — this result is the
period (T).

Note 1: Tmax is the maximum pulse period
that will occur.

The following are the advantages of this
method as opposed to measuring the periods
individually.

* Fewer CCP interrupts to disrupt program flow
* Averaging provides excellent noise immunity

© 2009 Microchip Technology Inc.

DS01146B-Page 3-3

Pulse Width Measurement: TimerQ) main

pecrlf () ;printf ("Ready for button mashing!") ;pcrlf () ;
while (1) {

capture flag = 0;

// clear timer0, write low byte last

TMROH = 0; . :
TMROL = 0; Wait for pulse width

INTEDGO = 0; // falling edge to be captured by ISR
INTOIE = 1; //RBO Interrupt/
while (!capture flag); // wait for capture

// compgte time in microseconds | Convert Timer0 tics
pulse width float = TMROTIC * tmr0 tics * 1.0e6; .
_ _ — to microseconds

pulse width = (long)pulse width float;
printf ("Switch pressed, timer ticks: %d, pwidth: %1ld (us)",
tmr0 tics,pulse width); pcrlf();

Configuration code before loop i1s not shown.

This works of for human activated pushbutton time measurement,
but 1f more accurate measurements are needed, then use the
Capture mOdUIe. V0.7 Copyright Thomson/Delmar Learning 2005. All Rights Reserved. 4

Capture Module Time Measurement

1s used for time measurement.

% CCP1CON<3:0>

Capture Mode of the Capture/Compare/PWM module

TME3H TRIESL
Set Flag bit CCP1IF

} CCP2 RS

Prescaler T3CCR2 } gﬂ_ﬁj@

E =1,4,18 -
CCP1 pin - . CCPR1H CCPRI1L

+ “ TME1

and Taccpz 1t Enable

dge Detact

/ TMR1H TMR1L

s

N\

Rising or falling edge
detect, with interrupt flag
set.

TMR1 or TMR3 16-bit
value transferred to 16-bit
capture register on edge
detect.

V0.7

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

Measuring pushbutton pulse width

RC2/CCP1

- -
S A

Pulse Width

re TMRI1 value on falling edge (Tf) in CCPR1
2. Capture TMRI1 value on rising edge (Tr) in CCPRI1
3. Pulse width = Tr—Tf (Elapsed Timerl Tics)

Use interrupt to save timer values.

V0.7 Copyright Thomson/Delmar Learning 2005. All Rights Reserved. 6

Computing Pulse Width

0x0000
First > |- B_|____
Capture (A)
falling edge
delta
H
Second
Capture (B)
o rising edge

OxFFFF

(a) No overflow case
TimerDelta=B - A

© Thomson/Delmar Learning

0x0000

T -7 \

First
deltaB
Capture (A) delta
falling edge
f
—
deltaA Second Capture (B)
rising edge

OxFFFF

(b) Overflow case
TimerDelta = (#oflows-1)* 65536 + deltaA + deltaB
= (#oflows -1) <<2*+(0-A)+B

In overflow case, the value can be greater > 16 bits so need
to use a LONG type to hold TimerDelta value.

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

V0.7 7

volatile unsigned int last capture;
volatile unsigned int this_capture;
// this must be long

volatile unsigned long delta;

// timer 1 overflow cnt

volatile unsigned char tmrl ov;
volatile unsigned char capture flag;

timer isr(void) {
if (TMRI1IF) {
tmrl _ov++;
TMR1IF = O;
}

if (CCP1IF) {
// read CCPRl as a 16-bit value
this_capture = CCPR1;
if (!'bittst(CCP1CON,0)) {

//falling edge

// increment timerl overflow

| I

no
R1 Interrupt?

lyes

increment overflow tmrl ov++
Clear TMRI1IF

yes, edge
occurred

Clear TMRIIF,
this_capture= CCP1H:CCP1L

no, save falling _
edge time rising edge?

last_capture = this_capture; I — yes
tmrl ov = 0; [/ clear overflow count aSt_(?apture—
CCP1CON = 0x0; // turn off when change this_capture
CCP1CON = 0x5; // capture rising edge clear overflow,
b else f reset to rising
if ('tmrl ov) {
- edge capture compute
// no overflow at all £c cap p

delta = this_capture - last_capture ;
}
else {
// compute delta time
delta = tmrl ov-1;
delta = (delta << 16);
last capture = 0 - last capture;
delta delta + last_capture;
delta delta + this_capture;
}
// disable timerl interrupt
TMR1ON = 0; TMR1IE = 0; TMRLIF = 0;
capture_flag = 1;
}
//clear capture\interrupt flag
CCP1IF = O;

} . .
} that pulse width capture is

elasped
@ time

W

no
delta = yes

delta =

(tmrl_ov-1) <<16 +
(0 - last_capture) +
this_capture

last_capture -
this_capture

L
disable Timerl interrupts,

capture flag =1

Semaphore to main () to indicate
complete 7

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

ISR for
capturing pulse
width.

tmrl ov
variable keeps
track of timerl
overflows.

After falling
edge,
reconfigure for
rising edge
capture.

After rising
edge, compute
delta timer ticg

volatile unsigned int last capture; | |

volatile unsigned int this capture; no
// this must be long R1 Interrunt
volatile unsigned long delta;

// timer 1 overflow cnt lyes
volatile unsigned char tmrl ov; increment overflow tmrl ov++
volatile unsigned char capture flag; Clear TMR11E -

timer isr(void) {
if (TMR1IF) {
tmrl ov++; // increment timerl overflow
TMR1IF = 0; yes, edge
} Read 16-bit capture value occurred

if (CCP1lIF) { Clear TMRI1IF

// read CCPR1l &§ a 16-bit value . ,
this capture = CCPRI; this capture= CCP1H:CCPI1L

if (!'bittst(CCP1CON,0)) { no, save falling
//falling edge edge time rising edge?

last capture = this capture; l — yes
tmrl ov = 0; // clear overflow count am;gapuue——
CCP1CON = 0x0; // turn off when change this_capture
CCP1CON = 0x5; // capture rising edge clear overflow,
b else { reset to rising
if ('tmrl ov) {
— edge capture compute
// no overflow at all g P Ekﬁrld
delta = this capture - last capture ;) p
} @ time
else {

Copyright Thomson/Delmar Learning 2005. All Rights Reserved.

}

}

if ('tmrl ov) {
// no overflow at all
delta = this capture - last capture ;
}

else {
// compute delta time
delta = tmrl ov-1;
delta = (delta << 16);
last capture = 0 - last capture;
delta = delta + last capture;
delta = delta + this capture;

}

// disable timerl interrupt

TMR1ON = 0; TMR1IE = 0; TMR1lIF = 0O;
capture flag = 1;

}

//clear capture\interrupt flag

CCP1IF = 0;

| edge captur; |

compute
elasped
time

k. 4

no
/""t_nﬁ‘l’rT oflow?

v
delta =

yes

last_capture -
this_capture

delta =

(tmrl ov-1)<<16 +
(0 - last_capture) +
this_capture

L J

disable Timerl
capture flag =

interrupts,

Semaphore to main () to indicate
that pulse width capture is complete 7 6

After pulse width 1s captured, the capture flag semaphore
1s set and the TimerO interrupt is disabled as the pulse width

has been measured. V0.7

Copyright Thomson/Delmar Learning 2005.

10

All Rights Reserved.

	Measuring Pulse Width
	Measuring the Period of a Square Wave
	Pulse Width Measurement

