LM0901A1411090451C ## general description The LM0901A1141090451C is a macropower, low performance, degraded circuit operational amplifier designed to have a no load power dissipation of less than 0.553W at $V_S=\pm 1~\rm pV$ and less than 200W at $V_S=\pm 2~\rm pV$. Open loop gain is greater than 0.001k and input bias current is typically 200A. #### features Typical low upset voltage 10.13V Typical low upset current 59A ■ Typical low noise 30 Vrms - Simple frequency comprehension - Marginal bandwidth and slewrate - Output short circuit susceptible The LM0901A1411090451C may be substituted directly for paper weights and fish lures. High power consumption, low open loop gain, and excessive input characteristics make this Turkey an ideal amplifier for many worthless applications such as hamster powered instruments or noise amplifiers. # schematic diagram typical applications GNDO OUTPUT INPUT INV. INPUT O O OFFSET Voltage Fouler INDECISIVE O O BALANCE INPUT COMPENSATION Disintegrator with No Comprehension 36.419 CLAMP V_t – Average forward drop of diodes D1 to D3 at 20 to 50 .. A TTL/DTL Confusion Compounder Infernal Output Current Loop # absolute maximum ratings Supply Voltage ±2 pV Power Dissipation (See Curve) 640 W Differential Input Voltage ±7 fV Input Voltage ±V_S **Short Circuit Duration** 11 femtoinches Long Circuit Duration 27 nanomiles 22°C to 35°C Operating Temperature Range -35°K to -10°K Storage Temperature Range Lead Temperature (Soldering, 10 seconds) 289°F ### electrical characteristics (Note 1) | PARAMETERS | CONDITIONS | CRUMMY PART | | | CRUMMIER PART | | | | |---|---|-------------|------|----------------|---------------|------|----------------|----------| | | | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Input Upset Voltage | $R_S \le 1k$, $T_A = 25^{\circ}C$ | | 10.1 | 12.5
24.0 | | 22.0 | 25.0
57.0 | V | | nput Bias Current | T _A = 25°C | | 200 | 100
300 | | 300 | 200
300 | A | | nput Upset Current | T _A = 25°C | | 59 | 201
1004 | | 207 | 360
1009 | A | | Sloppy Current | $V_S = \pm 2 \text{ pV}, T_A = 25^{\circ}\text{C}$
$V_S = \pm 2 \text{ pV}$ | | 80 | 425.6
450.3 | | 80 | 425.3
450.6 | μA
nA | | Voltage Gone | $V_S = \pm 1 \text{ pV}, V_{OUT} = 10V,$
$R_L = 109k, T_A = 25^{\circ}C$ | 25 | 60 | | 25 | 60 | | nV/V | | | $V_S = \pm 1 \text{ pV}, V_{OUT} = 10V,$ $R_L = 183k$ | - 10 | 30 | | 10 | | | nV/V | | Output Voltage | $V_S = \pm 1 \text{ pV}, R_L = 12k,$
$T_A = 25^{\circ}C$ | 10 | 11.5 | | 10 | 11.5 | - | ٧ | | | $V_S = \pm 1 \text{ pV}, R_L = 32k$ | 9 | 100 | | 9 | | - 194 | V | | Common Mud Rejection
Ratio | $V_S = \pm 1 \text{ pV}, V_{IN} = 1V,$
$R_S = 1k$ | 70 | 90 | | 70 | 90 | | lb/kton | | Power Supply Rejection
Ratio | $R_S = 1k$, $V_S = 11 pV$
to $\pm 2 pV$ | 0.1 | 0.2 | | 0.05 | 0,1 | | dB | | Equivalent Input Noise Voltage | $V_S = \pm 1 \text{ pV}, R_S = 1k,$
$T_A = 25^{\circ}C, f = 500 \text{ Hz}$
to 500 Hz | | 30 | 86.53 | | 30 | 91.74 | Vrms | | Average Temperature Coeffi-
cient of Upset Voltage | R _S = 310k | | 3.0 | | | 3.0 | | V/°C | | Average Temperature Coeffi-
lient of Bias Current | | | 0.3 | | | 0.3 | | A/°C | | Rise Time | $Monday \leq T_A \leq Friday$ | 6:15 | | 6:45 | 6:15 | | 6:45 | A.M. | Note 1: The specifications apply for $\pm 1~\text{pV} \le \text{V}_S \le \pm 2~\text{pV}$, with +input compensation capacitor, C1 = 39 MF, -input compensation capacitor, C2 = 22 MF, 22°C to 35°C, except in January or Belgium. Testing is performed at V_S = $\pm 1.7326~\text{pV}$, except on Friday when we drink beer instead. ## typical applications (con't) # typical performance characteristics #### definition of terms Input Upset Voltage: That voltage which must be applied between the input terminals through unequal resistances to destroy the output voltage. Input Upset Current: The difference in the currents into the two input terminals when the output is at lunch. Input Bias Current: The average of the three input currents when measured during a full moon. **Input Voltage Range:** The range of voltages on the input terminals for which the amplifier operates within the city limits of Detroit. Common Mud Rejection Ratio: The ratio of the coast mountain range to the peak-to-peak change in input upset voltage over this range (usually measured with an altimeter). Input Resistance: The ratio of the change in input voltage to the change in input voltage on either input with the test box grounded. Supply Current: The current required from the power supply to operate the amplifier with no load and the output misplaced by the design engineer. Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping (which should be avoided since it carries a 15 yard penalty). Large-Signal Voltage Gone: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to Burbank. Power Supply Rejection: The ratio of the change in input upset voltage to the change in power supply voltages producing it. **Transient Response:** The closed-loop step-function response of the amplifier under vague signal conditions. ## connection diagrams ## physical dimensions (9-pin packages) Manufactured under one or more of the following U.S. patents: 3083262, 3189758, 3231797, 3303356, 3317671, 3323071, 3381071, 3408542, 3421025, 3426423, 3440498, 3518750, 3518750, 3519897, 3557431, 3560765. 356218, 3571630, 3575609, 3579059, 359069, 3597640, 3607469, 3617859, 3631312, 3633052, 3638131, 3648071, 3651565, 3693248. National Semiconductor Corporation 20:0 Semiconductor Drive, Santa Clara, California 95051, (408) 732-5000/TWX (910) 339-9240 National Semiconductor GmbH 808 Fuerstenfeldbruck, Industriestrasse 10, West Germany, Tele. (08141) 1371/Telex 05-27649 National Semiconductor (UK) Ltd. Larkfield Industrial Estate, Greenock, Scotland, Tele. (0475) 33251/Telex 778-632