
Immunity-aware programming
When writing firmware for an embedded system, immunity-aware

programming refers to programming techniques which improve the

tolerance of transient errors in the program counter or other modules

of a program that would otherwise lead to failure. Transient errors are

typically caused by single event upsets, insufficient power, or by strong

electromagnetic signals transmitted by some other "source" device.

Immunity-aware  programming  is  an  example  of  defensive

programming and EMC-aware programming. Although most of these

techniques apply to the software in the "victim" device to make it more

reliable,  a few of  these techniques apply to software in the "source"

device to make it emit less unwanted noise.
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Microcontrollers'  firmware  can  inexpensively  improve  the

electromagnetic compatibility of an embedded system.

Embedded systems firmware is usually not considered to be a source of

radio  frequency  interference.  Radio  emissions  are  often  caused  by

harmonic frequencies of the system clock and switching currents. The

pulses on these wires can have fast rise and fall times, causing their

wires to act  as radio transmitters.  This effect  is  increased by badly-

designed printed circuit  boards.  These  effects  are  reduced  by  using

microcontroller output drivers with slower rise times, or by turning off

system components.

The microcontroller is easy to control. It is also susceptible to faults

from  radio  frequency  interference.  Therefore,  making  the

microcontroller's software resist such errors can cheaply improve the

system's  tolerance  for  electromagnetic  interference  by  reducing  the
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need for hardware alterations.

CMOS microcontrollers  have  specific  weak  spots  which  can  be

strengthened  by  software  that  works  against  electromagnetic

interference.  Failure  mode  and  effects  analysis  of  a  system  and  its

requirements  is  often required.  Electromagnetic  compatibility  issues

can easily be added to such an analysis.

Slow  changes  of  power  supply  voltage  do  not  cause  significant

disturbances, but rapid changes can make unpredictable trouble. If a

voltage  exceeds  parameters  in  the  controller's  data  sheet  by  150

percent, it can cause the input port or the output port to get hung in

one  state,  known  as  CMOS  latch-up.[1]  Without  internal  current

control, latch-up causes the microcontroller to burn out. The standard

solution is a mix of software and hardware changes. Most embedded

systems have a watchdog timer. This watchdog should be external to

the microcontroller so that it is likely to be immune to any plausible

electromagnetic interference. It should reset the power supply, briefly

switching it off. The watchdog period should be half or less of the time

and power required to burn out the microcontroller. The power supply

design should be well-grounded and decoupled using capacitors and

inductors close to the microcontroller; some typical values are 100uF

and 0.1uF in parallel.

Low power can cause serious malfunctions in most microcontrollers.

For  the  CPU  to  successfully  decode  and  execute  instructions,  the
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supplied  voltage  must  not  drop  below  the  minimum  voltage  level.

When the supplied voltage drops below this level, the CPU may start to

execute some instructions incorrectly. The result is unexpected activity

on the internal data and control lines. This activity may cause:

CPU register corruption
I/O register corruption
I/O pin random toggling
SRAM corruption
EEPROM corruption

Brownout detection solves most of those problems in most systems by

causing the system to shut down when main power is unreliable. One

typical system retriggers a timer each time that the AC main voltage

exceeds 90% of its rated voltage. If the timer expires, it interrupts the

microcontroller, which then shuts down its system. Many systems also

measure the power supply voltages, to guard against slow power supply

degradation.

The input ports of CMOS oscillators have high impedances,  and are

thus very susceptible  to  transient  disturbances.  According to  Ohm's

law, high impedance causes high voltage differences. They also are very

sensitive to short circuit from moisture or dust.

One typical failure is when the oscillators' stability is affected. This can

cause it to stop, or change its period. The normal system hedges are to

have an auxiliary oscillator using some cheap, robust scheme such as a

ring of inverters or a resistor-capacitor one-shot timer. After a reset

(perhaps caused by a watchdog timer), the system may default to these,

only  switching  in  the  sensitive  crystal  oscillator  once  timing
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measurements  have  proven  it  to  be  stable.  It  is  also  common  in

high-reliability systems to measure the clock frequency by comparing it

to an external  standard,  usually  a  communications clock,  the power

line, or a resistor-capacitor timer.

Bursts  of  electromagnetic  interference  can  shorten  clock  periods  or

cause  runt  pulses  that  lead  to  incorrect  data  access  or  command

execution. The result is wrong memory content or program pointers.

The  standard  method  of  overcoming  this  in  hardware  is  to  use  an

on-chip  phase  locked  loop  to  generate  the  microcontroller's  actual

clock signal. Software can periodically verify data structures and read

critical ports using voting, distributing the reads in time or space.

Input/output ports—including address lines and data lines—connected

by  long  lines  or  external  peripherals  are  the  antennae  that  permit

disturbances to have effects. Electromagnetic interference can lead to

incorrect  data and addresses on these lines.  Strong fluctuations can

cause  the  computer  to  misread  I/O  registers  or  even  stop

communication with these ports. Electrostatic discharge can actually

destroy ports or cause malfunctions.

Most microcontrollers' pins are high impedance inputs or mixed inputs

and outputs. High impedance input pins are sensitive to noise, and can

register  false  levels  if  not  properly  terminated.  Pins  that  are  not

terminated  inside  an  IC  need  resistors  attached.  These  have  to  be

connected to ground or supply, ensuring a known logic state.

Input/output ports
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An  analysis  of  possible

errors before correction is

very important. The cause

must  be  determined  so

that  the  problem  can  be

fixed.

The  Motor  Industry

Software  Reliability

Association  identifies  the

required  steps  in  case  of

an error as follows:[2]

Information/warning
the user
Store the faulty data until a defined reset can be carried
out
Keep the system in a defined state until the error can be
corrected

Fundamentally one uses redundancy to counter faults.  This includes

running extra code (redundancy in time) as well as keeping extra bits

(redundancy in space).

A disturbed instruction pointer can lead to serious errors, such as an

undefined  jump  to  an  arbitrary  point  in  the  memory,  where  illegal

instructions are  read.  The state  of  the  system will  be  undefined.  IP

errors  can  be  handled  by  use  of  software  based  solutions  such  as

function tokens and an NOP slide(s).

Many processors, such as the Motorola 680x0, feature a hardware trap

Cause and effect figure. The
cause must be determined, so the
problem can be fixed.

Instruction pointer (IP) error management



upon encountering an illegal instruction. A correct instruction, defined

in the trap vector, is executed, rather than the random one. Traps can

handle  a  larger  range  errors  than  function  tokens  and  NOP  slides.

Supplementary to illegal instructions, hardware traps securely handle

memory access violations, overflows, or a division by zero.

Improved  noise  immunity  can

be  achieved  by  execution  flow

control known as token passing.

The figure to the right shows the

functional  principle

schematically.  This  method

deals  with program flow errors

caused  by  the  instruction

pointers.

The  implementation  is  simple

and  efficient.  Every  function  is

tagged  with  a  unique  function

ID. When the function is called,

the  function  ID  is  saved  in  a

global  variable.  The function is

only executed if the function ID

in the global variable and the ID

of the function match. If the IDs do not match, an instruction pointer

error  has  occurred,  and  specific  corrective  actions  can  be  taken.  A

sample  implementation  of  token  passing  using  a  global  variable

programmed in C is stated in the following source listing.

Token passing (function token)

Token passing as execution
flow control

C source: token passing with
global function ID.



This is essentially an "arm / fire" sequencing, for every function call.

Requiring such a sequence is part of safe programming techniques, as

it generates tolerance for single bit (or in this case, stray instruction

pointer) faults.

The implementation of function tokens increases the program code size

by  10  to  20%,  and  slows  down  the  performance.  To  improve  the

implementation, instead of global variables like above, the function ID

can be passed as an argument within the functions header as shown in

the code sample below.

With NOP-Fills, the reliability of

a system in case of a disturbed

instruction  pointer  can  be

improved  in  some  cases.  The

entire  program memory that  is

not used by the program code is

filled with No-Operation (NOP)

instructions. In machine code a

NOP  instruction  is  often

represented  by  0x00  (for

example, Intel 8051, ATmega16,

etc.).  The  system  is  kept  in  a

defined state. At the end of the

physical  program  memory,  an

instruction  pointer  error

handling (IPEH IP-Error-Handler)  has to  be implemented.  In some

cases this can be a simple reset.

C source: token passing with
function parameters
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If  an  instruction  pointer  error  occurs  during  the  execution  and  a

program points  to  a  memory  segment  filled  with  NOP instructions,

inevitably an error occurred and is recognized.

Three methods of implementing NOP-Fills are applicable:

In the first method, the unused physical memory is set to
0x00 manually by search and replace in the (HEX) program
file. The drawback of this method is that this has to be
done after every compilation.

Program memory filled with code, NOPs, and
error handler

The second method uses the fill option of the linker, which
fills up the unused memory regions with a predefined
constant (in this case 0x00).
The third way is to include a corresponding number of NOP
assembler directives directly in the program code.

When  using  the  CodevisionAVR  C  compiler,  NOP  fills  can  be

implemented easily. The chip programmer offers the feature of editing

the program flash and EEPROM to fill it with a specific value. Using an

Atmel  ATmega16,  no  jump  to  reset  address  0x00  needs  to  be

implemented, as the overflow of the instruction pointer automatically

sets its value to 0x00. Unfortunately, resets due to overflow are not

equivalent to intentional reset. During the intended reset, all necessary

MC registers are reset by hardware, which is not done by a jump to

0x00. So this method will not be applied in the following tests.

I/O register errors



Microcontroller

architecture  requires  the

I/O  leads  to  be  placed  at

the  outer  edge  of  the

silicon  die.  Thus  I/O

contacts  are  strongly

affected  by  transient

disturbances on their  way

to the silicon core, and I/O

registers  are  one  of  the

most  vulnerable  parts  of

the  microcontroller.

Wrongly-read  I/O

registers  may  lead  to  an

incorrect system state. The

most  serious  errors  can

occur  at  the  reset  port  and  interrupt  input  ports.  Disturbed  data

direction registers (DDR) may inhibit writing to the bus.

These disturbances can be prevented as following:

1. Cyclic update of the most important registers

By cyclically updating of the most important register and
the data in the data direction registers in shortest possible
intervals, errors can be reduced. Thus a wrongly set bit
can be corrected before it can have negative effects.

2. Multiple read of input registers

A further method of filtering disturbances is multiple read
of input registers. The read-in values are then checked for

Memory before and after the
implementation of both function
token and NOP-Fills



consistency. If the values are consistent, they can be
considered valid. A definition of a value range and/or the
calculation of a mean value can improve the results for
some applications.

Side effect: increased activity

A drawback is the increased activity due to permanent
updates and readouts of peripherals. This activity may
add additional emissions and failures.

External interrupt ports; stack overflow

External interrupts are triggered by falling/rising edges or
high/low potential at the interrupt port, leading to an
interrupt request (IRQ) in the controller. Hardware
interrupts are divided into maskable interrupts and
non-maskable interrupts (NMI). The triggering of maskable
interrupts can be stopped in some time-critical functions.
If an interrupt is called, the current instruction pointer (IP)
is saved on the stack, and the stack pointer (SP) is
decremented. The address of the interrupt service routine
(ISR) is read from the interrupt vector table and loaded to
the IP register, and the ISR is executed as a consequence.

If interrupts—due to disturbances—are generated faster
than processed, the stack grows until all memory is used.
Data on the stack or other data might be overwritten. A
defensive software strategy can be applied. The stack
pointer (SP) can be watched. The growing of the stack
beyond a defined address can then be stopped. The value
of the stack pointer can be checked at the start of the
interrupt service routine. If the SP points to an address
outside the defined stack limits, a reset can be executed.

In systems without error detection and correction units, the reliability

of  the  system  can  be  improved  by  providing  protection  through

Data redundancy



software.  Protecting the entire memory (code and data) may not be

practical in software, as it causes an unacceptable amount of overhead,

but it is a software implemented low-cost solution for code segments.

Another  elementary  requirement  of  digital  systems  is  the  faultless

transmission of data. Communication with other components can be

the weak point and a source of errors of a system. A well-thought-out

transmission  protocol  is  very  important.  The  techniques  described

below  can  also  be  applied  to  data  transmitted,  hence  increasing

transmission reliability.

A cyclic redundancy check is a type of hash function used to produce a

checksum, which is a small integer from a large block of data, such as

network traffic or computer files. CRCs are calculated before and after

transmission or duplication,  and compared to confirm that they are

equal. A CRC detects all one- or two-bit errors, all odd errors, all burst

errors if the burst is smaller than the CRC, and most of the wide-burst

errors. Parity checks can be applied to single characters (VRC—vertical

redundancy check), resulting in an additional parity bit or to a block of

data  (LRC—longitudinal  redundancy  check),  issuing  a  block  check

character. Both methods can be implemented rather easily by using an

XOR operation. A trade-off is that less errors can be detected than with

the CRC. Parity Checks only detect odd numbers of flipped bits. The

even numbers of bit errors stay undetected. A possible improvement is

the  usage  of  both  VRC  and  LRC,  called  Double  Parity  or  Optimal

Rectangular Code (ORC).

Some microcontrollers feature a hardware CRC unit.

Cyclic redundancy and parity check



A specific  method of  data  redundancy  is  duplication,  which  can  be

applied in several ways, as described in the following:

Data duplication

To cope with corruption of data, multiple copies of
important registers and variables can be stored.
Consistency checks between memory locations storing
the same values, or voting techniques, can then be
performed when accessing the data.

Two different modifications to the source code need to be
implemented.

The first one corresponds to duplicating some or all of
the program variables to introduce data redundancy,
and modifying all the operators to manage the
introduced replica of the variables.

The second modification introduces consistency checks
in the control flow, so that consistency between the
two copies of each variable is verified.

When  the  data  is  read  out,  the  two  sets  of  data  are  compared.  A

disturbance is detected if the two data sets are not equal. An error can

be reported. If both sets of data are corrupted, a significant error can

be reported and the system can react accordingly.

In  most  cases,  safety-critical  applications  have  strict  constraints  in

terms of memory occupation and system performance. The duplication

of  the  whole  set  of  variables  and  the  introduction  of  a  consistency

check before every read operation represent the optimum choice from

the  fault  coverage  point  of  view.  Duplication  of  the  whole  set  of

Different kinds of duplication



variables enables an extremely high percentage of faults to be covered

by  this  software  redundancy  technique.  On  the  other  side,  by

duplicating  a  lower  percentage  of  variables  one  can  trade  off  the

obtained fault coverage with the CPU time overhead.

An experimental analysis of CPU time overhead
and the amount of duplicated variables

The  experimental  result  shows  that  duplicating  only  50%  of  the

variables is enough to cover 85% of faults with a CPU time overhead of

just 28%.

Attention should also be paid to the implementation of the consistency

check, as it is usually carried out after each read operation or at the end

of each variable's  life  period.  Carefully  implementing this  check can

minimize the CPU time and code size for this application.

Function parameter duplication

As the detection of errors in data is achieved through duplicating all

variables  and adding  consistency  checks  after  every  read  operation,

special considerations have to be applied according to the procedure

interfaces. Parameters passed to procedures, as well as return values,

are considered to be variables.  Hence, every procedure parameter is



duplicated, as well as the return

values. A procedure is still called

only  once,  but  it  returns  two

results,  which  must  hold  the

same value. The source listing to

the  right  shows  a  sample

implementation  of  function

parameter duplication.

Test duplication

To duplicate a test is one of the

most robust methods that exists

for generic soft error detection.

A  drawback  is  that  no  strict

assumption on the cause of the

errors  (EMI,  ESD etc.),  nor  on

the  type  of  errors  to  expect

(errors  affecting  the  control

flow,  errors  affecting  data  etc.)

can  be  made.  Erroneous

bit-changes  in  data-bytes  while

stored  in  memory,  cache,

register, or transmitted on a bus

are  known.  These  data-bytes

could  be  operation  codes

(instructions),  memory

addresses, or data. Thus, this method is able to detect a wide range of

faults, and is not limited to a specific fault model. Using this method,

memory increases about four times, and execution time is about 2.5

C sample code: function
parameter duplication

C sample code: duplication
of test conditions



times as long as the same program without test  duplication.  Source

listing to the right shows a sample implementation of the duplication

of test conditions.

Branching duplication

Compared to test duplication, where one condition is cross-checked,

with branching duplication the condition is duplicated.

For  every  conditional  test  in  the  program,  the  condition  and  the

resulting jump should be reevaluated, as shown in the figure. Only if

the  condition is  met  again,  the  jump is  executed,  else  an error  has

occurred.

Instruction duplication and diversity in
implementation

What is the benefit of when data, tests, and branches are duplicated

when the calculated result is incorrect? One solution is to duplicate an

instruction entirely, but implement them differently. So two different

programs with the same functionality, but with different sets of data

and  different  implementations  are  executed.  Their  outputs  are

compared, and must be equal. This method covers not just bit-flips or

Branch duplication



processor faults but also programming errors (bugs). If it is intended to

especially  handle  hardware  (CPU)  faults,  the  software  can  be

implemented using different parts of the hardware; for example, one

implementation  uses  a  hardware  multiply  and  the  other

implementation  multiplies  by  shifting  or  adding.  This  causes  a

significant overhead (more than a factor of two for the size of the code).

On the other hand, the results are outstandingly accurate.

Reset ports and interrupts are very important, as they can be triggered

by  rising/falling  edges  or  high/low  potential  at  the  interrupt  port.

Transient  disturbances  can  lead  to  unwanted  resets  or  trigger

interrupts,  and  thus  cause  the  entire  system  to  crash.  For  every

triggered interrupt, the instruction pointer is saved on the stack, and

the stack pointer is decremented.

Try to reduce the amount of edge triggered interrupts. If interrupts can

be triggered only with a level, then this helps to ensure that noise on an

interrupt pin will not cause an undesired operation. It must be kept in

mind that level-triggered interrupts can lead to repeated interrupts as

long as the level stays high. In the implementation, this characteristic

must be considered; repeated unwanted interrupts must be disabled in

the  ISR.  If  this  is  not  possible,  then  on  immediate  entry  of  an

edge-triggered interrupt, a software check on the pin to determine if

the level is correct should suffice.

For  all  unused  interrupts,  an  error-handling  routine  has  to  be

Ports

Reset ports and interrupt ports



implemented to keep the system in a defined state after an unintended

interrupt.

Unintentional  resets  disturb the correct  program execution,  and are

not acceptable for extensive applications or safety-critical systems.

A frequent system requirement is the automatic resumption of work

after a disturbance/disruption. It can be useful to record the state of a

system at shut down and to save the data in a non-volatile memory. At

startup  the  system  can  evaluate  if  the  system  restarts  due  to

disturbance  or  failure  (warm  start),  and  the  system  status  can  be

restored or an error can be indicated. In case of a cold start, the saved

data in the memory can be considered valid.

This method is a combination of hard- and software implementations.

It proposes a simple circuit to detect an electromagnetic interference

using  the  device's  own  resources.  Most  microcontrollers,  like  the

ATmega16, integrate analog to digital converters (ADCs), which could

be  used  to  detect  unusual  power  supply  fluctuations  caused  by

interferences.

When an interference is detected by the software, the microcontroller

could enter a safe state while waiting for the aggression to pass. During

this safe state, no critical executions are allowed. The graphic presents

how interference detection can be performed. This technique can easily

be used with any microcontroller that features an AD-converter.

Reset differentiation (cold/warm start)

External current consumption measurement



A  watchdog  timer  is  an

electronic  timer  that

detects  abnormal

operation  of  other

components  and  initiates

corrective action to restore

normal  operation.  It

especially  ensures  that

microcontroller  controlled

devices  do not  completely

fail  if  a  software  error  or

momentary  hardware

error  occurs.  Watchdog

timers  are  typically  based  on  either  a  monostable  timer  or  digital

counter.  The timer circuit  may be integrated on the microcontroller

chip or be implemented as an external circuit. Watchdog timers can

significantly  improve  the  reliability  of  a  microcontroller  in  an

electromagnetically-influenced environment.

The software informs the watchdog at regular intervals that it is still

working properly. If the watchdog is not informed, it means that the

software  is  not  working  as  specified  any  more.  Then  the  watchdog

resets the system to a defined state. During the reset, the device is not

able to process data and does not react to calls.

As  the  strategy  to  reset  the  watchdog  timer  is  very  important,  two

requirements have to be attended:

The watchdog may only be reset if all routines work

Hard- and software combination:
detection of power supply
fluctuation using an AD-converter

Watchdog



properly.
The reset must be executed as quickly as possible.

Simple activation of the watchdog and regular resets of the timer do

not make optimal use of a watchdog. For best results, the refresh cycle

of the timer must be set as short as possible and called from the main

function, so a reset can be performed before damage is caused or an

error  occurred.  If  a  microcontroller  does  not  have  an  internal

watchdog, a similar functionality can be implemented by the use of a

timer interrupt or an external device.

A  brown-out  circuit  monitors  the  VCC  level  during  operation  by

comparing it to a fixed trigger level. When VCC drops below the trigger

level,  the brown-out reset is immediately activated. When VCC rises

again, the MCU is restarted after a certain delay.

Electromagnetic compatibility
EMC-aware programming
Emission-aware programming
Fault-tolerant computer system
Fault-tolerant software
List of EMC directives
Software fault tolerance

Latch-up – also known as Single Event Latch-up (SEL) – is a
short circuit of VDD (positive power supply) and VSS
(negative power supply). The latch-up is caused by
parasitic transistors (transistors that cannot be activated

1. 

Brown-out

See also

Notes



during normal operating conditions) of CMOS circuits.
Strong transient disturbances can activate transistors and
thermally destroy the device.
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