
 
 

 

8-bit   
Microcontrollers 
 
Application Note 
 
 
 

Rev. 8091A-AVR-07/07 

 
 

AVR341: Four and five-wire Touch Screen 
Controller 

Features 
• Reading touch screen coordinates for 4- and 5-wire screens 
• Measurement of screen resistance (4-wire) 
• Translation of touch coordinates into screen coordinates.  

1 Introduction 
Resistive 4- and 5-wire touch systems belong to the most popular and most 
common touch screen technologies. Their market share is about 75%, mainly due 
to their low costs and simple interface electronics. Resistive System can be found 
in various mobile applications including PDAs and Smartphones. 

AVR® microcontrollers are excellent in this type of application due their analog 
features combined with low power modes, required in e.g. portable battery 
powered applications. 

  
 



 

2 AVR341 

2 Theory of operation - analog resistive touch screens 
Usually a resistive touch screen consists of at least three layers: A flexible membrane 
made from PET film is suspended over a rigid substrate made from glass or acryl 
(see Figure 2-1). Both surfaces are coated with a transparent conductive film like ITO 
(Indium tin oxide). The conductive ITO layers are kept apart by an insulting spacer 
along the edges, and by spacer dots on the inner surface of the two ITO layers. In this 
way there will be no electrical connection unless pressure is applied to the topsheet 
(PET film). 

Figure 2-1. Resistive touch screens. 

 

4-wire touch screens use a single pair of electrodes (“Busbars”) on each ITO layer 
(see Figure 2-2). The busbars in the topsheet and substrate are perpendicular to 
each other. The busbars are connected to the touch screen controller through a 4-
wire flex cable. The 4 wires are referred as X+ (left), X- (right), Y+ (top) and Y- 
(bottom). 

An advantage of the 4-wire touch screens is that it is possible to determine the touch 
pressure by measuring the contact resistance (RTouch) between the two ITO layers. 
RTouch decreases as the touch pressure (or the size of the depressed area) increases. 
This characteristic can be useful in applications in which it is not only required to 
detect where the pressure is applied, but also the type of pressure (area and force). 

8091A-AVR-07/07 



 AVR341
 

Figure 2-2. Electrodes in 4- (right figure) and 5- wire (left figure) touch screens. 

 

5-wire touch screens have circular electrodes (see Figure 2-2). Since all of them 
reside in the substrate ITO there is a need for linearization pattern (conductive) to 
make an applied voltage gradient uniform.  

4 wires connect to the electrodes these are referred to as UL (Upper Left), UR (Upper 
Right), LL (Lower Left), LR (Lower Right). The fifth wire is used for sensing the 
electrode voltage and is referred to as the “sense” wire. The sense wire is embedded 
in the topsheet. The advantage of the 5-wire touch screen type is that the ITO coating 
on the topsheet is not required to be perfect. This means that physical wearing of the 
5-wire touch screens is less critical than for 4-wire touch screens. 

2.1 Excitation and measurement method 
The method for measuring the pressure point is based upon a preferably 
homogenous resistive surface (ITO). When applying a voltage to the electrode pair in 
the resistive surface a uniform voltage gradient appears across the surface. A second 
ITO layer is necessary to do a high-resistance voltage measurement. A resistive 
touch screen can thus be seen as an electrical switch requiring a small amount of 
pressure (0.1 – 1.5 Newton) to close. 

 3

8091A-AVR-07/07 



 

4 AVR341 

Figure 2-3. “Schematic” of a 4-wire touch screen when pressure is applied. 

 

The point of contact “divides” each layer in a series resistor network with two resistors 
(see Figure 2-3), and a connecting resistor between the two layers. By measuring the 
voltage at this point the user gets information about the position of the contact point 
orthogonal to the voltage gradient. To get a complete set of coordinates, the voltage 
gradient must be applied once in vertical and then in horizontal direction: first a supply 
voltage must be applied to one layer and a measurement of the voltage across the 
other layer is performed, next the supply is instead connected to the other layer and 
the opposite layer voltage is measured. In stand-by mode one of the lines are 
connected to a level triggered interrupt in order to detect touch activity. Please refer to 
Table 2-1 for connections while measuring the coordinates. 

Table 2-1. 4-wire touch screens scanning 
  X+Excite X-Excite Y+Excite Y-Excite

Standby Gnd Hi-Z Hi-Z Pull up / Int 

X-Coordinate Gnd Vcc Hi-Z Hi-Z / ADC 

Y-Coordinate Hi-Z Hi-Z / ADC Gnd Vcc 
 

A 5-wire touch screen only use the topsheet for measuring. Please refer to Table 2-2 
for connections while measuring the coordinates on 5-wire touch screens. 

Table 2-2. 5-wire touch screens scanning. 
  ULExcite URExcite LLExcite LRExcite Sense 

Standby Gnd Hi-Z Hi-Z Hi-Z Pull up / Int 

X-Coordinate Gnd Vcc Gnd Vcc Hi-Z / ADC 

Y-Coordinate Gnd Gnd Vcc Vcc Hi-Z / ADC 
 

To get a complete set of coordinates, the voltage gradient is applied on the substrate 
layer once in horizontal direction to determine the Y coordinate and once in vertical 
direction to determine the X coordinate. In both cases the topsheet layer is used to do 
a high-impedance measurement after the sensing voltage has settled. In standby 

8091A-AVR-07/07 



 AVR341
 

mode the fifth wire (sense) is connected to a level triggered interrupt in order to detect 
touch activity. 

2.2 Calculation of the 4-wire touch pressure 
As mentioned it is possible to determine the force that is applied on a 4-wire touch 
screen. Table 2-1 describes the scan pattern used to do so. Equation 2-1 and 
Equation 2-2 shows how to calculate the resistance. 

Table 2-3. 4-wire touch screens scanning 
  X+Excite X-Excite Y+Excite Y-Excite

Z1 Gnd Hi-Z / ADC Hi-Z Vcc 

Z2 Gnd Hi-Z Hi-Z / ADC Vcc 
 

By means of Ohms Law there are two different methods to determine RTouch (see 
Figure 2-3

Equation 2-1. Calculation of RTouch. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

−
=

1
2

)(

1

2
__

12

Z

Z
resolutionADC

X
PlateX

ZZ
Touch

ADC
ADCADCR

I
UU

R
 

The first method requires a known X-plate resistance and two additional cross-panel 
measurements (Z1 and Z2) of the touch screen. The second method requires that the 
X- and Y-plate resistance values are known but allows the use of a single 
measurement only (Z1). 

Equation 2-2. Calculation of RTouch. 

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

−−=

−−=

+−

+−

resolutionADC
Y

PlateY
Z

resolutionADC

resolutionADC
PlateX

X

YX
REF

YXgesTouch

ADCR
ADC

R
ADC

RR
I

U

RRRR

__
1

_

_
_

2
112

2

 

2.3 Touch bouncing 
Resistive touch screens, especially the inexpensive ones, are notoriously bouncy and 
susceptible to glitches, and therefore filtering of the determined coordinates is 
necessary. Though external components can be used to implement analog filtering, 
this will add cost to the design. A better way to achieve correct coordinates (“points”) 
is to run a digital filter in software: a median filter is a good choice, as it eliminates 
incorrect measurements. A digital filter, however, implies several measurements to 
get a single X or Y coordinate pair. It is also possible to introduce corrective actions 
by defining conditions that needs to be fulfilled to accept a new set of coordinates:  

 5

8091A-AVR-07/07 



 

6 AVR341 

• Switch back to standby mode and confirm contact before and after new 
measurements are taken 

• Take the value of RTouch into account. 
• Accept new values only if they fit in a well-defined noise window  
 

The end of a touch can also be detected. The error rate of the system will decrease 
by increasing complexity of filtering. There is an unavoidable trade-off between 
accurate measurements and high conversion rates. Accurate measurements require 
more data samples, but lower the conversion rate which may cause perceivable 
delays. Hence the touch system should be designed so that coordinates are 
generated within 50 to 100 ms. 

2.4 Parasitic capacitances  
The capacitive elements within the touch screen system need to be regarded: Spread 
between the single points of the ITO layer, parasitic capacities could be detected. 

Figure 2-4. System impedances. 

 

The total capacitance of these capacitors can modeled by two parallel capacitors (Cp 
in Figure 2-4), each with a capacitance of 50nF or less. The full amount Cp (≤ 100nF) 
of these capacities could alternatively be shown as two partial capacities. The 
contributions of RTouch and the planes’ resistance RX and RY also have to be 
considered. Together they form a time constant, which is responsible for time delays 
when changing the excitation of a plane: If a touch sensor is activated for the 
measurement (applying VCC to one of the planes), the voltage on the other (sensing) 
plane will immediately rise to ½ VCC due to the parasitic capacitance. Then it will 
settle to the voltage at the contact point by following the exponential waveform 
dictated by the time constant. 

8091A-AVR-07/07 



 AVR341
 

 7

8091A-AVR-07/07 

)

Equation 2-3. Time constant. 

( ) ( XPlateYPlateXTouchXHSP RRbRaRCCC
RC

+⋅+⋅+⋅++=
=

−−/

τ
 

Note: Coefficients „a“ and „b“ depend on touch position; CX and RX represent 
additional parasitic elements like wire resistance, internal logic impedance of the 
controller etc. 

3 Requirements for a touch screen controller 
To operate a 4- or 5-wire touch screen, there are several requirements regarding the 
controller. 

3.1 ADC 
An A/D converter with a resolution of 10 bits and the absolute inaccuracy far under 
the linearity error of the touch screen (1,5%-3%) is required for the conversion of the 
analog values into digital values.  

When considering the minimum detection time for applied pressure on the screen and 
changes in coordinates, the conversion time of the ADC must be considered. In an 
application only monitoring clicks, 70 points per seconds is typically needed. For 
detection of motion, e.g. handwriting, one should calculate approximately 200 points 
per second - taking into account that multiple measurements are included to compass 
the correct point (by oversampling and digital filtering). Also, the CPU must be able to 
process the ADC readings with sufficient computational accuracy to not reduce the 
detection rate. 

3.2 I/O pins 
The pins driving the touch screen must be able to sink and source in the range of 5-
25mA (depending on the value of the ITO resistance and the voltage used). This 
means that 4 digital IO pins and two analog inputs (ADC channels) are required. If the 
pins can be configured as both analog input and digital IO, 4 pins are sufficient for a 
4-wire touch screen controller.  

A 5-wire touch screen controller just needs one analog input line – to measure the 
sense line. 

3.3 Timer 
A timer is used as a scheduler for different purposes. Since the proposed method is 
interrupt driven, there is no need for additional delays, e.g. in order to debounce the 
touch screen. The timer can also be used to trigger the ADC and set the I/O pins in 
the correct order immediately before a measurement starts. In this way, the controller 
powers the touch screen only for a minimum of time. Furthermore, a timer can be 
used to create a timeout function, which sets the controller into sleep mode when no 
activity is detected on the touch screen for a certain amount of time. 

3.4 Activity detection 
As touch screens are often used in portable applications, the power consumption of 
the touch screen controller should be taken into account. One way to reduce the 



 

8 AVR341 

power consumption is to let the touch screen controller enter low power sleep modes 
(“standby”) when no activity is detected on the touch screen.  

To enable the use of standby operation, a level-change detection should be 
implemented using a pin change interrupt combined with an internal pull-up. This 
allows the touch screen controller to enter low power mode while waiting for activity 
on the touch screen, and wake up when the pin change is triggered. 

3.5 Connecting the touch screen to the AVR 
The implementation example uses the ATmega88 as touch screen controller (see 
datasheet ATmega88 for details). Figure 3-1 and Figure 3-2 illustrates how to connect 
the ATmega88 to respectively a 5-wire and a 4-wire touch screen. In order to drive a 
5-wire touch screen one have to connect the sense line to an ADC channel input of 
the AVR. A 4-wire touch screen needs two ADC input channels (X- and Y-). The 
remaining lines should be connected to any I/Os, but preferably on the same port. As 
voltage reference it is recommended to use AVCC with an external capacitor on the 
AREF pin. To minimize noise signals (e.g. from a LCD display) it is common to add 
capacitors from the touch screen drivers to ground forming a low-pass filter (typical 
value 0.01µF), but you have to consider that this step will increase the time constant 
of your system. 

Figure 3-1. Design suggestion for 5-wire touch screens. 

 

 

8091A-AVR-07/07 



 AVR341
 

Figure 3-2. 4-wire touch screen with UART connection. 

 

4 Code example 
The code is implemented with the EWAVR IAR® compiler version 4.20A. The code 
targets the ATmega88, but can run on other devices with only minor modifications to 
the code. 

The implementation includes the following: 

Driver for interfacing a resistive 4- or 5-wire touch screen (selected through defines)  

• Debouncing. 
• Correction for parasitic capacitances 
• Filtering or read coordinates (median filter) 
• Optional determination of RTouch for filter purposes (4-wire only) 
• Standby mode 
 

The implementation is intended to be used as a low level driver, so no interpretation 
of data (distinguish between clicks and dragging) or calibration is performed. The 
driver will only provide valid coordinates and status information (written to a “Flag 
Register”). 

The touch screen driver can be completely configured by several defines in 
“touchscreen.h”. It is possible to choose between a 4- and a 5-wire touch screen, and 
it is an option to measure RTouch on a 4-wire system for filtering purposes. 
Furthermore, it is possible to select which pins are connected to the touch screen. 
The project was originally written for ATmega88, but it can be adapted to almost most 
AVRs since all used bit and register definitions are listed in this file. 

To use the touch screen driver in an application, add the files (touchscreen.h, 
touchscreen.c) and include the header file. The function “Touchscreen_Init” will 
initialize the driver. An external structure variable named “Touchscreen_Data”, which 
consists of an 8-bit Flag Register and two 16-bit variables for the actual X/Y 

 9

8091A-AVR-07/07 



 

10 AVR341 

coordinates, offers all necessary information to handle the touch system. See Figure 
4-1 for a description of the Flag Register.     

Figure 4-1. “Touchscreen_Data” - Flag Register. 

 

Figure 4-2. “Touchscreen_Data” - X/Y coordinates. 

 

Table 4-1. Definition of the bits in the “Flag Register” 
Flag Function 

Start  
(set in: Touchscreen_init) 

This bit indicates the end of the initialization routine, which must be run the first time the application 
is run. It is recommended to run a calibration of mapping between touch coordinates and display 
screen coordinates in relation to starting up the application the first time. (Please refer to section 5.1 
regarding calibration). 

Sleep 
(Timer0 OCMA) 

This bit is set if there are no new inputs on the touch sensor for a predefined time 
(SLEEP_COUNTDOWN in “touchscreen.h”). 
In order to save power you can enter sleep mode of the AVR when this bit is set. (See comments in 
“main.c”).  

Touch 
(Timer0 OCMA) 

This bit indicates that a touch was detected and the debouncing process was successfully finished. 
The touch screen driver will now start the ADC and perform a number of measurements. 

End 
(ADC ISR) 

This bit is set if the end of a touch was detected. The touch screen driver will now disable the ADC 
and set the “Sleep Flag” after a predefined time if no new inputs are recognized.  

8091A-AVR-07/07 



 AVR341
 

 11

8091A-AVR-07/07 

Flag Function 

X/Y 
(ADC ISR) 

This bit indicates that a set of new coordinates was written into the Touchscreen_Data struct. 

Overflow 
(ADC ISR) 

This bit indicates that a new set of coordinates was written into the Touchscreen_Data struct before 
an older one has been read. 

4.1 RS232 interface for status information 
Status information is transmitted on the ATmega88 UART, to enable the user to see 
the state and output from the coordinate detection (see Figure 4-3). This includes 
information about wake-up from sleep (“Touch) and entering stand-by mode (“sleep”). 
All information can be viewed with a terminal program (Settings: 19200 Baud, 8n1) 
using ASCII characters.  

Figure 4-3. RS-232 terminal interface. 

 

 



 

12 AVR341 

4.2 Overview of main code loop 
In order to respond to the different flags they must be polled accordingly. In the 
UART-demonstration code example a special function („Recognize_Event“) will do 
the interpretation of the flags (see Figure 4-4). Since almost all flags are set in 
interrupt routines, the function first disables global interrupts and then copies the 
structure into a buffer to ensure data integrity. Additionally, it is possible to apply a 
mask on the Flag Register so only the important tasks will be responded to (e.g. only 
respond to new coordinates). After the flags have been processed, the corresponding 
flags are cleared. Finally, the global interrupts are enabled again. 

In the code example all flags and coordinates will be transmitted as ASCII characters 
using the UART-interface, so it is possible to monitor the status and detected 
coordinates using a terminal program. 

Figure 4-4. Flowchart of „main“-function. 

Main()

Call
„Send_over_UART“

Recognize Event?

Initialize UART-Interface

Initialize Touchscreen

Enable global Interrupts

yes

no

Recognize_Event

Enable global Interrupts

Disable global Interrupts

Save variable
„Touchscreen_Data“ in

buffer

Mask flag register (buffer) =
imported flags

Delete imported flags from
variable

„Touchscreen_Data“

Return flag register of
buffer

 

4.3 Description of the touch screen control driver 
Figure 4-5. Sample analysis flowchart and Figure 4-6. Touch screen driver 
workflow give an overview of the touch screen control driver.  

8091A-AVR-07/07 



 AVR341
 

Timer0 settings (see “touchscreen.h”) will affect the behavior of the system as Output 
Compare Match A will operate as the time unit of the driver. A multiple of it is used to 
determine the debouncing time and the SLEEP_COUNTDOWN. Also Timer0 will 
trigger the ADC sampling in case of an active measuring process. Output Compare 
Match B is used to handle the capacitive elements within the touch screen system. 
The time between OCRB and OCRA should be equivalent to 5 x τ, so that a settled 
voltage is available for measuring. 

Figure 4-5. Sample analysis flowchart 

Median filtering

n Samples
allocated ? noyes

Do analysis

End

Sample valid?

Discard sample

no

Save sample
temporarily

yes

Store median in

and update flags

Touchscreen
_Data

 

While the ADC is running, the touch screen driver will not only measure X/Y 
coordinates but also do some validity tests: A new set of coordinates will only be 
accepted if a touch condition was present before and after measuring the 

 13

8091A-AVR-07/07 



 

14 AVR341 

coordinates. Hence, a minimum of three measurements for one valid set is required. 
If the RTouch option is used, 5 measurements must be done according to Equation 2-1. 

Figure 4-6. Touch screen driver workflow 

Pin Change

Initialization of the
touch screen driver

Start debouncing
process

Touch detected?

Successfully
debounced ?

Enable ADC

Set up I/Os

Start Measurement

Read in ADC value

yes

yes

Break Condition
recognized?

Standby
(Sleep Flag)

no

Pin Change Interrupt

no

yes Disable ADC

Predefined
time awaited ?

no

All necessary
data allocated?

yes

no

Do analysis

yes

no

Timer0 Compare Match B

Timer0 Compare Match A

ADC Conversion Complete

Timer0 Compare Match A

To determine a true X/Y
coordinate, several samples

are required to do the
median f iltering. Each

sample consists of a raw  X
and a raw  Y value as w ell

as a value for touch
detection.

The latter is used to do a
validity inspection. Only

certifcated samples w ill be
used for the f iltering.

X-Pos
Y-Pos
Touch?

(RTouch)

 

8091A-AVR-07/07 



 AVR341
 

 15

8091A-AVR-07/07 

Accepted values are stored in a corresponding array, until a predefined number of 
values are achieved („SAMPLES_FOR_ONE_TRUE_XY_PAIR“). If this is the case, 
both X and Y arrays will be sorted and the median is identified (median filter). The 
median is a number dividing the higher half of the sample data from the lower half, so 
in case of an array with sorted values it is the middle one. This filter was chosen 
because of its ability to eliminate glitches while allowing fast dragging. 

The median for the ongoing X and Y coordinate will be provided to the user in the 
interface variable “Touchscreen_Data”. 

The consecutively measurements of coordinates and touch conditions will be aborted 
if a successive number of touch conditions („MAXIMUM UNTOUCH CONDITIONS“) 
proves that there is no longer a contact between the two ITO layers.  

 

 

4.4 Interrupts used by touch screen driver 
The touch screen driver uses a total of 4 different interrupt sources. For this reason 
no delay times are necessary and the response time of the system is reduced to a 
minimum.  

The following interrupts are used: 

Pin Change Interrupt: 
The Pin Change Interrupt is used to detect a touch and wake up the AVR from sleep 
mode. This interrupt will start Timer0. 

Timer0, Compare Match A: 
This interrupt is first used to debounce the touch screen. If this process succeeded, 
the interrupt will start a new ADC measurement each time it occurs. If no touch 
activity is detected the timer will increment the SLEEP_COUNTDOWN and finally set 
the Sleep Flag. 

Timer0, Compare Match B: 
Chronologically before OCMA, this interrupt is only active while the ADC is enabled 
and measurements are done. It configures the I/O pins and sets the analog input 
channel. 

ADC Conversion Complete: 
In this interrupt the ADC values are read and the filtering is done.  

4.5 Code size 
Table 4-2. Functions of “touchscreen.c“. 

Function Size (Bytes) 

Pin_Change_ISR 40 

Timer0_Compare_Match_A_ISR 135 

Timer0_Compare_Match_B_ISR 64 

ADC_Conversion_Complete_ISR (Low Level) 176 



 

16 AVR341 
8091A-AVR-07/07 

Function Size (Bytes) 

ADC_Conversion_Complete_ISR (RTouch) 316 

Touchscreen_Init 46 

Start_Measurement 44 

Stop_Measurement 36 

Insertion_Sort 84 

Store_valid_Data 92 
 

Table 4-3. Modules within the Application Note. 
Module Size (Bytes) 

Touchscreen-Module 860 (RTouch: 1020) 

Main 317 

UART-Interface 304 

TWI-Interface 400 
 

5 Suggestions for higher level software 
The low level driver for 4- and 5-wire touch screens can be extended with a higher 
level software, e.g. to do calibration or interpretation of the data. This is not a part of 
the low level driver because these features are very custom-designed and not 
common requirements for all applications.  

Nevertheless, the sections below provide ideas and suggestions for implementation 
for the higher levels of a touch screen application software. 

5.1 Calibration of coordinate mapping between touch screen and display screen 
Calibration is used to translate the measured touch screen data into true screen 
coordinates, in case the touch screen is mounted over a display (e.g. LCD). The 
algorithm has to compensate for scaling errors, offset and rotation of the touch screen 
coordinates relatively to display coordinates. To eliminate these error factors, six 
calibration coefficients (A, B, C, D, E, F) are required. Converting touch screen 
coordinates (XT and YT) to display coordinates (XD and YD) can be performed using 
the equations below: 

CYBXAX TTD ++= )()(  

FYEXDY TTD ++= )()(  

Three sample points are necessary to get the six calibration coefficient values. The 
sample points must be inserted in order to create a set of linear equations.   

CYBXAX TTD ++= )()( 111  

CYBXAX TTD ++= )()( 222  

CYBXAX TTD ++= )()( 333  

FYEXDY TTD ++= )()( 111  

FYEXDY TTD ++= )()( 222  



 AVR341
 

FYEXDY TTD ++= )()( 333  

Resolving the linear equations to get the calibration coefficient values: 

)()()(
)()()(

))(())((
))(())((

213132321

213132321

31323231

31323231

TTTTTTTTT

TTDTTDTTD

TTTTTTTT

TTDDTTDD

YYXYYXYYX
YYXYYXYYX
YYXXYYXX
YYXXYYXXA

−+−+−
−+−+−

=

−−−−−
−−−−−

=
 

)(
)(

))(())((
))(())((

32

3223

31323231

32313231

TT

DDTT

TTTTTTTT

TTDDDDTT

YY
XXXXA

YYXXYYXX
XXXXXXXX

B

−
−+−

=

−−−−−
−−−−−

=

 

333

31323231

211231331232231

))(())((
)]()([)]()([)]()([

TTD

TTTTTTTT

DTDTTDTDTTDTDTT

BYAXX
YYXXYYXX

XXXXYXXXXYXXXXY
C

−−=
−−−−−

−+−+−
=

 

)()()(
)()()(
))(())((

))(())((

213132321

213132321

31323231

31323231

TTTTTTTTT

TTDTTDTTD

TTTTTTTT

TTDDTTDD

YYXYYXYYX
YYYYYYYYY
YYXXYYXX

YYYYYYYY
D

−+−+−
−+−+−

=

−−−−−
−−−−−

=

 

)(
)(

))(())((
))(())((

32

3223

31323231

32313231

TT

DDTT

TTTTTTTT

TTDDDDTT

YY
YYXXD

YYXXYYXX
XXYYYYXX

E

−
−+−

=

−−−−−
−−−−−

=

 

333

31323231

211231331232231

))(())((
)]()([)]()([)]()([

TTD

TTTTTTTT

DTDTTDTDTTDTDTT

EYDXY
YYXXYYXX

YXYXYYXYXYYXYXY
F

−−=
−−−−−

−+−+−
=

 

For best results, the sample points should be collected from the horizontal center, 
vertical center and one corner, in each case with a distance from 10% of the side 
length to the touch screen’s edge. See Figure 5-1. Sample Points for details.  

Figure 5-1. Sample Points 

 17

8091A-AVR-07/07 



 

18 AVR341 

 

It is possible, but not necessary to calculate the calibration coefficients every time the 
device is powered on. For demonstration purposes it is sufficient to do this once, and 
store the values in EEPROM, for example. The “Start Flag” can be used as indicator 
for a power-up, in order to start this one-time calibration process.  

Typically calibration is done once and the coefficients are stored into a non volatile 
memory. However it might be essential over a longer period of time to do a 
recalibration due to the impact of temperature, humidity and aging (“drift”). 

5.2 Interpretation of touch motions 
As an overlay for a display, a touch screen uses normally absolute coordinates, so 
that the operation of the system can be done with clicks only. Additional features like 
dragging or drawing require an interpretation of the touch screen data to distinguish 
between clicks and movements. In this case, the “Touch Flag” and the “End Flag” are 
very helpful. A simple click can be defined as the combination of the Touch Flag, one 
or more set of coordinates and the End Flag within a narrow time window, e.g. 
200ms.  

Up to the expiration of this interval, all acquired coordinates can be directly used to 
set the cursor. By the end of the 200ms, the higher level software has to verify if an 
End Flag was received. If so, the input can be interpreted as click. Otherwise it is 
most likely a movement, hence continue positioning the cursor using new measured 
touch screen data.  

 

8091A-AVR-07/07 



 

 
 

Disclaimer 
Headquarters  International   

Atmel Corporation 
2325 Orchard Parkway 
San Jose, CA 95131 
USA 
Tel: 1(408) 441-0311 
Fax: 1(408) 487-2600 

 

 Atmel Asia 
Room 1219 
Chinachem Golden Plaza 
77 Mody Road Tsimshatsui 
East Kowloon 
Hong Kong 
Tel: (852) 2721-9778 
Fax: (852) 2722-1369 

 
 
 
 
 
 
Product Contact 

 

Atmel Europe 
Le Krebs 
8, Rue Jean-Pierre Timbaud 
BP 309 
78054 Saint-Quentin-en-
Yvelines Cedex 
France 
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11 

 

Atmel Japan 
9F, Tonetsu Shinkawa Bldg. 
1-24-8 Shinkawa 
Chuo-ku, Tokyo 104-0033 
Japan 
Tel: (81) 3-3523-3551 
Fax: (81) 3-3523-7581 
 

 Web Site 
www.atmel.com 

 

Technical Support 
avr@atmel.com 

 

Sales Contact 
www.atmel.com/contacts 
 
 
 

 Literature Request 
www.atmel.com/literature 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any 
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND 
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED 
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, 
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, 
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the 
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any 
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, 
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. 
 
 
 
© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others, are the registered trademarks or 
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 

 

8091A-AVR-07/07 


	1 Introduction 
	2 Theory of operation - analog resistive touch screens 
	2.1 Excitation and measurement method 
	2.2 Calculation of the 4-wire touch pressure 
	2.3 Touch bouncing 
	2.4 Parasitic capacitances  

	3 Requirements for a touch screen controller 
	3.1 ADC 
	3.2 I/O pins 
	3.3 Timer 
	3.4 Activity detection 
	3.5 Connecting the touch screen to the AVR 

	4 Code example 
	4.1 RS232 interface for status information 
	4.2 Overview of main code loop 
	4.3 Description of the touch screen control driver 
	4.4 Interrupts used by touch screen driver 
	4.5 Code size 

	5 Suggestions for higher level software 
	5.1 Calibration of coordinate mapping between touch screen and display screen 
	5.2 Interpretation of touch motions 


