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Simple µµµµC-Based ADCs -- Part II 
by Dennis L Feucht 

 
 
Microcontrollers (µCs) often contain a comparator that can implement a precise ADC with the addition of 
only an external resistor and capacitor. The technique is to implement a charge-balancing, or Σ-∆ (∆-Σ) 
ADC. The basic scheme uses a comparator which outputs µC input bit IN and requires one µC output bit, 
OUT. The circuit is shown below. 

In µC software, the ADC routine is best implemented as an interrupt routine, driven by a timer of period 
tINT, the interrupt period. In the circuit above, the ADC reference voltage is the µC supply (VR = VCC). This 
assumes that the µC has CMOS output bits, so that the outputs for negligible current are near the rails: 
 
OUT bit CMOS levels:  
 
 
If greater accuracy than VCC is required, instead of driving R directly from OUT, use it to switch accurate 
analog switches between reference ground (for 0) and an accurate VR (for 1). If the OUT-bit voltage levels 
are close enough to the rails, then an accurate VCC can be supplied as the reference. 
 
 
ΣΣΣΣ-∆∆∆∆ RC Constraint for n-Bit Accuracy 
 
The charge-balance voltage waveform on the capacitor is a constant voltage with a small up-down 
exponential ripple riding on it, at the frequency of the OUT switching. If this varying voltage becomes too 
large, the ADC will not be linear enough for n-bit conversion. The larger the RC time constant, the smaller 
the ripple. How large must RC be to ensure n bits of linearity? 
 
The ripple voltage, ∆vC = vH − vL ≤ VLSB = 2−n⋅VR, and  
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Where, vH and− vL are the maximum and minimum of vC. At full-scale, vH = VR and 
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For tINT = 1 ms, and n = 8 bits, then R⋅C ≥ 256 ms. For n = 10, R⋅C ≥ 1.024 s. The allowable measurement 
rate is comparable to DMMs. 
 
 
ΣΣΣΣ-∆∆∆∆ Algorithm 
 
The ADC algorithm, coded as part of the interrupt routine, sets or clears OUT to keep vC = vx. In other words, 
charge balance is maintained on C so that ∆q = 0. This can be expressed using ∆q = i⋅∆t, where i = v/R: 
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where, N is the number of tINT cycles during the measurement. After N intervals, the measurement ends, and 
the NX accumulated during this measurement interval is related to vX by N and VR: 
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N is a software parameter and VR = VCC of the µC. Each interrupt, the following routine is executed: 
If IN = 1: OUT ← 1; increment NX 
If IN = 0: OUT ← 0 
 

At the end of the measurement, after N interrupts (or intervals of tINT), then execute the following routine: 
measured NX ← NX 
Reset NX ← 0 

 
 
Unmatched RU and RL 
 
A refinement that can be brought to the minimalist ADC is to account for different resistance values in series 
with the OUT switches. Let RU be the series resistance when OUT = 1 (high) and RL when it is 0 (low). 
Then: 
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Given the two switch resistance values, the measured voltage, as a fraction of the reference voltage is: 
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This equation presents the onerous µC task of division, despite the pre-calculated constant, RL/RU. This 
refinement is best left for DSPs, which usually facilitate division. As µCs become like DSPs, this 
improvement becomes feasible to implement. 
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Auto-Calibration 
 
A more elegant method of producing an accurate measurement without external reference switching can be 
applied to systems in which multiple channels are multiplexed into the ADC. If two additional MUX inputs 
are available and the ADC is linear, two-point calibration can be applied. Two reference voltages, which can 
be 0 V and VR are applied to the ADC, resulting in NX(0 V) = N0 and NX(VR) = NR. A plot of vX versus NX will 
then have two known points on it, corresponding to the known input voltages. The equation for the 
calibration line is: 
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where, the expression in parentheses is the slope of the line. In general, the offset voltage, Vos, can be of 
either polarity, requiring negative NX. To get around this, two precision resistors forming a divider from VR 
can provide instead a known accurate voltage of α⋅VR, where α is the attenuation ratio of the divider. For this 
more general case, the equation of the line can be written by equating slope expressions: 
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Solving for vX, 
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By making α = ½, then m must be divided by two, a right-shift instruction. To add ½ to it, increment m 
before right-shifting. The resulting number is the fraction of VR that is vX. 

 
 
Inverting ΣΣΣΣ-∆∆∆∆ ADC 
 
An inverting Σ-∆ converter uses one additional resistor, as shown below. 

The RC time constants must still be much greater than tINT, a low OUT is 0 V, and a high level is VCC = α⋅VR. 
Charge balance on the capacitor is maintained by the ADC algorithm, keeping VC = VR. This results in  
∆Q = 0 C, or: 
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For RX = RR, and α = 2, then: 
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The following chart summarizes the transfer function: 
 

NX vX 
0 2⋅VR = VCC 
N/2 VR 
N 0 V 

 
The interrupt routine for the ADC is: 

If IN = 1: OUT ← 0; increment NX 
If IN = 0: OUT ← 1 
 

At the end of the measurement, after N interrupts (N intervals of tINT), then execute: 
measured NX ← NX 

Reset NX ← 0 
 
 
Closure 
 
These minimal-component ADCs are often adequate for slow, low- to medium-precision, µC-based ADC 
requirements. Besides few components, other advantages of the Σ-∆ ADC is that it does not need an anti-
aliasing filter or a sample & hold circuit preceding its input. Its integrating function reduces noise bandwidth 
of the measurement. It is an optimal solution for many µC-based applications. 
 
The inverting ADC input circuit could be extended to have a second-order, cascaded RC filter using the 
same software routine, with a total of 4 external resistors and 2 capacitors. This adumbration is left to the 
imagination of the reader. With sufficiently low tINT, which is achievable on faster µCs and DSPs, high 
precision can be attained with a medium-performance comparator. 
 
 

 


