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In this note we derive some equtions for the description of transformers. We
further show, that it makes no sense to speak of a primary- or secondary
stray-inductance, since equivalent models can be derived that have no pri-
mary (resp. no secondary) leakage.

B.1 Transformer T-model

We view the transformer as a purely inductive two-port (no loss mechanisms
nor capacitances are included). The primary port has the connectors 1 and
2, and the secondary port has connectors 3 and 4. The electrically equivalent
T-model is based on a magnetizing inductance Lh, two stray inductances L1s

and L2s and an ideal transformer with transformation ratio m. (Warning:
This ratio m is not necessaraly the turns ratio as we will see !)

Fig. B.1 Transformer

These four internal components can not be measured directly, and we will
see, that for a given transformer the equivalent model is not unique.
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B.2 Measurements and equivalent circuits

Usually the simplest measurements that are performed in order to character-
ize the transformer are inductance measurements at one side while leaving
the other side open or shortening the other side. So we get four measured
quantities:

L1o : Inductance of primary side, secondary side open

L1k : Inductance of primary side, secondary side shortened

L2o : Inductance of secondary side, primary side open

L2k : Inductance of secondary side, primary side shortened

It is a common misconception, that using these four measured parameters it
would be possible to uniquely determine the four quantities of the electrically
equivalent model. This is not the case.

We first show, that the 4 measurements are not independent. Only three of
the measurements are independent. We further show, that one of the four
elements of the electrical model can be chosen arbitrarily to match the three
independent parameters of a transformer. We use the transformation ratio m
and show how the primary leakage L1s and the secondary leakage L2s depend
on the particular value of m.

To see, why there are only three independent measurements we first write
down the equations of the measured parameters depending on the parameters
of the electrical model:

L1o = L1s + Lm (I)

L1k = L1s + (Lm||L2s) (II)

L2o = m2(L2s + Lm) (III)

L2k = m2{L2s + (Lm||L1s)} (IV )

Here || denote the value of the parallel circuit .
By multiplying eqns. (I) and (III) resp. II) and (IV ) it is now easy to
verify, that:

L2kL1o = L1kL2o

This shows the fundamental relation between the four measured parameters.
If three of them are given, you can compute the fourth. So the electrical
T-model is based on only three parameters, but consists of four components.

The next task is to express the values of the components of the electrical
model as functions of the measured values. Since only three parameters are
determined, we take m as a parameter. By subtracting (I) and (II) we get

L10 − L1k = Lm − LmL2s

Lm + L2s

=
L2
m

Lm + L2s
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Now using equation (III) we get

L1o − L1k =
L2
m

L2o/m2

Therefore we can express the magnetizing inductance as function of the three
measured values and the parameter m as follows:

L2
m =

L2o

m2
(L1o − L1k)

Using equation (I) and (III) we can express the other two values of the
electrical model:

mL1s = mL1o −
√
L2o(L1o − L1k)

mL2s =
L2o

m
−
√
L2o(L1o − L1k)

These two equations give a good insight, how the stray-inductance values
of the electrical model depend on the parameter m: If m is too small, the
primary stray inductance L1s in the model becomes negative. If m is too
big, the secondary stray inductance L2s becomes negative. If m is chosen
between these two values we get positive stray inductances. (It should be
noted, that also the models containing negative stray inductances fulfill all
equations and yield valid transformer models, one is even free to choose any
complex number as m, the only problem is, that these model have no direct
physical realisations as T-circuits). We give now formulas for some special
cases:

Case 1: No primary stray inductance
If one chooses

m2 =
L2o − L2k

L1o

we get L1s = 0 and

L2s =
L1kL2o

L2o − L2k

and
Lm = L1o

Case 2: No secondary stray inductance
If one chooses

m2 =
L2o

L1o − L1k

we get L2s = 0 and
L1s = L1k

and
Lm = L1o − L1k
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Case 3: Primary equals secondary stray inductance
If one chooses

m2 =
L2o

L1o

we get

Ls = L1s = L2s = L1o(1−
√
1− L1k/L1o)

and
Lh = Lm = L1o

√
1− L1k/L1o

This case is useful when the transformer construction is symmetrical, and
one also wants a symmetrical model to reflect that fact.

Usually the coupling-factor k is defined by using the symmetrical T-model.
So we can define the coupling factor for the general transformer by:

k =
Lh

Ls + Lh

Using the formulas from above we arive at

k =
√
1− L1k/L1o

So the coupling factor determination needs only measurements from one side.
Due to the fundamental relation

L1kL2o = L2kL1o

we get the result, that this coupling factor measured from the secondary side
is the same:

k =
√
1− L2k/L2o

This shows, that the coupling factor is really a characteristic of the trans-
former, not of the chosen model. Changing m or introducing a second ideal
transformer does not change the coupling factor.

In our consderation we placed the ideal transformer on the secondary side.
Clearly it can also be placed on the primary side. The formulas can simply
be derived by interchanging primary and secondary indicies. The following
figure shows a collection of electrically equivalent circuits for the values:

L10 = 100 L1k = 36 L2o = 1600 L2k = 576

(arbitrary units used).
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Fig. B.2 Equivalent transformers

B.3 Interpretation

It has been shown, that there are equivalent electrical T-models that are
parametrized by m. For every transformer m can be chosen in a way that
the primary or secondary leakage disappear in the T-model. Therefore it
makes no sense to say, that a specific capacitor resonates with the primary
or secondary stray inductance or with the magnetizing inductance of the
transformer. This makes only sense with respect to the chosen T-model. By
chosing the parameter m one can get equivalent descriptions, and sometimes
its easier to understand a circuit when one of the leakage inductances is zero
in the model. Therefore the equations derived are useful if one wants to
analyse circuits because if one of the inductances is zero, normally its easier
to write down the equations governing the circuits.

We have seen, that there existes a certain range for the parameter m within
which we get positive stray inductances. If we denote m1 the value obtained
for case 1: no primary stray inductance, and similar m2 is the value for case
2: no secondary stray inductannce, we can derive:

m2

m1

=
1

k2
≥ 1

where k again denotes the coupling coefficient. This shows, that in the case
of perfect coupling k = 1 we are no longer free to choose m, in this case m
is fixed and it is obvious, that in this case it is the turns-ratio, since perfect
coupling can only be realized if both windings are identical in geometry and
differ only in turn numbers. If the coupling is not perfect, we can determine
only a range of possible turns-ratio of the ideal transformer of the T-model.

It has been shown, that in general the number m must not be the turns-ratio
n of the transformer. It is even not clear, whether the turns-ratio n is within
the rangem1 . . .m2 of parameter values leading to positive stray inductances.
In all practical cases it has been observed, that m1 ≤ n ≤ m2.

B.4 Inductance coefficients

Models based on the magnetic fields are often based on the inductance coef-
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ficient matrix L = (Lij). The transformer equations using these coefficients
are (in the case of two windings)(

U1

U2

)
= jω

(
L11 L12

L12 L22

)(
I1
I2

)
Using these inductance coeffiients one finds:

L1o = L11 L1k =
L11L22 − L2

12

L22

L2o = L22 L2k =
L11L22 − L2

12

L11

Further we find

m1 =
L12

L11

m2 =
L22

L12

The matrix of the inductance coefficients is positive semi-definite, this assures
L11 ≥ 0,L22 ≥ 0 and det(L) = L11L22−L2

12 ≥ 0, so that this ensures positive
values for L1k and L2k.

We further have (m given for symmetrical T-model):

k =
L12√
L11L22

m =

√
L22

L11

B.5 Voltage transfer ratios

The voltage transfer ratio is also easily measurable. The relation to the
other quantities can easily be understood by considering the symmetrical
model (given by Lh,Ls,m) with inductances on the primary side.

We denote the primary voltage with U1, the secondary voltage with U2. In
the case of unloaded secondary (I2 = 0) we get for the voltage transfer ratio
u12:

u12 =
U2

U1

|I2=0 = m
Lh

Lh + Ls

= m k

For unloaded primary we get

u21 =
U1

U2

|I1=0 =
1

m

Lh

Lh + Ls

=
k

m

Together this means:

k =
√
u12u21 m =

√
u12

u21

This is a way to measure directly k and m without any inductance measure-
ments !

6



B.6 Adjust measurement values

Using an inductance meter it is easy to measure the inductance coefficients

L1o, L1k, L2o, L2k

Due to measurement errors these willl not be the true values. We denote the
measured values by

L̂1o, L̂1k, L̂2o, L̂2k

For the measured Values the error-quantity e will be not zero.

e = L̂2kL̂1o − L̂1kL̂2o

We now want to adjust the measured values so that e is zero for the new
values. We use a correction factor α ≈ 1

L1o = L̂1oα L1k = L̂1k/α L2o = L̂2o/α L2k = L̂2kα

e = α2L̂2kL̂1o − L̂1kL̂2o/α
2

To mkake e zero we put

α =

(
L̂1kL̂2o

L̂2kL̂1o

)1/4

Example computation by LUA.....

measured:

L1o= 122.000 uH

L1k= 22.000 uH

L2o= 120.000 uH

L2k= 22.000 uH

error=L2k*L1o-L1k*L2o= 44.000000 uH^2

alphaCorrection= 0.995876

Values adjusted...

L1o= 121.497 uH

L1k= 22.091 uH

L2o= 120.497 uH

L2k= 21.909 uH

L2k*L1o-L1k*L2o= -0.000000 uH^2

mNoPrim= 0.900800

mNoSek = 1.100987

mSymm = 0.995876

k = 0.904531

m=mSymm = 0.995876

Lm = 109.898 uH L1s = 11.599 uH L2s = 11.599 uH

m=mNoPrim = 0.900800

Lm = 121.497 uH L1s = 0.000 uH L2s = 27.000 uH

m=mNoSek = 1.100987

Lm = 99.406 uH L1s = 22.091 uH L2s = 0.000 uH
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