******************************************************************************** .SUBCKT MCP6001 1 2 3 4 5 * | | | | | * | | | | Output * | | | Negative Supply * | | Positive Supply * | Inverting Input * Non-inverting Input * ******************************************************************************** * Software License Agreement * * * * The software supplied herewith by Microchip Technology Incorporated (the * * "Company") is intended and supplied to you, the Company's customer, for use * * soley and exclusively on Microchip products. * * * * The software is owned by the Company and/or its supplier, and is protected * * under applicable copyright laws. All rights are reserved. Any use in * * violation of the foregoing restrictions may subject the user to criminal * * sanctions under applicable laws, as well as to civil liability for the * * breach of the terms and conditions of this license. * * * * THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES, WHETHER * * EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED * * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO * * THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR * * SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. * ******************************************************************************** * * Macromodel for the MCP6001/2/4 op amp family: * MCP6001,MCP6002,MCP6004 * * Revision History: * REV A: 21-Jun-02, Created model * REV B: 16-Jul-02, Improved output stage * REV C: 03-Jan-03, Added MCP6001 * REV D: 19-Aug-06, Added over temperature, improved output stage, * fixed overdrive recovery time * REV E: 27-Jul-07, Updated output impedance for better model stability w/cap load * * Recommendations: * Use PSPICE (other simulators may require translation) * For a quick, effective design, use a combination of: data sheet * specs, bench testing, and simulations with this macromodel * For high impedance circuits, set GMIN=100F in .OPTIONS * * Supported: * Typical performance for temperature range (-40 to 125) degrees Celsius * DC, AC, Transient, and Noise analyses. * Most specs, including: offsets, DC PSRR, DC CMRR, input impedance, * open loop gain, voltage ranges, supply current, ... , etc. * Temperature effects for Ibias, Iquiescent, Iout short circuit * current, Vsat on both rails, Slew Rate vs. Temp and P.S. * * Not Supported: * Some Variation in specs vs. Power Supply Voltage * Monte Carlo (Vos, Ib), Process variation * Distortion (detailed non-linear behavior) * Behavior outside normal operating region * * Input Stage V10 3 10 -500M R10 10 11 6.90K R11 10 12 6.90K C11 11 12 0.2p C12 1 0 6.00P E12 71 14 POLY(4) 20 0 21 0 26 0 27 0 1.00M 20.1 20.1 1 1 G12 1 0 62 0 1m M12 11 14 15 15 NMI L=2.00U W=42.0U M14 12 2 15 15 NMI L=2.00U W=42.0U G14 2 0 62 0 1m C14 2 0 6.00P I15 15 4 50.0U V16 16 4 -300M GD16 16 1 TABLE {V(16,1)} ((-100,-1p)(0,0)(1m,1n)(2m,1m)(3m,1)) V13 3 13 -300M GD13 2 13 TABLE {V(2,13)} ((-100,-1p)(0,0)(1m,1n)(2m,1m)(3m,1)) R70 1 0 20.6T R71 2 0 20.6T R72 1 2 20T I80 1 2 0.5p * * Noise, PSRR, and CMRR I20 21 20 423U D20 20 0 DN1 D21 0 21 DN1 G26 0 26 POLY(1) 3 4 110U -49U R26 26 0 1 G27 0 27 POLY(2) 1 0 2 0 -440U 39.7U 39.7U R27 27 0 1 * * Open Loop Gain, Slew Rate G30 0 30 POLY(1) 12 11 0 1 R30 30 0 1K G31 0 31 POLY(1) 3 4 86 5.25 R31 31 0 1 TC=2.8m GD31 30 31 TABLE {V(30,31)} ((-11,-1)(-10,-10n)(0,0)(1m,1000)) G32 32 0 POLY(1) 3 4 113.7 3.5 R32 32 0 1 TC=2.65m GD32 30 32 TABLE {V(30,32)} ((-1m,-1000)(0,0)(10,10n)(11,1)) G33 0 33 30 0 1m R33 33 0 1k G34 0 34 33 0 425M R34 34 0 1K C34 34 0 74U G37 0 37 34 0 1m R37 37 0 1K C37 37 0 41.6P G38 0 38 37 0 1m R38 39 0 1K L38 38 39 100U E38 35 0 38 0 1 G35 33 0 TABLE {V(35,3)} ((-1,-1n)(0,0)(16,1n))(16.1,1)) G36 33 0 TABLE {V(35,4)} ((-16.1,-1)((-16,-1n)(0,0)(1,1n)) * * Output Stage R80 50 0 100MEG G50 0 50 57 96 2 R58 57 96 0.50 R57 57 0 750 C58 5 0 2.00P G57 0 57 POLY(3) 3 0 4 0 35 0 0 0.67M 0.67M 1.5M GD55 55 57 TABLE {V(55,57)} ((-2m,-1)(-1m,-1m)(0,0)(10,1n)) GD56 57 56 TABLE {V(57,56)} ((-2m,-1)(-1m,-1m)(0,0)(10,1n)) E55 55 0 POLY(2) 3 0 51 0 -0.7m 1 -40.0M E56 56 0 POLY(2) 4 0 52 0 1.2m 1 -37.0M R51 51 0 1k R52 52 0 1k GD51 50 51 TABLE {V(50,51)} ((-10,-1n)(0,0)(1m,1m)(2m,1)) GD52 50 52 TABLE {V(50,52)} ((-2m,-1)(-1m,-1m)(0,0)(10,1n)) G53 3 0 POLY(1) 51 0 -49U 1M G54 0 4 POLY(1) 52 0 -49U -1M * * Current Limit G99 96 5 99 0 1 R98 0 98 1 TC=-2.8M,2.63U G97 0 98 TABLE { V(96,5) } ((-11.0,-10.0M)(-1.00M,-9.9M)(0,0)(1.00M,9.9M)(11.0,10.0M)) E97 99 0 VALUE { V(98)*((V(3)-V(4))*359M + 310M)} D98 4 5 DESD D99 5 3 DESD * * Temperature / Voltage Sensitive IQuiscent R61 0 61 100 TC 3.11M 4.51U G61 3 4 61 0 1 G60 0 61 TABLE {V(3, 4)} + ((0,0)(900M,0.0106U)(1.00,0.20U)(1.3,0.63U) + (1.5,0.66U)(1.6,1.06U)(5.5,1.10U)) * * Temp Sensitive offset voltage I73 0 70 DC 1uA R74 0 70 1 TC=2 E75 1 71 70 0 1 * * Temp Sensistive IBias * Voltage on R62 used for G12, G14 in input stage * I62 0 62 DC 1uA R62 0 62 REXP 58.2u * Models * Extra for LTspice CD13 2 13 1p ;10P CD16 16 1 1p ;10P CD31 30 31 10p ;100P CD32 30 32 10p ;100P CD55 57 55 10p ;100P CD56 57 56 10p ;100P CD51 51 50 10p ;100P CD52 52 50 10p ;100P CD98 0 98 1p ;10P * .MODEL NMI NMOS .MODEL DESD D N=1 IS=1.00E-15 .MODEL DL D N=1 IS=1F .MODEL DN1 D IS=1P KF=146E-18 AF=1 .MODEL REXP RES TCE=10.1 .ENDS MCP6001