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How (Not) to Decouple High-Speed Operational Amplifiers 
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ABSTRACT 

Decoupling the power supply pins of high-speed operational amplifier circuits is critical to 
their operation. Decoupling is also one of the least understood topics in engineering. It is 
seldom given the time or care required, yet it is relatively simple. This document will 
explain the pitfalls in decoupling and offer some correct techniques. 

Introduction 
Decoupling in high-speed design is usually done with little care. Engineers are so eager to get a 
prototype operational that they grab a handful of 0.1-μF or 0.01-μF capacitors out of a laboratory 
bin and assume, whew, the job is done. They think they are good engineers who have solved 
the problem of high-frequency coupled noise by throwing capacitors (and money) at it. They 
placed the obligatory capacitors, much like paying obligatory taxes to the government. 

Decoupling is a design task worthy of at least the same degree of analysis as calculating an 
operational amplifier’s gain or filter. Proper decoupling techniques do not have to be any more 
difficult than other design tasks. It requires the discipline on the part of the designer to take the 
task seriously and spend the time required to do it properly. A good designer should resist the 
temptation to grab capacitors at random from a laboratory bin or from a reel on the production 
floor. 

When a capacitor is used for decoupling, it is connected as a shunt element to carry RF energy 
from a specific point in a circuit, away from a circuit power pin, and to ground. Ideally, the 
impedance of the capacitor to ground should appear as low as possible to the RF energy that 
needs to be rejected. It is important to know the frequencies that are causing problems and to 
select the right capacitor(s) to eliminate those frequencies. 

Know Your Capacitor! 
All capacitors are not created equal. A 0.1-μF or 0.01-μF capacitor from a lab bin may or may 
not be what is expected. Most lab stock is stripped of information that would indicate the part’s 
manufacturer, grade, dielectric used, or its frequency characteristics. At high frequencies, the 
capacitor may operate quite differently from the brick-wall high-frequency short that the designer 
wants. 

Capacitor Impedance and Series Self Resonance 

Misconception number 1: Most designers think that a capacitor’s value is independent of 
frequency. It is not. The published value of capacitance is taken at a frequency the manufacturer 
specifies. It is relatively constant at low frequencies, but the value can change by more than an 
order of magnitude at high frequencies. 
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Capacitors have a series self-resonant frequency due to parasitic inductance. Capacitors also 
have parallel self-resonances that will be discussed later. As the operating frequency 
approaches the capacitor’s series self-resonant frequency, the capacitance value will appear to 
increase. This results in an effective capacitance CE that is larger than the nominal capacitance.  

The reason that capacitors are self-resonant is not hard to understand. A simplified high-
frequency model of a capacitor includes inductive components: 

 RP

ESRCO LS
 

Figure 1. High-Frequency Capacitor Model 

The model terms in Figure 1 above are: 

CO: Nominal capacitance at a frequency defined by the manufacturer 

LS: Equivalent series inductance 

ESR: Equivalent series resistance 

RP: Parallel (leakage) resistance 

The effective capacitance CE is a function of the reactance developed between the capacitor and 
its parasitic series inductance LS. The equivalent series resistance ESR and leakage resistance 
RP shown in Figure 1 do not have a significant effect on the effective capacitance. They do, 
however, affect the Q of the series self-resonance of the device. The effective capacitance CE of 
a capacitor is defined as: 

( ) OSO

O
E CLF

CC 221 π−
=  

A capacitor’s series self-resonant frequency FSR is defined as: 

OS
SR CL

F
π

=
2

1
 

The Q, or sharpness of the resonance characteristic, is given by the expression: 
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At the capacitor’s series self-resonant frequency, the reactance from CO and LS are equal and 
opposite, yielding a net reactance of zero. At this self-resonance, the net impedance will be 
equal to ESR||Rp. The capacitance at the series self-resonance will therefore be undefined, and 
the capacitor will have the lowest impedance at the series self-resonant frequency when used 
for decoupling. This impedance is typically in the range of milliohms (mΩ). At frequencies below 
series self-resonance, the impedance will be capacitive, and at frequencies above series self-
resonance, the impedance will be inductive. The impedance of the capacitor increases rapidly as 
the frequency is moved away from series self-resonance, and is given by the expression: 

( ) ( )22
CLPC XXRESRZ −+=  

Figure 2 shows the response for two typical capacitors. 

 
Figure 2. Typical Series Self-Resonances of Capacitors 

The series self-resonant frequencies are relatively low. This should be a clue to high-frequency 
designers that they need to take great care in selecting bypass capacitors. Some hints follow: 

• A designer can maximize rejection of an unwanted RF frequency by selecting a capacitor 
with a series self-resonant frequency corresponding to the unwanted frequency. 

• No single capacitor can be expected to properly decouple a system where multiple RF 
frequencies are present. Capacitors can be placed in parallel to reject different RF 
frequencies. 

• A capacitor becomes a dc blocking inductor above the series self-resonant frequency, 
which can present high-impedance to the RF interfering frequency, defeating the purpose of 
having a decoupling capacitor. This is why it is so bad to put the standard 0.1-μF or 0.01-μF 
capacitor (of questionable vintage) on a printed circuit board (PCB). It lulls the designer into 
a false sense of security, thinking that decoupling is done, when in reality all that capacitor 
is doing is taking up room on the PCB. 
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Most capacitor manufacturers give the series self-resonance characteristic of their capacitors as 
a graph of frequency vs capacitance. Multiple lines are sometimes placed on the chart, 
corresponding to different capacitor package sizes. 

 
 

Figure 3. Bypass Capacitor Selection 

It is important to be close: Q values for microwave capacitors can be in the hundreds, meaning 
that a small error in series self-resonant frequency can change the attenuation by orders of 
magnitude. 

To select the correct capacitor to reject a given frequency, follow the frequency line on the chart 
over to where it intersects the line on the graph, then go down the chart to the capacitance 
value. In Figure 3, to reject 1.9 GHz, 15 pF would be the correct value of the capacitance. 

This is a far cry from mindlessly selecting a 0.01-μF or 1000 pF capacitor, and it illustrates 
another misconception. 

Misconception number 2: Most designers think that when poor decoupling is suspected, 
increasing the value of capacitance will produce more attenuation. The exact opposite is true. 
When poor decoupling of high frequencies is suspected, decrease the value of capacitance (or 
preferably, do the homework and look up the series self-resonance). 

Correctly bypassing a high-speed operational amplifier circuit is as simple as maintaining a 
prototyping kit of microwave capacitors and looking up the correct value(s) of capacitance on a 
graph. 

If more than one frequency (or band of frequencies) is present in the system, two or more 
capacitors may be required to properly bypass. Each capacitor is then targeted at a different 
frequency range. 
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Parallel Self-Resonance 

Capacitors also have parallel self-resonance frequencies, related to the way they are 
manufactured and mounted on a PCB. There is only one series resonant frequency, but there 
are a series of parallel capacitances. A rough rule of thumb is that the first parallel resonant 
frequency occurs at about twice the series resonant frequency. 

While a capacitor has its lowest impedance at the series self-resonant frequency, it typically has 
its highest impedance at the parallel self-resonant frequencies. Therefore, while it is possible to 
take advantage of the series resonant frequency for RF purposes, the capacitor is useless at 
parallel resonant frequencies. 

It is not hard to understand the mechanism behind parallel resonance. Figure 4 shows a 
cutaway picture of a capacitor on a PCB. 

 

Figure 4. Capacitor on a PCB 

The capacitor is a collection of parallel plates. These plates sum together to produce the 
effective capacitance CE, but because all conduction is skin conduction at high frequencies, 
there is also some parasitic parallel capacitance plate-to-plate. In addition, because most 
capacitors are mounted horizontally on PCBs, there is also parasitic capacitance from the 
horizontal plates to the ground and power planes of the PCB. 

The high-frequency equivalent model is modified to include parallel resonant effects: 

 

LS
CO

RP

CP

RS

 

Figure 5. High-Frequency Capacitor Model with Parallel Capacitance 

CP in this schematic is actually a lumped element corresponding to the individual contributions 
from each plate and the PCB. The overall response of this circuit is shown in Figure 6. The 
resonances are shown as nulls, the magnitude of which is affected by source and load 
impedance. Vertical scale has been purposely omitted, as it will vary greatly in each application 
depending on the load. The presence of a null locates a resonance frequency. 
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Figure 6. Response of a High-Frequency Capacitor Above Series Self-Resonance 

The first parallel resonant frequency (PRF1) occurs very close to the series self-resonance 
(SRF). This is a danger sign to the designer that capacitor tolerance could change the 
attenuation at SRF into transmission at PRF1 very easily. It is very desirable to get rid of PRF1! 

Fortunately, there is a very easy way to eliminate PRF1, as well as all odd parallel resonant 
frequencies. If the capacitor is mounted on its side, the plates inside the capacitor are now 
perpendicular to the PCB: 

 

Figure 7. Vertical Capacitor Mounting 

This will eliminate the parasitic capacitances between the plates of the capacitor and planes on 
the PCB. The resulting spectrum shows that PRF1, as well as all odd parallel resonances, are 
eliminated: 

 

Figure 8. Resulting Response from Mounting a Capacitor Vertically 



SLOA069  

How (Not) to Decouple High-Speed Operational Amplifiers 7 

The response curve above shows that the capacitor will be usable for a much larger range of 
frequencies above the SRF, providing that predominately-inductive impedance is acceptable. 
The first region of high impedance at PRF2 does not occur until almost 2.5 times the SRF 
frequency. 

Some microwave capacitor manufacturers, such as Johanson, supply software to plot the self-
resonances of their products. These can greatly aid in designing a high-speed decoupling 
application, or any high-speed or RF application where the capacitor characteristics will be 
important. 

Mounting a capacitor in this way runs counter to the training of manufacturing and inspection 
personnel, who will have to revise their thinking for a high-speed PCB. 

Capacitor Dielectric Types 

Just as the internal construction and orientation of capacitor plates affect its self-resonant 
characteristics, the material between the plates, the dielectric, affects the characteristics of the 
capacitor. Dielectric material is the medium that isolates the plates, and it has characteristics of 
its own that affect the capacitor performance. The following information is condensed from one 
manufacturer: 

Table 1. Capacitor Dielectric Characteristics 
Dielectric Name Stability EIA Class TC Range 
NPO or COG Very stable, high Q I ± 30 PPM -55 to +125 °C 
X7R Semistable II ±15% -55 to +125 °C 
Z5U  III +22 / -56% +10 to +85 °C 
Y5V  III +22 / -82% -30 to +85 °C 

The average bin of laboratory stock capacitors is probably X7R or worse, because these are 
lower cost than the very desirable NPO (also called COG). 0.1-μF or 0.01-μF value capacitors 
used as decoupling capacitors are relics of the age of discrete digital design. The author has 
examples of early digital design from the 1960s with 0.1-μF ceramic disk capacitors lined up in 
neat rows between rows of digital ICs. Printed on every capacitor is the tolerance +20 / -80%, 
showing that the dielectric type is Y5V. The clock speed of these early digital boards, however, 
was a few megahertz at most. Nevertheless, 0.1-μF Y5V capacitors have persisted to the 
present day as decoupling capacitors, even as operating speeds for both digital and analog 
systems have increased a thousand fold. It is time for designers to adopt a new mindset about 
decoupling. The smartest decoupling design decision a designer can make would be to take the 
existing lab stock of supposed decoupling capacitors and dump them into a waste container. 
High-frequency decoupling requires NPO/COG capacitors. 

NPO/COG capacitors tend to get expensive at high values of capacitance. Fortunately for 
designers, it will seldom be necessary to use high values of capacitance. 
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What About Electrolytic Capacitors? 

Notice that nowhere in the preceding discussion was anything said about electrolytic capacitors. 
There is a good reason for this. Electrolytic capacitors, whether they are aluminum or tantalum, 
are very-low-speed devices. Their self-resonant frequency is limited to a range between 100 kHz 
and 1 MHz. Therefore, they are no good for decoupling high frequencies. The primary purpose 
of electrolytic decoupling capacitors is to filter power-supply switching noise, which is in this 
range. 

Electrolytic capacitors are often seen in digital systems, which are often powered from switching 
power supplies. Large digital systems often require many amperes of current, and the power 
supply has severe constraints. Switching power supplies are small, light weight, efficient, and 
therefore produce a lot of wattage in a small volume without generating a lot of heat. The only 
disadvantage of switching power supplies is ripple and noise. Ripple, of course, is the artifact of 
50 Hz or 60 Hz. Noise is an artifact of ac-to-dc conversion in the front end of the supply, which 
tends to be quite noisy. 

The primary use, then, for electrolytic capacitors, is at frequencies below 1 MHz. If a designer is 
sure that these frequencies are present, then they are necessary. If, however, there is no reason 
to believe that these frequencies are present, electrolytic capacitors are not necessary. A good 
example would be in a cellular telephone. The telephone is powered off a battery when 
operated, and it is operated off a linear power supply when recharging. If no dc-to-dc conversion 
is done inside the unit, then no electrolytic capacitor would be needed for suppressing switching 
power supply noise. If a dc-to-dc converter is used, it may be operating at frequencies higher 
than 1 MHz, and an electrolytic will not work. If, however, the telephone is operated near an AM 
radio transmitter, an electrolytic capacitor may be necessary to suppress RF that comes in 
through a hands-free device. This type of system level analysis and scenario development is 
needed for decoupling decisions. 

Texas Instruments includes electrolytic capacitors on evaluation boards because there is a 
chance they will be operated off a switching power supply, or operated near AM stations with 
long power-supply leads. Most laboratory applications, however, are well-shielded from AM radio 
stations, and most laboratory power supplies are not switching supplies. Therefore, electrolytic 
capacitors are not usually required. 

It is advantageous to omit electrolytic capacitors whenever possible. There are a couple of 
reasons: 

• Most electrolytic capacitors are on allocation from manufacturers, with long lead times. 

• Electrolytic capacitors are large, and they force other traces in a high-speed design to be 
correspondingly longer to accommodate them. High-speed design requires that traces be 
as short as possible to avoid parasitic capacitance and inductance. A component that is not 
absolutely required should not be on the board displacing traces, particularly a large 
component such as an electrolytic capacitor. 

• The pads required to support an electrolytic capacitor disrupt the width and placement of 
traces and vias, creating an opportunity for RF noise to be radiated into the circuit at the 
point where the capacitor is placed. 
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How to Lay Out Decoupling Capacitors on the PC Board 
Once the proper capacitor has been selected, it must be applied properly on the PCB, or all of 
the care in selection will be in vain.  

Trace Inductance 

Semiconductor manufacturers are responsible, in part, for poor high-frequency design 
techniques. Consider the DIP 14 IC package. The power pin has been placed on the diagonal 
opposite corner from the ground pin. There are a limited number of ways to make the connection 
to a decoupling capacitor: 

 

Figure 9. Traditional Decoupling Layouts 

• If the capacitor is placed near the power pin, there is a long connection to the ground pin, 
and access to the left side of the IC is restricted on one layer. 

• If the capacitor is placed near the ground pin, there is a long connection to the power pin, 
and access to the right side of the IC is restricted on one layer. 

• If the connections are made underneath the IC, there is free access to both sides of the IC 
on all layers, but access beneath the IC is blocked, and nothing is done to alleviate long 
connections. 

• The capacitor can be placed on the bottom side of the PCB (not shown), which will produce 
the shortest possible traces, providing that orthogonal routing is abandoned. The traces, 
however, would still add to more than a centimeter. 

• The worst problem, by far, created by the long connections is trace self-inductance. The 
formula for the inductance of a wire or PCB trace can be approximated by: 
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Where: 

x = length of the trace (cm) 

w = width of the trace (cm) 

h = height of the trace (cm) 
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The inductance is relatively unaffected by the height of the trace. It is more affected by the width, 
but it takes a large change in width to substantially affect the inductance. The predominant effect 
is the length. Common PCB traces have self-inductances that measure between 6 nH and 12 nH 
per centimeter.  

This is very bad news at high frequencies. For example, assume: 

• A cell phone application that must decouple 1.9 GHz 

• 6 nH/cm trace self inductance 

• 1.5 cm of circuit traces to the decoupling capacitor 

• A 30-pF capacitor with a CE of 27.77 pF, and an LS of 0.23 nH 

The first step is to use the series self-resonant frequency model and calculate the SRF of the 
capacitor, which will be 1.92 GHz, ideal for cell phones. But wait! Inductance adds in series. If    
9 nH is added to the LS of the capacitor, the series self-resonance becomes 314 MHz. This PCB 
layout is entirely unsuitable. Clearly, trace inductance must be avoided at all costs! It changes 
the series self-resonance of the capacitor. 

The example above is a bit extreme. Very few designers would think to use a DIP-14 IC in a cell 
phone. Newer ICs are surface-mount, and many have moved the power pins to more convenient 
locations. The movement to surface-mounting helps somewhat, because the connection 
geometries shrink. But shrinking geometries alone do not help the problem. The self-inductance 
of PCB traces is so large that any trace length negates careful capacitor selection. Fortunately, 
most high-frequency PCBs are now multilayer and have both power and ground planes. 
Designers should place vias from the planes as close as possible to the pad of the capacitor. 
Preferably, they should be incorporated into the copper structure of the pad itself. 

 

Figure 10. Proper Feedthru Method 

Even a couple of millimeters, as shown in the bad example in Figure 10, adds 1.2 nH to the LS of 
the capacitor. Using PCB traces to make connections to decoupling capacitors simply cannot 
work! The best that the designer can achieve is to minimize trace length by moving the feedthrus 
as near as possible to the part and making the resulting connection as wide as possible. 

Via Inductance 

Whenever there is a via on a PCB, a parasitic inductor is also formed. At a given diameter (d) 
the approximate inductance (L) of a via at a height of (h) may be calculated as follows: 
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Figure 11. Cutaway View of Inductive Vias 

For example:  

A 0.4-mm diameter via through a 1.5-mm thick PCB has an inductance of 1.1 nH. This is also 
extremely bad news for high-frequency designers.  

Three techniques combat via inductance: 

• Many PCB manufacturers offer laser drill systems that can create microvias with diameters 
from 0.15 mm down to 0.025 mm. 

• A blind via will reduce via height and, therefore, the inductance. 

• Placing multiple inductors in parallel can reduce inductance. 

If the example above is changed to: 

• Two blind microvias with a diameter of 0.025 mm going to an adjacent layer on a ten-layer 
board (h = 0.15 mm), the via inductance is reduced to 0.063 nH.  

Height is the predominant factor, so blind vias are much more important than microvias. If the 
example is changed to: 

• One blind microvia with a diameter of 0.15 mm going to an adjacent layer on a ten-layer 
board (h = 0.15 mm), the via inductance is reduced to 0.072 nH. 
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This may reduce PCB cost significantly, because 0.15 mm is the lower limit of conventional 
drilling techniques, making the laser-processing step unnecessary. It may also save the cost of 
special plating that is capable of plating a 0.025 mm hole. 

An Alternative Approach 

If blind vias and laser processing are not acceptable for cost reasons, the designer sometimes 
can borrow layout techniques from RF designers to combat parasitic inductances. These 
techniques do not necessarily suppress parasitic inductance, but they place the parasitic 
inductances where they do not affect circuit performance. 

 

Figure 12. High-Speed Layout with RF Techniques 

Figure 12 has several features that might escape the casual observer.  

• It is a multilayer board, with internal power and ground planes. 

• Multiple connections are made with vias around the outside of the circuit to a ground plane. 
The parasitic inductance is low because it adds in parallel, reducing the overall value. 

• Signal pins are connected to vias, to components on the backside of the board. In some 
applications, small circuits will probably be constructed on the top layer.  

• Ground-plane connections to the IC and the decoupling capacitor are made on the top layer 
with thermal reliefs. Thermal reliefs do act as traces and, therefore, add a small amount of 
inductance, but they are necessary for proper soldering. 

• Connection to power is made with a via, but the via and trace inductances appear before 
the capacitor, which is on the same pad as the power pin of the IC. Therefore, the parasitic 
via and trace inductance do not add to the capacitor’s series self-resonance. They actually 
help, by adding impedance at high frequencies to the power connection. 

• Remember that the capacitor should be mounted vertically on its side. 

• The capacitor is also connected to the power pad of the IC through thermal reliefs. 

• When power and ground planes are used in a multilayer board, they add distributed 
capacitance to the system, improving broadband noise rejection. 
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Conclusions 
Decoupling high-speed operational amplifier circuitry requires a little bit of design work. 
Capacitors should be selected for their high-speed characteristics, including self-resonant 
frequency. They should be mounted vertically (on the side) to avoid parasitic capacitance with 
the PCB. Care should be taken when using PCB traces and vias, because both have parasitic 
inductance that adds to that of the capacitor. 
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