$$y = \overline{\overline{x_1 x_2} \, \overline{x_3 x_3}} \, \overline{\overline{x_1 x_2} \, \overline{x_0 x_0}}$$

$\overline{x_3x_3}$	=	$\overline{x_3}$	UND-Theorem
$\overline{x_0x_0}$	=	$\overline{x_0}$	UND-Theorem
$\frac{\overline{x_1x_2}}{\overline{x_3}}$	=	(x_1x_2) v x_3	Vorrang- und Klammerregel
$\frac{\overline{x_1x_2}}{\overline{x_0}}$	=	(x_1x_2) v x_0	Vorrang- und Klammerregel
$\overline{\overline{x_1x_2}\overline{x_3x_3}}\overline{\overline{x_1x_2}\overline{x_0x_0}}$	=	$\overline{((x_1x_2)\ v\ x_3)((x_1x_2)\ v\ x_0)}$	Endergebnis
A	=	x_1x_2	Substitution
$((x_1x_2) v x_3)((x_1x_2) v x_0)$		$(A \vee x_3)(A \vee x_0)$	Substitution
$(A \vee x_3)(A \vee x_0)$	=	$A \vee (x_3 x_0)$	erste Absorptionsgesetz
$A v (x_3 v x_0)$	=	$x_1 x_2 v (x_3 x_0)$	Rücksubstitution

$$y = \overline{\overline{x_1 x_2} \, \overline{x_3 x_3}} \, \overline{x_1 x_2} \, \overline{x_0 x_0} = \overline{((x_1 x_2) \, v \, x_3)((x_1 x_2) \, v \, x_0)} = \overline{(x_1 x_2) \, v \, (x_3 \, x_0)}$$
$$\overline{y}_{DMF} = x_1 x_2 \, v \, x_3 \, x_0$$

KV-Diagramm

		0	0	1	1	X ₁
		0	1	1	0	X 0
0	0	1	1	1	1	
0	1	1	1	0	0	
1	1	1	0	0	0	
1	0	1	0	0	1	
X 3	X 2)	/		

Grüner Block	
Blauer Block (horizontal)	
Roter Block (vertikal)	
Gelber Block (über Eck)	$\overline{x_0} \overline{x_2}$

$$y = \overline{x_3} \ \overline{x_1} \ v \ \overline{x_3} \ \overline{x_2} \ v \ \overline{x_1} \ \overline{x_0} \ v \ \overline{x_0} \ \overline{x_2}$$

