Vorlesung 1: 06.03.2008

Einführung

Definition Lernziele

- Erkennen der Möglichkeiten und Grenzen der Schaltungssimulation
- Vorbereitung der Schaltungen für die Simulation
- Parametrierung von Modellen der unterschiedlichsten Schaltungselemente; Kontrolle ihrer Funktion durch Testsimulationen
- Entwicklung von Simulationsprogrammen für allgemeine elektrische Netzwerke, analoge, kleine digitale und industrieelektronische Schaltungen; Überprüfung der Simulationsergebnisse auf ihre Plausibilität.

Lehrinhalt

- Einstieg in die PSpice-Simulation mit **ORCAD** Release 9.x
- Bauelementebeschreibung vom Widerstand über Halbleiter, Quellen bis zu beliebig komplexen Bauteilen, z.B. Operationsverstärker
- Beschreibung der Programmsyntax
- Entwicklung von Testprogrammen zur Kontrolle des Bauteileverhaltens
- Darstellung der Simulationsergebnisse und deren Übernahme in die Textverarbeitung
- Simulation von Gleichstrom- und Wechselstromnetzen, auch in komplexer Beschreibung und in Frequenzabhängigkeit einschl. Ortskurven und Fouriertransformation
- Simulation einfacher industrieelektronischer Schaltungen
- Darstellung von fehlerhaften Simulationen

Prüfungsanforderungen nach Tiefe und Breite

Kenntnisse über die Simulation elektrischer Netzwerke und elektronischer Schaltungen mit PSpice. Handhabung des Simulationsprogramms, Beschreibung der Bauelemente und Parameter, Darstellung und Weiterverarbeitung von Simulationsergebnissen der Gleichstrom-, Wechselstrom-, Einschwingund Fourieranalyse mit Plausibilitätskontrollen und Fehlererkennung.

Arbeiten mit PSpice im Netz der FH-OOW

- wie starte ich das Programm (Einloggen, Programm aufrufen, Beispiele kopieren)
- wo finde ich die Beispiele nach dem Kopiervorgang
- Editor (Struktur eines Programmlistings am Beispiel des ersten Beispiels (Demo1)
- Demo1... Beschreibung ... Bauteile platzieren
- Demo2 ... incl. Nyquist
- Demo4 ... Rush-effekt (Darstellung mit verschiedenen Einschaltwinkeln → Spannungsquelle einmal mit phase=0 sonst phase=90°)
- Demo6... Beispiel funktioniert nicht, da noch auf die fehlende Library (... Warnecke) verwiesen wird... Lösung : Library entfernen und das Beispiel funktioniert einwandfrei.

Starten des Programmes:

- Menü \rightarrow FH-Netz-E Software
 - \rightarrow J- Anwendungssoftware
 - \rightarrow OrCad Lite 9.2
 - → Capture Lite Edition

Wenn noch nicht geschehen sind alle Beispiele aus dem LEK – Labor folgendermaßen auf die lokale Platte zu kopieren :

Menü → FH-Netz-E – Software → J- Anwendungssoftware → OrCad Lite 9.2 → LEK-Demos auf C: laden

Achtung : je nach verwendetem Betriebssystem ist der Schreibschutz der Beispieldaten zu entfernen !

Die Beispiele werden z.B. ab dem Temp – Verzeichnis als Baumstruktur abgespeichert (jedes Beispiel hat ein eigenes Verzeichnis... keine Verpflichtung, jedoch übersichtlicher)

In OrCad Capture (Session log)

File \rightarrow Open \rightarrow Projekt \rightarrow (neues Verzeichnis anwählen und die erscheinende *.OBJ – Datei auswählen (Doppelklick oder Öffnen nach dem markieren)

Es erscheint eine Struktur © Orcad Capture - Lite Edition - [Demo1.op] Tie Design Edit View Iools PSpice Accessories Options Window Help Compared to the Compared to the	_ @ × _ @ ×
File The Herachy Design Resources Herachy Dupputs When 1 schemalic 1. net Project Resources Simulation Simulationsprofile editieren	
Ready Session Log	
😭 Start 🕎 Microsoft Word - OrCad Ve 🔛 Orcad Capture - Lite Editio	🥏 🔀 13:49
Schematic1 - Page1 = Schaltbild	
Starten der Simulation mit dem Button	

Berechnung wird gestartet... nach erfolgter Berechnung erscheint der sogenannte Postprozessor "Probe" . In diesem Fenster werden alle Signale dargestellt die von uns voreingestellt wurden (der Simulator ist so einzustellen, das alle dargestellten Signale sowie Labels... automatisch wieder eingestellt werden! Kurze Einführung in die Bedienung...

Folgende Menüpunkte sind sichtbar

0-		rr						
File	Edit	View	Simulation	Trace	Plot	Tools	Window	Help
-								

1) Menüpunkt Trace

- add Trace ... neue Signale zeigen
- delete all Traces ... alle Signale löschen
- undelete Traces ... Signale wieder herstellen
- FFT Fourier ... Darstellung der Zeitfunktion im Frequenzbereich (FFT durchführen)
- Performance Analysis
- Cursor-Display... Cursor einblenden
- Macros
- Goal Funktions
- Eval Goal Funktions

2) Menüpunkt Plot

- Axis settings ... Einstellung der Achsen
- Add Y-Achsis ... zusätzliche Y-Achse einblenden
- Delete Y Achsis .. zusätzliche Y-Achse wieder löschen
- Add Plot to Window neues Fenster öffnen
- Delete Plot (aktives) Fenster löschen
- Unsynchronize X-Achsis X-Achsen der verschiedenen Plots sind einzeln einstellbar
- Digital Size
- Label Grafiken beschriften und Meßpunkte markieren...

3) Window

- New Window
- Close
- Close All
- Cascade
- Tile Horizontally
- Tile Vertically
- Tile
- Display Control
- Copy to Clipboard Ergebnisse in die Zwischenablage

Achtung : Probe – Fenster bleibt mit allen Einstellungen stehen !!

Vorführung einiger Simulationen :

- Demo1 Transientenanalyse
- Demo2 AC-Analyse
- Demo 3 DC-Analyse

Demo 4 Transientenanalyse (Simulation von realen Spulen)

Demo 6 gemischte Digital/Analoge Schaltung

In Probe

 $Plot \rightarrow Label \rightarrow Text + Arrow zum Beschriften$

Plot \rightarrow Add Plot to Window (Trace add... I(L1)

Plot→ Unsynchronize Y – Achsis

Button FFT \rightarrow Ergebnis der FFT darstellen

Start der Simulation :

 \rightarrow Im Probe – Fenster 3.ter Button auf der linken Seite =View Simulation Output File Oder über View \rightarrow Output File (für die Ergebnisse durch Print)

Ein paar Tipps zur Einbindung der Library!!!

Die Library's "Lek.lib + Lek.olb" in den Standard Ordner von Orcad's Library's hineinkopieren (Pfad ist meistens C:\Programm Files\Orcad\Capture\Library\PSpice....oder dementsprechend wo das Programm installiert wurde).

Danach rufen Sie EINE (egal welche...) Simulation in OrCad auf (OrCad öffnen, Project öffnen..). Nach dem Sie das geöffnete Project vor sich haben, drücken Sie den Button "Edit Simulation Settings", das ist der Button wo Sie die Analyse-Daten mit einstellen (Trans, Ac-Sweep etc. ..) !! In diesem Feld drücken Sie den Button "Libraries".

		Browse	
brary files	XYY		
C:\Programme\Orcad\Capture\Library\	Warni\LEK.LIB*	Add as Global	
		Add to Design	
		Edit	
		Change	
•			

Dort löschen Sie erst einmal **ALLE** bisher eingebundenen Libraries raus und binden danach die "Lek.lib" ein . Wichtig ist, daß Sie beim Einbinden den Button "Add as global" drücken ! Das heißt nämlich, daß die anderen Projekte (Simulationen) automatisch diese gleiche Library Einstellung benutzen und Sie nicht alle "Settings" von Hand ändern müssen.

Neues Projekt erzeugen		
File \rightarrow New \rightarrow Projekt		
S Orcad Capture - Lite Edition		
<u>File View Edit Options Window H</u> elp		
	5 <u>Ø</u> ?? <u>Ø</u> <u>Ø</u> <u>V</u> <u>V</u> I <u>+</u> W	A.
► Session Log		X
	Name Create a New Project Using Create A New Pr	OK Cancel Help Tip for New Users Create a new Analog or Mixed A/D project. The new project may be blank or copied from an existing template.

Hier ist es sehr wichtig, als Einstellung "Analog or Mixed A/D" auszuwählen, da die Grundeinstellung "Schematic" nur die Zeichnung darstellt und danach <u>keine</u> Simulation möglich ist !

"breakout" Bauteil	Bauteil	In dem Programm PSpice
		verwendete Buchstaben
BBREAK	GaAsFET	В
CBREAK	Kondensator	С
DBREAKx	Diode	D
JBREAKx*	JFET	J
KBREAK	gekoppelte Induktivitäten	К
LBREAK	Induktivität	L
MBREAKx*	MOSFET	М
QBREAKx*	bipolarer Transistor	Q
RBREAK	Widerstand	R
SBREAK	spannungsgesteuertert	S
	Schalter	
TBREAK	transmission line	Т
WBREAK	stromgesteuerter Schalter	W
XFRM_NONLINEAR	Transformator	K and L
ZBREAKN	IGBT	Ζ

Einfache Modelle (nahezu Ideal) zur ersten Verwendung sehr häufig sinnvoll !!

PSPice Demonstrationen (Experimentalvorlesung)

1) Demo2

Rechenpunkte, Mathematische Funktionen z.B. AVG, RMS...

Einbinden eines Simulationsergebnosses in Word (oder andere Applikationen)

 \rightarrow im Postprozessor "Probe" den Menüpunkt "<u>W</u>indow" \rightarrow "copy to Clipboard" auswählen

Die Einstellungen sollten wie in dem nebenstehenden Bild dargestellt, mit OK bestätigt werden. Das Ergebnis kann dann in die geforderte Applikation eingefügt werden, da es sich nun in der Zwischenablage befindet....

Ausgangskennlinienfeld eines bipolaren Transistors (DEMO3)

<u>Schaltverhalten einer Diode</u> Nicht realisierbar... TT hat keinen Einfluss !!! Datei dperr...

Z1 BUK854-500IS VCE 4 VGE - 0 25A 20A 10A 0 0A+ OV C 8V 2V 4v 10V 12V 6V □ -I(VCE) V_VCE

Ausgangskennlinienfeld eines IGBT Verzeichnis IGBTTEST

2

Verzeichnis : IGBTDYN (Achtung : Diode Dclamp entfernen und durch dbreak ersetzen (= D2))

Vorlesung 2 : 14.03.2008 (Transientenanalyse ; Demo1)

Demo1 editieren → was wird dargestellt-→ Bauteile anklicken ... properties Wie bekomme ich es hin, das bestimmte Werte an dem Bauteil mit angezeigt werden ? Bauteil anklicken ... properties ... alles markieren, was mit in dem Schematics dargestellt werden soll.... und unter Display (rechte Maustaste ???) die entsprechenden Marker setzen ! Demo 1 aufrufen und entsprechend editieren !!!

Original : Verzeichnis : demo1

Pulsquelle editieren und Werte erläutern :

	А
	SCHEMATIC1 : PAGE1
Reference	R1
Value	100
BiasValue Power	
Source Part	DIN-R.Normai
TOLERANCE	

New Row		Apply	Display		
	Α				
	+	SCHEMAT	FIC1 : PAGE1		
Reference		CC)		
Value		100)u		
IC		////05			
Source Part		DIN-C.I	Vormal		
TOLERANCE					

New Row	Apply Display Delete
	А
	SCHEMATIC1 : PAGE1
Reference	VP
Value	VPULSE
AC	
BiasValue Power	
DC	100
PER	10M
PW	4M
Source Part	VPULSE.Normal
TD	0
TF	500N
TR	500N
V1	0
V2	100

per= Periodendauer (hier 10ms) pw = Pulsweite (hier 4ms) TD=delay time (hier 0) TF=Fall time (hier 500ns) TR=RiseTime (hier 500ns) V1=Startwert der Pulsspannung (hier 0V) V2=Endwert der Pulsspannung (hier 100V) DC=Spannungswert für eine eventuelle DC-Analyse (hier 100V) AC=Spannungswert für eine eventuelle AC-Analyse

Bauteile holen... \rightarrow Part search...

Place Part			×	l		
Part:			OK			
Part List: QbreakN3/BREAKOUT QbreakN4/BREAKOUT QbreakP/BREAKOUT		•	Add Library		Part Search	×
UbreakP3/8HLAKUUT QbreakP4/BREAKOUT QDarBreakN/BREAKOUT QDarBreakP/BREAKOUT QTEST/LEK R/ANALOG			Part Search		Part Name:	OK Cancel
A CROSTER Libraries: ABM ANALOG BREAKOUT Design Cache EVAL LEK SOURCE	Graphic Normal Convert Packaging Parts per Pkg: 1	_	R?		Libraries: R/analog_p.olb r/analog_p.olb R_CR25/LEK.OLB R_var/analog_p.olb RAM8Kx1break/breakout.olb RAM8Kx8break/breakout.olb Rbreak/breakout.olb	Begin Search Help
SPECIAL TECCSCR TL074	Part: Type: Homogeneous	#			Library Path: C:\Program Files\OrcadLite\Capture\library\	Browse

Wenn der Name des Bauteiles nur teilweise bekannt ist kann man mit sogenannten "Wildcards" arbeiten : R* listet z.B. alle Bauteile auf, die mit R beginnen aber eventuell noch aus weiteren Ziffern bestehen . Wenn das Bauteil nicht sofort angezeigt wird ist der Button "Part Search…" und danach der Button "Begin Search" zu drücken.

Weitere Aufgaben :

- Programmoberfläche erläutern
- Definition der Simulationsumgebung
- arbeiten mit dem Postprozessor Probe
- beschriften der Knoten....

Bedeutung der wichtigsten Symbole auf der rechten Bildschirmseite :

Symbol	Bedeutung
Ð	Place Part = Bauteil plazieren
1	Place wire = Verbindungsleitung einzeichnen
NI	Place net alias = Eingabe der
	Knotenbezeichnungen
	Place Line = Linie zeichnen
E Contraction of the contraction	Place polyline = Polygonzug zeichnen
	Place rectangle = Rechteck zeichnen
님	Place elipse = Elipse zeichnen
<u>의</u>	Place arc = Kreisbogen zeichnen
	Place Text = Text einfügen
A	

Darstellung des Ergebnisses und entsprechende Interpretation :

Bedeutung der Kürzel : RMS(Effektivwert),AVG(Arithmetischer Mittelwert),MIN(Minimalwert),MAX(Maximalwert),...

Erste Übung für die Studenten (eventuell mit Unterstützung)...

- 1. Austausch der Pulsquelle (VPULSE) durch eine Sinusquelle (VSIN)
- 2. Austausch des Widerstandes durch eine Diode(ideale Diode) vom Typ dbreak...
- 3. Einstellen der Parameter für die Sinusquelle : Amplitude 100V, Frequenz 50Hz, kein Offset...

Sind alle Änderungen nachvollzogen worden, so sollte sich das folgende Bild (mit RL=1000 Ω) ergeben :

Die "Ecken" im Bild ergeben sich durch eine fehlerhafte Simulation bedingt durch eine zu große Schrittweite (nicht begrenzt)

.. bei einer Begrenzung auf 100us ergibt sich ein ganz anderes Bild...

Selbstverständlich kann man hier auch ohne Glättungskondensatur die Simulation laufen lassen !

Wieder Pulsquelle einführen... (erläutern diverser Fehlerquellen)

Setzen der Anstiegszeit (tr) und der Abfallzeit (tf) auf 0 → *Erwartung : unendliche Steigung* bei den Umschaltvorgängen...

<u>*Fehler : falsche Schrittweite (genau wie im vorherigen Beispiel mit der Angabe tr=tf=0)</u></u> Simulation von 0 bis 400ms (ohne Schrittweitenbegrenzung)</u>*

Es ergibt sich eine Anstiegszeit, die von der jeweils aktuellen Schrittweite des Simulators abhängig ist...

 $\frac{t_{End} - t_{Start}}{50} = \frac{400ms - 0ms}{50} = 8ms$ Also ergeben sich hier Zeiten von ca. 8ms (und nicht wie erwartet 0) Bei einer Begrenzung der maximalen Schrittweite aus 0,1us ergibt sich das folgende Bild :

mit Begrenzung : 0.1us

Drcad Capture	- Lite Edition - [Property Place Macro Accessori Benefit Stressories	Editor] es Options Window Help DIN4148 Sec. S. S. S. LIT III W M III III III III IIII IIIIIIIIII	X X
New Row	Apply Display Delete A SCHEMATIC1 : PAGE1	a Property Filter by: OrcadPSpice	
Reference Value AC BiasValue Power DC PER PRW Source Part TD TF TR TR V1 V1 V2	V2 VPULSE 0.20m 0.10m <i>VPULSE Normal</i> 0 10n 10n -100 100	Simulation Settings - Demo1 X General Analysis Include Files Libraries Stimulus Options Data Collection Probe Window Analysis type: Problem Start Setting Time Domain Transient) Plun to time: 0.4m Options: Start saving data after: 0 Start saving data after: 0 seconds Parametric Sweep Transient options: Maximum step size: 0.1u Save Bias Point Skip the initial transient bias point calculation (SKIPBP) Output File Options Output File Options DK Abbrechen Obernetimen	

Tr + tf entfernen (nicht auf 0 setzen...) und Ergebnis ansehen.... nur ein Impuls... Simulation Settings - Demot

		Simulation Settings - Demol				
		General Analysis Include Files Libraries Stimulus Options Data Collection Probe Window				
		Analysis type: Time Domain (Transient) ▼ Run to time: 400M seconds (TSTOP)				
	А	Options: Start saving data after: 0 seconds				
	SCHEMATIC1 : PAGE1	General Settings				
Reference	VP	Monte Carlo/Worst Case Maximum step size: seconds				
Value	VPULSE :	Parametric Sweep				
Т9		Save Bias Point				
AC	0	Load Bias Point				
BiasValue Power						
DC	0					
PER	10M					
PW	4M					
Source Part	VPULSE.Normal					
TD	0					
TF						
TR						
V1	0.	OK Abbrechen Übernehmen Hilfe				
V2	100					

Tr+tf auf 0 setzen.... Ergebnis ansehen... Anstiegszeit = 0,2ms (siehe max. Stepsize=200us) Danach auch noch stepsize weglassen... Anstiegszeit nun 0,4ms (obwohl die Zeiten ja auf Null gesetzt waren...)

+ weiteres bis ca. ½ Std. vor Schluß...

danach eigenes Beispiel von den Studenten erzeugen lassen....(Pulsquelle ohne tr und tf)

Beispiel der Vorlesung...

Mit einer Schrittweitenbegrenzung von 100us ergiebt sich das folgende Bild:

Vorlesung 3 am 20.03.2008

Schreibschutz der Beispiele aufheben . Demo 2 aufrufen → AC-Quelle erläutern... nur für sinusförmige Größen !!! → printer (VPRINT1 bzw. VPRINT2) → Display werte s.o Ortskurve + Frequenzgang Genauigkeit der Messergebnisse für die Mittelspannungsebene unter Optionen... Output... → Anzahl der signifikanten Stellen (NUMDGT) unter "Simulation Profiles" einstellen → Printer → Eigenschaften Phase,Real,Imag,Mag : Bedeutung s.u Buch Seite 200 : Netz1ac + diverses Netz2ac (Netzimpedanzverlauf) ... Netz in (auf) Fehmarn Themen : Reihen und Parallelresonanzen

Datei : PSpice_Verlesung_3\DEMO2\Original

a) Beispiel : Demo2

Demo2 zeigt eine Wechselspannungsanalyse für ein RC-Glied als Tiefpaß. Die sinusförmige Wechselspannungsquelle wird im Frequenzbereich von 10 Hz bis 10kHz verändert. Gerechnet werden wieder die Zweiggrößen nach Betrag, Phase, Real- und Imaginärteil. Die Darstellung kann sowohl grafisch frequenzabhängig als Betrags- und Phasengang erfolgen als auch tabellarisch als Zahlenwerte für die jeweiligen Frequenzen.

Die i urumeter der rie Spumungsquene.	Die	Parameter	der	AC-S	pannung	gsquelle	:
---------------------------------------	-----	-----------	-----	------	---------	----------	---

		A
		SCHEMATIC1 : PAGE1
	Reference	VAC
	Value	20
	ACMAG	20
	ACPHASE	
VAC	BiasValue Power	
$(\widehat{})$	DC	/0Vd¢/////
Ť	Source Part	VAC.Normal

Normalerweise genügt es hier den Wert für Value einzutragen

ACMAG = Betrag des Wechselspannungssignales ACPHASE = Winkel des Wechselspannungssignals (Phasenverschiebung)

Diese Quelle gilt nur für sinusförmige Signale

0 0	6 6						
Simulation Settings - demo2		×					
General Analysis Include Files	Libraries Stimulus Op	otions Data Collection Probe Window					
Analysis type: AC Sweep/Noise Options: General Settings Monte Carlo/Worst Case	AC Sweep Type C Linear C Logarithmic Decade	Start Frequency: 10 End Frequency: 10K Points/Decade: 20					
Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Noise Analysis Enabled Out I/V Inte	put Voltage: Source: rval:					
Output File Options Include detailed bias point information for nonlinear controlled sources and semiconductors (.OP)							
	ОК АЫ	brechen Übernehmen Hilfe					

Definition der Umgebungsbedingungen

Bedeutung der oben angegebenen Daten :

Startfrequenz : 10Hz Endfrequenz : 10kHz Variation der Frequenz : Logarithmisch Rechenpunkte (pro Dekade) : 20

Erläuterung des Parameters ITL4 (max. Anzahl der Iterationen bis die geforderte Genauigkeit erreicht ist.... manchmal ist es erforderlich diesen Wert zu erhöhen ...)

Simulation Settings - demo	o2			×
General Analysis Include	Files Libraries Stimul	us Options	Data Collection	Probe Window
Category:				(.OPTION)
Analog Simulation	Relative accuracy of V	's and I's:	0.001	(RELTOL)
Gate-level Simulation	ts (VNTOL)			
	Best accuracy of curre	nts:	1.0p am	ps (ABSTOL)
	Best accuracy of charg	es:	0.01p cou	ulombs (CHGTOL)
	ohm (GMIN)			
	(ITL1)			
	(ITL2)			
	(ITL4)			
	(TNOM)			
	(CTEDCMIN)			
	(STEPGMIN)			
	(PREURDER)			
	Beset			
	OK	Abbrechen	Übernehm	ien Hilfe

Notwendiger Eintrag der FH-Library... (Der Stern nach dem Dateinamen bedeutet, dass diese Bibliothek mit "Add as Global" eingeführt wurde.

Simulation Settings - demo2	×
General Analysis Include Files Libraries Stimulus	Options Data Collection Probe Window
<u>F</u> ilename:	
lek.lib	Browse
Library files 🗙 🛧 🗸	F
lek.lib*	Add as <u>G</u> lobal
	Add to Design
	Edit
	Change
FH-Sp	ezifisch
J Libraru Path	
"s:\fbi\orcad\Capture\Library\PSpice"	Browse
	Abbrechen Ugernehmen Hilte

Definition des "Druckers" ...

Drucker markieren und mit Edit Properties folgendermaßen einstellen :

Alle Werte, die in die "OUT"-Datei geschrieben werden sollen sind mit einer "1" zu versehen…

👫 Orcad Ca	pture - Lite Edition - [Pro	perty Editor]
🛐 File Edil	t View Place Macro Ac	cessories Options Window
12 🖻 🖬	/ / / / / / / / / / / / / / / / / / /	DIN-C
SCHEMAT	IC1-demo2 💌	1 - N - P
New Row.	Apply Display	Delete Property Filter by:
	A	
	+ SCHEMATIC1 : PAGE1	
Reference	PRINT1	
Value	VPRINT2	
AC	1	
DB		
DC		
IMAG		
MAG	1	
PHASE	1	
PRINT	PRINT	
REAL	1	
Source Part	VPRINT2.Normal	
TRAN		

MAG = Betrag IMAG = Imaginärteil REAL = Realteil IMAG = Betrag des Imaginärteiles

VPRINT1 :	_ _	Mißt die Spannung gegen
		den Bezugspunkt
VPRINT2 :		Mißt die Spannung zwischen
	VPRINT2	zwei Punkten
IPRINT :	IPRINT	Mißt den Strom

Weitere Printer :

Anmerkung : Die oben angegebenen Printer befinden sich in der Library "Spezial"

Darstellung des Frequenzganges des angegebenen Tiefpasses

Im oberen Fenster wird der Phasengang und im unteren der Betragsgang dargestellt .

Auszug	aus	der	"Out	t"-Dat	tei
****	AC	AN	ALY	SIS	

TEMPERATURE = 27.000 DEG C

VM(2,0) VP(2,0) VR(2,0) VI(2,0) FREO 1.000E+01 9.995E+00 -1.799E+00 9.990E+00 -3.139E-01 1.122E+01 9.994E+00 -2.019E+00 9.988E+00 -3.521E-01 1.259E+01 9.992E+00 -2.265E+00 9.984E+00 -3.949E-01 1.413E+01 9.990E+00 -2.541E+00 9.980E+00 -4.429E-01 1.585E+01 9.988E+00 -2.850E+00 9.975E+00 -4.967E-01 1.778E+01 9.984E+00 -3.198E+00 9.969E+00 -5.569E-01 1.995E+01 9.980E+00 -3.587E+00 9.961E+00 -6.244E-01 2.239E+01 9.975E+00 -4.023E+00 9.951E+00 -6.999E-01 2.512E+01 9.969E+00 -4.512E+00 9.938E+00 -7.842E-01 2.818E+01 9.961E+00 -5.060E+00 9.922E+00 -8.785E-01 3.162E+01 9.951E+00 -5.673E+00 9.902E+00 -9.838E-01 3.548E+01 9.938E+00 -6.360E+00 9.877E+00 -1.101E+00 3.981E+01 9.923E+00 -7.129E+00 9.846E+00 -1.231E+00 4.467E+01 9.903E+00 -7.988E+00 9.807E+00 -1.376E+00 5.012E+01 9.878E+00 -8.948E+00 9.758E+00 -1.536E+00 5.623E+01 9.848E+00 -1.002E+01 9.697E+00 -1.713E+00 ...

Ortskurvendarstellung

Einfache Methode um Ortskurven darzustellen

Weiteres Beispiel : Datei : Netz2ac (Netz auf Fehmarn)

Darstellung der Impedanz als Funktion der Frequenz (mit 200 Punkten pro Dekade gerechnet)

Frage : Was ist eine Reihenresonanz.... Was ist eine Parallelresonanz

$$\underline{Z} = \mathbf{R} + \mathbf{j}(\boldsymbol{\omega}\mathbf{L} + (1/\boldsymbol{\omega}\mathbf{C}))$$

→ Imaginärteil (Klammer) wird Null ... Reihenresonanz (minimaler Scheinwiderstand)

 $\underline{Y} = \frac{1}{R} + j \left(\omega c - \frac{1}{\omega L} \right)$: Parallel resonanz \rightarrow Leitwert wird minimal d.h

Impedanz Z wird maximal Y=1/Z

1

Fehlersimulation :

Mit 10 Werte pro Dekade ergibt sich folgendes Ergebnis \rightarrow Feststellung : zu ungenau..

Wie wird die Anzahl der Stellen für die Ausgabedatei verändert

Simulation Settings - Netz	2ac	×
General Analysis Include	e Files Libraries Stimulus Options Data Collection	Probe Window
Category: Analog Simulation Gate-level Simulation Output file	Include the following in the output (.OUT) file: Detailed summary and accounting information Subcircuit expansion and Load Bias files Statements included from libraries Device summary Bias point node voltages Node summary (connections) Circuit file statements Model parameter values Model parameter values Digital timing and hazard messages Page breaks and banners for each section Value of each PSpice option Number of digits in printed values: Utility of the width: 80 Utility characters	(.OPTION) (ACCT) (EXPAND) (LIBRARY) (LIST) (NOBIAS) (NODE) (NOECHO) (NOECHO) (NOOUTMSG) (NOPAGE) (OPTS) (NUMDG)
	OK Abbrechen Ü <u>b</u> ernehm	en Hilfe

Die Angabe von NUMDG (hier 9) bedeutet dass mit einer Genauigkeit von 9 signifikanten Stellen gearbeitet wird.

Übung Studenten :

Es ist der folgende Reihenschwingkreis zu simulieren :

Hinweise : Startfrequenz : 1 Hz Endfrequenz : 1GHz 200 Punkte pro Dekade

Aufgaben

- Darstellung der Ortskurve
- Darstellung der Impedanz Z als Funktion der Frequenz (Z=f(f))
- Ermittlung der Resonanzstelle
- Was passiert, wenn bei einer logarithmischen Punkteverteilung bei der Berechnung als Startfrequenz 0 Hz gewählt wurde (Interpretieren Sie die Fehlermeldung)

Weitere mögliche Beispiele : Ausgangskennlinie eines IGBT Verzeichnis : IGBTTEST

Frage : Worst case - Analyse : Verzeichnis ,,Worst"

Vorlesung 4 am 27.03.2008

Buch .DC Gleichstromanalyse = Seite 215

Thema : DC_Analyse = Berechnung des Gleichstromarbeitspunktes in Abhängigkeit variabler Quellen.

Vorführung : **Demo3** (Ausgangskennlinie eines bipolaren Transistors mit $i_c=f(u_{CE})$)

Achtung : Einbaurichtung der Stromquelle beachten !

Es müssen 2 Größen variiert werden ...

- a) die Spannung U_{CE} an dem Transistor = Primary Sweep
- b) der Gatestrom IB = Secondary Sweep

Analysis type:	Sweep variable	· · · · · ·	1
DC Sweep ▼ Options: Primary Sweep Secondary Sweep Monte Cato Avorst Case	 Voltage source Current source Global parameter Model parameter I emperature 	Name: VCE Model type: Image:	
Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Sweep type C Linear C Logarithmic Octav	Ve	
	O Value li <u>s</u> t		

Einstellung : Linear Start 0.01 End 1 increment 0.1 führt zu eckiger Darstellung ...

Simulation Settings - Demo3 General Analysis Include Files	: Libraries Stimulus C)ptions Data Collecti	on Probe Win	× wob		
Analysis type: DC Sweep Options: Primary Sweep Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Sweep variable © Voltage source © Current source © Global parameter © Model parameter © Iemperature Sweep type © Linear © Logarithmic Decar	Name: II Model type: I Model name: I Barameter name: I Barameter name: I Start value: End value: Increment: Increment:	B Om 1.6m 0.2m			
	OK A	bbrechen Ü <u>b</u> erne	hmen Hil	fe		
20.0ma						
0V 0.1V 0.2V IC(01)	0.3V 0.4V	0.5V 0.6V	0.7V 0	.8V	0.9V	1.00

Datenpunkte darstellen.... Variation per Oktave

Aufgabe : Aus Demo3 neues Projekt erzeugen... mit IRF150 als Transistor (Mosfet) File→New→Projekt

Verzeichnis : IRF150 + Verzeichnis Ausgangskennlinie

Simulation Settings - Ausgan	gskennlinie	X
General Analysis Include File	es Libraries Stimulus Options Data Collection Probe Window	~
Analysis type: DC Sweep Dptions: Primary Sweep Secondary Sweep Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Sweep variable Name: VCE Qurrent source Model type: Image: Constraints Global parameter Model type: Image: Constraints Model parameter Model name: Image: Constraints Image: Constraints Model name: Image: Constraints Image: Sweep type Image: Constraints Stagt value: 0.01 Image: Constraints Image: Constraints Image: Constraints Image: Constraints Value ligt Image: Constraints Image: Constraints Image: Constraints	
Simulation Settings - Ausgan General Analysis Include File	OK Abbrechen Ü <u>b</u> ernehmen Hilfe gskennlinie es Libraries Stimulus Options Data Collection Probe Window	
Analysis type: DC Sweep Options: Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep)	Sweep variable • Voltage source • Lame: • Current source • Global parameter • Global parameter • Model parameter • Model name: • Temperature • Parameter name: • Sweep type • Sweep type	
Save Bias Point	Linear Start value: 4 Logarithmic Decade End value: 20 Increment: 4	
	OK Abbrechen Übernehmen Hilfe	

ergibt dummes Ergebnis...

5imulation Settings - Ausgan	ngskennlinie	X
General Analysis Include Fi Analysis type: DC Sweep	iles Libraries Stimulus Options Data Collection Probe Windo Sweep variable <u>Voltage source Name: VCE</u>	
 <u>●ptions:</u> <u>● Primary Sweep</u> Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point 	O Lurrent source Model type: O Global parameter Model name: O Model parameter Model name: O Iemperature Parameter name:	
	Sweep type Start value: 0.1 Linear End value: 10 Logarithmic Decade Points/Decade: 10	
	C Value li <u>s</u> t	
imulation Settings - Ausgar General Analysis Include Fi	OK Abbrechen Ü <u>b</u> ernehmen Hilfe ngskennlinie ïles Libraries Stimulus Options Data Collection Probe Windo)
Analysis type: DC Sweep Options: Primary Sweep Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Sweep variable Image Source Name: V1 Image Source Model type: Image: Image	
	Sweep type Start value: 4 C Logarithmic Decade Increment: 1	
	O Value li <u>s</u> t ↓	

Beispiel : uebung3a

.MODEL Q2222_Uebung3A NPN(IS=100E-18 BF=100 NF=1 BR=1 NR=1) Feste Verstärkung von : BF=100

<u>Uebung3b</u>

Verzeichnis uebung3b/uebung3b = Diac aus dem Internet

Weitere behandelte Themen : Diodenkennlinie

Ausgangskennlinienfeld IRF150 Widerstand als Funktion der Temperatur (Verzeichnis RTEST)

Vorlesung 5 : Fourieranalyse am 03.04.2008

Anmerkungen :

- Die Fourieranalyse ist nur im Zusammenhang mit der Transientenanalyse möglich !
- Für eine korrekte Berechnung der Frequenzwerte ist es erforderlich **eine ganze** Anzahl von Perioden berechnen zu lassen (z.B 2,4,8,16,32 Perioden)

Verwendbare Beispiele : Demo1 ; Demo4 Verwendetes Beispiel : Demo1

Darstellung der Eingangsspannung (V(1))

Die Schrittweite zwischen den Frequenzwerten ergibt sich durch die Anzahl der berechneten Perioden (10 Perioden ergeben eine Schrittweite von 1/10 der Grundfrequenz) Sollen die Werte für die fft auch für andere Programme zur Verfügung stehen können diese folgendermaßen erzeugt werden : (**hier ist eine andere Simulation verwendet** ...)

Simulation Settings - B2A	X
General Analysis Include Files Analysis type: Time Domain (Transient)	Libraries Stimulus Options Data Collection Probe Window Bun to time: 0.03 seconds (TSTOP) Start saving data after: 100u seconds
General Settings Genera	Iransient options <u>M</u> aximum step size: 100u seconds <u>Skip the initial transient bias point calculation (SKIPBP)</u> <u>Output Eile Options</u>
Anklicker	n
	OK Abbrechen Ü <u>b</u> ernehmen Hilfe

Beispiel für Demo1

Transient	t Output File	Options		×		
Print value Perforr Center Numbe Output	es in the output fi m Fourier Analysi: r Frequency: er of Harmonics: t Variables:	le every: s 100 hz 40 V(1)	seconds	OK Cancel		Anzahl der zu berechnenden Ausgabevariable
Includ contro	le detailed bias p illed sources and gende Daten	oint information fo semiconductors	or nonlinear (/OP) T" – Datei			
**** 10/31	/06 14:12:00	******	*** PSpice Li	te (Mar 2000)	* * * * * * *	****
** Profil	le: "SCHEMATI	Cl-Demol" [F:\Beispiele	\Demo1\demo1-s	schemati	cl-demol.sim]
**** F	OURIER ANALY	SIS	TEMPE	RATURE = 27	.000 DEG	; C
* * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * *	****
FOURIER CC	MPONENTS OF	TRANSIENT RES	SPONSE V(1)			
DC COMPON	JENT = 4.01	0000E+01				
HARMONIC NO	FREQUENCY (HZ)	FOURIER COMPONENT	NORMALIZED COMPONENT	PHASE (DEG)	NORMA PHASE	LIZED (DEG)
1 2 3 4 5 6	1.000E+02 2.000E+02 3.000E+02 4.000E+02 5.000E+02 6.000E+02	6.061E+01 1.855E+01 1.264E+01 1.509E+01 2.000E-01 1.018E+01	1.000E+00 3.061E-01 2.086E-01 2.490E-01 3.300E-03 1.679E-01	1.638E+01 -5.727E+01 4.920E+01 -2.451E+01 9.000E+01 8.317E+00	0.000 -9.003 5.478 -9.004 8.092 -8.997	E+00 = Grundschwingung E+01 E+02 E+01 E+00 E+01
7 8	7.000E+02 8.000E+02	5.206E+00 4.857E+00	8.589E-02 8.013E-02	-6.573E+01 4.142E+01	-1.804	E+02 E+01

9	9.000E+02	6.707E+00	1.107E-01	-3.279E+01	-1.802E+02
10	1.000E+03	2.000E-01	3.300E-03	9.000E+01	-7.382E+01
11	1.100E+03	5.613E+00	9.260E-02	2.411E-01	-1.800E+02
12	1.200E+03	3.000E+00	4.950E-02	-7.465E+01	-2.712E+02
13	1.300E+03	3.067E+00	5.060E-02	3.382E+01	-1.791E+02
14	1.400E+03	4.333E+00	7.149E-02	-4.127E+01	-2.706E+02
15	1.500E+03	2.000E-01	3.300E-03	9.000E+01	-1.557E+02
16	1.600E+03	3.916E+00	6.460E-02	-7.924E+00	-2.700E+02
17	1.700E+03	2.110E+00	3.482E-02	-8.409E+01	-3.626E+02
18	1.800E+03	2.275E+00	3.754E-02	2.629E+01	-2.686E+02
19	1.900E+03	3.228E+00	5.326E-02	-5.002E+01	-3.613E+02
20	2.000E+03	2.000E-01	3.300E-03	9.000E+01	-2.376E+02
21	2.100E+03	3.042E+00	5.018E-02	-1.625E+01	-3.603E+02
22	2.200E+03	1.645E+00	2.713E-02	-9.404E+01	-4.544E+02
23	2.300E+03	1.832E+00	3.022E-02	1.872E+01	-3.581E+02
24	2.400E+03	2.605E+00	4.298E-02	-5.908E+01	-4.522E+02
25	2.500E+03	2.000E-01	3.300E-03	9.000E+01	-3.195E+02
26	2.600E+03	2.519E+00	4.156E-02	-2.481E+01	-4.507E+02
27	2.700E+03	1.373E+00	2.265E-02	-1.044E+02	-5.467E+02
28	2.800E+03	1.551E+00	2.559E-02	1.099E+01	-4.477E+02
29	2.900E+03	2.220E+00	3.663E-02	-6.845E+01	-5.435E+02
30	3.000E+03	2.000E-01	3.300E-03	9.000E+01	-4.014E+02
31	3.100E+03	2.183E+00	3.601E-02	-3.365E+01	-5.415E+02
32	3.200E+03	1.209E+00	1.994E-02	-1.151E+02	-6.393E+02
33	3.300E+03	1.362E+00	2.246E-02	3.009E+00	-5.376E+02
34	3.400E+03	1.975E+00	3.258E-02	-7.811E+01	-6.351E+02
35	3.500E+03	2.000E-01	3.300E-03	9.000E+01	-4.834E+02
36	3.600E+03	1.961E+00	3.236E-02	-4.280E+01	-6.325E+02
37	3.700E+03	1.113E+00	1.837E-02	-1.258E+02	-7.320E+02
38	3.800E+03	1.230E+00	2.029E-02	-5.338E+00	-6.278E+02
39	3.900E+03	1.822E+00	3.006E-02	-8.800E+01	-7.269E+02
40	4.000E+03	2.000E-01	3.300E-03	9.000E+01	-5.653E+02

TOTAL HARMONIC DISTORTION = 5.459585E+01 PERCENT

verschiedene Varianten testen...

... Fehler in der Schaltung... Sperrspannung der Dioden nur 100V...

Lösungsansatz : Strom IR2 ansehen (eventuell mit IR1 vergleichen) \rightarrow offensichtlich muß der Strom irgendwo anders fließen...

→ im Simulationsmodell die Durchbruchspannung auf 1000V ändern ! Achtung.. leider kann das Modell nur einmal nach einer Änderung abgespeichert werden... Umgehung : in das Verzeichnis gehen und die entsprechende LIB-Datei löschen !

Zusätzliche Erläuterungen : am Kondensator... IC=310 ... Startbedingung : der Kondensator sei auf 310V aufgeladen

Tread Capture - Lite Edition					
<u>File Edit View Place Macro A</u>	ccessories <u>O</u> ptions <u>W</u> indow	Help			
<u>``</u> ₽₽ <u></u> <u>*</u> ₽€		7			
SCHEMATIC1-B2A	• * • • *	99 🚇 🛛 🤋	$\underline{\mathbb{V}}$ I $\underline{\mathbb{I}}$ W $\underline{\mathbb{W}}_{\underline{1}}$		
📑 B2A 📃 🗖	×				
Analog or Mixed A/D	_				
File 18 Historehul	-				
Property Ed	litor				
	Apply Display Delete	Property Filter by:	Orcad-PSpice Help		
	A	В			
	SCHEMATIC1 : PAGE1	NC			
Li Reference	VC	/////vc////	<mark>7/12</mark>		
Outpu Value	VSIN	VSIN			
AC					
Fire BiasValue Powe	er	OVV			
DC					
DF		0			
FREQ	50	50			
PHASE	0//////	0			
Source Part	VSIN.Normal	VSIN.Normal			
		U			
VAMPL	{230*sqrt(2)}	{230^sqrt(2)}			
VOFF		<u> </u>			
				•	
▲ Parts (Schematic Nets 🖌 Pins 🖌 Title	e Blocks 🖌 Globals 🖌	Ports A		
7 - (SCHEMA 801×1					

Thema : EN 61000-3-2 (Oberschwingungen...) Dafür FFT-Werte in die Datei schreiben...

B6 – Schaltung (Normal) ändern in folgende Schaltung... → mit kapazitiver Glättung C=5000uF (vorgeladen auf 550V) und ohmscher Belastung mit 500 Ω

Deutlich sind hier nur die erwarteten ungradzahligen Vielfachen der Grundschwingung (5kHz) zu sehen (3,5,7,9-te OS)

Axis Settings				×
X Axis X Avia				
				1
– Data Range			Data	
C Auto Ra	ange	O F	ull	
User De	efined	• B	lestricted (analog)	
OHz	to 50KHz	_ 2	00us to 4ms	_
			,	
Scale		Proce	essing Options	
• Linear		🔽 F	ourier	
C Log		E P	erformance Analysis	
		Axis Variable		
OK	Cancel	Save As Default	Reset Defaults	Help

Quellen : 10.04.2008

Verzeichnis : Beisp2_Sei55... siehe altes Skript

... Eigene Quelle erstellen mit 45° Anschnittwinkel (ohne Dämfung...)

Thema Quellen (Seite 50) 1) Vorführungen

Verzeichnis : Beisp2_Sei55 SIN S54 (Buch)

a) Schaltbild

b) Einstellungen der Quelle (Änderungen vornehmen, so das sich eine "normale" Sinusschwingung (mit f=50Hz und Ueff=230V) ergibt)

Wert der Amplitude : {230*SQRT(2)} = normale Netzspannung c)Ergebnis

Einfluß der möglichen Parameter darstellen Phasenwinkel (Bsp.: phase=90°)

Pulsquelle (Pulse) (Beisp4_Sei57)

Vergrößerte Darstellung (unsinniges Bild... Fehler nicht nachvollziehbar)

Übung : Erzeugen einer Dreiecksspannung mit einer Amplitude von 3V (Bipolar) und einer Periodendauer von 10us (Tastverhältnis 1:1) Lösung Dreieck

Exponentialquellen : Verzeichnis Beisp5_Sei58

Rauschquelle = Noise

Unterprogramm ansehen... Noise anklicken.. rechte Maustaste ...edit PSpice-Model... Wurde mit einem kleinen Basic-Programm mit der Zufallsfunktion erstellt...)

Definiert als Unterprogramm (.subckt)

.sı	ibckt noise 2 1
*S	Source Nodes :+ -
V	NOISE 2 1 pwl(0.0 0.0
+	1.000E-09 8.1398E-01 2.000E-09 -4.0594E-01
+	3.000E-09 5.3966E-02 4.000E-09 -2.6163E-01
+	5.000E-09 7.2712E-01 6.000E-09 -1.9273E+00
+	7.000E-09 2.3774E-01 8.000E-09 5.3256E-01
+	9.000E-09 -4.4738E-01 1.000E-08 6.1602E-01
+	1.100E-08 -7.9895E-01 1.200E-08 1.3836E+00
+	1.300E-08 2.7484E-01 1.400E-08 -1.5416E+00
+	1.500E-08 -5.7172E-01 1.600E-08 -9.7404E-01
+	1.700E-08 -1.2183E-01 1.800E-08 8.3428E-01
+	1.900E-08 -1.5962E+00 2.000E-08 1.1939E+00
+	2.100E-08 -6.5302E-01 2.200E-08 1.9780E+00
+	2.300E-08 6.1199E-01 2.400E-08 1.6219E+00
+	2.500E-08 6.6564E-01 2.600E-08 1.2382E-01
+	2.700E-08 -4.6278E-01 2.800E-08 1.0443E+00
+	2.900E-08 8.1853E-01 3.000E-08 -4.9374E-01
+	3.100E-08 6.6386E-01 3.200E-08 -8.0462E-01
+	3.300E-08 7.9002E-01 3.400E-08 -1.6403E+00
+	3.500E-08 4.7630E-01 3.600E-08 2.8096E+00
+	3.700E-08 5.6449E-01 3.800E-08 -1.0816E+00
+	3.900E-08 1.4589E+00 4.000E-08 -1.3786E+00
+	4.100E-08 1.2632E-01 4.200E-08 4.1678E-01
+	4.300E-08 9.6042E-02 4.400E-08 -6.3495E-01
+	4.500E-08 4.5987E-01 4.600E-08 -1.9107E+00
+	4 700E-08 -1 2790E-01 4 800E-08 -2 2505E-01
+	4 900E-08 5 4953E-01 5 000E-08 -1 8298E+00
+	5.100E-08 -7.2855E-01 5.200E-08 5.8550E-01
+	5 300E-08 1 3797E+00 5 400E-08 -1 0606E-01
+	5 500E-08 -2 2154E-01 5 600E-08 -2 4690E+00
+	5 700E-08 9 3465E-01 5 800E-08 -5 0512E-01
+	5 900E-08 -1 2248E-01 6 000E-08 -6 5401E-01
÷	6 100E-08 1 1989E+00 6 200E-08 2 0741E-01
+	6 300E-08 5 2993E-02 6 400E-08 -2 3532E-01
÷	6 500E-08 -8 4331E-01 6 600E-08 1 2659E+00
÷	6 700E-08 -2 1074E-01 6 800E-08 1 5215E+00
÷	6 900E-08 -1 2075E+00 7 000E-08 9 0466E-01
÷	7 100E-08 -4 2931E-01 7 200E-08 1 3509E+00
÷.	7 300E-08 9 0642E-02 7 400E-08 1 3582E+00
т _	7.500E-08 9.0042E-02 7.400E-08 1.3582E+00 7.500E-08 8.8166E-01 7.600E-08 -1.2915E-02
т 	7.500E-08 8.8100E-01 7.000E-08 1.2915E-02
т	7.00E-08 3.3523E-02 7.800E-08 -1.3929E-01 7.900E-08 2.0654E-01 8.000E-08 8.3543E-01
т	8 100E 08 6 1151E 01 8 200E 08 3 5328E 01
т	8.100E-08 0.1151E-01 8.200E-08 -5.5528E-01 9.200E 08 0.7029E 01 8.400E 08 6.1760E 01
+	8.500E-08 - 9.7028E-01 8.400E-08 0.1709E-01 8.500E 08 1.0703E 01 8.600E 08 4.0454E 02
т	8.500E-08 -1.5705E-01 8.000E-08 -4.9454E-02 9.700E-08 -1.1644E-00 9.900E-08 0.1019E-01
+	8.700E-08 -1.1044E+00 8.800E-08 -9.1918E-01
+	0.100E-08 1.0945E-01 0.200E-08 1.2000E+00
+	9.100E-08 1.0843E-01 9.200E-08 1.2863E+00
+	9.500E-08 9.0985E-01 9.400E-08 4.91/1E-02
+	9.500E-08 -0.0725E-01 9.000E-08 -2.5385E-02
+	9.700E-08 -1.0800E+00 9.800E-08 -0.8728E-01
+	9.900E-08 - 7.1611E-03 1.000E-07 8.7403E-01
+	1.010E-07 4.1111E-01 1.020E-07 -9.6841E-01
+	1.030E-07 -1.4269E+00 1.040E-07 -2.7905E-01
+	1.050E-07 4.4559E-01 1.060E-07 -1.5598E+00
+	1.070E-07 1.5579E+00 1.080E-07 -7.5025E-01
+	1.090E-07 1.8015E-03 1.100E-07 -2.2721E-01
+	1.110E-07 4.3161E-01 1.120E-07 1.9481E-01
+	1.130E-07 2.0641E+00 1.140E-07 2.6387E-01
+	1.150E-07 6.7861E-01 1.160E-07 1.2905E+00
+	1.170E-07 1.6169E+00 1.180E-07 1.4778E-01
+	1.190E-07 7.8329E-01 1.200E-07 -1.7288E+00
+	1.210E-07 6.4455E-01 1.220E-07 1.6589E+00
$^{+}$	1.230E-07 2.3000E-01 1.240E-07 -1.2868E-01

+ 1.250E-07 1.1314E+00 1.260E-07 -9.6844E-01 + 1.270E-07 5.0313E-01 1.280E-07 -1.7483E-01 + 1.290E-07 1.0619E+00 1.300E-07 -1.4998E+00 + 1.310E-07 8.7047E-02 1.320E-07 -1.1328E+00 + 1.330E-07 4.2036E-01 1.340E-07 -7.0087E-01 + 1.350E-07 -1.5339E+00 1.360E-07 -2.6834E-01 1.370E-07 1.9117E-01 1.380E-07 -1.3372E+00 1.390E-07 -8.7524E-01 1.400E-07 -8.4696E-01 1.410E-07 2.3587E+00 1.420E-07 8.2549E-01 1.430E-07 -2.4527E+00 1.440E-07 8.6568E-01 1.450E-07 -9.2654E-02 1.460E-07 2.0217E+00 + 1.470E-07 -7.8187E-01 1.480E-07 -3.9604E-01 1.490E-07 -1.1785E+00 1.500E-07 4.8564E-01 1.510E-07 2.6216E+00 1.520E-07 1.1022E+00 1.530E-07 8.5439E-02 1.540E-07 -1.5482E+00 1.550E-07 -7.5782E-01 1.560E-07 -1.9051E+00 1.570E-07 6.8364E-01 1.580E-07 -1.8454E+00 1.590E-07 5.6413E-01 1.600E-07 3.1635E-01 1 610E-07 1 6004E+00 1 620E-07 8 2828E-01 1.630E-07 1.0719E+00 1.640E-07 -1.4991E+00 1.650E-07 1.8202E+00 1.660E-07 -1.2927E+00 1.670E-07 -7.5021E-01 1.680E-07 3.8299E-01 1.690E-07 3.2737E-01 1.700E-07 2.6028E-02 1.710E-07 5.8225E-01 1.720E-07 6.9695E-01 1.730E-07 -8.9377E-01 1.740E-07 2.0188E+00 1 750E-07 1 5536E+00 1 760E-07 1 7718E-01 1.770E-07 1.1412E+00 1.780E-07 -7.9937E-02 1.790E-07 1.6483E+00 1.800E-07 -4.4197E-01 1.810E-07 1.4166E+00 1.820E-07 -1.0359E+00 1.830E-07 -1.6494E+00 1.840E-07 -1.4261E+00 1.850E-07 9.1695E-01 1.860E-07 -6.1461E-01 $1.870 {E-}07 \ 1.4498 {E-}01 \ 1.880 {E-}07 \ 1.9591 {E+}00$ 1 890E-07 -1 3735E+00 1 900E-07 4 1822E-01 1.910E-07 5.1576E-01 1.920E-07 4.4816E-01 1.930E-07 5.2961E-01 1.940E-07 2.9700E-01 1.950E-07 1.9473E+00 1.960E-07 -2.2470E-01 1.970E-07 6.1073E-01 1.980E-07 -7.4390E-01 1.990E-07 -7.5921E-02 2.000E-07 -1.3250E+00 2.010E-07 -1.4581E-01 2.020E-07 5.2990E-01 2.030E-07 -1.0696E+00 2.040E-07 -2.1185E+00 2.050E-07 2.4439E-01 2.060E-07 -1.6472E+00 2.070E-07 4.5056E-01 2.080E-07 1.1293E+00 2.090E-07 -2.3432E-01 2.100E-07 -4.0905E-02 2.110E-07 -3.0950E-02 2.120E-07 -8.4727E-01 2.130E-07 -1.5975E+00 2.140E-07 5.8324E-01 2.150E-07 -2.9794E-02 2.160E-07 -3.1383E-01 2.170E-07 1.3909E-01 2.180E-07 4.5958E-01 2.190E-07 1.9384E+00 2.200E-07 -1.5360E+00 2 210E-07 -4 0053E-02 2 220E-07 -1 1775E+00 2.230E-07 -2.6420E+00 2.240E-07 -1.7794E+00 2.250E-07 -1.1506E+00 2.260E-07 -9.3654E-02 2.270E-07 -2.8658E-01 2.280E-07 -3.0969E-01 2.290E-07 -2.2082E+00 2.300E-07 9.4553E-01 2.310E-07 -5.1101E-01 2.320E-07 -1.3925E+00 + 2.330E-07 -1.2284E+00 2.340E-07 -8.2560E-01 + 2.350E-07 1.6910E-01 2.360E-07 7.0666E-01 + 2 370E-07 -2 2684E-01 2 380E-07 -1 7265E-01 2.390E-07 2.3813E-01 2.400E-07 1.7220E+00 2.410E-07 1.7808E+00 2.420E-07 1.1388E+00 2.430E-07 2.1804E+00 2.440E-07 1.3880E+00 2.450E-07 -2.2111E-01 2.460E-07 3.4297E-01 2.470E-07 4.8043E-01 2.480E-07 4.3907E-01 2.490E-07 1.7519E+00 2.500E-07 -3.2561E-01) R 2 1 1000MEG .ENDS noise

Frequenzmodulierte Spannung (VSFFM)

Übungen für die Studenten :

Strom mit darstellen... Leistung berechnen (Wert angeben)

<u>Aufgabe4.cir (C:\Beispiele\Quellen\Aufgabe4)</u>

- b) Pulsquelle als TTL Signal
- U(low)=0,4V ; U(High)=2,4V

Tr = 8ns tf=10ns tp=10us f=40kHz... Wahl der geeigneten Schrittweite in Probe Kontrolle der Flankensteilheit Fehlersimulation bei Nichtangabe der Flankensteilheiten

Fehler : Es wurde die Pulsdauer (PW) auf 0 gesetzt... Meldung des Simulators ... Pulse Period < (Rise Time + Fall Time + Pulse Width) for V_V1

Ergebnis :

+ tr + tf offen lassen ...

(??? Aufg4a

c) PWL – Programmieren ???)

Gesteuerte Quellen (Seite 62)...Achtung : PowerPoint ...

Prinzip (Definition des Polynomgrades als Anzahl der Steuerquellen

Gesteuerte Quellen sind ideale Spannungs- oder Stromquellen, deren Zeitverhalten durch externe Steuerquellen definiert ist. Das Werteverhalten kann dabei auch von einer oder mehreren Steuerquellen über eine so genannte Polynomdefinition vorgegeben werden.

Polynomdefinitionen

Nutzung einer Steuerquelle X_a: *Eindimensionales Polynom (nd=1)* $f(X_a) = P_0 + P_1 \cdot X_a + P_2 \cdot X_a^2 + P_3 \cdot X_a^3 + P_3 \cdot X_a^4 + P_5 \cdot X_a^5 + \dots$

Nutzung von zwei Steuerquellen X_a und X_b : Zweidimensionales Polynom (nd =2)

$$\begin{split} f(X_a, X_b) &= P_0 + P_1 \bullet X_a + P_2 \bullet X_b + P_3 \bullet X_a^2 + P_4 \bullet X_a \bullet X_b + P_5 \bullet X_b^2 + P_6 \bullet X_a^3 + P_7 \bullet X_a^2 \bullet X_b + P_8 \bullet X_a \bullet X_b^2 + P_9 \bullet X_b^3 + P_{10} \bullet X_a^4 + ... \end{split}$$

Nutzung von drei Steuerquellen X_a, X_b und X_c:
Dreidimensionales Polynom (nd =3)

$$f(X_a,X_b,X_c) = P_0 + P_1 \cdot X_a + P_2X_b + P_3 \cdot X_c + P_4 \cdot X_a^2 + P_5 \cdot X_a \cdot X_b + P_6 \cdot X_a \cdot X_c + P_7 \cdot X_b^2 + P_8 \cdot X_b \cdot X_c + P_9 \cdot X_c^2 + P_{10}X_a^3$$

 $+ P_{11} \cdot X_a^2 \cdot X_b + P_{12} \cdot X_a^2 \cdot X_c + P_{13} \cdot X_a \cdot X_b^2 + P_{14} \cdot X_a \cdot X_b \cdot X_c$
 $+ P_{15} \cdot X_a \cdot X_c^2 + P_{16} \cdot X_b^3 + P_{17} \cdot X_b^2 \cdot X_c + P_{18} \cdot X_b \cdot X_c^2$
 $+ P_{19} \cdot X_c^3 + P_{20} \cdot X_a^4 + ...$

<u>Allgemeine Bedeutung ...</u>

 $E(u)=f(u) \dots$ Spannungsgesteuerte Spannungsquelle $F(i)=f(i) \dots$ Stromgesteuerte Stromquelle $H(u)=f(i)\dots$ Stromgesteuerte Spannungsquelle G(i)=f(u) Spannungsgesteuerte Stromquelle

Die folgende Zeile kann als Komparator verwendet werden ...

E1 50 0 table {V(2,3)}=(-0.001,-10) (0,0) (0.001,10)

Erläuterung der oben angegebenen Zeile :

Wenn die Eingangsspannung <0,001 ist ist der Ausgang (hier Knoten 50,0) auf -10V Wenn die Eingangsspannung =0 ist ist der Ausgang (hier Knoten 50,0) auf 0V Eingangsspannung >0,001 ist ist der Ausgang (hier Knoten 50,0) auf +10V Beispiel siehe PWMtest

Ein Strom durch einen Varistor läßt sich wie folgt näherungsweise berechnen :

$$I = \left(\frac{U}{B}\right)^{n} * A$$
 U=Nennspannung in Volt ; A für Stromstärke in Ampere
B,n ... materialabhängige Konstanten

Definition des verwendeten Unterprogrammes :

.subckt VDR 1 4
** Metall Oxide Varistor mit einer
** Nennanschlussspannung von U(eff)=250 V
.param B=550
.param n=26.5
d1 1 2 diode
d2 3 1 diode
d3 4 2 diode
d4 3 4 diode
.model diode d
R1 2 3 100MEG
G1 2 3 Value={PWR((V(2,3)/{B}),{n})}
.ends

Arithmetische Operationen können während der Programmsimulation ausgeführt werden. Dabei sind folgende Operanden für *PSpice* erlaubt:

Tabelle 2.4Arithmetische Ausdrücke

Operand	Bedeutung
+,-,*,/	Addition, Subtraktion, Multiplikation, Division
ABS(x)	x Betragsbildung
SQRT(X)	Wurzel aus x
EXP(x)	ex
LOG(x)	natürlicher Logarihmus von x (ln(x))
LOG10(x)	log(x) (= Zehnerlogarithmus von x)
PWR(x,y)	x ^y
PWRS(x,y)	+ $ x ^{y}$ (für x>0), - $ x ^{y}$ (für x<0)
SIN(x)	sin(x) (x in rad)
COS(x)	$\cos(x)$ (x in rad)
TAN(x)	tan(x) (x in rad)
ATAN(x)	tan(x)-1 (x in rad)
ARCTAN(x)	tan(x)-1 (x in rad)

Zu beachten ist hierbei :

Arithmetische Ausdrücke müssen in eine Zeile passen. Bei längeren Ausdrücken können diese als Funktion *.FUNC* definiert und verknüpft werden.

Gesteuerte Quellen... Trafo, idealer op, Ntctest...

Beispiel Spannungsgesteuerte Spannungsquelle (als Idealer OP)

Operationsverstärker (hier in der Funktion des invertierenden Verstärkers) als Spannungsgesteuerte Spannungsquelle $E = Op_a$

Fehler im Symbol ??? Rückkopplung mit (+) – Eingang ??? Schaltung deshalb folgendermaßen ändern !

Oben... Steuerstrom, der sich aus der Steuerspannung V(10) ergibt

Test setzen der pulsquelle mit tp=0

	A	В
	SCHEMATIC1 : PAGE1	/H2
Reference	H2	H2////
Value	HPOLY	HPOLY
BiasValue Power		-1.000VV
COEFF	10000000-10	///10000000-10///
Source Part	HPOLY.Normal	HPOLY.Normal
	•	

Hier ist P0=10 und P7=-10

	А	В
	SCHEMATIC1 : PAGE1	/H2
Reference	H2	H2
Value	HPOLY	HPOLY
BiasValue Power		OVV
COEFF	0010	0010
Source Part	HPOLY.Normal	/// HPOLY.Normal ///

beachte der Steuerstrom beträgt maximal 1A P0=0 ; P1=0 ; P2=10

Hinweis : H(u)=f(i)... Stromgesteuerte Spannungsquelle

$$f(X_a) = P_0 + P_1 \cdot X_a + P_2 \cdot X_a^2$$

Beispiel : Addierer (C:\Beispiele\Quellen\Addierer)

Beispiel : Multiplizierer (C:\Beispiele\Quellen\Multiplizierer)

Idealer Übertrager mit ESB-Nachbildung zur Simulation des Übertragungsverhaltens

Trafo1 (siehe Seite 86 Buch)

Propertys des Trafos

	Α	В
	SCHEMATIC1 : PAGE1	<i>I</i> U1
Reference	U1	U1
Value	TRAFO	TRAFO
BiasValue Power		OVV
FAKTOR	18.333	////18.333
Source Part	TRAFO_1.Normal	///TRAFO_1.Normal///

Definition des Unterprogrammes

.subckt Trafo 1 2 3 4 params: Faktor=1

RP 1 2 1meg

E1 5 4 Value={V(1,2)/Faktor}

RM 5 3 1u

G1 1 2 Value={V(5,3)*1E6/Faktor}

.ends

E1... spannungsgesteuerte Spannungsquelle

G1 ... spannungsgesteuerte Stromquelle

Da der Meßwiderstand RM einen Wert von $1u\Omega$ hat wird in der Spannungsgesteuerten Stromquelle der Faktor 1E6 verwendet um auf eine Skalierung von 1V/A zu kommen.

Beispiel Seite 209 Laplace fehlt...

Möglichkeiten der erzeugung von Quellen ... Versuch10 (EMV)... Sinushalbwellensteuerung

Vorlesung 7 am 17.04.2008 Thema : Induktivitäten

Allgemeines :

Induktivität L

Induktivitäten können wie Widerstände und Kondensatoren mit Modellparametern beschrieben werden. Dabei wird ihr elektrisches Strom-/Spannungsverhalten und ihr Temperaturverhalten in Näherung nachgebildet. Alternativ läßt sich eine Induktivität aber auch durch Angabe der Windungszahl und des verwendeten ferromagnetischen Kerns durch eine Kernsimulation praxisnah darstellen.

2.3.1 Induktivität *L* ohne Kernsimulation

Der Wickelanfang rechtsgängig gewickelter Spulen (Punkt an der Induktivität) wird dem ersten Knoten N+ zugeordnet. Der Strom ist positiv von Knoten N+ zum Knoten N- definiert.

Format:

L <name></name>	< N+> < N->	[Modellname]	<wert></wert>	IIC = I01	
		mouthume	< 11 CI L/	10 - 10	

.Model <Modellname> IND [Parameter]

Beispiele:

L5	5 3	10U		*Wert = $10 \mu\text{H}$	
L1	8 0.	01 I	IC=10MA	*Anfangsstrom bei t= 0	10 mA
L10	3 42	LMOD	.03	*Wert = 0,03H = 30 mH	
.MODI	EL	LMOD	IND		

Mit der Anweisung IC = I0 wird die Induktivität zu Beginn der Transientenanalyse von dem Anfangsstromwert I0 durchflossen. Das Schlüsselwort *UIC* muß dafür in der *.TRAN*-Anweisung angegeben werden , damit die IC-Anweisung wirksam wird. Für eine Modellbeschreibung wird der Induktivität ein Modellname zugeordnet, hier beispielsweise *LMOD*. Mit der Modellanweisung können dann die gewünschten Modellparameter nach *Tabelle 2.7* spezifiziert werden.

Parameter	Bezeichnung	Grundeinstellung
L	Induktivitätsfaktor als Multiplikator	1
IL1	linearer Stromkoeffizient	0 • A ⁻¹
IL2	quadratischer Stromkoeffizient	0 • A ⁻²

Parameter	Bezeichnung	Grundeinstellung
TC1	linearer Temperaturkoeffizient	0 • °C ⁻¹
TC2	quadratischer Temperaturkoeffizient	0 • °C ⁻²
T_MEASURED	gemessene Temperatur (überschreibt den unter . <i>OPTIONS</i> gesetzten Wert für TNOM)	°C
T_ABS	absolute Temperatur	°C
T_REL_GLOBAL	Temperatur relativ zu der mit TNOM gesetzten Temperatur	° C
T_REL_LOKAL	Temperatur relativ zum AKO - Modell (AKO a kind of)	°C

Fehlt der Modellname, so ist *Wert* die Angabe der Induktivität in Henry. Wird jedoch der Modellname angegeben, so berechnet sich der Induktivitätswert *LW* strom- und temperaturabhängig nach Formel 2.4:

 $LW = WERT \cdot L \cdot (1 + IL1 \cdot I + IL2 \cdot I^{2}) \cdot (1 + TC1 \cdot \Delta t + TC2 \cdot \Delta t^{2})$ (2.4) mit $\Delta t = T - T_{TNOM}$

Der Wert ist normalerweise positiv, darf aber auch negativ, nicht jedoch Null sein.

2.3.2 Induktivität mit Kernsimulation

Format:

L<Name> < N+> < N-> <Anzahl der Windungen> K<Name> <Koppelfaktor> <Name Kernmodell>

.Model <Modellname> CORE [Parameter]

Beispiel:

L1	1	2	100
K1	L1	0.999	E20K2004
.MOI	DEL E20	K2004 CORE	

Der Koppelfaktor K1 benennt hier die Kopplung der Spule L1 mit einem Koppelfaktor von 0,999 zu einem ferromagnetischen Kern mit dem Namen E20K2004, der seinerseits als Modell mit den Modellparametern nach *Tabelle 2.8* spezifiziert wird.
Bezeichnung	Parameter	Einheit	Grundein- stellung
Modellindex *LEVEL=2 ab Version 6.2	LEVEL		1*
Eisenquerschnittsfläche	AREA	cm2	0,1
mittlere Feldlinienlänge	PATH	cm	1,0
effektive Länge des Luftspaltes	GAP	cm	0
Eisenfüllfaktor	PACK		1
magnetischer Sättigungsfaktor	MS	A/m	1E+6
Thermische Energie	Α	A/m	1E+3
Domänenbeweglichkeit	С	-	0,2
Domänen-Anisotropie	K	A/m	500
Kopplungsfaktor zwischen Domänenwänden (nur bei Modellindex LEVEL = 1)	ALPHA	-	1E-3
Domänendämpfungsfaktor (nur bei LEVEL = 1)	Gamma	s-1	unendlich

Tabelle 2.8Modellparamter für ferromagnetische Kerne

Die zu verwendenden Modellparameter **AREA** und **PATH** sind geometrische Daten, die dem Datenblatt des Kernes zu entnehmen sind. **ALPHA**, **K** und **C** sind Erfahrungswerte, wobei **C** die Anfangspermeabilität, **ALPHA** und **K** die Remanenz und Koerzitivfeldstärke bestimmen. Zu beachten ist, daß *PSpice* mit Gauß und Oerstedt rechnet. *Damit werden folgende Umrechnungen erforderlich:*

Der magnetische Sättigungsfaktor MS kann aus der Sättigungsinduktion BS in Tesla (s. Datenblatt des Kernmaterials) nach Formel 2.5 berechnet werden.

$$MS = \frac{\frac{BS}{mT} \cdot 10^4}{12,57} \cdot \frac{A}{m}$$
(2.5)

Zur Darstellung der magnetischen Feldstärke H in A/m ist die Umrechnung von Oerstedt nach Ampere je Meter gemäß Formel 2.6 auszuführen.

$$1 \text{ Oe} = 79,577 \text{ A/m}$$
(2.6)

Für die Maßstabwahl in der *PROBE*-Darstellung ist danach die x-Variable mit 79,577 zu multiplizieren. Soll die magnetische Flußdichte oder Induktion B in Tesla angezeigt werden, erfordert dies die Umrechnung der Einheit Gauß in Tesla gemäß Formel 2.7.

 $1 \text{ Gau}\beta = 10-4 \text{ Tesla} (10 \text{ kG} = 1 \text{ T})$ (2.7)

In PROBE ist dafür die y-Variable mit 1E-4 zu multiplizieren.

2.3.3 Übertrager *Lp*, *Ls*

Ein Übertrager besteht aus zwei oder mehr Induktivitäten, die miteinander gekoppelt sind.

Format:

L <primär></primär>	< N+> < N-> <wert h="" in=""></wert>
L <sekundär< th=""><th>< N+> < N-> <wert h="" in=""></wert></th></sekundär<>	< N+> < N-> <wert h="" in=""></wert>
>K <name></name>	< L _{primär} > <l<sub>sekundär> <koppelfaktor></koppelfaktor></l<sub>

Beispiel:

L1		1	2	100 uH
L2		3	4	10 uH
K12	L1	L2	.9999	

Die Kopplung der Induktivitäten kann aber auch über einen gemeinsamen ferromagnetischen Kern erfolgen, wenn dieser über Eingabe/Angabe des Modellnamens vorgegeben wird.

L<1>	< N+> < N-> <anzahl der="" windungen=""></anzahl>	
L<2>	< N+> < N-> <anzahl der="" windungen=""></anzahl>	
K <name></name>	$< L_1 > < L_2 > < Koppelfaktor >$	
	<modellname> [Größenfaktor]</modellname>	

.Model <Modellname> CORE [Parameter] (→Kap. 5.2)

Die Modellparameter können auch mit dem Programm PARTS.EXE durch Eingabe der Kennlinienpunkte bestimmt werden.

Beispiel:

L1	1	0	100
L2	3	5	10
K3	L1	L2	E20K2004
.MODEL	E20K2004	4 COR	E (Parameter)

Die Spule L1 hat 100 Windungen; Spule L2 10 Windungen auf dem gemeinsamen Kern E20K2004.

Durch diese Anweisung werden mehrere Induktivitäten miteinander gekoppelt bzw. wird die Kopplung einer oder mehrerer Wicklungen mit einem Kernmaterial angegeben. Gefordert wird ein Koppelfaktor von 0 < K < 1. Liegen mehr als zwei Wicklungen vor, können diese durch Angabe eines Gesamtkoppelfaktors simuliert werden.

Beispiel:

Kges L1 L2 L3 L4 .9998

Zu beachten ist, daß Transformatoren mit Eisenkern einen Koppelfaktor haben, der in der Regel größer als 0,999 ist. Der Größenfaktor beträgt in der Grundeinstellung 1. Sein Wert wird bei geschichtetem Kernmaterial durch die Anzahl der Isolierschichten bestimmt.

1) L1 1 2 10uH L2 2 3 2mH L3 3 4 LMOD 0.03 .Model LMOD IND(Stromabhängige Parameter + Temperaturkoeffizienten)

Weitere Stichworte ... Lbreak = Stromabhängige Induktivität

Wenn IL1 auf 0 gesetzt wird ergibt sich folgendes :

Beispiel : Verzeichnis Lwert

Bedeutung : L1 = Induktivität (hier mit einem Wert von 100); dadurch, dass ein Koppelfaktor zu einem Kernmodell angegeben ist wird aus diese Angabe automatisch die Angabe der Windungszahl und nicht der Induktivität, da nur die Windungszahl bei einem realen Modell konstant ist !

	А
	SCHEMATIC1 : PAGE1
Reference	K1
Value	١M
COUPLING	0.99
L1	L1
L2	
L3	
L4	
L5	
L6	
Source Part	E20K2004.Normal

Die "Induktivität" ist hier mit dem Kern E20K2004 mit einem Kopplungsfaktor von 0,99 verbunden. Wenn mehrere Windungen vorhanden sind sind diese entsprechen bei L2,L3 usw. mit einzutragen.

Im unteren Bild wird der Strom durch die Induktivität und im oberen Bild wird der Induktivitätswert dargestellt .

Aufgabe : Luftspalt auf 0.01 einsetzen und neu berechnen...

Anmerkung : die Faktoren 1E-4 und 79.577 werden hier benötigt um auf International genormte SI-Einheiten zu kommen (siehe Mitschrift Seite 67) .

Als Übung die Schrittweitenbegrenzung entfernen (war 1.5ms) Fehler beheben mit Options...-> oft auch Sinnvoll Options reset → läuft dann häufig schon wieder. Begrenzung der Rechenschrittweite... Weitere Übung... ersatz des Kernes durch einen Kern mit den folgenden Daten :

 $\label{eq:constraint} \begin{array}{l} \text{Kernmaterial}: \text{PERMAX} \\ A_{Fe} = 1,2 \ \text{cm}^2 \\ \text{Lm} = 9,9 \ \text{cm} \\ B_S = 1,5 \ \text{T} \\ \text{N} = 360 \ \text{Windungen} \\ \text{K50X} = \text{Trafos in Library suchen lassen} \ \dots \\ \text{E20x} \end{array}$

- a) demo4
- b) kernsimulation..ideal + real
- c)

1) Übungsbeispiel : LWERT in neues Verzeichnis (alle Dateien)kopieren und folgendermaßen verändern (Buch Seite 84ff)

= Simulation einer Induktivität die geschaltet wird und mit einer Diode im Freilauf

2) Demo3 = Sättigungserscheinungen an einer Induktivität (Bei realen Induktivitäten ist auch bei nur einer Wicklung ein Koppelfaktor anzugeben (hier K1)

Zündimpulsübertrager (real + ideal)

= Verzeichnisse : Kernsimu_Ideal + Kernsimu_Real

Vorlesung 8 am 24.04.2008 Thema : Unterprogramme

Operationsverstärker (siehe Buch Seite 122...)

Einbindung komplexer Bauteile mit Unterprogrammen (Buch S. 72)

Bauteilkennzeichen:

Xname Anzahl der Anschlüsse Modellname Beispiel : X1 2 3 10 5 11 LT1013

Aufruf des Unterprogrammes :

.SUBCKT Modellname Anzahl der Knoten Beispiel : .subckt LT1013 1 2 3 4 5

Abschluß des UP mit :

.ENDS

In dem oben angegebenen Beispiel wird Knoten 2 (aus dem aufrufenden Programm) mit dem Knoten 1 (im Unterprogramm) verbunden (Knoten 3 mit Knoten 2 ; Knoten 10 mit Knoten 3).

Anwendung : IC wie z.B. Operationsverstärker Thyristoren, Triac IGBT, GTO Sowie vom Anwender definierte häufig sich wied

Sowie vom Anwender definierte häufig sich wiederholende Schaltungsabschnitte Änderungen von Parameterwerten im Unterprogramm mit PARAMS : Name = Wert Operationsverstärker

Wie findet man ein Bauteil, wenn der Name nicht genau bekannt ist ? Bauteilsuche mit Wildcards... z.B. *741 ergibt z.B. ua741...

Beispiele :

Simulation von Operationsverstärkern S121 Programm Seite 122

- a) idealisiert mit gesteuerter Spannungsquelle
- b) real- Makromodell uA741

Modell besteht aus :

Egnd =	Spannungsgesteuerte Spannungsquelle
Fb =	Stromgesteuerte Stromquelle
Ga =	Spannungsgesteuerte Stromquelle
Hlim =	Stromgesteuerte Spannungsquelle

Sowie den Transistoren Q1 und Q2, diversen Dioden, R,C

1) Verzeichnis: OP = Invertierender Verstärker mit uA741 ; R1=15k; R2=45k später auf 145k ; fein=1kHz ; û=3V

Anzeige der Netzliste über Menüpunkt des Unterprogrammes : PSPICE ... View Netlist

	<u>F</u> ile <u>E</u> dit	<u>O</u> ptions	<u>W</u> indow <u>H</u> elp
<u>1</u>	🖻 🖪 🎒	ХÞ	
sc	HEMATIC1	-0P	
1:	* source	OP	
2:	V_V1	30	0 15
3:	V VE	60	0
4:	+SIN O 3	1000 0	0 0
5:	R Ra	50	0 1k
6:	R R2	20	50 45k
7:	R R1	60	20 15k
8:	v v2	40	0 -15
9:	R_R3	10	0 15k
10:	X_U1	10	20 30 40 50 uA741
11:	_		

Wenn der OP mit der rechten Maustaste angeklickt wird erscheint ein Menü mit ... Edit Model

Erläuterung der Anschlüsse...

- Invertierender Eingang
- nichtinvertierender Eingang
- Ausgang...
- Spannungsversorgung mit ±15V

🕮 OP.lib - PSpice Model Editor Lite - [uA741]	
III	
Models List X +	
ModelName Type * connections: non-inverting input	it.
uA741* SUBC * inverting input	e gunnler
* negative power	ver supply
* output	
$\begin{bmatrix} * & & & & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
*	
c1 11 12 8.661E-12	
dc = 5.53 dx	Name des
de 54 5 dx	Operationsverstärkers
dlp 90 91 dx	1
$\frac{d\ln 92}{d\mu} \frac{90}{4} \frac{dx}{d\mu}$	
egnd 99 0 poly(2) (3,0) (4,0) 0	.5.5
fb 7 99 poly(5) vb vc ve vlp v	/ln 0 10.61E6 -10E6 10E6 10E6 -10E6
$ga = 6 \cup 11 12 188.5E-6$	
iee 10 4 dc 15.16E-6	
hlim 90 O vlim 1K	
q1 11 2 13 qx q2 12 1 14 qx	
r2 6 9 100.0E3	
rc1 3 11 5.305E3	
rc2 3 12 5.305E3	
re2 14 10 1.836E3	
ree 10 99 13.19E6	
ro1 8 5 50	
rp 3 4 18.16E3	
vb 90dc0	<u> </u>
Ready	
SCHEMATICI-	OP E OP.lib - PSpice 02 12:25

Hier wird also der Knoten 10 aus dem Hauptprogramm mit dem Knoten 1 aus dem Unterprogramm verbunden (Knoten 20 mit 2 usw.)

Hinweise :

egnd = spannungsgesteuerte Spannungsquelle

fb=Stromgesteuerte Stromquelle

GCM=Spannungsgesteuerte Stromquelle

Hlim=Stromgesteuerte Spannungsquelle (s.o)

Darstellung der normalen Rechenergebnisse

Grün: Eingangsspannung ; Braun: Ausgangsspannung

Add Traces			
Simulation Output Variables		Functions or Macros	
×		Analog Operators and Functions	
* I[X_U1.rc1] I[X_U1.rc2] I[X_U1.rc2] I[X_U1.re1] I[X_U1.re2] I[X_U1.re2] I[X_U1.re1]	 Analog Digital Voltages Currents Power Noise (V²/Hz) Alias Names Subcircuit Nodes 	Analog Operators and Functions	
IS(X_U1.q1) IS(X_U1.q2) Time V(0) ✓	206 variables listed	LOG() LOG10() M() MAX()	1
Full List			
Trace Expression:		OK Cancel Help	

Aufgabe : Darstellung eines *unterprogramminternen* Stromes (Eingangsstrom ...)

Darstellung des Frequenzganges

aus dem gewählten Beispiel den Frequenzgang darstellen.... entweder die Eingangsquelle von vsin nach vac verändern (neues Bauteil) *oder*

... Eingangsquelle so verändern, dass auch ein AC-Anteil vorhanden ist...

🛐 Orcad Capture - Lite Edition - [Property Editor]						
🛐 <u>F</u> ile <u>E</u> dit \	🛐 Eile Edit View Place Macro Accessories Options Window Help					
<u>></u>	X B B 2 2					
SCHEMATIC1-0)P 🔽 🛅 🗖	🕨 🔊 🔊 🔊				
New Row	Apply Display	Delete Property	Filter by: Orcad-PSpice			
	А	В				
	SCHEMATIC1 : PA	∕∕E				
Reference	VE	VE				
Value	VSIN	VSIN				
AC	1					
BiasValue Power		OW				
DC						
DF	0	0				
FREQ	100k	100k				
PHASE	0	0				
Source Part	VSIN.Normal	VSIN.Normal				
TD	0	0				
VAMPL	3	3				
VOFF	0	0				

Simulationsumgebung neu einstellen... AC-Analysys ...Bereich ca. 1Hz-2MEG – Hz Normal : FREQ=1KHz

Eingangsfrequenz so verändern, das Grenzen erkennbar werden (z.B. Eingangsfrequenz 100kHz)

👫 Orcad Captu	re - Lite Edition - [Pro	perty Editor]	
🛐 <u>F</u> ile <u>E</u> dit <u>Y</u>	⊻iew <u>P</u> lace <u>M</u> acro	Accessories Option	s <u>W</u> indow <u>H</u> elp
웝 🖻 🖶 🥭	<u>x B B 9</u> 20		
SCHEMATIC1-	0P 🔻 🛅 🗖	🕨 🍽 🖉 🖉	
New Row	Apply Display.	. Delete Property	Filter by: Orcad-PSpice
	Α	В	
	SCHEMATIC1 : PA	NE	
Reference	VE	VE	
Value	VSIN	VSIN	
AC			
BiasValue Power		OW	
DC			
DF	0	0	
FREQ	100k	100k	
PHASE	Ø	0	
Source Part	VSIN.Normal	VSIN.Normal	
TD	0	0	
VAMPL	3	3	
VOFF	0	0	

es erscheint ein sehr buntes Bild... nach reichlichem Zoomfaktor ist deutlich zu erkennen, das die Rechenschrittweite zu groß gewählt wurde... sinnvolle Parameter einstellen...

Sinnvolle Simulationsumgebung..

👫 Orcad Capture - Lite	Edition - [Property Editor]	_ <u>-</u>
🛐 <u>F</u> ile <u>E</u> dit <u>V</u> iew <u>P</u> l	lace <u>M</u> acro <u>A</u> ccessories <u>O</u> ptions <u>W</u> indow <u>H</u> elp	_ & ×
CHEMATICI-OP	E ⊇£ din-r ▼ SGSB UTIV®III I S . ? ▼ HI► ♥ Ø?? Ø V UI+WW	
New Row App A No Object Selected.	Display Details Depart U File by Oursed DOcise Help Simulation Settings - OP X Help General Analysis Include Files Libraries Stimulus Options Data Collection Probe Window Analysis type: Image: Stimulus Options Data Collection Probe Window Analysis type: Image: Stimulus Options Data Collection Probe Window Image: Stimulus Options Data Collection Probe Window Analysis type: Image: Stimulus Options Data Collection Probe Window Image: Stimulus Options Data Collection Probe Window Options: Image: Stimulus Options Image: Stimulus Options Image: Stimulus Options Options: Image: Stimulus Options Image: Stimulus Options Image: Stimulus Options Options: Image: Stimulus Options Image: Stimulus Options Image: Stimulus Options Image: Options: Image: Stimulus Options Image: Stimulus Options Image: Stimulus Options Image: Options: Image: Options Image: Options Image: Options Image: Options Image: Options: Image: Options Image: Options Image: Options Image: Options Image: Options: Image: Options Image: Options Image: Options Image: Options Image: Options:	

Mit der rechten Maustaste auf die Kurve klicken \rightarrow unter "Properties" können die Eigenschaften der Kurven eingestellt werden (z.B. : Strichstärke;Farben).

<u>Simulation mit idealem Operationsverstärker...man beachte den Fehler...</u> (<u>Eingangsbeschaltung ist offensichtlich egal...</u>)

Wie wird ein neues Unterprogramm eingebunden?

Schaltungsdefinition aus dem Internet laden oder eigene Datei erzeugen (mit Texteditor) und als "name.lib" speichern !

Modelleditor starten und dort diese Bibliothek laden....

Es erscheint sofort der Name des Bauteiles....

C	New	. 94 * 1 = 2 + 1 2	
	Upen		
MO	<u>C</u> lose		크
M	<u>S</u> ave		
u4	Save As	c1 11 12 8.661E-12	
		c2 6 7 30.00E-12	
	<u>Print</u>	dc 5 53 dx	
		de 54 5 dx	
	Page Setup	dlp 90 91 dx	
	5	dln 92 90 dx	
	Create Capture Parts	dp 4 3 dx	
	1 C·\Temp\Schuermi\Opera lib	egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5	
	2 C//Temp/CCPKenn1/serkenn1/ib	fb 7 99 poly(5) vb vc ve vlp vln 0 10.61E6 -10E6 10E6 -10E6 -10E6	
		ga 6 0 11 12 188.5E-6	
	3 C: VI emp\Schuermi\Operab.lib	gcm 0 6 10 99 5.961E-9	
	4 lek.lib	iee 10 4 dc 15.16E-6	
	<u>5</u> C:\Temp\Trafo1\TRAF01.lib	hlim 90 0 vlim 1K	
	<u>6</u> C:\TRAF01.lib	g1 11 2 13 gx	
	F 2		
	Exit	$r_{2} = r_{2} = r_{2}$	
		rc1 3 11 5 305F3	
L			
		FE2 14 10 1.030L3	
			Ľ
1			
(Course)	te Caretone Desta fas the la disected ble del Like	INT I DE LA COMPANIA	164

a l

Upera.itb - P'Spice Model Editor Lite - [uA/41]		
Lef Edit View Model Plot Loois Window Help		
DFRERRR # II E+JE		
Models List X .subckt uA741 1 2 3 4 5 Model Name Type Creation Date/ * c1 11 12 8.661E-12 c2 6 7 30.00E-12 c2 6 7 30.00E-12 C Cetate Parts for Library de dl Enter Input Model Library X de dl Enter Input Model Library X de dl Enter Output Part Library X gc C.VTemp\Schuerm\Opera.lib Browse 6 10E6 10E6 -10E6 gc C.VTemp\Schuerm\Opera.olb Browse 6 10E6 10E6 -10E6 ret 0 OK Cancel Hep ret 3 11 5.305E3 ret 3 12 5.305E3 ret 1 10 1.836E3 ret 1 10 1.836E3		· 18
Ready	M	

dann Bibliothek auswählen...

und bestätigen... dadurch wird ein Kasten erzeugt der genau soviele Anschlüsse wie die Unterprogrammdefinition als Ein bzw. Ausgänge hat...

Mit dieser "Bluebox" können sofort Simulationen durchgeführt werden. Sie sollten sich allerdings ansehen welche Funktion welcher Pin hat.

Wenn gewünscht kann dieser "Kasten" jetzt noch mit Symbolen so ausgestattet werden, das die Funktion nach außen erkannt werden kann...

Nach dem ausführen dieses Programmes erscheint ein Fenster mit Meldungen...

D	:\NotwendigeDaten\LABOR\PSpice\neu\libscr\teccscr.err	×
	STATUS: PSpice Schematics to Capture translator (9.2. 226) STATUS: STATUS: Translator started at Tuesday, December 02, 2003 14:48:20 STATUS: s:\fbi\orcad\Capture\sch2cap -f "D:\NotwendigeDaten\LABOR\PSpice\neu\libscr\teccscr.lib" -o ' INFO: Using existing library 's:\fbi\orcad\Capture\Library\PSpice\modeled.etc'. INFO: Created new library 'D:\NotwendigeDaten\LABOR\PSpice\neu\libscr\teccscr.olb'. STATUS: Translator stopped at Tuesday, December 02, 2003 14:48:37 STATUS: 0 Error messages, 0 Warning messages	1
	■ OK	T

In Capture unter... Edit Part nachdem das Bauteil markiert wurde

Auf den nächsten zwei Seiten ist ein Auszug aus einem Datenbuch der Firma TexasInstruments angegeben...

TLE2027, TLE2027A, TLE2027Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOSO54D - MAY 1990 - REVISED SEPTEMBER 1996

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using *PSpice*[™] *Parts*[™] model generation software. The Boyle macromodel (see Note 6) and subcircuit in Figures 44 and 45 were generated using the TLE2027 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Gain-bandwidth product
- Common-mode rejection ratio
- Phase margin
- dc output resistance
- ac output resistance
- Short-circuit output current limit
- NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).

Figure 44. Boyle Macromodel

TLE2027, TLE2027A, TLE2027Y EXCALIBUR LOW-NOISE HIGH-SPEED PRECISION OPERATIONAL AMPLIFIERS SLOS054D - MAY 1990 - REVISED SEPTEMBER 1996

APPLICATION INFORMATION

macromodel information (continued)

.subckt *	TLE2027	1 2	3 4	5								
.subckt * c1 c2 dc de dlp dln dp egnd fb ga gcm iee hlim q1 q2 rc1 rc2 re1 rc2 re2 vb vc ve vlm vlm vlm vc vc vc vc vc vc vc vc vc vc	TLE2027 11 6 5 54 90 92 4 99 7 6 0 10 90 11 12 6 3 13 14 10 8 7 3 14 10 8 7 9 9 12 6 3 13 14 10 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9	1 2 12 755591 9903099064021911200995940534802200 53480200554802000	3 4 4.00 20. dz dz dz dz dz dz dz dz dz vli 13 14 100 5300 -39 3.5 25 25 8.0 dc dc dc dc dc dc dc dc dc dc dc dc dc	y(2) y(2) y(5) 12 99 56.0 m 1K qx qx .0E3 .5 .3.2 3.2 71E6 13E3 0 2.40 2.10 0 40	2 2 (3,0) vb vc 531. 1E-6	(4,0) ve vlp 2E-3 3E-12	0 5 .5 vln 0	954.8E	6 –1E9	1E9	1E9	-1E9
.modelqx	NPN(Is	=800.	.0E-	18 Bf	=7.000	0E3)						
, ends												

Figure 45. Macromodel Subcircuit

Vorlesung 9 Simulation von Thyristoren (SCR)am 08.05.2008

Buch Seite 112,115 Modelleinbau X1 1 2 3 SCR Änderung der internen Modellparameter mit PARAMS

Kennlinie eines Thyristors : → Programm SCRKENN1.CIR Seite 115 Verzeichnis >: SCRKENN1 Schaltbild (Anmerkung : VM stellt lediglich eine Meßspannungsquelle dar → Editieren und erläutern...)

Eingangsspannung : f=2kHz→T=500us ; Impulsquellen : IG1 td=500us ; IG2 td=1ms

Wenn die Netzliste aufgerufen wird (Pspice - \rightarrow View Netlist) erscheint das Programm :

```
* source SCRKENN1
              3 N01143 DC 0Adc AC 0Aac
I_IG2
+PULSE 0 1m 1m 50n 50n 100u 500u
V VN
             1 0
+SIN 0 120 2000 0 0 0
R R1
             3 0 200
V_VM
             N01143 2 0Vdc
X_X1
             1 2 3 2N1595
              3 N01143 DC 0Adc AC 0Aac
I_IG1
+PULSE 0 1m 500u 50n 50n 100u 500u
```

```
Wenn das PspiceModel angezeigt wird erscheint folgendes (auszugsweise)

.SUBCKT 2N1595 anode gate cathode

* "Typical" parameters

X1 anode gate cathode Scr PARAMS:

+ Vdrm=50v Vrrm=50v Ih=50ma Vtm=1.1v Itm=1

+ dVdt=1e9 Igt=2ma Vgt=.7v Ton=0.8u Toff=10u

+ Idrm=10u

.ENDS
```

Das "Unterprogramm" 2N1595 ruft also seinerseits das Unterprogramm SCR auf ...

Darstellung der Kennlinie eines Thyristors

Beispiel SCRKENN1A verwendet den vorhandenen Thyristor 2N1596

... es ergeben sich leicht veränderte Werte...

Verzeichnis : SCRTEST

Erläuterung des Unterprogrammes auf der Seite 113 im Buch (Verzeichnis SS2007\Buch\Kap3_5) Hier wird der eigene Thyristor getestet Das Unterprogramm sieht wie folgt aus :

*** Unterprogramm Tyristor (Ideal) * Anode Gate Kathode .subckt scrneu 1 5 3 h1 400 0 vm 180 → Stromgesteuerte Spannungsquelle dg 40 41 d vg 41 0 dc 1 rt 400 40 100 ct 40 0 68n rtl 40 0 50 s1 1 2 40 0 schalter .model schalter vswitch (von=0.5 voff=0.3 ron=60m ROFF=800K) vm 2 3 dc 0 → Meßstromquelle r1521 .model d d .ends scrneu

Erläuterung des eigenen Modells :

Gatestrom von $5 \rightarrow 3$ über R1 und Vm ...Vm als Meßspannungsquelle mit Faktor 180 multipliziert. Spannungsquelle H1 lädt über Rt Ct auf (Einschaltverzögerung) Spannung über ct zwischen $40 \rightarrow 0$ steuert den Schalterwiderstand S1

Aufgabe

Simulieren eines Wechselstromstellers mit einem Triac (mit Hilfe von 2 antiparallelen Thyristoren vom TYP SCR)

(Verzeichnis :Vorlesung9\TRIAC\TRIAC2); Anschnittwinkel : 90°!

Triac schaltet bei 400 V ein , da Sperrspannung zu klein ist... Vdrm=1200v Vrrm=1200v setzen !

Nächste Variante : Ohmsch/Induktive Last (ohne TSE-Schutz) → Verzeichnis Induktiv_ohne_TSE_Schutz

Thyristor zündet beding durch eine zu große Spannungsänderungsgeschwindigkeit (du/dt)

Problembehebung : TSE – Schutzbeschaltung mit RC -Glied

Weitere Anwendungen : Parametereinstellungen bei b2h

Die Zeile unterhalb von Parameters wird nur dargestellt, wenn die entsprechende Zeile (für diesen Parameter...) markiert wird und dann auf : Display...

$M1-Schaltung\ mit\ ohmsch/induktiver\ Last\ (\ Verzeichnis:\ M1_r_l\)$

M2-Schaltung :

M3 – Schaltung (Verzeichnis : ..\Lekv3)

Time

Vorlesung 10 : Thema Schalter am 04.12.2007

Schalter

Spannungsgesteuerter Schalter S

Format:

S <name></name>	< Kontakt1> <kontakt2></kontakt2>
	<steuerknoten1> <steuerknoten2> <modellname></modellname></steuerknoten2></steuerknoten1>

.Model <Modellname> VSWITCH [Parameter]

Beispiel:

Symbol für einen stromgesteuerten Schalter (W)

Beispiele für die Verwendung von Schaltern :

- Testschaltung für die Funktion des Schalters
- → Verzeichnis : ../Beispiele/stest2

a) Laborversuch (Versuch 9 EMV) "VDE0160-Impuls"

EMV-Labor : Versuch10(neu erstellt) (V10_700h) Sinushalbwellensteuerung (= Schalterstellung 700h)

Definition der Steuerquelle (in diesen Fall Pulsquelle) und des spannungsgesteuerten Schalters

	А	В		A	В
	SCHEMATIC1 : PAGE1	<i>N</i> 5		SCHEMATIC1 : PAGE1	<i>I</i> S2
Reference	V5	V5	Reference	S2	S2
Value	VPULSE	VPULSE /////	Value	S	S
Т9			Т9		
AC			BiasValue Power		0VV
BiasValue Power		OW	ROFF	1e6	1e6
DC			RON	1.0	1.0
PER	30m	30m	Source Part	S.Normal	S.Normal
PW	10m	10m	VOFF	0.0V	0.0V
Source Part	VPULSE.Normal	///VPULSE.Normal///	VON	1,0V	1.0V
TD	0	0			
TF	1u	1u			
TR	1u	1u///			
V1	0	0			
V2	10	10			

FFT der oben angegebenen Funktion :

+ Einführung in die FFT... in Ausgabedatei...

FOURIER COMPONENTS OF TRANSIENT RESPONSE I(R_R2)

DC COMPONENT = 5.104238E-07

HARMONIC NO	FREQUENCY (HZ)	FOURIER COMPONENT	NORMALIZED COMPONENT	PHASE (DEG)	NORMALIZED PHASE (DEG)
1	5.000E+01	3.249E-04	1.000E+00	1.800E-01	0.000E+00
2	1.000E+02	1.021E-06	3.142E-03	9.000E+01	8.964E+01
3	1.500E+02	1.021E-06	3.142E-03	9.000E+01	8.946E+01
4	2.000E+02	1.021E-06	3.142E-03	9.000E+01	8.928E+01
5	2.500E+02	1.021E-06	3.142E-03	9.000E+01	8.910E+01
6	3.000E+02	1.021E-06	3.142E-03	9.000E+01	8.892E+01
7	3.500E+02	1.021E-06	3.142E-03	9.000E+01	8.874E+01
8	4.000E+02	1.021E-06	3.142E-03	9.000E+01	8.856E+01
9	4.500E+02	1.021E-06	3.142E-03	9.000E+01	8.838E+01
10	5.000E+02	1.021E-06	3.142E-03	9.000E+01	8.820E+01
11	5.500E+02	1.021E-06	3.142E-03	9.000E+01	8.802E+01
12	6.000E+02	1.021E-06	3.142E-03	9.000E+01	8.784E+01
13	6.500E+02	1.021E-06	3.142E-03	9.000E+01	8.766E+01
14	7.000E+02	1.021E-06	3.142E-03	9.000E+01	8.748E+01
15	7.500E+02	1.021E-06	3.142E-03	9.000E+01	8.730E+01

TOTAL HARMONIC DISTORTION = 1.175556E+00 PERCENT

Weitere Beispiele : VPS2 = 800h – Muster

	A	
	SCHEMATIC1 : PAGE1	
Reference	V5	
Value	VPULSE	
Т9		
AC		
BiasValue Power		
DC		
PER	30m	
PW	10m	
Source Part	VPULSE.Normal	
TD	0	
TF	1u	
TR	1u	
V1	0	
V2	10	

	A
	SCHEMATIC1 : PAGE1
Reference	V6
Value	VPULSE
Т9	
AC	
BiasValue Power	
DC	
PER	30m
PW	10m
Source Part	VPULSE.Normal
TD	20m
TF	1u
TR	1u
V1	0
V2	10

Schwing = Anregung eines Schwingkreises

Bei einem "Einschaltwiderstand von $10m\Omega$ (=10000u Ω) ergiebt sich das folgende Ergebnis.

Betrachtet man einen längeren Zeitraum, so sieht man die Dämpfung durch den Widerstand des Schalters.

Simulation einer Schalterfunktion mit Hilfe einer Pulsspannungsquelle

verfeinertes HBM (Human Body Modell)=Nachbildung der entladung von elektrostatischer Elektrizität (ESD-Impuls)

11. Vorlesung PSpice Simulation von Temperatureinflüssen 22.05.2008

Befehl .TEMP $\vartheta 1 \ \vartheta 2 \ \vartheta 3 \ ...$ Beispiel Widerstand RW=RK(1+ $\alpha * \Delta \vartheta$) α = TC1 ... Temperaturkoeffizient

1) <u>Übung (Temperatureinfluß bei Dioden : Verzeichnis Diode_Temperatur</u>

Notwendige Parametereinstellungen der Bauteile

a) R_CR25 .model R_CR25 RES (R=1 TC1=600E-6 T_MEASURED=20) b) Dbreak .model Dbreak D Rs=1 TBV1=-1e-2 TRS1=2e-2 ...unter edit PSpice Model...

TRS1 = linearer Temperaturkoeffizient für den Reihenwiderstand (RS) TBV1=linearer Temperaturkoeffizient für die Durchbruchspannung

Um sowohl die Spannung zu variieren als auch mit 2 verschiedenen Temperaturen zu simulieren sind folgende Einstellungen vorzunehmen

a) primary sweep	b) secondary sweep
Simulation Settings - Temp1 General Analysis Include Files Libraries Stimulation Settings - Temp1 General Analysis Include Files Libraries Stimulation Settings - Temp1 Secondary Sweep Global parameter Model parameter Model parameter Model parameter Model parameter Model parameter Model parameter Sweep type Save Bias Point Load Bias Point Sweep type C Logaritymic Decade Increment 0.01 Value ligt	Simulation Settings - Temp1 General Analysis Include Files Libraries Stimulus Options Data Collection Probe Window Analysis type: DC Sweep Options: Options: Primary Sweep Model parameter Model parameter Parametric Sweep Temperature (Sweep) Save Bias Point Sweep type C Logaritymic Decade C Value ligt -55 150
OK Abbrechen Übernehmen Hilfe	OK Abbrechen Übernehmen Hilfe

2) Übung: RTEST.CIR (Seite 75/76 Buch) = Temperatureinfluss bei Widerständen

 \rightarrow ändert man TC1 von -600E-6 auf +600E-6 , so erhält man ein PTC-Verhalten !

Analysis type:	Sweep variable		
DC Sweep 💌	○ Voltage source	Name:	
Ostioner	C <u>C</u> urrent source	Madel tupe:	T
<u>u</u> piions.	C <u>G</u> lobal parameter	Model Qpe.	
Primary Sweep	C Model parameter	Mod <u>e</u> l name:	
Monte Carlo/Worst Case	Imperature	Parameter name:	
□ Parametric Sweep □ Temperature (Sweep) □ Save Bias Point □ Load Bias Point	Sweep type	Sta <u>r</u> t value:	-55
	C Logarit <u>h</u> mic Dec	ade _Increment:	1

3. Übung NTC – Nachbildung Seite 76ff

Verzeichnis: ../Beispiele/NTCTest Schaltbild

Modelldefinition des NTC einfach kopieren und den Namen ändern \rightarrow (NTC nach PTC bis .subckt und .end...)

Schritt 1 : Verändern des Wertes für tc1 von +1000 auf -1000

.subckt ptc 1 2 EOUT 1 3 poly(2) (5,0) (4,0) 0 0 0 0 1.0 vsense 3 2 dc 0.0 fout 0 4 vsense 1.0 rref 4 0 10K gout 0 5 poly(1) 6 0 3.266 +-0.16633619 +0.0046450693+ -8.6856965e-5 + 1.017213e-6 +-3.8668603e-9 + -8.8615615e-11 + 1.678045e-12+ -1.3013017e-14 + 4.8617031e-17 + -6.8866237e-20 r0501.0 itemp 0 6 dc 1.0 rt 6 0 rtemp 0.001 .model rtemp res (r=1 tc1=-1000) bei dem NTC ist dieser Wert tc1=+1000 !!! .ends ptc

Ergebnis nach der Veränderung von tc1 :

Schritt 3 : Spannungsgesteuerte Stromquelle entsprechend der roten Markierung ändern:

```
.options tnom=0
.subckt ptc2 1 2
EOUT 1 3 poly(2) (5,0) (4,0) 0 0 0 0 1.0
vsense 2 3 dc 0.0
fout 0 4 vsense 1.0
rref 4 0 10K
gout 0 5 poly(1) 6 0 -100 (bei dem NTC war statt der 100 hier 3.266 eingetragen)
+-0.16633619
+0.0046450693
+ -8.6856965e-5
+ 1.017213e-6
+-3.8668603e-9
+ -8.8615615e-11
+ 1.678045e-12
+ -1.3013017e-14
+ 4.8617031e-17
+ -6.8866237e-20
r0 5 0 1.0
itemp 0 6 dc 1.0
rt 6 0 rtemp 0.001
.model rtemp res (r=1 tc1=-1000)
.ends ptc2
```


Modellierung von Varistoren (Seite 79 Buch) VDRTEST

