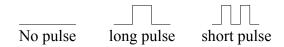
Spickzettel WIG-Schweißen

Nicolas

16. Januar 2017


[3]

Schweißschirm, Schutzhandschuhe und eine komplette Bedeckung des Körpers sind Pflicht.

STAHLWERK AC/DC WIG 200 PULS S

- \bullet Schnellpuls (Rapid Pulse, RP) 50 bis 300 Hz
- Langpuls (Long Pulse, LP), 0,5 bis 1 Hz
- Die Funktionen "Stromanstieg" und "Stromabsenkung" sind nur im 4-Takt-Betrieb verfügbar[2, S. 6]
- Der Startstrom kann durchaus auch höher als der Schweißstrom sein, z.B. um das Material schnell durchzuwärmen[2, S. 6].
- Im WIG-Betrieb muß der Sprühlichtbogen auf 0 eingestellt sein[3, S. 26]!

Einstellungen

Gasdüse

Die Gasdüsennummer entspricht dem Innendurchmesser in $\frac{1}{16}$ inch[1, S.49]. Empfohlen werden[1, S.50]:

Stromstärke (A)	Gasdüse Nr.	Düsendurchmesser (mm)	Gasverbrauch $(\frac{1}{\min})$
1050	4	6	46
2075	5	8	$5 \dots 7$
30100	6	10	$5 \dots 8$
40150	7	11	$6 \dots 9$
20200	8	13	6 10

 $\bullet\,$ Die Elektrode sollte ca. 1/2 Gasdüsendurchmesser herausragen.

Gasvor- und -Nachströmung

aus [1, S. 53]

Stahl und Edelstahl (DC)

Stromstärke (A)	Gasvorströmung (s)	Gasnachströmung (s)
150	1	3
50100	1	$3 \dots 5$
100150	1	$5 \dots 7$
150200	1	$7 \dots 10$

Aluminium (AC)

Stromstärke (A)	Gasvorströmung (s)	Gasnachströmung (s)
150	1	6
50100	1	$6 \dots 8$
100150	1	$8 \dots 10$
150200	1	$10 \dots 13$

Elektroden

Tabelle nach [1, S. 56]

Elektroden-	Stahl/Edelstahl	Aluminium
durchmesser (mm)	Stromstärke(DC) (A)	Stromstärke (AC) (A)
1,6	1075	1050
$2,\!4$	75150	50125
$3,\!2$	$150\dots 250$	125200

Kontaminierte Elektrodenspitzen können abgeschlagen oder abgeschliffen werden. Abbrechen ist keine gute Idee, da die Elektrode rissig werden kann.

Übersicht

Baustahl

Werkstückdicke	Zusatzdraht	Elektrode	Stromstärke	Gasdüse
[mm]	$\oslash [\mathrm{mm}]$	$\oslash [\mathrm{mm}]$	DC[A]	No.
1,0	1,0	1,6	30	46
2,0	1,6	1,6	60	58
3,0	1,6	2,4	90	68
4,0	2,0	2,4	120	78
5,0	2,0	2,4	150	78

Edelstahl

Werkstückdicke	Zusatzdraht	Elektrode	Stromstärke
[mm]	$\oslash [\mathrm{mm}]$	$\oslash [\mathrm{mm}]$	DC[A]
1,0	1,0	1,6	25
2,0	1,6	1,6	50
3,0	1,6	1,6	75
4,0	2,0	2,4	100
5,0	2,0	2,4	125

Aluminium

Werkstückdicke	Zusatzdraht	Elektrode	Stromstärke
[mm]	$\oslash [\mathrm{mm}]$	$\oslash [\mathrm{mm}]$	AC [A]
1,0	1,6	1,6	40
2,0	2,0	2,4	80
3,0	2,4	2,4	120
4,0	2,4	3,2	160
5,0	3,2	3,2	200

Schweißzusatz

Kennung	Markierung	für
SG2	-	niedriglegierte Stähle, spritzerarmer Werkstoffübergang im Kurz- und Sprühlichtbogen. Verwendung im Stahl-, Kessel-, Schiff- und Fahrzeugbau. Grund-
		werkstoff: S235JRG2 - S355J2; Druckbehälterstähle P235GH, P265GH, P295GH; Feinkornbaustähle bis S355N
ER316L	??	Hochlegierter Schweißdraht für V4A
		Schweißelektrode aus austenitischem Chrom- Nickel-
		Molybdänstahl mit besonders niedrigem Kohlen-
		stoffgehalt zum WIG Schweißen nichtrostender und kaltzäher austenitischer Stähle für Betriebstemperatur
		bis +400°C und kaltzäh bis -196°C
3.3556	ER 5356	Magnesium-legierter Aluminium-Schweißstab für Al-
AlMg5	210 0000	Mg-Legierungen. Geeignet für AlMg, AlMgSi, AlMg-
11111120		Mn and AlMg5. Hohe Festigkeit, Zähigkeit und gute
		Korrosionsbeständigkeit (auch gegen Seewasser). Beste
		Farbgleichheit nach dem Eloxieren.
3.3536	ER 5154/5654	WIG-Stab zum Schweißen von gewalzten und ge-
AlMg3		gossenen Aluminium-Magnesium-Legierungen, wie z.b.
		AlMg3, AlMgMn, AlMg1, AlMg2, AlMgSi0,5, G-
		AlMg3. Vielseitig verwendbar im Behälterbau, Fahr-
		zeugbau, in der Fenster- und Türrahmenproduktion.
3.2585	ER 4047?	für Verbindungen und Auftragungen an AlSi-
AlSi12 W		Legierungen bis 12% Si, sowie artverschiedenen
		Aluminium-Legierungen

Offene Fragen

- Was mache ich mit der Funktion Sprühlichtbogen? Ist die Stellung des Reglers im WIG-Betrieb egal?
 - \rightarrow Im WIG-Betrieb muß der Regler auf 0 stehen[3, S. 26]
- Wo ist der in der Anleitung beschriebene Umschalter MMA/WIG?
 - \rightarrow Beim Puls S heißt dieser Umschalter "ARC"[3, S. 7]
- Stellt man mit dem Poti am Fußschalter % vom Maximalwert oder vom eingestellten Schweißstrom ein? Was passiert mit dem Impulsstrom?
- Hat der Schalter 2T/4T eine Funktion, wenn mit Fußpedal geschweißt wird?
- Was passiert, wenn der Impulsstrom höher als der Schweißstrom eingestellt wird?
- Ist die Stromverlagerung % positiv oder negativ?
- Wie funktioniert das Zusammenspiel Stromanstieg und 4-Takt-Betrieb (Anleitung Seite 6)?
- Impulsschweißen funktioniert nur im DC-Betrieb [2, S. 7], steht also nicht bei Alu zur Verfügung? Man hört ja auch tatsächlich nichts. Oder ist das unterschiedlich bei Puls/Puls S?
- Wie kann ich im AC-Betrieb den eingestellten Strom sehen?

Literatur

- [1] Marco Briër. Schritt für Schritt WIG Schweißen. Alfa Biblio, 1. auflage edition, December 2016.
- [2] Stahlwerk Schweißtechnik. Bedienungsanleitung WIG AC/DC 200, WIG AC/DC 200 Puls, WIG AC/DC 200 Puls und Plasma, 2013.
- [3] Stahlwerk Schweißtechnik. Bedienungsanleitung WIG AC/DC 200 S, WIG AC/DC 200 Puls S, WIG AC/DC 200 Puls und Plasma S, 2014.

Anruf bei Stahlwerk-Hotline 16.01.2017

- Mit dem Potenziometer am Fußpedal wird der Maximalstrom eingestellt.
- Mit dem Fußpedal kann nur im 2T-Betrieb gearbeitet werden.
- Die Pulsfunktion funktioniert im AC- und im DC-Betrieb
- Der Impulsstrom kann auch höher als der Schweißstrom eingestellt sein.
- Das Poti für die Stromverlagerung: Rechtsdrehung: Steigerung der Reinigungswirkung. Maximal auf 9 Uhr stellen!
- Auch im AC-Betrieb kann man den Strom ablesen, wenn man den Puls ausschaltet.