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The proliferation of local communication networks in industrial systems
seems inexorable: CAN bus, Profibus, LON, ASI, Interbus-S, FIP, EIB,
eBus, and many more. The time has now arrived where these well-estab-
lished technologies, protocol implementation in small silicon chips, drop-
ping prices, and simple maintenance have become accessible to the
smaller engineering firms and the enthusiastic amateur engineer/techni-
cian. In this short series of articles, the technologies underlying the CAN
bus system will be described in a simple and practical manner. In a later
part, a complete CAN bus interface for a microcontroller system will be
presented.
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GENERAL INTEREST



I N T R O D U C T I O N
This first part in the series will take a
brief look at the history and standard-
ization of the CAN bus. It will also deal
with the most important characteristics
of the physical layer.

In the second part, the data link
layer will be explained. This part will
also contain the CAN building bricks of
various manufacturers in tabular form.
This is followed by the introduction of
a universal CAN bus interface that
may be used to make a variety of
microcontroller and microprocessor
system suitable for use in a CAN bus
network.

The third part describes the con-
struction, programming and usage of
a small CAN bus network in conjunc-
tion with a PC and a microcontroller
card.

D E V E L O P M E N T
O F T H E C A N B U S
In the early 1990s, the international car
industry was faced with two problems
concerned with the future develop-
ment of private cars and goods vehi-
cles. The first was concerned with the
growing demand for more comfort in
vehicles: electrically operated win-

dows, seat and mirror adjustment,
heated seats, electronic climate control,
as well as audio-visual equipment and
satellite-controlled navigation systems
(GPS=Global Positioning System).

The second and more important
was vehicle security, not only from an
individual point of view but also to
meet more stringent international
safety regulations: central door locking,
immobilizing systems; ABS (anti-lock
braking systems), as well as economi-
cal and environment-friendly engine
management.

Both problems were tackled by
intense electronification of, and com-
munication between, the many units
comprising a modern vehicle. It is esti-
mated that vehicles manufactured by
the year 2005 will contain up to 100
microcontroller and all these need to
communicate with each other. It is
clear that all these communications
paths result in a larger and more exten-
sive cable harness. For instance, that in
a modern good-quality motor car
weighs close to 100 kg (220 lb) and con-
tains up to 2000 metres (one and half
mile) of cable. Moreover, a typical large
car manufacturer may have up to 600
different types of cable harness in use. 

Since this is clearly an untenable sit-
uation, the car industry began to look
at new ways of communication and
found this in the computer industry.
Obviously, the bus systems used in
that industry had to be adapted for use
in vehicles, more particularly as
regards the following:

• low-speed and high-speed data
transfer in the range 5 kbit/s to
1 Mbit/s for comfort and safety sys-
tems;

• error-free data transfer with a Ham-
ming distance greater than 4;

• optimum transfer of tiny data
streams such as obtained from sen-
sors or actuators, that is,  consisting
of 0–8 bytes per message;

• ease of maintenance;

• low cost (mass production);

• simplicity of bus construction (bus
media, bus topology) for easy inte-
gration  into the vehicle.

Unfortunately,  all large car manufac-
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Figure 1. Estimated world-
wide sales volume of CAN ICs.



turers developed their
own bus concept,
which, of course, was not compatible
with that of other manufacturers. All of
them tried to have their system
adopted as the international system,
that is, to be accepted as the interna-
tional standard – with clear economic
and commercial advantages to them.

Not all systems could be readily
standardized. Essentially, four of them
have survived: CAN (Controller Area
Network) in low-speed and high-
speed versions; VAN; J1850SCP; and
J1850DLC. Of these, VAN (standard-
ized) and most others (not standard-
ized) have been abandoned during the
mid-1990s in favour of the CAN sys-
tem. Today, the CAN system is the
world leader in the field of vehicle
buses. As such it is used nowadays not
only in luxury cars from Mercedes,
Lexus, Jaguar, and Chrysler, but also in
less prestigious ones from Fiat and
Volkswagen. 

It was not only the vehicle industry
that discovered the advantages of bus
systems, but also the automation and
production industries. These industries
use the CAN concept  for measuring,
controlling and driving in SPS  (Stan-
dard Positioning Service) systems,
robots and motors. The concept is also
used in civil engineering, elevator (lift)
control, laboratory automation sys-
tems, sensor/actuator systems, and oth-

ers.
The CAN protocol

is available programmed in a silicon
chip, so that the user need no longer
concern him/herself with the finer
details of the communication technol-
ogy: CAN ICs are integrated simply as
intelligent peripheral building blocks
in existing microcontroller systems, or
those being designed.

The virtually troublefree mainte-
nance and usage, as well as the rapidly
dropping prices, of CAN ICs make
CAN buses of great interest and use-
fulness for non-industrial designers
when it comes to small, decentralized
communication networks.

Figure 1 shows the estimated
world-wide sales volume of CAN ICs.
The costs of a complete CAN network
from various semiconductor manufac-
turers are given in US dollars.

S T A N D A R D I Z A T I O N
If the structure of a communication
system is to be universally accepted, a
number of questions should be
answered clearly and the answers
incorporated in the relevant standard.

• How will the various parts of the
network be physically (electrically
and logically) arranged?

• What does the consequent topology
of the network look like?

• How are the data coupled to, and
transferred by, the relevant medium
(cable, fibre optic conductor, air, or
infra-red remote control)?

• What are the rules for data
exchange between the various
parts?

• How are data transfer errors pre-
vented, recognized, and corrected?

• How is the data transfer protocol
formed?

• How is access to the data transfer
medium arranged for parts that are
about to send data?

• How are conflicts resolved when
several parts want to send data at
the same time? This concerns the
access to the medium, that is, the
so-called arbitration.

As far as receiving data is concerned,
there not many problems, since as a
rule many receivers can be connected
to the medium, all of which can
receive data without any difficulty at
the same time. In general, in any com-
munication system, there should be
only one sender active at any one
time, although several receivers may
be.

The answers to the foregoing ques-
tions, and others, must be laid down
clearly and unambiguously when a
communication system is to be used in
a sensible manner that is acceptable
world-wide. 

In the early 1990s, the International
Standardization Organization (ISO)
started laying down an international
standard for vehicle buses, during
which process the CAN bus assumed
an increasingly strong position.

The basis for the standardization
process in the enormous area of open,
non-producer-inspired data communi-
cations is a seven-layer ISO/OSI refer-
ence model. In the case of certain com-
munication systems, including the
vehicle bus system, layers 3–6 are
empty, so that for the CAN bus only
layers 1,2 and 7 are specified in detail
(see Figure 2).

Layer 1: physical layer 
In this layer, the specifications for the
data transfer medium, connectors, the
data transfer levels, and the send and
receive elements are laid down. The
two associated CAN standards are:

ISO11529-2: low-speed CAN. The basis
of this is a development started by
Bosch of Germany in the early 1980s,
and continued, with the strong sup-
port of Intel, into the integration of the
protocol into an IC. The low speed
refers to data transfer rates from
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in  the ISO/OSI layer
model.



5 kbit/s to 125 kbit/s.

ISO11898: high-speed CAN. This stan-
dard supports data transfer rates of up
to 1 Mbit/s.

Layer 2: data link layer 
This layer lays down how, when a part
wants to send data, the data transfer
medium7m is accessed, how a message
is composed (address, data, control
and protection against errors), and
how the data transfer protocol is struc-
tured. The standards for these may
also be found in ISO11898.

In addition, the 1991 CAN specification
is expanded in  Layer 2, so that today
there two versions: CAN2.0A and
CAN2.0B. The similarities and differ-
ences between these two will be
reverted to in Part 2.

Since the CAN concept  has been
adopted by so may different industries,
the situation in Layer 7: application
layer, is diverse and somewhat  con-
fused. This is because this layer defines
the interface for the actual application
(Layer 8) of the bus with industrial
equipment.

Three extensive CAN branches for
different applications were developed
over the years: CANopen, DeviceNet,
and Smart Distributed System (SDS).
Since these specifications are fairly
extensive, they will not be pursued in
this article. All that will be said here is
that the concepts are common, so that
they are compatible with Layers 1
and 2. Detailed information on
CANopen, DeviceNet, and SDS may
be found on the internet: http://www.
can-cia.de.

C H A R A C T E R I S T I C S
The physical layer comprises the net-
work topology of the CAN bus and the
linking to the bus medium.

The term network topology
includes the physical construction of
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Figure 3. Topology of
the CAN bus.

Figure 4. Linking an
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Voltage at ...\\   Bus state recessive dominant

CANH 2.5 V 3.5 V

CANL 2.5 V 1.5 V

allowable voltage difference 
UD = CANH - CANL

0 - 0.5 V 0.9 - 2.0 V

Table 1. Absolute lev-
els of the bus lines
with respect to (local)
earth according to
ISO11898.
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the communication sys-
tem and so gives the answer to ‘how
are the parts (stations) linked to the
data transfer medium?’

The CAN bus uses the so-called bus
topology, that is, all parts are connected
to a single twisted-pair cable (screened
or not), which is terminated at both
ends into the relevant bus termination
impedance (see Figure 3). This
arrangement ensures that each station
can communicate with any other sta-
tion in the network without any limi-
tation.

The send/receive stage of a CAN
network element is linked to the bus
medium via two connectors: CAN
High (CANH) and CAN Low (CANL)
(see Figure 4).

In view of the requisite protection
against errors, differential voltage sig-
nals are used for the actual data trans-
fer. This means that the voltage differ-
ent between the two
bus lines is quantized.
ISO11898 specifies

two different differen-
tial-voltage ranges for data representa-
tion: recessive and dominant. There is a
good reason that the usual logic 0 and 1
levels are not used here and this will be
reverted to. For the time being, note
that

• if the differential voltage between
CANH and CANL ≤ 0.5 V, the status
is recessive;

• if the differential voltage ≥ 0.9 V, the
status is dominant.

The nominal level of the bus line,
that is, the level of the individual lines
with respect to (local) ground is shown
in Table 1.

In practice, these levels are, of
course, subject to tolerances, so that the
voltage difference may reach the max-
imum permissible level shown in the

last row.
The specifications

in ISO11519-2 (CANL)

1 2 3 4 5

6 7 8

990060 - 15
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1 Reserved
2 CAN L
3 CAN GND
4 Reserved

6 GND
7 CAN H
8 Reserved
9 CAN V+ (optional

    external supply)5 Optional: CAN screening

5

Figure 5. Pinout of a
CAN bus connector.

Bus length
Bus cable Bus termination

resistance
Maximum
data rateresistance cable c.s.a.

0 - 40 m 70 mΩ/m
0.25 - 0.34 mm2

AWG23, AWG22
124 Ω (1%) 1 Mbit/s at 40 m

40 - 300 m <60 mΩ/m
0.34 - 0.6 mm2

AWG22, AWG20
127 Ω (1%) 500 Kbit/s at 100 m

300 - 600 m <40 mΩ/m
0.5 - 0.6 mm2

AWG20
150 Ω to 300 Ω 100 Kbit/s at 500 m

600 m - 1 km <26 mΩ/m
0.75 - 0.8 mm2

AWG18
150 Ω to 300 Ω 50 Kbit/s at 1 km

Table 2. Correlation
between data transfer
rate, length of the bus,
bus medium, and bus
termination impedance.

are slightly different, but since
ISO11898 may be used for both high-
speed and low-speed, that specification
is invariably used nowadays.

Users need not concern themselves
over the construction of a send/receive
link since most manufacturers have
available ready-made ICs for this pur-
pose. These are optimized particularly
as regards electromagnetic compatibil-
ity (EMC), board space and thermal
overload (in case of a short-circuit of
CANH or CANL), and output standard
CAN signal levels. All that is necessary
to establish a CAN link is for them to
be coupled to the bus line.

All that is necessary is to make sure
to which standard the IC is built:
ISO11519-2 or ISO11898: the latter
should be preferred. It should be noted
that there are also other differential
voltage procedures that may be used
in CAN signal transfer, for instance,
RS485.

Final questions to be asked about
the CAN bus system are
• What is the maxi8mum bus expan-
sion for a given data transfer rate?
• How many elements (stations) may
be connected to the bus?

The answers to these questions
depend solely on the bus medium
used. Table 2 shows the correlation
between the data transfer rate, length
of the bus, bus medium, and the bus
termination impedance.

The data transfer medium should
preferably be a twisted-pair cable with
a cross-sectional area of 0.34–0.6 mm2,
while the bus termination impedance
should be around 127 Ω. The resistiv-
ity of the cable should be not greater
than 60 mΩ/m, a condition that is met
when the cross-sectional area is greater
than 0.30 mm2.

Care should be taken with the
length of branching lines in case the
station is not connected directly to the
CAN bus. These lines should not be
longer than 2 metres when the data
transfer rate is 250 kbit/s, and not
longer than 30 cm when the data trans-
fer rate is greater. The total length of all
branching lines should not exceed
30 metres.

Finally, it should be noted as
regards Layer 1 that the connectors
and their pinout for linking elements
to the bus are standardized.

[990060]

See also:
‘CAN – the Controller Area Network’
in the September 1992 issue (p. 56) of
Elektor Electronics.
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I N T R O D U C T I O N
As already stated in Part 1, CAN is a
serial asynchronous communication
protocol that connects sensors and
actuators of electronic control stations
in cars. Among its many functions is a
digital data link. It is an asynchronous
system because each station (also called
‘node’) synchronizes to messages of
other stations on the leading edge of
the first message bit and on subsequent
leading edges throughout the rest of
the message. The ability of any station
to synchronize to another station is
determined by the maximum differ-
ences in oscillator frequencies. Other
factors are, for instance, bit duration,

message duration and composition,
and handshaking.

The most important parts of the net-
work are the physical layer, comprising
the topology of the network and the
link to the bus, and the data link layer,
which lays down how the data trans-
mission medium is accessed, how a
message is constructed (address, data,
control and protection against errors)
and how the data transmission proto-
col is structured.

I N P R A C T I C E
The exchange of messages between
two network stations may take place in
two basically different ways: station-

The first part
of this article

described the
history, stan-
dardization,

and the basic
setup of  the

Controller
Area Network
(CAN) devel-
oped by the

Robert Bosch
Company in
Germany. In
this second

part, the
attention is

focused on the data
transmission proto-
col that determines
the capabilities and

reliability of this auto-
motive digital data

system.
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oriented and message-
oriented.

Station-oriented
exchange
In this mode, the sender addresses the
receiver simply by means of the
receiver address, for instance: ‘Station
25 is sending a message to station 37’.
In this way, a virtual link between the
sender and receiver is established via
the bus. 

The transmitted packet of data
therefore contains the address of the
receiver station and that of the sending
station. All other stations connected to
the bus ignore the packet since it is not
addressed to them.

The receiving station evaluates the
message and normally acknowledges
its receipt. In case of an error during
the data transmission (no acknowledg-
ment from the receiver), the sender
repeats the message.

Message-oriented exchange 
In this mode, the sender adds to the
message an unambiguous identifier
and sends the message and identifier
via the bus, for instance: ‘Station A is
sending a voltage measurement with
identifier 978’. In this mode, the
addresses of the sender and receiver
are not included.

Such a message is clearly intended
for several receivers connected to the
bus under the motto: ‘Take from the
bus what you need’ (broadcast princi-
ple). The various receive stations must
determine, on the basis of their pro-
gramming, whether the message is rel-
evant to them or not.

Flow of communications
The flow of communications between
the individual stations connected to
the CAN bus takes place in the form of
a broadcast of event-controlled, priori-
tized (through-numbered) messages or
frames (communication messages).

Dominant and recessive bus/bit states 
The actual data transmission via the
data transmission medium does not
take place, as usual, in the form of ‘1s’
and ‘0s’, but by dominant and reces-
sive bits. Recessive typifies a bus state
that may be overwritten by a dominant
bus state. So, when a station connected

to the bus sends a
recessive bit and
another station at the
same time sends a

dominant bit, the dominant bit takes
priority over the recessive bit, that is,
the dominant state is accepted by the
entire bus. The assignment of logic
states to the bus is generally so that a
logic 0 repretransmitteds a dominant
state, and a logic 1, a recessive state.

These arrangements constitute one
of the foundations of the CAN specifi-
cation and will be elaborated on later.

Data packets
The network uses four kinds of data
packets, normally called frames, to
exchange data on the bus: data frame;
remote frame; error frame; and over-
load frame.

Data frame 
The data frame is used by the stations
to send their data in line with their pro-
gramming. The composition of a typical
data frame, which consists of a single
field, is shown in Figure 6. This is a
standard frame format according to
Specification CAN 20A. The meaning
of the various terms in the figure is as
follows.

SOF. This is the start-of-frame bit,
which is always dominant (0). All sta-
tions connected to the bus synchronize
their internal receive stages to the trail-
ing edge of this bit.

Arbitration field. This field, which is 12
bits long, contains the data for access-
ing the bus.

11-bit identifier. This section contains
the identifier (ID) of the transmitted
frames. The 11 bits allow up to
211=2048 different identifiers to be
constructed, of which only 2032 are
freely available: the remaining 16 are
reserved for certain special functions.
This means that a single controller
area network can process 2032 differ-
ent messages (measurement values,
switch positions, light functions, and
so on). Although this seems a fairly
large number, in many applications it
is not enough. Therefore, an
Extended Frame Format with 29 iden-
tifier bits (CAN 20B) has been formu-

lated. In this, 229=536 870 912 frames
can be handled.

RTR (Remote Transmission Request)
bit. This bit, which is always dominant
(0), enables a station to address and
send messages to another specified sta-
tion. This is of great value when certain
data are urgently needed to be
processed (more about this later).

Control field. This 6-bit long section
contains the information as to how a
data frame is composed.

IDE (Identifier Extension) bit. This bit
indicates whether a standard-format
frame with an 11-bit identifier (IDE
= dominant = 0), or an extended-for-
mat frame with a 29-bit identifier
(IDE = recessive = 1) is being trans-
mitted.

r0 (Reserve bit 0). This dominant bit is
transmitted as a spare bit for future
expansion specifications.

DLC (Data Length Code). This 4-bit
long section indicates how many data
bytes are being transmitted succes-
sively in a data field. The CAN Specifi-
cation allows data field lengths of 0–8
bytes, that is, a single data frame may
transmit not more than eight data
bytes.

Data field. This 8-bit long section con-
tains the data bytes (0–8) to be trans-
mitted.

CRC field. The 16-bit long CRC field
contains additional information for
protecting the data being transmitted
against interference. For this purpose,
the sender station constructs, accord-
ing to specific rules, a 15-bit CRC
check sum from the preceding data
and sends this, together with the
frames. The receiver station calculates
a similar check sum according to the
same rules and compares this with the
transmitted check sum. If the two
sums are identical (the normal case),
data transmission can commence. If
the sums are not identical, an error
handling procedure is initiated. The
CRC field is limited by a CRC delim-
iter bit which is always transmitted
recessively.
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Acknowledge field. The 2-bit long
acknowledge field serves to transmis-
sion acknowledgments of correctly
received data frames.

ACK slot. This 1-bit long section is
transmitted as a recessive bit and may,
therefore, be overwritten by a domi-
nant bit transmitted by another station
connected to the bus. It allows receive
stations to send an acknowledgement
of a correctly received data frame. The
acknowledgment bit is dominant and
is transmitted by each and every rele-
vant station upon error-free reception
of messages. Since it is dominant, it
overwrites the recessive bit sent by the
transmitting station. Thus, if the trans-
mitting  station receives a dominant bit
during the ACK slot window, instead
of its own transmitted recessive bit, it
‘knows’ that at least one station has
received the message.

The ACK slot window is restricted
by a recessively transmitted ACK
Delimiter bit.

EOF (End Of Frame) field. This field
consists of seven recessive bits and
serves to terminate the data frame.

Before the next data frame can be
transmitted, the receive stations need
a short intermission to enable them to
process, or at least store, the received
data. The intermission is arranged by a
recessive 3-bit intermission field end-
ing the data frame.

Owing to lack of space, the Extended
Frame Format cannot be discussed; its
principles are, however, the same as
those discussed for the Standard Frame
Format.

A V O I D A N C E O F
C O N F L I C T
Since all stations connected to the Con-
troller Area Network bus, two ques-
tions arise:

* What happens when several sta-
tions want to send a message at the
same time?

* How is it decided which station can
start and which stations must wait
their turn?

Clearly, these matters may give rise to
conflicts and to avoid those there is a
special bus access procedure which
must be obeyed by all stations when
they want to send a message. In this,
an important role is played by the
dominant and recessive bits in the
Arbitration Field.

Basically, each sender ‘hears’ its
own transmission to the bus: it sends a
bit, receives it back and compares the
two. If they are identical, transmission
of the message is allowed. If, however,
the two bits are dissimilar, there is a

problem. As explained earlier, a reces-
sive bit (1) can be overwritten by a
dominant bit (0). 

Figure 7 gives a highly simplified
repretransmittedation of some linking
stages of the bus. Basically, these are
open-collector output stages that are
arranged as wired-AND gates. With
reference to station 1, a recessively
transmitted bit (1) ensures that transis-
tor T1 remains cut off. This means that
the recessive level is pretransmitted at
the bus. After this bit has been trans-
mitted, station 1 reads the bus status
and recognizes the bit it has transmit-
ted. If then a dominant bit (0) is trans-
mitted, T1 comes on

and switches the bus line to earth. The
bus line is then dominant (0). Again,
station 1 reads back the bit it transmit-
ted.

Considering the three stages, if one
of them sends a dominant bit, the
busline becomes dominant (0) and the
other stations read this level. 

An example will show how the  bus
access procedure takes place. Assume
that the stations in Figure 2 are all
ready to transmit their data frames
with three different identifiers:

Station 1: identifier 367
Station 2: identifier 232
Station 3: identifier 239.

All three start with the arbitration (bus
access) phase by transmitting a SOF bit
(see Figure 8). This is a dominant bit,
and each station reads back its own
(correct) bit from the bus. Then, the
identifiers are transmitted. Up to time
b,  all stations send a dominant bit and
all is well. At time c, there is still no
problem. At time d, station 1 sends a
recessive bit, but stations 2 and 3 con-
tinue with a dominant bit. When read-

ing back, station 1 notices that its reces-
sive bit has been overwritten, which
means that it has lost access to the bus
to at least one other station. Station 1
then assumes the receive mode (but
tries to send its message at a later time
again). Stations 2 and 3 continue as
before.

At time j, station 3 sends a recessive
bit that is promptly overwritten by the
dominant level transmitted by station
2. This is noticed by station 3, which
thereupon also assumes the receive
mode (and, like station 1, tries to send
its message at a later time again). Sta-
tion 2 is the ‘victor ’ and can send its

message without fur-

ther hindrance to the bus.

A closer look at the identifiers
shows that it is the station with the
smallest identifier that gains access to
the bus first: it has the highest send pri-
ority. In other words: the identifier also
automatically contains the message pri-
ority. A message with identifier 0 will
always be the first to be received by the
stations connected to the bus, since it
has the highest priority. A message
with identifier 2032 has a long wait
since it has the lowest priority.

Remote Request Frame
The remote request frame is an impor-
tant one in the network. Assume that
station D connected to the CAN bus
transmits three temperature measure-
ment data every five minutes with
Identifier 598. This means that the data
field contains three bytes. These mes-
sages are received and processed by
other stations.

However, station G urgently needs
the actual temperature measurement
and cannot in any circumstances wait
for five minutes. It has the facility,
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therefore, to request the measurements
directly from station D, that is, it can
bypass the data transmission cycle. To
do so, it sends a so-called Remote
Request Frame, which is composed
similar to a Data Frame (Figure 6), but
with some small differences:

• The identifier of the station to whom
the request is transmitted (here,
598)  is entered in the identifier
field.

• In the DLC field, the number of
useful bytes contained in the
requested message (here, 3) is
entered.

• The Remote Transmission Request
(RTR) which is dominant (0) in the
Data Frame is made and transmit-
ted recessively (1). This is a typical
identification of a station that
requests data direct from another
specific station.

• There is no data field in the Remote
Request Frame: the DLC field is fol-
lowed immediately by the CRC
field. In other words, the Remote
Request Frame is composed like a
Data Frame but with 0 bytes of data.

The transmitted Remote Request
Frame functions as follows. All stations
connected to the bus receive the frame
and recognize by the set RTR bits that
a station has requested specific data
from another station. Station D recog-
nizes that the identifier in the Remote
Request Frame is the same as its own
identifier and immediately sends its
response in the form of a Data Frame
with the requested data.

E R R O R D E T E C T I O N
A N D R E M E D I E S
One of the most striking properties of
the Controller Area Network concept
is its uncanny capability of detecting a
multitude of errors during the data
transmission and react to them accord-
ingly. It has a Hamming Distance (also
called signal distance) of 6. The signal
distance between two binary words of
the same length is the number of the
corresponding bit positions in which
the two words have different bit val-
ues. For instance, the signal distance
between 11011010 and 10000110 is four,
since the 3rd, 4th, 5th, and 7th bits
(counting from the left) are different.

In a CAN data are transmitted per-
manently at a transmission rate of
500 kbit/s. Every 0.7 s a one-bit error is
caused by external interference. The
network operates eight hours a day,
365 days a year. The built-in protection
against errors in a CAN guarantees
that in 1000 years of operation only
one error will not be detected. Errors
can and do, of course, occur, but once
they are known, they can be remedied.
Only unknown errors can cause false
measurements to be processed.

D E T E C T I O N O F
T R A N S M I S S I O N
E R R O R S
In a CAN, several means are used
simultaneously to detect errors.

Bit error detection 
Each and every station receives its own
transmission back. If, therefore, after
the arbitration phase, a station is the
only one that sends a message to the
bus and it receives back a different bus
status than it transmitted, it is clear that
an error has occurred on the bus. The
station then shifts its operation to an
error treatment routine (see later).

Stuffbit error detection 
The CAN specification states clearly
that when in a data frame more than
five bits of the same value are trans-
mitted in sequence (for
instance, seven times a
0 in a field), each and

every group of five bits is followed by
a complementary bit (here, a 1, of
course). This introduced bit, which, of
course, contains no information what-
ever, is called a stuffbit. At the receive
end, these bits are removed from the
data stream, so that only the original
message is processed.

The stuffbits may readily be used
for error checking. If the receiver
detects more than five sequential bits
of the same value in a frame (but not in
the EOF field), it is clear that this can-
not be right and that an error in the
data transmission has occurred which
has inverted one or more bits. The
receiver then shifts its operation to an
error treatment routine (see later).

CRC error detection
This consists, as already described, of
an evaluation of the CRC check sum at
the receiver. When the received and
calculated check sums are dissimilar,
the receiver shifts its operation to an
error treatment routine (see later).

Acknowledgment error detection 
In the description of the frame format
(see Figure 6) mention was made of the
ACK slot bit, which is transmitted by a
station as a recessive bit. All stations
that have received the previous frame
correctly overwrite this bit with a dom-
inant bit. The sender detects this and
‘knows’ that at least one station has
received its data correctly.

If the sender detects that its ACK
slot bit is not overwritten, it ‘knows’
that not one station has received its
message correctly. It then shifts its
operation to an error treatment routine
(see later).

Format error detection 
In this, use is made of the fact that the
network format has several fields that
must always have a fixed content: the

CRC delimiter, the
A c k n o w l e d g m e n t
Delimiter, and the EOF

field are always composed of recessive
bits. If a dominant bit is detected, this
can have been caused only by a data
transmission error. Here also, operation
is shifted to an error treatment routine
(see later).

E R R O R T R E A T M E N T
The error treatment routine in
response to a data transmission error
takes two forms.

In the first place, frames in which
an error has been detected are imme-
diately rejected by the relevant station
and not processed. Secondly, if any sta-
tion within the system detects an error,
it immediately transmits an error frame
that consists of six dominant bits (=
error flag) and an error delimiter of
eight recessive bits. The result of this is
that all recessive bits on the bus are
overwritten, so that six dominant bits
remain. This is, however, a contraven-
tion of the stuffbit rule that not more
than five sequential bits may have the
same value.
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bit instant

Identifier
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F

b c d e f g h i j k l

Station 1 0 0 0 1 0 1 1 0 1 1 1 1

Station 2

Station 2 wins and keeps transmitting ...

0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 ... ... ...

Station 3 0 0 0 0 1 1 1 0 1 1 1 1

bus state 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 ... ... ...

log. '0' 
990066 - 13 

dominant bit (bus state)
log. '1' recessive bit (bus state)

8

Figure 8. Diagram-
matic repretransmitte-
dation of how a station
does access the bus
(Arbitration).
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All other stations connected to the
bus detect this error condition and
treat the frame just transmitted as
faulty, reject it and also send out an
error frame. In other words, a station
that detects an error purposely muti-
lates the entire transmitted frame so
that all other stations connected to
the bus receive a faulty frame. This
means that an error local to a station
is immediately communicated to all
other stations. The motto of the net-
work is that all stations receive cor-
rect data that can be processed as
required, or all stations receive faulty
data that are rejected. The original
sender detects, of course, that the
frame it transmitted is mutilated,
adjust its message and resends it
after a short while.

E R R O R I N S I D E A
S T A T I O N
What happens when a station itself
becomes defect, is damaged, oper-
ates with an inaccurate transmission
rate, or is the only station that gets
interference? Such a station would
permanently send out error frame
and so disable the entire network.
The CAN concept has adequate pro-
tection against such an occurrence,
but space prohibits describing this in
this article.

S U M M A R Y
The specifications of the two CAN ver-
sions, CAN 20A (standard frame for-
mat) and CAN 20B (extended frame
format) are compared in Table 3.

Although the Controller Area Net-
work is a powerful and highly reliable
system for data communications, the
reader and prospective user may well
ask how it can be turned into a practical
application. There are dominant and
recessive bits, an 11-bit identifier, a
15-bit CRC check sum, a 1-bit delimiter,
a 7-bit EOF field, a 6-bit error frame,
and many more. None of this resem-
bles the 8-bit or 16-bit data structure of
the microcontroller. 

So how is it possible to program
according to the network protocol?
Here, the future constructor need not
worry. There is a plethora of ready-
made, inexpensive building blocks
available for the network. It is this sup-
port by IC manufacturers for the CAN
that has made the network so popular
in such a short time.

The next instalment will deal with
these building blocks, with the pro-
gramming according to the CAN pro-
tocol and with practical application of
the network.

[990066]

Table 3.
CAN 20A CAN 20B

Maximum number of identifiers 211 229

Number of stations (nodes) 32 32
Data transfer rate 5–125 kbit/s 5–1000 kbit/s
Number of permissible bytes per frame 0–8 0–8
Maximum length of a frame 117 bits 13 bits
Maximum bus expansion see text see text

Table 3. Comparison of CAN 20A (standard frame
format) and CAN 20B (extended frame format).

Elektor Electronics (Publishing) does not provide parts and compo-
nents other than PCBs, fornt panel foils and software on diskette or IC
(not necessarily for all projects). Components are usually available
form a number of retailers – see the adverts in the magazine.

Large and small values of components are indicated by means of one
of the following prefixes :

E (exa) = 1018 a (atto) = 10–18

P (peta) = 1015 f (femto) = 10–15

T (tera) = 1012 p (pico) = 10–12

G (giga) = 109 n (nano) = 10–9

M (mega) = 106 µ (micro) = 10–6

k (kilo) = 103 m (milli) = 10–3

h (hecto) = 102 c (centi) = 10–2

da (deca) = 101 d (deci) = 10–1

In some circuit diagrams, to avoid confusion, but contrary to IEC and
BS recommandations, the value of components is given by substitut-
ing the relevant prefix for the decimal point. For example,

3k9 = 3.9 kΩ 4µ7 = 4.7 µF

Unless otherwise indicated, the tolerance of resistors is ±5% and their
rating is 1⁄3–1⁄2 watt. The working voltage of capacitors is ≥ 50 V.

In populating a PCB, always start with the smallest passive compo-
nents, that is, wire bridges, resistors and small capacitors; and then IC
sockets, relays, electrolytic and other large capacitors, and connectors.
Vulnerable semiconductors and ICS should be done last.

Soldering. Use a 15–30 W soldering iron with a fine tip and tin with
a resin core (60/40) Insert the terminals of components in the board,
bend them slightly, cut them short, and solder: wait 1–2 seconds for
the tin to flow smoothly and remove the iron. Do not overheat, par-
ticularly when soldering ICS and semiconductors. Unsoldering is best
done with a suction iron or special unsoldering braid.

Faultfinding. If the circuit does not work, carefully compare the pop-
ulated board with the published component layout and parts list. Are

all the components in the correct position? Has correct polarity been
observed? Have the powerlines been reversed? Are all solder joints
sound? Have any wire bridges been forgotten?

If voltage levels have been given on the circuit diagram, do those
measured on the board match them – note that deviations up to ±10%
from the specified values are acceptable.

Possible corrections to published projects are published from time to
time in this magazine. Also, the readers letters column often contains
useful comments/additions to the published projects.

The value of a resistor is indicated by a colour code as follows.

color 1st digit 2nd digit mult. factor tolerance

black – 0 – –
brown 1 1 ×101 ±1%
red 2 2 ×102 ±2%
orange 3 3 ×103 –
yellow 4 4 ×104 –
green 5 5 ×105 ±0,5%
blue 6 6 ×106 –
violet 7 7 – –
grey 8 8 – –
white 9 9 – –
gold – – ×10–1 ±5%
silver – – ×10–2 ±10%
none – – – ±20%

Examples:
brown-red-brown-gold = 120 Ω, 5%
yellow-violet-orange-gold = 47 kΩ, 5%

C O N S T R U C T I O N G U I D E L I N E S
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I N T R O D U C T I O N
Current Controller Area Network
(CAN) interfaces consist basically of
three chips as shown in the block dia-
gram in Figure 9. All the micro-con-
troller is required to do is to write the
data bytes (0–8) to be transmitted into
the CAN protocol IC, fill the identifier
field and the DLC field, and set the
RTR bit accordingly. The remainder of
the process:

• computing the CRC check sum;

• adding the remaining fields;
• accessing the bus;
• transmitting the data;
• detecting and remedying errors

is effected by the CAN controller IC.
The data are applied to the bus via

the CAN transceiver IC that provides
direct coupling to the bus.

The microcontroller then receives a
message confirming the successful
transmitting of the data or an error
message, following which requisite

The first two parts of
this article dealt with

the  history, standard-
ization, basic setup,

and data transmission
protocol of the Con-
troller Area Network.
In this third part, the

attention is shifted to
more practical

aspects. It deals with
a network interface

bus design that can
be connected to any

current microcon-
troller system.
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action can be taken.
More or less the same happens

when data.are being received. The
CAN controller receives the CAN
frames from the bus via the CAN
transceiver IC, rechecks the check sum,
removes all superfluous fields from the
frame and passes either the received
data or an error message to the micro-
controller. 

The reader will already have
noticed that only a modest amount of
material, hardware as well as software,
is required for a CAN bus interface.
Moreover, microcontrollers that con-
tain a CAN controller on the same chip
are already commercially available.
Such a chip makes a two-stage CAN
interface possible.

Some more information is given in
the following section before the design
of a practical interface can be dis-
cussed.

A C C E P T A N C E
F I L T E R I N G
We have seen in Part 2 that a Con-
troller Area Network operating with
standard frame format (CAN 20A) can
process up to 2048 different identifiers.
It is, of course, not necessary that each
and every station linked to the bus can
receive all data/remote frames. For
instance, it may well be that for, say,
Station K only frames with the identi-
fiers 129, 1345, and 1999, are of interest
and the other 2045 are of no conse-
quence whatever. To avoid Station K
receiving and processing all identifiers
and passing them on to the microcon-
troller (which has to recheck whether
each and every identifier is to be
accepted or rejected – a time consum-
ing activity), some kind of selection fil-
tering of identifiers to ensure that only
those of interest are passed to the
microcontroller is highly desirable.

The selection of identifiers is called
acceptance filtering. It allows the CAN
controller chip to be programmed so
that only frames with certain identi-
fiers are passed to the microcontroller.
All other frames are received and
checked (incl. error correction), but not
passed on. In this way, the microcon-
troller is freed of many superfluous
comparisons and can therefore more
speedily process the required
data/remote frames. 

There are two ICs that can be used
for acceptance filtering.

BasicCAN 
This IC has a simple filter that is, say,
eight bits wide, which allows coarse
pre-selection only. Normally, this con-
sists of passing groups of identifiers, in,
say, the range 700–707. Selection of a
single identifier is not possible. This IC
therefore requires the microcontroller
to carry out a further selection to
arrive at the wanted identifier. 

Remote frames
intended for the rele-
vant station are also
passed by the filter and applied to the
microcontroller. It is only then that the
microcontroller can generate the rele-
vant response data and pass these to
the CAN controller.

FullCAN 
The FullCAN chip allows the exact
programming and selecting of a single
identifier. In other words, it can be set
to accept a single frame or a number
of single frames, for instance, only
those with identifier 798.

The drawback of the IC is, how-
ever, that a large number of frames

(with different identi-
fiers) are not passed
on since the con-

troller programme is fixed.
Therefore, if many frames with dif-

ferent identifiers are to be received it
makes better sense to use a BasicCAN
chip. It must be borne in mind, how-
ever, that in this case the microcon-
troller needs to carry out a substantial
part of the selection process and this
in turn means that a more powerful
microcontroller is needed.

A beneficial property of the Full-
CAN chip is that the microcontroller
can program the response to a remote
frame on to the CAN controller IC.
When this IC receives a permissible
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databus
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Figure 9. Block diagram
of a three-stage Con-
troller Area Network
design.

Table 4: Brief parameters of interface

CAN controller IC Type SJA1000 (Philips Semiconductors)

Microcontroller interface can be arranged for Intel or compatible and
Motorola or compatible microcontrollers

Mode of operation 1: pin-, hardware-, and software-compatible with
PCA82C200
CAN 20A and 20B passive
Standard frame format
Data transfer rates up to 1 Mbps
Acceptance filter BasicCAN

Mode of operation 2: Extended and standard frame format
Data transfer rates up to 1 Mbps
CAN 20B capability
Extended acceptance filter with BasicCAN 
properties

Transceiver IC Compatible with ISO/DIS11898, high-speed CAN
Data transfer rates up to 1 Mbps
Internal protection against noise specific to motor
vehicles
Internal protection against short-circuits and ther-
mal overload
Non-powered nodes (stations) do not affect the
bus
Allows the design of Controller Area Networks with
up to 110 nodes



remote frame for the relevant station,
it can send the response data frame
without intervention by the micro-
controller.

With the inexorable progress of the
technology, the differences between
the BasicCAN and FullCAN chips are
becoming less defined. Also, FullCAN
chips are becoming more powerful, so
that they can select larger numbers of
individual identifiers and can store
more data registers. State-of-the-art
CAN controller chips can switch
between the two modes of operation
by means of software.

C O M P A T I B I L I T Y
B E T W E E N 2 0 A A N D 2 0 B
As we have seen during the discussion
of the frame formats (Part 2),  there is
a Standard Format with 11-bit identi-
fiers and an Extended Format with
29-bit identifiers. Great care must be
taken in choosing a CAN controller
when both formats are used in a bus
system (which is perfectly possible and
permissible).

Controllers with 20A capability 
These controller chips can process
standard frames only and generate an
error message when an extended
frame message is received. Since this
could bring the whole system to a
standstill, these controllers can be used
only in systems that operate with stan-
dard frames.

Controllers with 20A capability and 20B
passive properties
These chips accept extended frames
with 29-bit identifiers, carry out an

error test, and respond with
and ACK bit or an error frame.

Although the communication is not
disturbed, the received extended-
frame data are not stored or passed on,
since the chips are intended for pro-
cessing frames in standard format
only. Nevertheless, these controllers
are perfectly all right for use in hybrid
systems.

Controllers with 20B capability 
These controllers process, store, and
pass on, standard-format as well as
extended-format frames.

When a decision has to be made on
the purchase of a CAN controller or
microcontroller with on-chip CAN
controller, there is such a wide choice
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that it really pays to visit the Internet
Home pages of producers like Hitachi,
Intel, Motorola, NSC, Philips, SGS,
Siemens, and Temic, and Texas Instru-
ments to name but a few.

C A N B U S I N T E R F A C E
After the lengthy discussions on the-
ory and basic principles, the practical
design of a CAN bus interface can now
be described in relatively few words.

The circuit diagram of the interface
is shown in Figure 9 and a suitable
printed-circuit board in Figure 10. Brief
parameters of the interface are given
in Table 4.

The CAN controller, IC3, is a Type
SJA1000, whose internal block
schematic is shown in Figure 11. This
chip is the successor of the PCA82C200
with which, in operating mode 1, it is
pin-, hardware-, and software-com-
patible.

The interface with the microcon-
troller can be arranged for use with
either a Motorola or an Intel chip (or
compatible types).

The CAN transceiver, IC4, is a Type
PCA82C250.

The microcontroller is linked to the
CAN bus interface by a length of flat-
cable, which should be not longer than
10 cm (4 in), terminated into 16-pin
header K3. The pin connections of this
connector are given in Table 5.

Via this link the microcontroller
exchanges operating data, control data,
and status data, with the CAN con-
troller. These data are processed by the
controller both in the send and receive
directions. The microcontroller there-
fore ‘sees’ the CAN controller as an
extension to its memory to which it
writes operating data to be transmit-
ted, or from which it extracts received
operating data.

The clock frequency, which is
divided in several stages, can be mea-
sured at test pin TP, for example, when
it is to be ascertained whether the con-
troller can be accessed and pro-
grammed safely.

The serial output signal at pin 13 of
the controller is applied to pin 1 of the
transceiver via optoisolator IC2. The
transceiver generates the standard
CAN bus signals which are available at
its pins 6 and 7. These signals are
impressed upon unshielded twisted-
pair (UTP) copper wires via connectors
K1 and K2.

The signal received from the bus
arrives at pin 4 of the transceiver from
where it is applied to pin 19 of the con-
troller via optoisolator IC1. The con-
troller converts the received bits and
processes them in accordance with the
relevant CAN protocol. The received
signal is finally fed to the microcon-
troller where it is analysed.

Optoisolators IC1 and IC2, and 5 V

DC/DC inverter IC5, effectively isolate
the microcontroller and bus sections of
the node (station). The arrange-ment
ensures that any faulty or uncertain
signals on the UTP wires, although
applied to the transceiver, cannot dam-
age the microcontroller section and fol-
lowing system.

It is, of course, possible to build the
interface without the isolating stages,
so that R1–R4, C1–C2, IC1–IC2, IC5, and
JP1–JP2 can be omitted. The supply
line terminals as well as the send and
receive pins on IC3 and IC4 must then
be interlinked as appropriate. It must
be borne in mind, of course, that faulty
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Figure 11. Printed-cir-
cuit board for the CAN
bus interface.

Parts list

Resistors:
R1–R4 = 390 Ω
R5, R6 = see text
R7 = 47 kΩ
R8 = 120 Ω

Capacitors:
C1–C3, C6–C8 = 0.1 µF, ceramic
C4, C5 = 22 pF, ceramic
C9 = 10 µF, 16 V, radial

Integrated circuits:
IC1, IC2 = 6N137
IC3 = SJA1000
IC4 = PCA82C250
IC5 = NMV505SA (Newport/Farnell)

Miscellaneous:
X1 = 16 MHz quartz crystal
K1, K2 = 9-way D connector, right-

angled, for board mounting
K3 = 16-way header, right-angled, for

board mounting, with interlock
JP2, JP4 = 2-way, 2.54 mm pin strip

and pin jumper (Maplin)
JP3, JP11, JP12 = 3-way, 2.54 mm pin

strip and pin jumper (Maplin)
PCB Order no 990066-1 (see Read-

ers’ Services section toward the
end of this issue)
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signals on the UTP lines are then
applied unimpeded to the microcon-
troller section.

Jumpers JP11, JP12, and JP2–JP4
must be arranged as follows.

JP11, JP12
These jumpers (marked * on the PCB)
determine how the supply voltage is
applied to the interface and the micro-
controller system. With these jumpers
set as shown in Figure 10, electrical iso-
lation is provided and the supply volt-
age to the bus section (IC1, IC2, IC4) is
via IC5.

In the other position of the
jumpers, there is no electrical isolation,
and all stages are supplied directly via

the 0 and +Ub terminals.
An alternative in the latter case is

the provision of supply voltage via
two lines in parallel with the UTP
wires and connecting these to pins 6
and 9 of K2 and K1 respectively.

If the jumpers are left open, there
is electrical isolation, and the bus sec-
tion is then powered via pins 6 and 9
of K2 and K1 respectively.

JP2
When JP2 is shorted, bus terminating
resistor R8 is connected between pins
6 and 7 of the transceiver. It must be
borne in mind that only two bus ter-
minators must be used, one at the
beginning and one at the end of the

UTP wires. Since more terminating
resistors (at other nodes) will be in par-
allel with these two, they lead to a
reduction in total terminating resis-
tance, which results in a higher output
current from the transceiver and this
in turn can lead to thermal overload
and damage or destruction of the chip.

JP3
This jumper must be set according to
which microcontroller interface is
used. The position shown in Figure 10
(pin 11 of IC3 at +5 V) and marked ‘0’
on the PCB allows Intel processors/
controllers or compatible chips to be
used.

When the jumper is placed in the
other position (pin 11 of IC3 at 0 V),
Motorola processors/controllers or
compatible chips may be used.

JP4
This jumper, or rather resistor R7,
determines the slope of the edges of
the pulses at the CAN bus.

In the case of high data transfer
rates (up to 1 Mbps), steep-sloped
edges are essential, but these lead to
the risk of a large noise spectrum
being generated by the CAN pulses.
This noise can only be negated by the
use of shielded twisted pair (STP)
wires. The jumper must be used,
thereby shorting out resistor R7.

With low data transfer rates (up to
125 Kbps) the edges of the pulses need
not be steep. This results in a narrow
noise spectrum being caused by the
CAN pulses, so that UTP (unshielded
twisted pair) wires can be used.
Jumper JP4 must not be placed.

This concludes the description of the
hardware for the CAN bus interface.
A forthcoming article will deal with
the connection of the CAN bus to a
microcontroller system and its
application in an experimental
CAN bus system.

[990066]
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Figure 12. Block dia-
gram of the internal
arrangement of the
Type SJA1000 Con-
troller Area Network IC.

Table 5: Pin connections of header K3
Pin Designation Function

1 D7

3 D6

5 D5

7 D4

9 D3

11 D2

13 D1

15 D0

2 +5 V positive supply line

4 WR\ Write\ signal

6 RD\ Read\ signal

8 CS\ Chip-Select\ signal

10 ALE Address latch enable signal

12 INT\ Interrupt\ signal

14 RST\ Reset\ signal

16 GND Earth connection

12
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I N T R O D U C T I O N
Each station or node in a CAN bus sys-
tem needs, apart from the CAN Bus
Interface, a microcontroller or com-
puter with appropriate software. Two
sets of software are needed for taking
the station into use, test it, and oper-
ate it: operating software and applica-
tions software.

The operating software is needed
to provide an effective overall system,
and also to test the interface in associ-
ation with the microcontroller or com-
puter. Such a test shows whether or
not the drive from the microcontroller
or computer functions correctly,
whether or not the interface works
correctly, both from a hardware and a

software point of view, and whether
the data is transferred correctly onto
the CAN bus. The test thus enables a
simple communication path between
two or more nodes to be set up.

The applications software is specific
to the particular role performed by the
microcontroller or computer in the net-
work. It therefore depends on what
the station is going to be used for: log-
ging of measurements; driving a dis-
play; transferring times and dates; and
others.

Each node therefore needs its own
particular software appropriate to its
function. The sum of all the functions
carried out by the various stations is
the desired overall function of the net-

A Controller Area Net-
work obviously con-

sists of more than
just the  CAN bus

interface 
described in last

month’s instalment of
this article. In fact, the
interface is merely the

link between a 
microcontroller or 
computer and the

CAN bus proper. The 
hardware described
in detail last month
clearly needs soft-
ware for its proper

operation and this is
described in this

fourth instalment of
the article.
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work. In other words,
the spatially distrib-
uted network can be controlled, driven
and monitored to arrive at the final
result.

O P E R A T I N G S O F T W A R E
The programming of the CAN con-
troller is subject to the same general
principles as that of other external
peripheral units.
• The function of the controller is

fixed or set by programming sets of
data by internal Special Function
Registers (SFR).

• These internal SFRs are interpreted
by the microcontroller or computer
as normal memory addresses in the
external RAM range, to which data
can be written or from which data
can be read. This means that the
microcontroller or computer is not
aware that it is operating in con-

junction with a CAN
controller. Only access

to specific memory locations is
determinative for it as well as for
the applications software.

When, therefore, the applications soft-
ware for controller IC3 is being pro-
duced, the following points should be
clarified or processed.
• Set the chip-select base address for

the SJA1000 controller.
• Understand the internal setup of

the structure of the SFRs in the con-
troller.

• Create the routine for the basic ini-
tialization of the controller.

• Create the routine for applying
data to the CAN bus.

• Create the routine for receiving
data from the CAN bus.

The processing of relevant points for

the basic CAN mode of the controller
is looked at in some detail in the fol-
lowing paragraphs. Extensive and
more detailed information can be
found in the data sheets and applica-
tion notes for the controller (see Ref-
erence at end of this article).

S E T T I N G T H E C H I P -
S E L E C T B A S E
A D D R E S S
The chip is accessed via the chip-select
base address. Since controller IC3 in
the basic CAN mode needs a coherent
external address range of 32 bytes, and
in the PeliCAN mode one of 128 bytes,
the maximum range is set at 128 bytes
so as not to preclude the use of the Pel-
iCAN mode in future operations.

The SJA1000 controller is enabled
by a low level at its CS terminal (pin 3).
This means that the microcontroller or
computer must construct its address

65Elektor Electronics 12/99

Table 6. Internal SFRs in
the controller used in
the basic CAN mode.



coding in such a way that within a
coherent address range of not fewer
than 128 bytes a low signal is pro-
duced at pin 8 of connector K3 to
enable the data transfer to be carried
out by the CAN controller. The first
address at which this is the case
becomes the so-called chip-select base
address of the controller. When the
microcontroller or computer accesses
a random memory location in this

address range, it receives the byte con-
tent of an SFR in the controller or it
can write a byte-word in an SFR of the
controller.

In the following it is assumed that
the chip-select base address of the
SJA1000 controller is F000H.

I N T E R N A L S T R U C T U R E
O F A N S F R
The determinant SFRs of controller
IC3 for operation in the basic CAN
mode are shown in Table 6. The mean-
ing of the various columns is as fol-
lows.

1. The first column, CAN address,
gives the internal addresses of the rel-
evant SFRs, to which only the chip-
select base address of the IC needs to
be added. If, for instance, the status
register of the controller is to be
accessed, F000H must be added to the
internal address of the SFR, which is 2.
If, therefore, a read or write operation
on the register is desired, the software
must be programmed to enable the
external RAM location to be accessed
with address F002H. The Clock
Divider Register is from then on acces-
sible at address F01FH (=F000H+31D
– note the use of different number sys-
tems).

2. The second column shows the basic
division of the SFRs into three differ-
ent groups: the control group, the
transmit buffer group, and the receiver
buffer group.
3. The controller supports two soft-
ware-controlled modes:

• Operating mode, which is the nor-
mal mode of operation;

• Reset mode, which is the mode IC3
is in when it is clearing a hardware
reset or when the reset bit in the
control register is set. The controller
then reverts to the normal operat-
ing mode.

The reset mode is necessary when
the controller is to be (re)initialized,
that is, certain operating parameters
can be set only in the reset mode. The
reset bit is then set (the controller sets
its normal operating mode), where-
upon the relevant parameters can be
altered, after which the reset bit is dis-
abled. After that, the controller
resumes operation with the altered
parameters.

4. Columns 4 and 5 show 
• the functions of the register;
• the meaning of the contents when

the register is read;
• the meaning of the contents when

the register is written to in the
operating mode.

5. Columns 5 and 6 show the relevant

data for the register in the reset mode.
Here is an example of an internal SFR
with address 4.
Operating mode (normal operation of
the controller):

• Read – although reading the regis-
ter is possible, there are no usable
results since the read-out value is
always FFH.

• Write: the register cannot be writ-
ten to.

Reset mode (the controller is in the
reset state).
• Read: reading the register gives the

value of the acceptance code.
• Write: a new acceptance code can

be written into the register.

This example shows that during nor-
mal operation of the controller this
SFR has no special function. Note,
however, that in the reset mode the
acceptance code with which the con-
troller functions during normal opera-
tion is set.

C R E A T I N G T H E
R O U T I N E F O R B A S I C
I N I T I A L I Z A T I O N
Before work on this routine is begun,
a close look at the Application Note for
the SJA1000 controller (AN97076 – see
Reference) is highly advisable. On
page 23 of this document, the manu-
facturers give a flow diagram with
detailed comments on how the initial-
ization of the controller should be pro-
ceeded with (see Figure 13).

Another close look at the descrip-
tion of a single register should then
enable the values of the parameters to
be set readily to individual require-
ments and wishes.

C R E A T I N G T H E
R O U T I N E F O R
S E N D I N G D A T A
As mentioned earlier, CAN controller
type SJA1000 assumes most of the
tasks involved in sending data. The
sending of byte data onto the CAN
bus requires only four actions.

• Delivery to the controller of the
wanted identifier (ID) for the frame
to be transmitted.

• Indicating how many data bytes
are to be sent (0–8).

• Determining whether the frame is
a remote transmission request
(RTR) frame or not.

• Writing the wanted data bytes to
the send data buffer of the con-
troller.

That’s all! The remainder of the
process is carried out automatically by
the CAN controller, that is:
• assembling the frame;
• calculation of the CRC sum;

66 Elektor Electronics 12/99

1

Figure 13. Flow dia-
gram for use when the
CAN controller is to be
initialized.



• allocation of the other fields in the
frame;

• accessing the bus;
• transmitting the frame;
• checking for errors;
and so on.

Messages indicating whether the
transmission was successful or not are
returned to the user via the Status reg-
ister to enable action to be taken as
appropriate.

C R E A T I N G T H E
R O U T I N E F O R
R E C E I V I N G D A T A
In the reception of data, CAN con-
troller types SJA1000 again takes on
most of the necessary actions, that is,
data are received almost wholly auto-
matically by the controller. The con-
troller processes the received frames
and writes the wanted information
contained in them to the error detec-
tion section and acceptance filter in its
RXFIFO (=receiver first in first out
memory) – see Figure 14.

If the acceptance filter is switched
off, each received frame is evaluated.
In the RXFIFO, the following data
from each frame are stored (see
Table 6, address range 20–29):

• frame identifier;
• remote transmission request (RTR)

bit;
• data length code (DLC);
• useful data bytes.

As the range of the internal RXFIFO in
IC3 is exactly 64 bytes, the number of
frames that can be stored in the inter-
mediate memory depends on the
length of the frame, and more partic-
ularly on the data length code.

The receiver buffer window (see
Table 6, addresses 20–29) that can be
read by a user is what is shifted by the
RXFIFO to the window. This consists
of an actually received set of data
(frame or message), which can be
processed by the user via software.

Communication between the
SJA1000 and the microcontroller or
computer in the receive mode may
take two forms.

• Interrupt-driven. When the con-
troller has received a complete and
error-free frame, it initiates an inter-
rupt in the microcontroller via its
pin 16 (INT). This causes the micro-
controller/computer to react imme-
diately to the received message so
that this can be read without delay
via the controller.

• Polling* operation. In this kind of

operation, the
receiver buffer sta-
tus bit in the status
register of the controller is continu-
ously interrogated by the micro-
controller/computer. When this is
set – indicating that the controller
has received at least one message
correctly – the software reads this
frame and processes it as relevant.

When a message has been read, the
applications software reenables the
receiver buffer window to acknowl-
edge that the earlier message passed
to it has been processed. The window
is then ready to receive the next frame
from the RXFIFO. In this way, the
applications software ensures that one
frame after another is processed.

There are two further matters to be
noted.

• Immediately after a frame (mes-
sage) has been read and processed,
the receiver buffer window must be
released by a ‘release receiver buffer
command’ so that the controller
can shift the next message to the
window. If this command is not
given, the same message is
processed again and again, which
causes the RXFIFO to overflow
since other received frames are not
being shifted.

• When a high frame rate is used,
that is, when the data transfer rate
is high or many messages are sent
one after another, there is a risk of
the RXFIFO overflowing rapidly if
the messages are not shifted read-
ily. If such situations are likely to
occur, a sufficiently powerful micro-

controller or computer
must be used in associ-
ation with high-quality

software.

When an overflow of the RXFIFO
occurs, the controller indicates this by
setting an error-bit, that is, a Data
Overrun Status bit in the status regis-
ter. The relevant message, which is
just about to be shifted into the
RXFIFO (and which caused the over-
flow) is then erased and lost.

[990066-4]

Only part of the software needs to be pro-
grammed by the constructor, since in next
month’s issue a complete applications pro-
gram in Pascal will be published which
enables all basic functions of the CAN bus
to be tried and tested. The suggested micro-
controller is a Type 80C537. Apart from the
80C537 used in the single-board compan-
der published in the June 1997 issue of this
magazine, there is now a smaller, less
expensive version of this Single-Board
Computer (SBC) available. This version
will be highlighted in next month’s issue
under the title ‘537-Lite Computer’.

Reference:
CAN bus controller and transceiver mod-
ules (Philips Semiconductors)
www us.semiconductors.philips.com/can/
www-us.semiconductors.philips.com/ can
/support
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2

Figure 14. Structure of
the receiver memory
range.

* Polling is a form of time division multiplexing. It is a process by which one node (primary station) in a network can address any other
node (secondary station), giving the secondary node access to the communication channel.
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The CAN bus interface described in
Elektor Electronics November 1999 may
be controlled using the BASIC537
higher programming language.
BASIC537 is an EPROM version of the
well-known Intel MCS51 BASIC, spe-
cially adapted and extended for the
80C537 microcontroller. Many of you
will be familiar with MCS51 BASIC
because it was the subject of several
articles in Elektor Electronics. Originally,
this BASIC interpreter was developed
for the (now obsolete) 8052AH-BASIC
microcontroller. When stored in an

external (E)PROM, however, it is also
great for other controllers from Intel’s
80xx series and second sources (see
also the 80C32 BASIC Control Com-
puter described in Elektor Electronics
February and March 1998). The 537
‘Lite’ Computer is described elsewhere
in this magazine — it too is capable of
running BASIC537. The ancestor of this
computer, a full-blown 80C357 micro-
controller system, was published in our
June 1997 magazine.

The new, smaller and cheaper 537
‘Lite’ Computer is employed here in

If you are new to the
CAN bus, look for-
ward to some hard
work before seeing

the first usable
results. After all, at

least two microcon-
troller systems have
to be hooked up to

CAN bus controllers,
and a bus-based data link implemented based on the use of talk/listen

programs. Once you have data travelling over the bus, all further expan-
sion is really simple. This article attempts to make your first practical

experiments with the CAN bus as easy as possible.
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combination with the CAN bus inter-
face. The 537 ‘Lite’ is prominently fea-
tured on this month’s cover.

H A R D W A R E
An adaptor board was developed to
implement a simple connection
between the 537 ‘Lite’ Computer (fitted
with a BASIC537 EPROM) and the
CAN interface board. The circuit dia-
gram of the adaptor is given in Fig-
ure 1, the copper track layout and com-
ponent mounting plan, in Figure 2. As
you can see on the photograph, there
are no wiring problems because the
537 ‘Lite’ board is plugged directly on
to the adaptor board. The link with the
CAN interface is then made using a
length of flatcable (see introductory
photograph).

To solve the power supply problem
in a simple way, a 5-volt voltage regu-
lator and supply reversal protection are
accommodated on the adaptor board.
In this way, the adaptor board can sup-
ply +5 V to the two other boards. The
upshot is that any low-cost wall adaptor
supplying 9-12 volts unregulated at
about 300 mA may be connected to
PCB connector K2. If you already have
a stabilized 5-volt line available, you
may omit IC1, D1, C1 and C2 from the
adaptor board, and
connect the 5-V supply
voltage directly to the
K1 terminals on the
adaptor board.

To keep cost down,
the adaptor board is
much smaller than the
537 ‘Lite’ Computer board to be
plugged on it. If you cut the adaptor
board in two along the line indicated
on the PCB overlay, and fit the two
sub-boards at the right distance above a
carrier (e.g. aluminium sheet), the 537
‘Lite’ Computer is easily plugged on to
this assembly. The only wire connec-
tion to make (if necessary) is INT2
between pin 12 (K3) and pin 32 (K6)
(see the photograph showing the 537
‘Lite’ Computer board with the two
adaptor sub-boards). The two adaptor
sub-boards have connecting pins for
the INT2 link, which is also shown as a
wire link on the component mounting
overlay (Figure 2).

C O N T R O L I T A L L I N
B A S I C
In essence, all you need to be able to
control the CAN interface board is a
program that looks after a bank of reg-
isters starting at address F000h in the
CAN controller SJA1000. The XBY
operator is employed for all access to
addresses in the external RAM area
and peripherals.

To make the introduction as easy
going as possible, the following para-
graphs describe the simplest case of a
data link between two 80C537 systems.

The essential
settings are
supplied as
defaults by the
program. The

communication runs at 20 kbits/s. Mes-
sage are sent without the RTR bit — in
other words, no reply is requested. The
two systems should fulfil the following
functions:

System 1 regularly sends messages
with Identifier 300 and containing
eight bytes. The data originates from
the first eight channels of the A-D con-
verter. The system continuously per-
forms measurements on eight ana-
logue inputs. The messages it transmits
may be received and processed by any
other system connected to the bus.

System 2 receives all messages on the
bus and copies them to the PC by way
of the RS232 interface. In fact, this is a
simple CAN monitor that allows you to
pick up and examine all data traffic on
the CAN bus.

A block diagram of the system config-
uration is given in Figure 3. A special
cable is not required to link the two
systems. Our first experiments in the
lab indicated that a simple two-wire
link between pins 4 and 8 of the CAN
plugs is adequate if the total length
does not exceed about 1 metre. With
such a short cable, no difference was

noted between the termination resis-
tors being present or not.

T R A N S M I T P R O G R A M
A N D T E S T
The transmit program for Controller 1 is
given in Listing 1. The CAN controller
SJA1000 is addressed by the 80537 sys-
tem via base address 0F000h. The
address range is defined in line 95
(BA=0F000h). If you use a different
system, all you have to do (initially) is
modify BA accordingly. The initialisa-
tion is carried out as described in the
article on the CAN bus interface hard-
ware. In lines 110 and 200, the results
of the register programming are
requested. The program then waits for
a register bit to go to a specific state. In
case the controller is not found on the
bus, or does not function correctly, the
program will ‘hang’ at this point. If
everything is successful, however, you
are greeted with these messages:

Reset OK
Init OK

To start with, it is sufficient to execute
the initialisation routine up to line 200.
An initial check may be made by look-
ing for a rectangular signal at the test
pin on the controller board. Whereas
this pin supplies 8 MHz before the ini-
tialisation, you will then find 2 MHz. If
this is okay so far, you may safely
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Figure 1. Circuit diagram of an
adaptor board that creates a
simple link between the 537
‘Lite’ Computer board and the
CAN bus interface.



assume that the controller is driven
with the proper signals.

Now the complete program may be
loaded and executed. Experienced as
you are, you will no doubt have an
oscilloscope ready to observe data traf-
fic on the bus. Without a connection
having been made to a second system,
you will be able to find signals on the
data lines. After a hardware reset and
without an initialisation you will not be
able to find the ‘inactive’ level of 2.5 V

on the two wires. As soon as the trans-
mit program is started, data is easily
recognized as rectangular signals with
a level of 1 V. The shortest logic levels
are just 50 µs long, which means that
the transmission rate is indeed
20 kBits/s. However, you will not fail to
see that there is a quasi-steady datas-
tream with 2-ms pauses, rather than
short data packets as would be
expected. Not to worry, however, this
is the normal behaviour of the con-

troller as long as it has not detected any
intelligence on the CAN bus. Yet, it is
not sufficient to connect the second
controller via the two-wire link,
because this, like system 1, has to be
initialised. By the way, the transmitting
station will continue to send a quasi-
continuous datastream even if the
BASIC program is terminated.

A T T H E
R E C E I V E R S I D E
Now we are ready to ‘deploy’ the
receiver program as given in Listing 2.
This program is for system number 2.
As you can see from the listing, the ini-
tialisation is the same as that used for
the transmitter. As soon as the initiali-
sation is done and the message “Init
OK” has appeared on the PC display,
the transmitting controller will com-
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COMPONENTS LIST

Capacitors:
C1, C3 = 10µF 16V (radial)
C2, C4 = 100nF (ceramic)

Semiconductors:
D1 = 1N4001
IC1 = 7805

Miscellaneous:
K1 = 2-way PCB terminal block,

raster 5mm
K2 = 2-way PCB terminal block,

raster 5mm
K3 = boxheader, straight, 16 pins
K4 = pin header, 1 row, 4 pins
K5, K6 = pin header, one row,

straight, 35 pins

Figure 2. Layout and com-
ponent mounting plan of
the adaptor board.

Figure 3. Block diagram
showing how the CAN bus
is linked to the two 80537
systems programmed in
537 BASIC.
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Listing 2. Receiver program CAN2.BAS

90    REM Init CAN Controller
95    BA=0F000H
100   XBY(BA+00 H)=01H :  REM Reset Mode
110   IF (XBY(BA+00H).AND.1)<>1 THEN  GOTO 110
111   PRINT ”Reset OK”
120   XBY(BA+1FH)=43H :  REM CDR, 2 MHz
130   XBY(BA+04H)=0 :  REM ACR
140   XBY(BA+05H)=0FFH :  REM AMR, Acceptance Mask, all
150   XBY(BA+06H)=53H :  REM BTR0, 20 Kbit/s*
160   XBY(BA+07H)=2FH :  REM BTR1
170   XBY(BA+08H)=1AH :  REM OCR;
180   XBY(BA+01H)=0EH :  REM CMR, end sleep mode
190   XBY(BA+00H)=0 :  REM CR, end reset mode
200   IF (XBY(BA+00H).AND.1)>0 THEN  GOTO 200
201   PRINT ”Init OK”
500   REM ******* Receiver Main Loop *************
510   SR=XBY(BA+02H) :  REM Status Register
520   REM Error Detection and Clear Data Overrun
530   if (SR .AND. 2) = 2 then XBY(BA+01H)=8: :Goto 510
540   REM Get Receive Status
550   if (SR .AND. 1) =0 then goto 510
560   REM Read received message
570   ID=XBY(BA+14H)*8+INT(XBY(BA+15H)/32) :  PRINT ID
580   DFL=XBY(BA+15H).AND.15 : rem   Data Length
590   RTR=(XBY(0FE15H).AND.16)/16 :  REM RTR not used
600   FOR N=0 To 7
610   PRINT N ,XBY(BA+16H+N)
620   NEXT N
630   XBY(BA+01H)=0CH :  REM Release Receive Buffer
640   GOTO 510

mence its normal operation. From then
on, short data packets with a length of
just over 5 ms will start to appear on
the CAN bus. Finally, the CAN bus
functions as you, the interested reader,
would like to see it: data packets being
sent back and forth over the bus with-
out any indication of their being read
anywhere at all!

The actual receiver program starts
at line 500 and waits for a message
which is announced by controller sta-
tus bit zero. As soon as a data packet
has arrived, the program may read ten
bytes from the controller. The first two
contain the message ID. It is recovered
from two bytes in line 570 and then
sent to the display. As expected, it is the
‘ID’, 300, which was arbitrarily defined
in the transmitter program.

The user data are read in a loop and
displayed in line 610. There , you
(finally…) get the measured values on
the eight analogue inputs of the first
controller system. Figure 4 shows the
received data in a terminal window.

F I N A L L Y :
T H R E E O N T H E B U S
Of course, the results up to now could
have been obtained with a rather sim-
pler RS232 interface. The CAN bus
however will typically not unleash its
power until more than two devices are
connected to the bus. To end the
‘lonely’ existence of the two systems
discussed so far, a third ‘CANable’
device should be added. The program
CAN3.BAS shown in Listing 3 (with-
out initialisation!) performs the follow-
ing functions:

Listing 1. Transmitter program CAN1.BAS.

90    REM Init CAN Controller
95    BA=0F000H
100   XBY(BA+00H)=01H :  REM Reset Mode
110   IF (XBY(BA+00H).AND.1)<>1 THEN  GOTO 110
111   PRINT ”Reset OK”
120   XBY(BA+1FH)=43H :  REM CDR, 2 MHz
130   XBY(BA+04H)=0 :  REM ACR
140   XBY(BA+05H)=0FFH :  REM AMR, Acceptance Mask, all
150   XBY(BA+06H)=53H :  REM BTR0, 20 Kbit/s*
160   XBY(BA+07H)=2FH :  REM BTR1
170   XBY(BA+08H)=1AH :  REM OCR;
180   XBY(BA+01H)=0EH :  REM CMR, end sleep mode
190   XBY(BA+00H)=0 :  REM CR, end reset mode
200   IF (XBY(BA+00H).AND.1)>0 THEN  GOTO 200
201   PRINT ”init ok”
500   REM ************* Main Loop ***************
501   REM Send 8 Bytes of AD-Data in message 300
510   FOR N=0 TO 7
520   XBY(BA+0CH+N)=AD(N) :  REM fill TB1..TB8
530   NEXT N
540   ID=300 :  REM Message Identifier
550   DFL=8 :  REM 8 Bytes
560   GOSUB 1000 :  REM Send Massage
570   FOR T=1 TO 1000 :  NEXT T
580   GOTO 500
1000  REM ************* Send CAN Telegram *************
1010  IF (XBY(BA+02H).AND.4)=0 THEN  GOTO 1010 :  REM SR
1020  XBY(BA+0AH)=INT(ID/8) :  REM IDT1
1030  XBY(BA+0BH)=(ID-8*INT(ID/8))*32+DFL :  REM IDT2
1040  XBY(BA+01H)=0DH :  REM CMR, start transmission
1050   RETURN



It receives all messages but only
processes the ones with the ID ‘300’.
The first three transmitted measure-
ment values are compared with certain
extreme values and switch on three
lines on Port 4 if a particular extreme is
exceeded.

After processing of the received
message, a message with the ID ‘500’ is
returned, where all A-D channels are
measured and transmitted again. As
soon as the third system is connected
to the bus, System 2 will also supply
data with ID ‘500’ to the terminal (see
Figure 5).
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Note: the three program listings dis-
cussed in this article are available for
downloading from the Elektor Elec-
tronics website at www.elektor-electron-
ics.co.uk
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Design editing: K. Walraven
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Listing 3. Receiver & Transmitter program CAN3.BAS
without initialisation.

500 REM ************ Main Loop ***************
505 REM ************ Receiver ****************
510 SR=XBY(BA+02H) :  REM Status Register
520 REM Error Detection and Clear Data Overrun
530 IF (SR.AND.2)=2 THEN XBY(BA+01H)=8 :  GOTO 510 
550 IF (SR.AND.1)=0 THEN  GOTO 510
560 REM Read received message
570 ID=XBY(BA+14H)*8+INT(XBY(BA+15H)/32): Print ID
580 DFL=XBY(BA+15H).AND.15 :  REM   Data Length
590 RTR=(XBY(0FE15H).AND.16)/16 :  REM RTR not used
600 IF ID<>300 THEN  GOTO 660
610 PORT=0
620 IF XBY(BA+16H+0)>100 THEN PORT=PORT+1
630 IF XBY(BA+16H+1)>100 THEN PORT=PORT+2
640 IF XBY(BA+16H+2)>100 THEN PORT=PORT+4

650 WRSFR 0E8H,PORT :  REM Port 4 Output
660 XBY(BA+01H)=0CH :  REM Release Receive Buffer
800 REM ******** Send AD-Data ***********
810 FOR N=0 TO 7
820 XBY(BA+0CH+N)=AD(N) :  REM fill TB1..TB8
830 NEXT N
840 ID=500 :  REM Message Identifier
850 DFL=8 :  REM 8 Bytes
860 GOSUB 1000 :  REM Send Message
870 FOR T=1 TO 1000 :  NEXT T
880 GOTO 500
1000 REM ******* Send CAN Telegram *************
1010 IF (XBY(BA+02H).AND.4)=0 THEN  GOTO 1010 :  REM SR
1020 XBY(BA+0AH)=INT(ID/8) :  REM IDT1
1030 XBY(BA+0BH)=(ID-8*INT(ID/8))*32+DFL :  REM IDT2
1040 XBY(BA+01H)=0DH :  REM CMR, Start Transmission
1050 RETURN

Figure 4. Received
data in the terminal
window of BASIC537.

Figure 5. Reception of
messages with Identi-
fiers (IDs) ‘300’ and
‘500’.
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