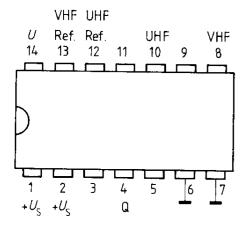
Bipolare Schaltung

Schneller ECL-Teiler mit dem Teilerverhältnis 1:256 für Eingangsfrequenzen von 80 MHz bis zu 1 GHz. Insbesondere geeignet für den Einsatz in Fernsehgeräten mit Frequenzsynthese.

- Eingangsfrequenz bis 1 GHz
- Geringe Außenbeschaltung
- Getrennte Eingänge für UHF und VHF

Тур	Bestellnummer	Gehäusebauform			
SDA 4040	Q67000-A1462	DIP 14			


Grenzdaten

Giciizaaton			
Speisespannung Eingangsspannungen	U ₁ , U ₂ U ₈ U ₁₀	10 2,5 2,5	V V _{ss} V _{ss}
Umschaltspannung Umschaltsrom Ausgangsstrom Wärmewiderstand (System-Umgebung) Lagertemperatur Sperrschichttemperatur	U ₁₄ I ₁₄ I ₁₄ I _{q4} R _{th} su T _s	-0,5 bis 7,2 -10 -30 bis 30 80 -40 bis 125	V . mA mA K/W °C
Funktionsbereich			
Speisespannung Eingangsfrequenz VHF UHF Umgebungstemperatur im Betrieb	$U_1,\ U_2 \ f_{i8} \ f_{i10} \ T_{U}$	6,45 bis 7,15 80 bis 300 80 bis 950 0 bis 65	V MHz MHz °C

Kenndaten ($U_S = 6.8 \text{ V}; T_U = 25^{\circ}\text{C}$)

		min	typ	max	
Stromaufnahme ($U_S = 7,15 \text{ V}$) Eingangsspannungen VHF (Sinus) ¹)	I_1 , I_2		70	95	mA
$f_i = 80 \text{ MHz}$ $f_i = 100 \text{ MHz}$ $f_i = 300 \text{ MHz}$	U ₈ U ₈	200 100		700 700	mV _{eff} mV _{eff}
Eingangsspannungen UHF (Sinus) ¹) $f_i = 80 \text{ MHz}$	U_8 U_{10}	300	ļ	700	mV _{eff}
$f_i = 100 \text{ MHz}$ $f_i = 200 \text{ MHz}$	U_{10}^{10} U_{10}	250 150		700 700 700	mV _{eff} mV _{eff} mV _{eff}
$f_i = 450 \text{ MHz}$ $f_i = 900 \text{ MHz}$	U_{10}^{10} U_{10}	100 200		700 700	mV _{eff}
L-Umschaltspannung H-Umschaltspannung	U _{14 L} U _{14 H}	2,4		0,4	V
Umschaltstrom ($U_{14}=0.4\mathrm{V}$) L-Ausgangsspannung ($I_{\mathrm{q}\mathrm{L}}=5\mathrm{mA}$) H-Ausgangsspannung ($I_{\mathrm{q}\mathrm{H}}=-1\mathrm{mA}$)	$\frac{-I_{14}}{U_{q}}$			0,8 0,4	mA V
$(I_q H = -1 \text{ mA})$	$U_{q\;H4}$	2,4	3,5	İ	V

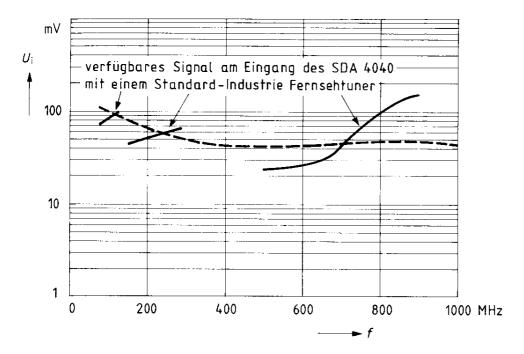
Anschlußanordnung (Ansicht von oben)

¹⁾ Bei abweichender Umgebungstemperatur kann die Eingangsempfindlichkeit bis zu 20% geringer werden.

$4 \times 1nF$ UHF 10 UHF SDA 4040 UHF 12 l Ref. ≥ 2,4Vo—• 8 Teilerstufen TTL -UHF / VHF-14 4 Q 1: 256 Ausgang Umschaltung 6 U Aktiver Eingang L **VHF** UHF

Blockschaltbild und Anwendungsschaltung

Bei Bedarf kann am UHF-Eingang eine Hysterese eingestellt werden durch Anlegen eines Widerstands (z. B. 33 k Ω) zwischen UHF_{Ref} (Anschluß 12) und Masse (Anschluß 6,7). Auf die gleiche Weise kann die Hysterese am VHF-Eingang vergrößert werden.


Schaltungsbeschreibung

Der Baustein verfügt über einen VHF- und über einen UHF-Eingang. Die Aktivierung des VHF-Eingangs erfolgt durch Anlegen von "L" an den Umschalteingang U, die Aktivierung des UHF-Eingangs durch Anlegen von "H" an U.

Der VHF-Eingang besitzt eine Hysterese von ca. 50 mV, die das Schaltverhalten bei sinusförmigen Eingangssignalen niedriger Frequenz verbessert. Beim UHF-Eingang kann bei Bedarf eine Hysterese durch äußere Widerstandsbeschaltung eingestellt werden.

Die Ankopplung des Eingangssignales an den VHF-, bzw. UHF-Eingang erfolgt kapazitiv. Die Eingänge sind intern mit nominell 400 Ω abgeschlossen. Die Anschlüsse VHF_{Ref} und UHF_{Ref} sind dabei gegen Masse abzublocken (siehe Anwendungsschaltung).

Eingangsempfindlichkeit über der Eingangsfrequenz

Bipolare Schaltung

Der SDA 4041 ist abgeleitet aus dem SDA 4040. Er besitzt zwei voneinander unabhängige Eingangsverstärker und einen 8-stufigen Teiler. Diese integrierte Schaltung ist besonders geeignet für den Einsatz in Fernsehgeräten mit Frequenzsynthese.

- Eingangsfrequenz bis 1 GHz
- Geringe Außenbeschaltung

Umgebungstemperatur im Betrieb

- Getrennte Eingänge für UHF und VHF
- ECL-Ausgänge

Тур	Bestellnummer	Gehäusebauform		
SDA 4041	Q67000-A1463	DIP 18		

Grenzdaten			
Speisespannung	U_{S}	6	V
Eingangsspannungen	$U_4 \ U_5$	2,5 2,5	V _{ss} V _{ss}
Umschaltspannung	U_2	_0,5 bis 20	V
Umschaltstrom	$-I_2$	10	mA
Wärmewiderstand (System-Umgebung)	R_{th} SU	65	K/W
(System-Gehäuse)	$\frac{R}{2}$ th SG	20	K/W
Lagertemperatur	T_{s}	—40 bis 125	°C
Sperrschichttemperatur	$T_{ m j}$	125	°C
Funktionsbereich			
Speisespannung	US	4,7 bis 5,5	V
Eingangsfrequenz VHF	$f_{i,4}$	80 bis 300	MHz
UHF	<i>f</i> _{i 5}	80 bis 950	MHz
Umgebungstemperatur im Betrieb	T_{U}	0 bis 70	°C

Kenndaten ($U_S = 5.0 \text{ V}; T_U = 25 \,^{\circ}\text{C}$)

		min	typ	max	
Stromaufnahme	$\overline{I_7}$		95	130	mA
Eingangsspannungen VHF (Sinus)*			ļ		
$f_i = 80 \mathrm{MHz}$	U_4	40		500	mV _{eff}
$f_{i} = 100 \text{ MHz}$	U_4	30		500	mV _{eff}
$f_{\rm i}=300~{ m MHz}$	U_4	20		500	mV _{eff}
Eingangsspannungen UHF (Sinus)*					
$f_i = 80 \mathrm{MHz}$	U_5	40		500	mV _{eff}
$f_{i} = 100 \text{ MHz}$	U_5	30		500	mV _{eff}
$f_{\parallel} = 300 \mathrm{MHz}$	U_5	20		500	mV _{eff}
$f_i = 450 \text{ MHz}$	U_5	20		500	mV _{eff}
$f_{\rm i}=900~{ m MHz}$	U_5	40		300	mV _{eff}
L-Umschaltspannung	$U_{2 L}$			0,6	V
H-Umschaltspannung	U_{2H}^{-1}	3,0			V
Umschaltstrom ($U_2 = 12 \text{ V}$)	$-I_2$		1,5		mA
Ausgangsspannungen	U_{q8}^- , U_{q9}	0,75	1,0		Vss
Ausgangswiderstand	R_{q8}, R_{q9}		250		Ω

Anschlußanordnung (Ansicht von oben)

^{*} Bei abweichender Umgebungstemperatur kann die Eingangsempfindlichkeit bis zu 20% geringer werden.

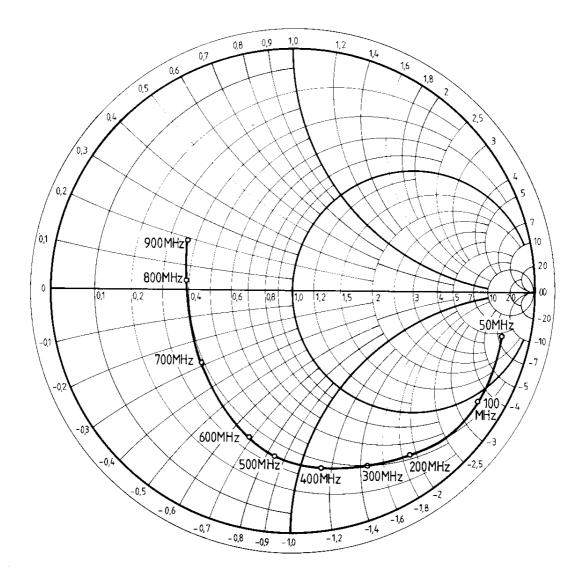
Meß- und Anwendungsschaltung

Die Anschlüsse 10 bis 18 sind intern durch einen Metallsteg untereinander und mit der Chipinsel verbunden und dienen zur Kühlung und als Masseanschluß.

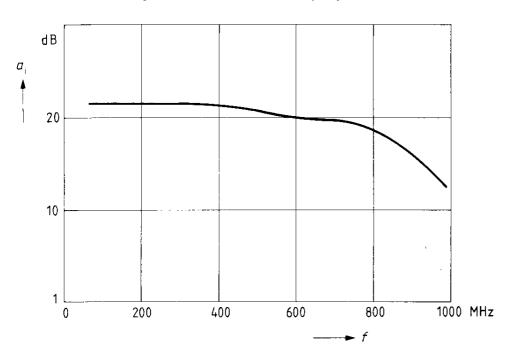
Schaltungsbeschreibung

Der SDA 4041 verfügt über einen VHF- und einen UHF-Eingang. Die Aktivierung des VHF-Eingangs erfolgt durch Anlegen von "L" an den Umschalteingang U, die Aktivierung des UHF-Eingangs durch Anlegen von "H" an U.

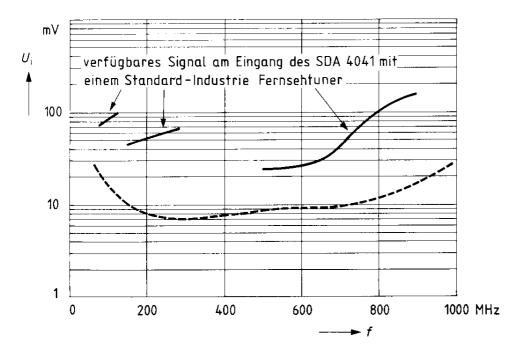
Die Ankopplung des Eingangssignales an den VHF- bzw. UHF-Eingang erfolgt kapazitiv. Der Anschluß Ref. ist dabei gegen Masse abzublocken.


Vorverstärker an den Eingängen sorgen für eine hohe Eingangsempfindlichkeit.

Die Ausgänge sind gegenphäsig und geben ECL-Pegel ab.


Eingangsreflexionsfaktor

zur Bestimmung der Eingangsimpedanz, sowohl für den VHF- als auch für den UHF-Eingang


 $Z_0 = 75 \Omega$

Entkopplung von VHF- und UHF-Eingang über der Eingangsfrequenz $\alpha_i = f(f)$

Eingangsempfindlichkeit über der Eingangsfrequenz $U_i = f(f)$

