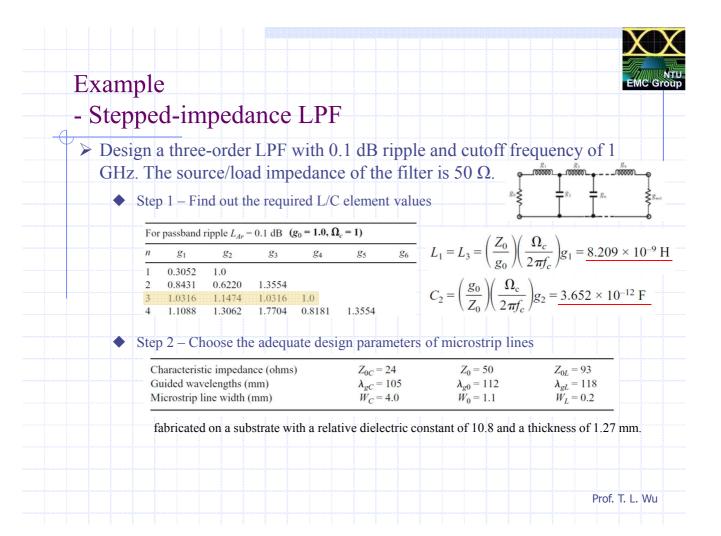
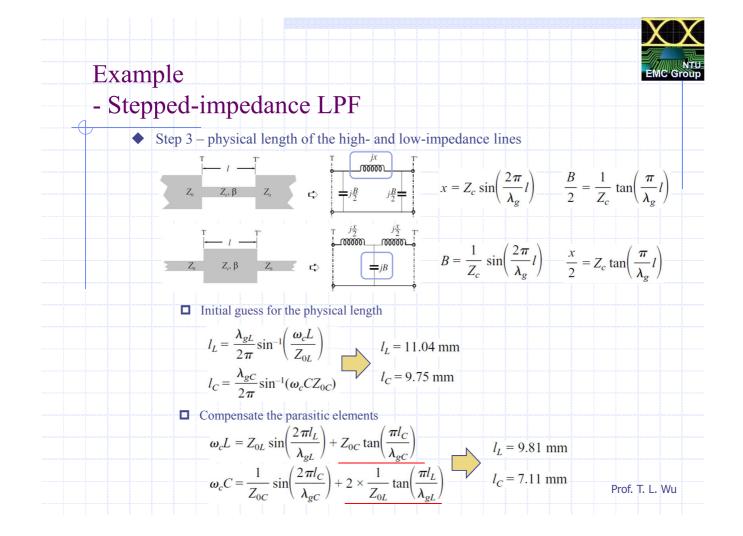
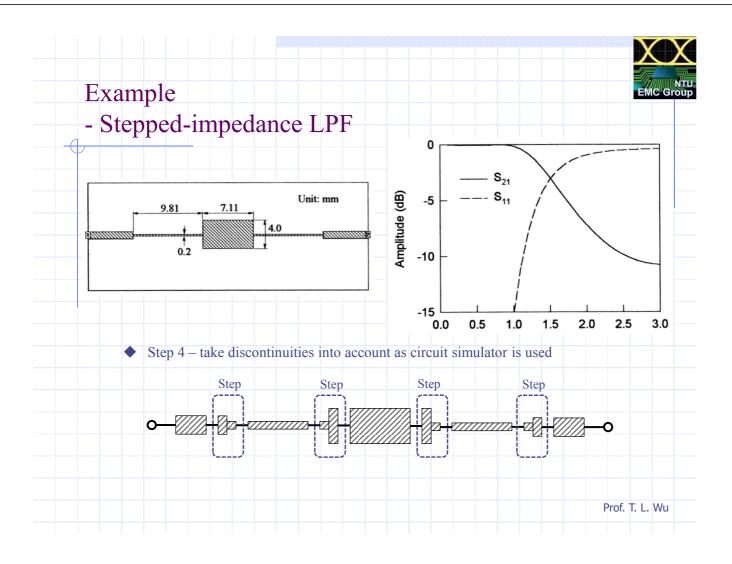
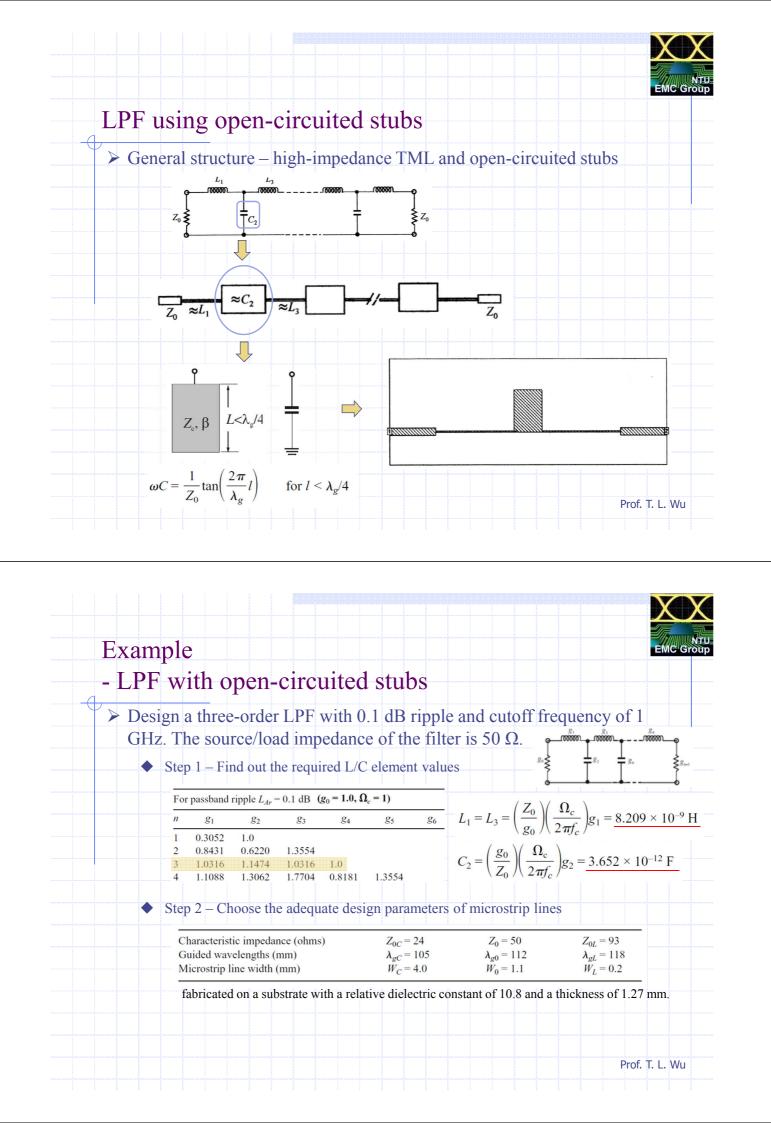

Chp5. Lowpass Filters

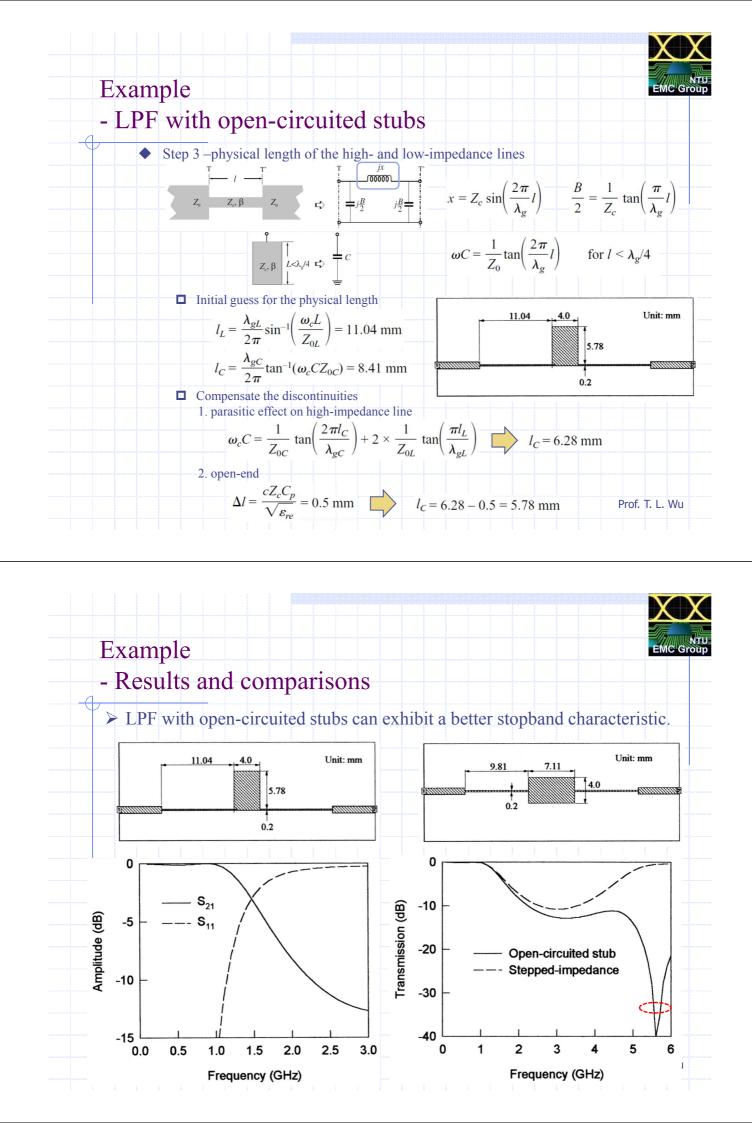
Prof. Tzong-Lin Wu

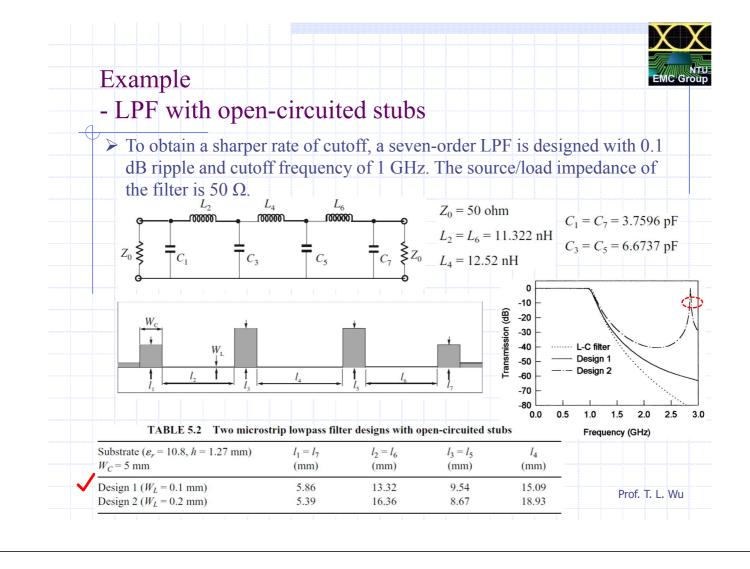

Department of Electrical Engineering National Taiwan University

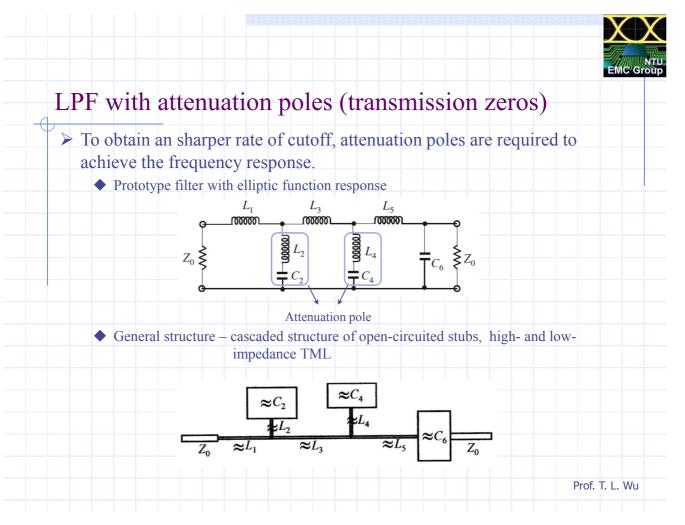



Prof. T. L. Wu

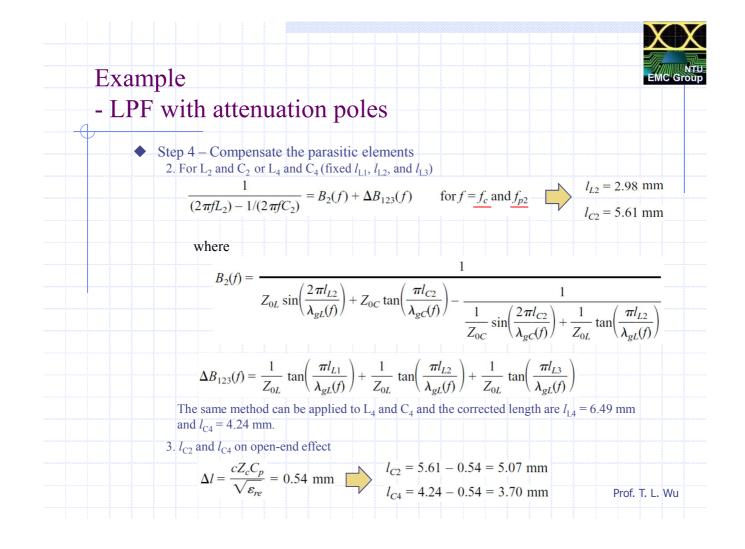


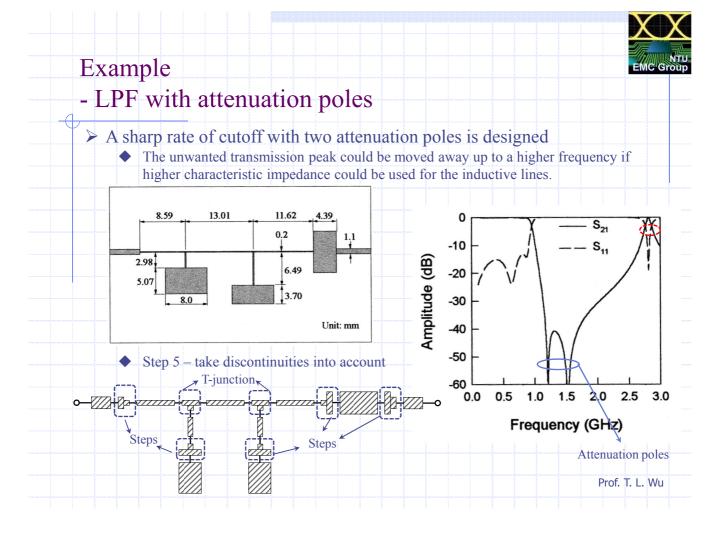

- Lower Z_{0C} results in a better approximation of a lumped-element capacitor, but the resulting line width W_C must not allow any transverse resonance to occur at operation frequency.
- Higher Z_{0L} leads to a better approximation of a lumped-element inductor, but Z_{0L} must not be so high that its fabrication become difficult, or its current-carrying capability becomes a limitation.





Example


- LPF with attenuation poles


➢ Design a six-order elliptic LPF with a passband ripple L_{Ar} = 0.18 dB and a minimum stopband attenuation L_{As} = 38.1 dB at Ω_s = 1.194 for cutoff Ω_c = 1. The filter is designed at cutoff frequency f_c = 1 GHz and the source/load impedance of the filter is 50 Ω.

• Step 1 – Find out the required L/C element values

56 57 58 59 60	$\begin{array}{c} 1.252 \ 921 \\ 1.237 \ 179 \\ 1.222 \ 145 \\ 1.207 \ 787 \\ 1.194 \ 077 \end{array}$	42.7 41.5 40.4 39.3 38.1	0.8705 0.8587 0.8466 0.8342 0.8214	0.3221 0.3377 0.3541 0.3712 0.3892	$1.147 \\ 1.132 \\ 1.116 \\ 1.100 \\ 1.084$	$\begin{array}{r} 1.645 \ 294 \\ 1.617 \ 530 \\ 1.590 \ 725 \\ 1.564 \ 828 \\ 1.539 \ 791 \end{array}$	1.269 1.249 1.229 1.209 1.188	0.5941 0.6274 0.6629 0.7008 0.7413	1.024 0.9957 0.9668 0.9375 0.9077	$\begin{array}{r} 1.281 \ 971 \\ 1.265 \ 189 \\ 1.249 \ 136 \\ 1.233 \ 777 \\ 1.219 \ 083 \end{array}$	$1.172 \\1.159 \\1.145 \\1.131 \\1.117$	1.140 1.139 1.138 1.137 1.136	56 57 58 59 60
61 62 63 64 65	$\begin{array}{c} 1.180 & 985 \\ 1.168 & 486 \\ 1.156 & 557 \\ 1.145 & 175 \\ 1.134 & 320 \end{array}$	37.0 35.9 34.8 33.7 32.6	$\begin{array}{c} 0.8081 \\ 0.7945 \\ 0.7804 \\ 0.7659 \\ 0.7509 \end{array}$	0.4081 0.4280 0.4490 0.4712 0.4947	$\begin{array}{r} 1.067 \\ 1.049 \\ 1.032 \\ 1.013 \\ 0.9940 \end{array}$	$\begin{array}{c} 1.515 & 571 \\ 1.492 & 126 \\ 1.469 & 414 \\ 1.447 & 401 \\ 1.426 & 049 \end{array}$	$1.167 \\ 1.146 \\ 1.125 \\ 1.103 \\ 1.081$	0.7848 0.8317 0.8823 0.9372 0.9970	$\begin{array}{c} 0.8775 \\ 0.8468 \\ 0.8157 \\ 0.7843 \\ 0.7524 \end{array}$	$\begin{array}{c} 1.205 & 023 \\ 1.191 & 572 \\ 1.178 & 704 \\ 1.166 & 396 \\ 1.154 & 626 \end{array}$	1.103 1.088 1.074 1.058 1.043	1.134 1.133 1.131 1.130 1.128	$ \begin{array}{c} 61 \\ 62 \\ 63 \\ 64 \\ 65 \end{array} $
θ	Ω_S	A ₈ [db]	L	L_2	C2	Ω_2	L_3	L4	C.	Ω4	Ls	Cs	θ
	$g_7 = 1.000$					L_1	= 6.536	649 nH					
$g_{L1} = $	$g_1 = 0.821$	4				L	= 9.453	80 nH		Atte	enuatio	on pole	es
	$g_2' = 0.389$		I.	1		L_{\pm}	= 8.888	880 nH			1		
	$g_2 = 1.084$	2	Li	$=\frac{1}{2\pi f_c}Z$	og <i>Li</i>		₅ = 3.610	600 pF		$f_{p1} = \frac{1}{2\pi}$	$\sqrt{L_4C_4}$		
	$g_3 = 1.188$		C	1	1		$2 = 3.09^{\circ}$	716 nH	4	f . =	1	= 1.540) GHz
	$g'_4 = 0.741$			$= \frac{1}{2\pi f_c}$	Z_0^{SCi}	С	$_{2} = 3.45$	048 pF		$f_{p2} = \frac{1}{2\pi}$	$\sqrt{L_2C_2}$	1.5 4	, OIIZ
$g_{C4} =$	$g_4 = 0.907$	77					$_{1} = 5.899$						
$g_{L5} =$	$g_5 = 1.117$	0											
$g_{ce} =$	$g_6 = 1.136$	50				C	$_{4} = 2.88$	930 pF			F	Prof. T. L	Wu

LPF W				
	ith attenuation p	Joies		
♦ Step	0.2 - Choose the adequate d	lesign parameters of	f microstrip lines	
M Gu Gu	haracteristic impedance (ohms) icrostrip line width (mm) uided wavelength (mm) at f_c uided wavelength (mm) at f_{p1} uided wavelength (mm) at f_{p2}	$Z_{0C} = 14$ $W_C = 8.0$ $\lambda_{gC}(f_c) = 101$ $\lambda_{gC}(f_{p1}) = 83$ $\lambda_{gC}(f_{p2}) = 66$	$Z_0 = 50$ $W_0 = 1.1$ $\lambda_{g0} = 112$	$Z_{0L} = 93$ $W_L = 0.2$ $\lambda_{gL}(f_c) = 118$ $\lambda_{gL}(f_{p1}) = 97$ $\lambda_{gL}(f_{p2}) = 77$
◆ Ster	o 3 – Initial physical length	of the high- and lov	w-impedance line	
	$l_{Li} = \frac{\lambda_{gL}(f_c)}{2\pi} \sin^{-1} \left(2\pi f_c \frac{L_i}{Z_{0L}} \right)$	$l_{L1} = 8.5$ $l_{L3} = 13.4$	9 $l_{L2} = 3.96$ 01 $l_{C2} = 4.96$	5
	$l_{Ci} = \frac{\lambda_{gc}(f_c)}{2\pi} \sin^{-1}(2\pi f_c Z_{0c})$	C_i	10 $l_{L4} = 7.70$	
	2π o 4 – Compensate the parasition L_5 and C_6	$l_{C6} = 5.2$	$l_{C4} = 4.13$	3
	$2\pi f_c L_5 = Z_{0L} \sin\left(\frac{2\pi l_{L5}}{\lambda_{gL}(f_c)}\right)$ $2\pi f_c C_6 = \frac{1}{Z_{0C}} \sin\left(\frac{2\pi l_{C6}}{\lambda_{gC}(f_c)}\right)$	$+ Z_{0C} \tan\left(\frac{\pi l_{C6}}{\lambda_{gC}(f_c)}\right)$	$l_{L5} = 1$	1.62 mm
	$2 - C = \frac{1}{2\pi l_{C6}}$	$1 ton (\pi l_{L5})$	$l_{c6} = 4$.39 mm

	WII
	ase design a LPF based on Chebyshev prototype with following specifications: Passband ripple < 0.0432 dB
1. 2.	Cutoff frequency : 1 GHz
3.	Insertion loss $>$ 30 dB at 3 GHz.
	e properties of the substrate is FR4 with $\varepsilon_r = 4.2$ and loss tangent 0.01.
	e substrate thickness is 1.6 mm. The high and low impedance used in this design
is 9	00 ohm and 25 ohm, respectively. (Note: Please consider the parasitic effects and discontinuiti
a.	Please decide the order of the LPF and calculate the lumped element values of L and C.
	Please decide the order of the LPF and calculate the lumped element values of L and C. Based on step impedance approach, please plot the layout of the LPF, and calculate (and
a.	Please decide the order of the LPF and calculate the lumped element values of L and C. Based on step impedance approach, please plot the layout of the LPF, and calculate (and denote) the corresponding geometry dimensions.
a. b.	Please decide the order of the LPF and calculate the lumped element values of L and C. Based on step impedance approach, please plot the layout of the LPF, and calculate (and
a. b. c.	 Please decide the order of the LPF and calculate the lumped element values of L and C. Based on step impedance approach, please plot the layout of the LPF, and calculate (and denote) the corresponding geometry dimensions. Plot the return loss and insertion loss for the designed LPF using ADS. Simulate the return loss and insertion loss for the designed LPF using full-wave simulator (CST or HFSS), and compare the results with those modeled in (c). Please also discuss the
a. b. c.	 Please decide the order of the LPF and calculate the lumped element values of L and C. Based on step impedance approach, please plot the layout of the LPF, and calculate (and denote) the corresponding geometry dimensions. Plot the return loss and insertion loss for the designed LPF using ADS. Simulate the return loss and insertion loss for the designed LPF using full-wave simulator (CST or HFSS), and compare the results with those modeled in (c). Please also discuss the reasons for the discrepancy between them.
a. b. c.	 Please decide the order of the LPF and calculate the lumped element values of L and C. Based on step impedance approach, please plot the layout of the LPF, and calculate (and denote) the corresponding geometry dimensions. Plot the return loss and insertion loss for the designed LPF using ADS. Simulate the return loss and insertion loss for the designed LPF using full-wave simulator (CST or HFSS), and compare the results with those modeled in (c). Please also discuss the
a. b. c. d.	 Please decide the order of the LPF and calculate the lumped element values of L and C. Based on step impedance approach, please plot the layout of the LPF, and calculate (and denote) the corresponding geometry dimensions. Plot the return loss and insertion loss for the designed LPF using ADS. Simulate the return loss and insertion loss for the designed LPF using full-wave simulator (CST or HFSS), and compare the results with those modeled in (c). Please also discuss the reasons for the discrepancy between them.
a. b. c. d.	 Please decide the order of the LPF and calculate the lumped element values of L and C. Based on step impedance approach, please plot the layout of the LPF, and calculate (and denote) the corresponding geometry dimensions. Plot the return loss and insertion loss for the designed LPF using ADS. Simulate the return loss and insertion loss for the designed LPF using full-wave simulator (CST or HFSS), and compare the results with those modeled in (c). Please also discuss the reasons for the discrepancy between them.