
8-bit
Microcontroller

Application
Note

Rev. 0951B–AVR–05/02
AVR302: Software TWI Slave Implementation

Features
• Interrupt Based
• Device Can Be Given any 7-bit Address (Expandable to 10-bit)
• Supports Normal and Fast Mode (400 kbps)
• Easy Insertion of “Wait States”
• Supports Wake-up from Idle Mode
• Code Size 160 Words (Maximum)

Introduction
The need for a simple and cost effective inter-IC bus for use in consumer, telecommu-
nications and industrial electronics, led to the developing of the TWI bus. Today the
TWI bus is implemented in a large number of peripheral and microcontrollers, making
it a good choice in low speed applications. The AT90S1200 does not have dedicated
hardware for the TWI, but because of the high processing speed and flexible I/O ports,
an effective software TWI slave implementation, can easily be done. The AT90S1200
is the only 8-bit MCU known to date that can perform fast (400 kbps) TWI slave oper-
ations in software.

Theory of Operation
The TWI bus is a Two-wire synchronous serial interface consisting of one data (SDA)
and one clock (SCL) line. By using open drain/collector outputs the TWI bus supports
any fabrication process (CMOS, bipolar and more).

The TWI bus is a multi-master bus where one or more devices, capable of taking con-
trol of the bus, can be connected. Only Master devices can drive both the SCL and
SDA lines while a Slave device is only allowed to issue data on the SDA line.

Figure 1. START and STOP Conditions

START
CONDITION

STOP
CONDITION

SCL

SDA
1

Data transfer is always initiated by a Bus Master device. A high to low transition on the
SDA line while SCL is high is defined to be a START condition (or a repeated start con-
dition). A START condition is always followed by the (unique) 7-bit slave address and
then by a Data Direction bit. The Slave device addressed now acknowledges to the
Master by holding SDA low for one clock cycle. If the Master does not receives any
acknowledge, the transfer is terminated. Depending of the Data Direction bit, the Master
or Slave now transmits 8-bit of data on the SDA line. The receiving device then acknowl-
edges the data. Multiple bytes can be transferred in one direction before a repeated
START or a STOP condition is issued by the Master. The transfer is terminated when
the Master issues a STOP condition. A STOP condition is defined by a low to high tran-
sition on the SDA line while the SCL is high.

If a Slave device cannot handle incoming data until it has performed some other func-
tion, it can hold SCL low to force the Master into a wait-state.

Figure 2. Bit Transfer on the TWI Bus

Change of data on the SDA line is only allowed during the low period of SCL as shown
in Figure 2. This is a direct consequence of the definition of the START and STOP con-
ditions. A more detailed description and timing specifications, can be found in [1].

SDA

SCL

DATA
VALID

CHANGE
ALLOWED
2 AVR302
0951B–AVR–05/02

AVR302
Connection Both TWI lines (SDA and SCL) are bi-directional, therefore outputs must be of an open-
drain or an open-collector type. Each line must be connected to the supply voltage via a
pull-up resistor. A line is then logic high when none of the connected devices drives the
line, and logic low if one or more is drives the line low.

Figure 3. Physical Connection to the TWI Bus

Figure 3 shows how to connect the Microcontroller to the TWI bus. The value of RP
depends on VDD and the bus capacitance (typically 4.7 k). Since SDA is connected to
INT0, a falling edge on the SDA will cause an interrupt when a START condition is
detected.

SCLK IN

"0"

SCLK OUT

DATA IN

"0"

DATA OUT

RP RP

SCL SDA

T0

INT0

AT90S1200
(TWI Slave)

SCL

SDA

TWI MASTER

VDD
3
0951B–AVR–05/02

Implementation The implementation of the TWI Slave device presented in this application note is divided
into two main parts. These are a special initialization sequence executed directly after a
reset and the interrupt handling routine. Flow charts is shown in Figure 4 and Figure 5.

Figure 4. Initialization Flow Chart

The initialization routine “TWI_init” (Figure 4) perform the necessary initialization of
PORTD and External Interrupt 0. Note that the port initialization shown in the program
code really has no effect since both DDRD and PORTD Registers are zero after Reset.
However if other pins on port D needs to be initialized, this could be done here.

When initialization is done, the routine enters into a busy-loop which waits for the first
START condition. This is done because a high to low transition on SDA not necessarily
indicates a START condition if the bus is not free (no activity). Hence, both SDA and
SCL must be monitored.

When a START condition is detected, a call to the interrupt service routine handles the
first transfer and enables the interrupts.

The interrupt handling routine (flow chart shown in Figure 5) is a combination of two rou-
tines “TWI_wakeup” and “TWI_skip”. The combining of routines keeps the code size
down.

“TWI_wakeup” detects start condition (edge interrupt on EXT_INT0) and handles the
data transfer on the TWI bus. There are two important locations in this routine where the
user can add own code. One part handles incoming data and the other handles outgo-
ing data. In the program code these parts are commented with “INSERT USER CODE
HERE”. Received data or data to be send must be placed in the “TWIdata” Register.

“TWI_skip” handles situations where data transfer on the TWI bus is not addressed to
this device. Recall that if the bus is not free, both SDA and SCL must be monitored for a
START (or STOP) condition. In this implementation Timer/Counter0 is used to count
eight SCL clocks, i.e., one byte. By using the Timer/Counter0 Overflow Interrupt, pro-
cessing time is freed while one byte is transferred. When Timer Overflow occurs, the
“TWI_skip” is called and a new condition test is done.

RESET

Init TWI Port
and INT0

Wait for Start Condition

Call INT0 Handle

(main)
4 AVR302
0951B–AVR–05/02

AVR302
Figure 5. Interrupt Handling Flow Chart

EXT_INT0

Receive TWI
Address

HIT

Send
Acknowledge

Check
Address

Check
R/W bit

Prepare Output

Transmitt
8 databits

Read
acknowledge

Master
acknowledges

data ?

YES

READ

NO

Sample
SDA & SCL

Handle
Incomming Data

SDA or SCL
Changed

Send ACK

Store MSB

Receive
bit 6 to 0

WRITE

YES

NO

SCL Low

YES

SDA LowNO

Sample
SDA & SCL

SDA or SCL
Changed

SKIP BYTE

YES

SCL Low

YES

SDA Low NO

NO

NO

MISS

NO

Return from
interrupt

Return from
interrupt

YES

YES
5
0951B–AVR–05/02

Performance Figures

Register Usage Only five registers are used in this implementation: “temp”, “etemp”, “TWIdata”,
“TWIadr”, and “TWIstat”. Both temporary registers are free to be used inside the inter-
rupt user code.

Parameter Value

Code Size 160 words

Execution Cycles N/A

Register Usage • Low Registers
• High Registers
• Global

:None
:5
:5

Peripherals Usage 2 I/O Pins, Timer/Counter0

Interrupt Usage Timer/Counter0 Overflow Interrupt
External Interrupt0

Register Description

r16 – “temp” Temporary Internal Register.

r17 – “etemp” Temporary Internal Register.

r18 – “TWIdata” Contains current received or transmitted data. Only valid inside interrupt
user code.

r19 – “TWIadr” Contains current TWI address and direction bit. Do not use for other
purposes.

r20 – “TWIstat” Temporary storage for SREG.
6 AVR302
0951B–AVR–05/02

AVR302
Tips and Warnings The TWI routine presented can be reduced in size if the application guarantees that the
bus is free (no activity) before initialization is done. As an example, this can be done by
letting all masters wait approximately 20 ms after power up before accessing the TWI
Bus. This will ensure a free bus and eliminates the need to sample both SCL and SDA
while waiting for the first START condition. The initialization will then consist of interrupt
enabling, only. This procedure gives a reduction of 12 instructions.

Another size reducing method is possible by replacing the interrupt handling routines
with a polling routine. However this is not recommended due to the reduction of pro-
cessing time for other duties.

Handling incoming and outgoing data is time critical. The user should insert wait-states if
the code part which handles incoming or outgoing data is too time consuming (refer to
program code for recommended sizes). For Normal mode TWI operation it’s also possi-
ble to increase the crystal frequency.

Procedure for insertion of wait-states:

1. Right before the user code, force the SCL line low to initiate the wait-state.

2. Do the user code.

3. Finish the user code by releasing the SCL line.

Program code example (inside user code):
sbi DDRD,DDD4 ; force SCL low to initiate the-wait state

... ; User data handling code

cbi DDRD,DDD4 ; release SCL to remove the wait-state

Conclusion This application note shows how to implement the AT90S1200 as a multi purpose TWI
peripheral device. Normal mode TWI transfer (100 kHz) is supported by using a 3 MHz
or faster crystal or resonator, while Fast mode (400 kHz) only is supported for 16 MHz
crystals. The use of interrupts to detect bus activity frees processing resources when the
device is not accessed.
7
0951B–AVR–05/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

0951B–AVR–05/02 0M

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

	Features
	Introduction
	Theory of Operation
	Connection
	Implementation
	Performance Figures
	Register Usage
	Tips and Warnings
	Conclusion

