
Immunity-aware programming
When writing firmware for an embedded system, immunity-aware

programming refers to programming techniques which improve the

tolerance of transient errors in the program counter or other modules

of a program that would otherwise lead to failure. Transient errors are

typically caused by single event upsets, insufficient power, or by strong

electromagnetic signals transmitted by some other "source" device.

Immunity-aware programming is an example of defensive

programming and EMC-aware programming. Although most of these

techniques apply to the software in the "victim" device to make it more

reliable, a few of these techniques apply to software in the "source"

device to make it emit less unwanted noise.

Task and objectives

Possible interferences of microcontroller-based
systems

Power supply
The oscillator
Input/output ports

Corrective actions
Instruction pointer (IP) error management

Token passing (function token)
NOP slide

I/O register errors
Data redundancy

Contents

Cyclic redundancy and parity check
Different kinds of duplication

Ports
Reset ports and interrupt ports
Reset differentiation (cold/warm start)
External current consumption measurement

Watchdog
Brown-out

See also

Notes

External links

Microcontrollers' firmware can inexpensively improve the

electromagnetic compatibility of an embedded system.

Embedded systems firmware is usually not considered to be a source of

radio frequency interference. Radio emissions are often caused by

harmonic frequencies of the system clock and switching currents. The

pulses on these wires can have fast rise and fall times, causing their

wires to act as radio transmitters. This effect is increased by badly-

designed printed circuit boards. These effects are reduced by using

microcontroller output drivers with slower rise times, or by turning off

system components.

The microcontroller is easy to control. It is also susceptible to faults

from radio frequency interference. Therefore, making the

microcontroller's software resist such errors can cheaply improve the

system's tolerance for electromagnetic interference by reducing the

Task and objectives

need for hardware alterations.

CMOS microcontrollers have specific weak spots which can be

strengthened by software that works against electromagnetic

interference. Failure mode and effects analysis of a system and its

requirements is often required. Electromagnetic compatibility issues

can easily be added to such an analysis.

Slow changes of power supply voltage do not cause significant

disturbances, but rapid changes can make unpredictable trouble. If a

voltage exceeds parameters in the controller's data sheet by 150

percent, it can cause the input port or the output port to get hung in

one state, known as CMOS latch-up.[1] Without internal current

control, latch-up causes the microcontroller to burn out. The standard

solution is a mix of software and hardware changes. Most embedded

systems have a watchdog timer. This watchdog should be external to

the microcontroller so that it is likely to be immune to any plausible

electromagnetic interference. It should reset the power supply, briefly

switching it off. The watchdog period should be half or less of the time

and power required to burn out the microcontroller. The power supply

design should be well-grounded and decoupled using capacitors and

inductors close to the microcontroller; some typical values are 100uF

and 0.1uF in parallel.

Low power can cause serious malfunctions in most microcontrollers.

For the CPU to successfully decode and execute instructions, the

Possible interferences of microcontroller-based
systems

Power supply

supplied voltage must not drop below the minimum voltage level.

When the supplied voltage drops below this level, the CPU may start to

execute some instructions incorrectly. The result is unexpected activity

on the internal data and control lines. This activity may cause:

CPU register corruption
I/O register corruption
I/O pin random toggling
SRAM corruption
EEPROM corruption

Brownout detection solves most of those problems in most systems by

causing the system to shut down when main power is unreliable. One

typical system retriggers a timer each time that the AC main voltage

exceeds 90% of its rated voltage. If the timer expires, it interrupts the

microcontroller, which then shuts down its system. Many systems also

measure the power supply voltages, to guard against slow power supply

degradation.

The input ports of CMOS oscillators have high impedances, and are

thus very susceptible to transient disturbances. According to Ohm's

law, high impedance causes high voltage differences. They also are very

sensitive to short circuit from moisture or dust.

One typical failure is when the oscillators' stability is affected. This can

cause it to stop, or change its period. The normal system hedges are to

have an auxiliary oscillator using some cheap, robust scheme such as a

ring of inverters or a resistor-capacitor one-shot timer. After a reset

(perhaps caused by a watchdog timer), the system may default to these,

only switching in the sensitive crystal oscillator once timing

The oscillator

measurements have proven it to be stable. It is also common in

high-reliability systems to measure the clock frequency by comparing it

to an external standard, usually a communications clock, the power

line, or a resistor-capacitor timer.

Bursts of electromagnetic interference can shorten clock periods or

cause runt pulses that lead to incorrect data access or command

execution. The result is wrong memory content or program pointers.

The standard method of overcoming this in hardware is to use an

on-chip phase locked loop to generate the microcontroller's actual

clock signal. Software can periodically verify data structures and read

critical ports using voting, distributing the reads in time or space.

Input/output ports—including address lines and data lines—connected

by long lines or external peripherals are the antennae that permit

disturbances to have effects. Electromagnetic interference can lead to

incorrect data and addresses on these lines. Strong fluctuations can

cause the computer to misread I/O registers or even stop

communication with these ports. Electrostatic discharge can actually

destroy ports or cause malfunctions.

Most microcontrollers' pins are high impedance inputs or mixed inputs

and outputs. High impedance input pins are sensitive to noise, and can

register false levels if not properly terminated. Pins that are not

terminated inside an IC need resistors attached. These have to be

connected to ground or supply, ensuring a known logic state.

Input/output ports

Corrective actions

An analysis of possible

errors before correction is

very important. The cause

must be determined so

that the problem can be

fixed.

The Motor Industry

Software Reliability

Association identifies the

required steps in case of

an error as follows:[2]

Information/warning
the user
Store the faulty data until a defined reset can be carried
out
Keep the system in a defined state until the error can be
corrected

Fundamentally one uses redundancy to counter faults. This includes

running extra code (redundancy in time) as well as keeping extra bits

(redundancy in space).

A disturbed instruction pointer can lead to serious errors, such as an

undefined jump to an arbitrary point in the memory, where illegal

instructions are read. The state of the system will be undefined. IP

errors can be handled by use of software based solutions such as

function tokens and an NOP slide(s).

Many processors, such as the Motorola 680x0, feature a hardware trap

Cause and effect figure. The
cause must be determined, so the
problem can be fixed.

Instruction pointer (IP) error management

upon encountering an illegal instruction. A correct instruction, defined

in the trap vector, is executed, rather than the random one. Traps can

handle a larger range errors than function tokens and NOP slides.

Supplementary to illegal instructions, hardware traps securely handle

memory access violations, overflows, or a division by zero.

Improved noise immunity can

be achieved by execution flow

control known as token passing.

The figure to the right shows the

functional principle

schematically. This method

deals with program flow errors

caused by the instruction

pointers.

The implementation is simple

and efficient. Every function is

tagged with a unique function

ID. When the function is called,

the function ID is saved in a

global variable. The function is

only executed if the function ID

in the global variable and the ID

of the function match. If the IDs do not match, an instruction pointer

error has occurred, and specific corrective actions can be taken. A

sample implementation of token passing using a global variable

programmed in C is stated in the following source listing.

Token passing (function token)

Token passing as execution
flow control

C source: token passing with
global function ID.

This is essentially an "arm / fire" sequencing, for every function call.

Requiring such a sequence is part of safe programming techniques, as

it generates tolerance for single bit (or in this case, stray instruction

pointer) faults.

The implementation of function tokens increases the program code size

by 10 to 20%, and slows down the performance. To improve the

implementation, instead of global variables like above, the function ID

can be passed as an argument within the functions header as shown in

the code sample below.

With NOP-Fills, the reliability of

a system in case of a disturbed

instruction pointer can be

improved in some cases. The

entire program memory that is

not used by the program code is

filled with No-Operation (NOP)

instructions. In machine code a

NOP instruction is often

represented by 0x00 (for

example, Intel 8051, ATmega16,

etc.). The system is kept in a

defined state. At the end of the

physical program memory, an

instruction pointer error

handling (IPEH IP-Error-Handler) has to be implemented. In some

cases this can be a simple reset.

C source: token passing with
function parameters

NOP slide

If an instruction pointer error occurs during the execution and a

program points to a memory segment filled with NOP instructions,

inevitably an error occurred and is recognized.

Three methods of implementing NOP-Fills are applicable:

In the first method, the unused physical memory is set to
0x00 manually by search and replace in the (HEX) program
file. The drawback of this method is that this has to be
done after every compilation.

Program memory filled with code, NOPs, and
error handler

The second method uses the fill option of the linker, which
fills up the unused memory regions with a predefined
constant (in this case 0x00).
The third way is to include a corresponding number of NOP
assembler directives directly in the program code.

When using the CodevisionAVR C compiler, NOP fills can be

implemented easily. The chip programmer offers the feature of editing

the program flash and EEPROM to fill it with a specific value. Using an

Atmel ATmega16, no jump to reset address 0x00 needs to be

implemented, as the overflow of the instruction pointer automatically

sets its value to 0x00. Unfortunately, resets due to overflow are not

equivalent to intentional reset. During the intended reset, all necessary

MC registers are reset by hardware, which is not done by a jump to

0x00. So this method will not be applied in the following tests.

I/O register errors

Microcontroller

architecture requires the

I/O leads to be placed at

the outer edge of the

silicon die. Thus I/O

contacts are strongly

affected by transient

disturbances on their way

to the silicon core, and I/O

registers are one of the

most vulnerable parts of

the microcontroller.

Wrongly-read I/O

registers may lead to an

incorrect system state. The

most serious errors can

occur at the reset port and interrupt input ports. Disturbed data

direction registers (DDR) may inhibit writing to the bus.

These disturbances can be prevented as following:

1. Cyclic update of the most important registers

By cyclically updating of the most important register and
the data in the data direction registers in shortest possible
intervals, errors can be reduced. Thus a wrongly set bit
can be corrected before it can have negative effects.

2. Multiple read of input registers

A further method of filtering disturbances is multiple read
of input registers. The read-in values are then checked for

Memory before and after the
implementation of both function
token and NOP-Fills

consistency. If the values are consistent, they can be
considered valid. A definition of a value range and/or the
calculation of a mean value can improve the results for
some applications.

Side effect: increased activity

A drawback is the increased activity due to permanent
updates and readouts of peripherals. This activity may
add additional emissions and failures.

External interrupt ports; stack overflow

External interrupts are triggered by falling/rising edges or
high/low potential at the interrupt port, leading to an
interrupt request (IRQ) in the controller. Hardware
interrupts are divided into maskable interrupts and
non-maskable interrupts (NMI). The triggering of maskable
interrupts can be stopped in some time-critical functions.
If an interrupt is called, the current instruction pointer (IP)
is saved on the stack, and the stack pointer (SP) is
decremented. The address of the interrupt service routine
(ISR) is read from the interrupt vector table and loaded to
the IP register, and the ISR is executed as a consequence.

If interrupts—due to disturbances—are generated faster
than processed, the stack grows until all memory is used.
Data on the stack or other data might be overwritten. A
defensive software strategy can be applied. The stack
pointer (SP) can be watched. The growing of the stack
beyond a defined address can then be stopped. The value
of the stack pointer can be checked at the start of the
interrupt service routine. If the SP points to an address
outside the defined stack limits, a reset can be executed.

In systems without error detection and correction units, the reliability

of the system can be improved by providing protection through

Data redundancy

software. Protecting the entire memory (code and data) may not be

practical in software, as it causes an unacceptable amount of overhead,

but it is a software implemented low-cost solution for code segments.

Another elementary requirement of digital systems is the faultless

transmission of data. Communication with other components can be

the weak point and a source of errors of a system. A well-thought-out

transmission protocol is very important. The techniques described

below can also be applied to data transmitted, hence increasing

transmission reliability.

A cyclic redundancy check is a type of hash function used to produce a

checksum, which is a small integer from a large block of data, such as

network traffic or computer files. CRCs are calculated before and after

transmission or duplication, and compared to confirm that they are

equal. A CRC detects all one- or two-bit errors, all odd errors, all burst

errors if the burst is smaller than the CRC, and most of the wide-burst

errors. Parity checks can be applied to single characters (VRC—vertical

redundancy check), resulting in an additional parity bit or to a block of

data (LRC—longitudinal redundancy check), issuing a block check

character. Both methods can be implemented rather easily by using an

XOR operation. A trade-off is that less errors can be detected than with

the CRC. Parity Checks only detect odd numbers of flipped bits. The

even numbers of bit errors stay undetected. A possible improvement is

the usage of both VRC and LRC, called Double Parity or Optimal

Rectangular Code (ORC).

Some microcontrollers feature a hardware CRC unit.

Cyclic redundancy and parity check

A specific method of data redundancy is duplication, which can be

applied in several ways, as described in the following:

Data duplication

To cope with corruption of data, multiple copies of
important registers and variables can be stored.
Consistency checks between memory locations storing
the same values, or voting techniques, can then be
performed when accessing the data.

Two different modifications to the source code need to be
implemented.

The first one corresponds to duplicating some or all of
the program variables to introduce data redundancy,
and modifying all the operators to manage the
introduced replica of the variables.

The second modification introduces consistency checks
in the control flow, so that consistency between the
two copies of each variable is verified.

When the data is read out, the two sets of data are compared. A

disturbance is detected if the two data sets are not equal. An error can

be reported. If both sets of data are corrupted, a significant error can

be reported and the system can react accordingly.

In most cases, safety-critical applications have strict constraints in

terms of memory occupation and system performance. The duplication

of the whole set of variables and the introduction of a consistency

check before every read operation represent the optimum choice from

the fault coverage point of view. Duplication of the whole set of

Different kinds of duplication

variables enables an extremely high percentage of faults to be covered

by this software redundancy technique. On the other side, by

duplicating a lower percentage of variables one can trade off the

obtained fault coverage with the CPU time overhead.

An experimental analysis of CPU time overhead
and the amount of duplicated variables

The experimental result shows that duplicating only 50% of the

variables is enough to cover 85% of faults with a CPU time overhead of

just 28%.

Attention should also be paid to the implementation of the consistency

check, as it is usually carried out after each read operation or at the end

of each variable's life period. Carefully implementing this check can

minimize the CPU time and code size for this application.

Function parameter duplication

As the detection of errors in data is achieved through duplicating all

variables and adding consistency checks after every read operation,

special considerations have to be applied according to the procedure

interfaces. Parameters passed to procedures, as well as return values,

are considered to be variables. Hence, every procedure parameter is

duplicated, as well as the return

values. A procedure is still called

only once, but it returns two

results, which must hold the

same value. The source listing to

the right shows a sample

implementation of function

parameter duplication.

Test duplication

To duplicate a test is one of the

most robust methods that exists

for generic soft error detection.

A drawback is that no strict

assumption on the cause of the

errors (EMI, ESD etc.), nor on

the type of errors to expect

(errors affecting the control

flow, errors affecting data etc.)

can be made. Erroneous

bit-changes in data-bytes while

stored in memory, cache,

register, or transmitted on a bus

are known. These data-bytes

could be operation codes

(instructions), memory

addresses, or data. Thus, this method is able to detect a wide range of

faults, and is not limited to a specific fault model. Using this method,

memory increases about four times, and execution time is about 2.5

C sample code: function
parameter duplication

C sample code: duplication
of test conditions

times as long as the same program without test duplication. Source

listing to the right shows a sample implementation of the duplication

of test conditions.

Branching duplication

Compared to test duplication, where one condition is cross-checked,

with branching duplication the condition is duplicated.

For every conditional test in the program, the condition and the

resulting jump should be reevaluated, as shown in the figure. Only if

the condition is met again, the jump is executed, else an error has

occurred.

Instruction duplication and diversity in
implementation

What is the benefit of when data, tests, and branches are duplicated

when the calculated result is incorrect? One solution is to duplicate an

instruction entirely, but implement them differently. So two different

programs with the same functionality, but with different sets of data

and different implementations are executed. Their outputs are

compared, and must be equal. This method covers not just bit-flips or

Branch duplication

processor faults but also programming errors (bugs). If it is intended to

especially handle hardware (CPU) faults, the software can be

implemented using different parts of the hardware; for example, one

implementation uses a hardware multiply and the other

implementation multiplies by shifting or adding. This causes a

significant overhead (more than a factor of two for the size of the code).

On the other hand, the results are outstandingly accurate.

Reset ports and interrupts are very important, as they can be triggered

by rising/falling edges or high/low potential at the interrupt port.

Transient disturbances can lead to unwanted resets or trigger

interrupts, and thus cause the entire system to crash. For every

triggered interrupt, the instruction pointer is saved on the stack, and

the stack pointer is decremented.

Try to reduce the amount of edge triggered interrupts. If interrupts can

be triggered only with a level, then this helps to ensure that noise on an

interrupt pin will not cause an undesired operation. It must be kept in

mind that level-triggered interrupts can lead to repeated interrupts as

long as the level stays high. In the implementation, this characteristic

must be considered; repeated unwanted interrupts must be disabled in

the ISR. If this is not possible, then on immediate entry of an

edge-triggered interrupt, a software check on the pin to determine if

the level is correct should suffice.

For all unused interrupts, an error-handling routine has to be

Ports

Reset ports and interrupt ports

implemented to keep the system in a defined state after an unintended

interrupt.

Unintentional resets disturb the correct program execution, and are

not acceptable for extensive applications or safety-critical systems.

A frequent system requirement is the automatic resumption of work

after a disturbance/disruption. It can be useful to record the state of a

system at shut down and to save the data in a non-volatile memory. At

startup the system can evaluate if the system restarts due to

disturbance or failure (warm start), and the system status can be

restored or an error can be indicated. In case of a cold start, the saved

data in the memory can be considered valid.

This method is a combination of hard- and software implementations.

It proposes a simple circuit to detect an electromagnetic interference

using the device's own resources. Most microcontrollers, like the

ATmega16, integrate analog to digital converters (ADCs), which could

be used to detect unusual power supply fluctuations caused by

interferences.

When an interference is detected by the software, the microcontroller

could enter a safe state while waiting for the aggression to pass. During

this safe state, no critical executions are allowed. The graphic presents

how interference detection can be performed. This technique can easily

be used with any microcontroller that features an AD-converter.

Reset differentiation (cold/warm start)

External current consumption measurement

A watchdog timer is an

electronic timer that

detects abnormal

operation of other

components and initiates

corrective action to restore

normal operation. It

especially ensures that

microcontroller controlled

devices do not completely

fail if a software error or

momentary hardware

error occurs. Watchdog

timers are typically based on either a monostable timer or digital

counter. The timer circuit may be integrated on the microcontroller

chip or be implemented as an external circuit. Watchdog timers can

significantly improve the reliability of a microcontroller in an

electromagnetically-influenced environment.

The software informs the watchdog at regular intervals that it is still

working properly. If the watchdog is not informed, it means that the

software is not working as specified any more. Then the watchdog

resets the system to a defined state. During the reset, the device is not

able to process data and does not react to calls.

As the strategy to reset the watchdog timer is very important, two

requirements have to be attended:

The watchdog may only be reset if all routines work

Hard- and software combination:
detection of power supply
fluctuation using an AD-converter

Watchdog

properly.
The reset must be executed as quickly as possible.

Simple activation of the watchdog and regular resets of the timer do

not make optimal use of a watchdog. For best results, the refresh cycle

of the timer must be set as short as possible and called from the main

function, so a reset can be performed before damage is caused or an

error occurred. If a microcontroller does not have an internal

watchdog, a similar functionality can be implemented by the use of a

timer interrupt or an external device.

A brown-out circuit monitors the VCC level during operation by

comparing it to a fixed trigger level. When VCC drops below the trigger

level, the brown-out reset is immediately activated. When VCC rises

again, the MCU is restarted after a certain delay.

Electromagnetic compatibility
EMC-aware programming
Emission-aware programming
Fault-tolerant computer system
Fault-tolerant software
List of EMC directives
Software fault tolerance

Latch-up – also known as Single Event Latch-up (SEL) – is a
short circuit of VDD (positive power supply) and VSS
(negative power supply). The latch-up is caused by
parasitic transistors (transistors that cannot be activated

1.

Brown-out

See also

Notes

during normal operating conditions) of CMOS circuits.
Strong transient disturbances can activate transistors and
thermally destroy the device.

[1] (http://www.misra.org.uk)2.

ST AN5833:software techniques for improving EMC
performance (http://www.st.com/stonline/products
/literature/anp/5833.pdf)
The EMC Impact of Embedded Software
(https://web.archive.org/web/20110524052840/http:
//www.conformity.com/artman/publish/printer_214.shtml)
Freescale application note: improving the Transient
Immunity Performance of Microcontroller-Based
Applications (http://www.freescale.com/files
/microcontrollers/doc/app_note/AN2764.pdf)

Retrieved from "https://en.wikipedia.org
/w/index.php?title=Immunity-aware_programming&
oldid=815869333"

This page was last edited on 17 December 2017, at
18:54.

Text is available under the Creative Commons Attribution-
ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy.
Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

External links

