
Overview Task Description
Welcome to this year’s Digital Integrated Circuits course! Within the course, you will have to solve some assignments
that will teach you fundamental concepts of integrated circuits design.

We will demonstrate digital integrated circuit design on a step-by-step example of a digital counter. It is important that
you get a feeling for the result of your design decisions, so we will draw attention on the results of the synthesis steps,
which you will verify with several tools along the digital design �ow.

So, let’s get started! Your task is to design a synchronous counter that runs in two modes, based on a mode switch.
The two modes are called up and down. In up mode, the counter increments the counter value by 5 at the rising edge
of the clock signal, and in down mode, it decrements the counter value by 9 at the rising edge of the clock signal. The
counter should implement reset behavior, such that it is set to an initial value of -16 upon reset. The counter should never
exceed a value of 244, and should never go below a value of -349 (the counter value sticks near the minimum/maximum
value, until the counting direction changes). The counter value should never be -5 (the counter should jump over this
value).

Task 1: Properties �rst!
Your �rst task is to create a formal speci�cation for your counter. Take the informal, human-language description of
the counter, and formulate SystemVerilog Assertion (SVA) properties that constrain the behavior of your counter. Name
the signals as follows:

Table 1: Signal names for the counter

Signal name description width
cnt Counter value 10
mode Counter mode 1
clk Clock 1
rst Reset 1

If the mode signal is ‘0’, the counter is in down mode, and in up mode otherwise.

Specify properties for your counter as given in in Listing 1 and provide them in a �le called properties.sv. Your properties
should check that:

1. The counter value always is in the speci�ed range, and that it never takes the invalid value

2. The counter increment is always as specifed, except when the invalid value is jumped over

3. The counter decrement is always as specifed, except when the invalid value is jumped over

4. The increment/decrement can be di�erent after the �rst clock cycle, when rst goes from ‘1’ to ‘0’

5. The increment/decrement can be di�erent when the counter value remains near the minimum/maximum value

Listing 1 shows a skeleton �le into which you can add more properties. Two properties are already given: The �rst one
checks whether the counter register is set to its correct initial value upon reset. The second property checks whether
the counter value is always lower than or equal to the maximum value.

Your task is to extend this �le with more properties. You will need a minimum of SystemVerilog for this task. Get yourself
familiar with the SystemVerilog if/else statement. Also, the $past statement will be helpful to solve your task.

Listing 1: Skeleton �le properties.sv to verify your counter
1 module ctb #(
2) (
3 input clk,
4 input rst,
5 input mode,
6 output signed[10-1:0] cnt
7);
8
9 counter i_counter (.*);

10
11 bind
12 counter : i_counter counter_sva i_sva (.*);
13
14 endmodule
15

1

16
17 module counter_sva (
18 input clk,
19 input rst,
20 input mode,
21 input signed[10-1:0] cnt
22);
23
24 reg init = 1;
25
26 always @(posedge clk) begin
27 if (init) assume(rst);
28 else assume(!rst);
29 init <= 0;
30 end
31
32 always @(posedge clk) begin
33
34 if (rst) begin
35 assert (cnt == -16);
36 end
37
38 if (!rst) begin
39
40 //
41 // Check if counter value is never lower than MIN, larger than MAX, or
42 // equal to INV
43 //
44 assert (cnt <= 244);
45 //
46 // TODO: Add more properties here!
47
48 //
49 // Check if the counter value is correctly incremented and decremented
50 //
51
52 // Counting up
53 //
54 // TODO: Add your properties here!
55
56 // Counting down
57 //
58 // TODO: Add your properties here!
59
60 end
61
62 end // Process
63
64 endmodule

We provide you a counter implementation in the �le counter.v such that you can check your properties.

You can check the properties with SymbiYosys. Run it with the command given in Listing 2.

Listing 2: Command to invoke SymbiYosys, using the con�guration �le counter.sby
1 sby counter.sby

The command given in Listing 2 reads a con�guration �le counter.sby, which is given in Listing 3.

Listing 3: Command to invoke SymbiYosys, using the con�guration �le counter.sby
1 [tasks]
2 prove
3
4 [options]
5 prove: mode prove
6
7 [engines]
8 prove: abc pdr
9

10 [script]
11 read -formal properties.sv counter.v
12 verific -import ctb
13 prep -top ctb
14
15 [files]
16 properties.sv
17 counter.v

If the counter does not satisfy your properties (or vice versa), SymbiYosys generates a trace describing the error. You
can inspect the waveform (trace.vcd) using GTKWave.

2

	Overview Task Description
	Task 1: Properties first!

