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Abstract

We consider a structure comprising an array of coupled rectangular bars between
ground planes, in which it is frequently desired to know the appropriate spacing
to realise a given bar-to-bar coupling capacitance per unit length. The converse
problem of finding the coupling capacitance given the spacing has been treated by
Getsinger in [2], in which the results were presented in graphical form, not easy to
incorporate into a computer program. This paper presents a new analysis which
solves the problem directly, in a form capable of being implemented numerically.
The algorithms can also be extended to calculate the fringing capacitances.

1. Introduction

Coupled strips between ground planes of the type shown in figure 1 have been used for many
years as essential elements of many r.f. devices such as filters (e.g. combline and interdigital)
and directional couplers. The theoretical treatment of such subjects is derived from basic
transmission line theory.

A simple transmission line structure comprising a single conductor surrounded by an outer
conducting enclosure will support a transverse electromagnetic (TEM) wave. Its idealised
performance can be discussed entirely in terms of its inductance, L, and capacitance, C, per
unit length: throughout this paper the term ‘capacitance’ is used to mean the capacitance per
unit length of strip. These fundamental parameters can be alternatively expressed in terms
of other parameters, namely, characteristic impedance, Z, (or characteristic admittance Yp),
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Figure 1: Parallel bars between ground planes forming a pair of coupled transmission lines.
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Figure 2: Equivalent circuit of a pair of coupled transmission lines A and B, showing capaci-
tances per unit length.

velocity of wave propagation v and the relative dielectric constant ¢, of the medium surrounding
the conductors (assumed uniform). The relationships between these parameters are given by
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Additionally, v = 1/v/LC = ¢/e, where ¢ is the velocity of light in free space. Thus any two
of the set of parameters {Z, or Yy, v or €., L, C'} are sufficient to specify system performance.

An equivalent circuit of a pair of coupled transmission lines A and B in terms of the capaci-
tances can be reduced to that of figure 2, in which the definitions of characteristic impedance
and admittance are extended as follows. An even mode characteristic admittance Y of a pair
of transmission lines is defined as that of a given line, A, when the other line, B, is driven by
an equal in-phase voltage. An odd mode characteristic admittance Yj} is that of line A, when
line B is driven by an equal, phase-reversed voltage.
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Yid =00y and Yoo = v(Ca +2C4p) (2)

The ‘primary mode’ characteristic admittance Y} is defined with all other elements earthed.
Hence in terms of the quantities C'y and Cyp *

Tt should be noted in passing that these definitions do not translate directly into definitions of characteristic
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Many commonly used configurations [3] of two coupled lines require that the values of self (C4,
Cp) and mutual (C4p) capacitance be precisely determined. The problem was first essayed in
passing in [1]. The mathematical treatment of the problem is given in the appendix of that
paper. In the 1950s and —60s the requirement for a solution to the capacitance problem became
urgent and the standard treatment was published in [2] for rectangular lines. The results were
presented in graphical form and some skill is required in interpolation. Additionally, graphical
results do not lend themselves to incorporation in computer programs. It was decided therefore
to investigate the possibility of producing algorithms to give required results in a filter design
computer program.

It has been found possible to determine the dimensions and spacing of bars to produce the
required values of self- and mutual-capacitance in a form suitable for computer evaluation.
This matter is dealt with in detail below. The nomenclature adopted has been chosen to be
the same as that of [2] to facilitate comparisons.

2. Coupling between rectangular bars
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Figure 3: Cross section through parallel rectangular bars between ground planes, showing
relevant dimensions.

The configuration for consideration is that shown in figure 3. Two rectangular bars lie parallel
in the plane perpendicular to the surface of the paper. They are of equal thickness (¢) and
situated mid-way between ground planes spaced apart by b, which are in turn parallel with
the bars.

The capacitance associated with each bar can be segregated into two portions: that to the

ground planes, equivalent to C'y or Cg, and the mutual capacitance AC equivalent to capaci-
tance C4p of figure 2.

impedance by simple inversion. The definitions of characteristic impedance require that the other lines of an
ensemble be driven with equal currents, not voltages, and this leads to values which in the case of non-identical
coupled lines are not the reciprocals of the characteristic admittances.
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Figure 4: (a) The coupling and to-ground capacitances associated with the structure to be
analysed and (b) the coupling capacitance replaced by four equal capacitances to simplify
analysis.

Consider first the pair of identical bars shown in figures 3 and 4. These bars are assumed
initially to have a width, w, sufficiently large that the fields associated with each end of a
bar may be considered individually, i.e. the intervening field is sensibly uniform over a range.
The capacitance to ground for each bar can be split into three pairs of capacitances. One pair
comprises the idealised parallel plate capacitance that would exist from each face to ground
(Cp). The second pair (C%,) is associated with the corners adjacent to the coupling gap; these
capacitances represent the perturbing values arising from fringing effects and each is equal to
the difference between the actual capacitance to earth and C,. The third pair of capacitances
(C%) arises similarly from the fringing effects at the two corners of each bar remote from the
coupling gap. Thus, the total capacitance to earth from a bar is given by

2(C, + C + CY) (4)

Under even-mode conditions of excitation, the capacitance to earth is designated C'y. and is
equal to the capacitance defined above.

Under odd-mode conditions of excitation, the apparent capacitance from either bar to ground
is 2(Cp + C%, + C} + AC). In this condition, the plane between the bars is at zero potential,
and may be replaced by a zero potential conducting wall for the purpose of analysis. The
coupling capacitance AC may then be split into four components each equal to the original
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Figure 5: The definition of the separatrices and points G.

coupling capacitance as shown in figure 4b.

The capacitances mentioned above can be defined in precise terms. Referring to figure 5, we
see that
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The capacitance C’}e is a function of both ground plane spacing and bar separation; clearly
C’} is equal to the limiting value of C’}e as the bar separation approaches infinity. The lines
through G in figure 5 define separatrices, dividing the field from bar A into two portions, one
going to ground and one going to bar B. The points G are those at which the separatrices
cross the central plane between the bars.

The configuration to be analysed is shown in figure 6. This is in odd-mode excitation and
represents the cross section through one bar structure with the zero potential wall in place.
The origin is point O and the bar is assumed to extend to B at joo. The co-ordinates of points



in figure 6 are normalised with respect to b/2, the half-ground-plane spacing. Point A is thus
(a, jO) where

a=(t/2)/(b/2) =t/b (8)

Similarly D is at (a,jd), with d = AD/(b/2), B is at (x,joo) (where a < z < 1), C is at
(1,—js/b), G is at (EG/(b/2),—js/b) and E is at (0, —js/b).
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Figure 6: A cross section of the configuration to be analysed, with normalised dimensions.

Since the system is symmetrical, it is only necessary to analyse the quarter segment shown
in figure 6. The capacitances are evaluated by conformal transformation. The solution in [2]
for AC in closed form involves elliptic functions. The present work required the numerical
computation of integrals which are amenable to computer evaluation. The present analysis then
falls into two parts: the evaluation of the relationship between bar dimensions and coupling
capacitance, and the evaluation of the fringing field component and its effective perturbing
distance.

The first conformal transformation to be employed is of a Schwarz-Christoffel type given by

dz k' 22 — q'?
dz - 22— 1V 22 —¢? 9)

This transforms the interior of the shape OADBCGEO of figure 6 into the lower right quarter
of the 2’ plane as shown in figure 7a, with the points O’, A’, D', B’, C’, G’ and E’ corresponding
with their unprimed counterparts in the z plane. The transformation has located the point O’
at (0,70), B" at (1,40), G" at (¢',j0) and E' at (oo, j0). The points A’, C', D" are at (a', j0),
(¢',70) and (d’, jO) respectively and co > ¢’ > ¢ > 1 > d' > a’ > 0. It should be noted that
the left-hand side of the configuration in the z plane (not shown) is transformed symmetrically
into the left hand side of the z’ plane.
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Figure 7: The transformations employed in the calculation: (a) the primed plane, (b) the
double-primed plane.

At 2'=0, dz/dZ' is equal to —k'a’/c’, and hence k' is essentially negative. It is convenient to
re-arrange the transformation with k = —£&', so that & is essentially positive and the transfor-
mation becomes

dz k 22 — q'?
_:kF(zl): 2 _ 2

dz! (10)
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This initial transformation leads to a second which produces a form from which the capaci-
tances can be readily deduced. This second transformation is

1 1 '
z"z—ln( +Z> (11)
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As shown in figure 7b, this latter transformation converts that part of the Rz’ axis between
O’ and B’ into the positive half axis of the z” plane with points 0’ (0,50) and B’ (1,50) in
the 2z’ plane becoming corresponding points O” (0, j0) and B” (o0, jy), 0 < y < 1, in the 2"



plane. That portion of the Rz’ axis between B’ (1,50) and E’ (oo, j0) becomes the segment
between B” (oo, jy) and E” (0,71) in the 2" plane. Negative points on the Rz’ axis appear in
corresponding negative positions on the z” plane.

It is apparent that the transformation from the z plane to the z” plane is given directly by

dz km
= — " 12

where
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Clearly if the inner bar OAB is held at a given potential, with the ground planes and EC at
zero, then in the z” plane the line segment having jy” = jO will be at the given potential,
whilst the segment having jy” = 51 will be at zero. The surfaces so defined now form a parallel
plate capacitor. The essential property of conformal transformations means that the coupling
capacitance AC' in figure 4 is equal to that in figure 5 between EG and bar A; it is also equal
to that in figure 7b between E’'G” and the Rz" axis, i.e. AC = ¢"¢, where € is the dielectric
constant of the medium. From the appendix of [2], it can be deduced that

2
E:lln( ¢ > :g” (14)
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This expression relates ¢” to ¢.

In normal usage the capacitance AC' is known and the major problem is to determine the
corresponding dimensions in the z plane. At this stage therefore, the values of b, the ground
plane spacing, and ¢, the centre bar thickness, are assumed to be known also, with s to be
determined.

The process of derivation is most readily followed by inverting the transformations in sequence.
Given AC/e (= ¢") we may find ¢ from

/ 1
/
¢ = 1 — e~ TAC/e (15)

The next stage is to consider the situation in the 2’ plane. Here the transformed polygon of the
z plane now lies along the Rz axis, with the interior lying below the axis. A contour integral
can be delineated following the path from E' (00, ;0) to O’ (0,50), O’ to (0, —jo0), and an
infinite arc from (0, —joo) to E' (00, j0). There is a pole on the Rz’ axis at Rz’ = 1, and the
contour must be indented to pass below this. The integral, which by Cauchy’s theorem is zero,
may be expressed as the sum of several parts i.e.
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where J is the residue from the indentation at Rz’ = 1. The integrals involving ¢ are taken in
the limit ¢ — 0.

We first deal with

/ T F()dY (17)
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On this infinite arc the integrand is approximated by —1/2".

R — oo, the integral becomes

Replacing 2’ by Re’?, where

0 , 0 e—J0
el?dn = Jim —j—df =0 (18)
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The term J is the integral around the indentation at 8z’ = 1 and may be evaluated by the
substitution 2z’ = 1 + re/? and letting » — 0, or else by evaluating the residue by conventional

means. Either way
w [1—a
J=—k=\| —— 19
2V 2 -1 (19)

Examining the other integrals individually, we can make the following identifications

k / “ P = 1 (20)

In the z plane this is the transition from E to C normalised with respect to b/2.
The integrals

1+4¢ a
K / F(Nde +k [ F()d +J (21)
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taken together have a (Cauchy) principal value equal to —(b —t)/b+ js/b corresponding with
the transition from C to A in the z plane. Identifying real and imaginary parts gives

b—t 7 [1—a?
b :k§ 2 -1 (22)

]s 1+e ! ! a, ! !
75 k/ F()de +k [ F()dz (23)

and



The remaining integrals are given by

ok " p()dy (24)

and

L / TR (25)
0

The summation of the integrals and residue are zero, as required.

We can now re-state the problem usually to be solved. It is: given the values of AC, b and ¢,
determine the value of s.

From the equation 22,

20—t [¢?—1
[ LY - (26)
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and hence, using equation 24,

t 2b—t |[?2—1 o [22—qa? d7
R (27)
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In this equation, ¢/, b and ¢ are all known and the equation can be solved for a’ by the numerical

technique discussed in Appendix I. Given a/, the value of k immediately follows. The value of
s/b can now be found from equations 22 and 25 which give

—s  2b—t [¢? =1 [~ [224a”
N 22 4+ %1 4+ 22

(28)

Values of AC/e and C'%,/e have been calculated in accordance with the above and are plotted
in figure 8. The curves are identical to those of figure (3) of [2].

3. Determination of fringing capacitance

In discussing the equivalent circuit of the pair of coupled bars, we referred to the fringing
capacitances C%,. It is necessary to know the value of this when a filter design is in hand.
The fringing capacitance is defined as the difference between the actual capacitance between
one side face of the centre bar and ground, and the idealised parallel plate capacitance, when
the bar side dimension tends to infinity . The parallel plate capacitance between A and D in
figure 5 is C,(d) = 2eAD/(b —t). The total capacitance to ground, considering one side and
the end of the bar adjacent to the coupling gap end of the bar only, is C)(d) + (.. We can
determine the value of C%, by noting that

10
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Figure 8: (A) log;;(AC/¢) and (B) log,,(C%,./€) versus s/b for /b = 0.0, 0.1, 0.2, 0.4, 0.6 and
0.8 (from bottom upwards).
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where " = 1/mIn(1 + a')/(1 — a’). Thus given AC/e, t, and b, it is possible to find s,
C%./e. The value of Cy/e, the fringing capacitance associated with a bar end where there
is no neighbouring bar, is equal to the limiting value of C,/e when the inter-bar spacing s
approaches infinity.

The expression for (', /e has been left with d” finite in order to explore the limits of validity.
As d" increases the value of C’}e /e rapidly approaches a limit. Physically, this corresponds
with the onset of field uniformity in the gap. In order to determine a suitable value of d at
which it may be deemed that the field has reached uniformity, we may calculate the value of
d at which the value of C%, /e has reached a given fraction of its final value. Values of dgge, (at

11
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Figure 9: Minimum bar dimension for which (%, has reached 99% of its final value
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Figure 10: Minimum bar dimension for which C', has reached 90% of its final value
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Figure 11: Minimum bar width for weakly coupled bars as a function of ¢/b with AC/e = 0.01.
(a) wogy, (b) 0.35(1 —¢/b) and (c) wgpy. N.B. widths normalised with respect to b.

which C%, has reached 0.99 of its final value) and dgoy (C%, has reached 0.9 of its final value)
have been calculated and plotted in figures 9 and 10, for a range of values of AC/e with ¢/b
as parameter.

If we now assume that dggy, (or dgoy) represents a distance sufficiently far from the bar end
that the field is effectively normal, then we may postulate that a bar of width equal to twice
this distance has the minimum width for which the foregoing treatment is applicable. If the
bar width w is normalised with respect to b, then wggy, is numerically equal to dggy, ete.

Whilst figures 9 and 10 show that values of minimum bar dimension (and hence minimum
width) vary appreciably with ¢/b and AC'/e, this is not very helpful in deriving rules of thumb
for practical applications. Such a rule may be derived by replotting the data for a bar with very
weak coupling (e.g. AC'/e = 0.01) to its neighbours: wggy and wggy, are plotted as a function
of t/b in figure 11. From this it can be seen that for wggy, minimum normalised width varies
between 1.2 and 0.6 whilst for wgyy it varies between 0.5 and 0.05. The only other criterion for
minimal interaction between fringing fields known to the present authors is that given in [3]
as w > 0.35(1 — t/b). This has been plotted in figure 11, from which it would appear to be of
somewhat limited value.

13



APPENDIX

Details of the numerical calculation of s/b
for a given AC/e, t and b

Step 1 Given AC /¢, calculate ¢, given by

1
\/1 — e—TAC/e

/
cC =

Step 2 Find o’ such that?

N2 (=1 Ja?—2? dox ¢t
I(a)—; 1—a’2/0 2—x21—a2 b—t

This is best done in two parts. The first part is to find n such that

t

I(1-107") < ——
( ) <3

< I(1—10"""h

where n = 0,1,2... This initial bracketing is done because the value of 1 — a' varies over
several orders of magnitude for AC/e in the range of interest.

The second part is to use the bisection method [4] with the initial range 1—10"" to 1 —10"""!
to find a more accurate value of a’. The criterion used for stopping bisection was that

[I(a) —t/(b—1t)] <2x107°
Such accuracy was always achieved within 50 iterations.
Step 3 This value of a’ allows us to find s from

Cl2_1 00 al2+x2
2+ 221+ 22

from which s/b follows.

Note: The integrand of I(a’) behaves in such a way that necessitates the use of rather
careful numerical integration since a’ is a branch point. An adaptive integration routine using
the Gauss 10-point and the Kronrod 21-point rules, as implemented in the NAG library, was
found to be suitable.

2If t =0, o' = 0 and we can miss out step 2.
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