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Interpolated Narrowband Lowpass FIR Filters

This article describes
a class of digital fil-
ters, called interpo-
lated finite impulse
response (FIR) fil-

ters, that can implement narrowband
lowpass FIR filter designs with a sig-
nificantly reduced computational
workload relative to traditional FIR
filters. Traditional N-tap direct-con-
volution FIR filters have been on the
DSP scene since the early 1970s and
have gained acceptance in a wide va-
riety of applications. Their ability to
exhibit guaranteed-stable linear-
phase behavior, along with readily
available filter design software [1],
has made these filters the topic of
more technical papers than any other
digital filter type. As a result of all
this study and analysis, several
schemes have been developed to re-
duce the computational complexity
of these FIR filters. In this article, we
explore one of those schemes, the in-
terpolated FIR filter, and show how
the computational workload of tra-
ditional narrowband lowpass FIR
filters can be reduced by more than
80% [2], [3]. The interpolated FIR
filter is introduced through an exam-
ple, parameter selection is discussed,

and filter performance curves will be
presented and used in a lowpass filter
design example showing computa-
tional savings results.

Interpolated FIR (IFIR) filters are
based upon the behavior of an N-tap
nonrecursive linear-phase FIR filter
when each of its unit delays are re-
placed with M-unit delays, with the
expansion factor M being an integer,
as shown in Figure 1(a). If the h kpr ( )
impulse response of a nine-tap FIR
filter is that shown in Figure 1(b), the
impulse response of an expanded FIR
filter, where, for example, M = 3, is
the h kbe ( ) in Figure 1(c). The variable
k is merely an integer time-domain in-
dex where0 1≤ ≤ −k N . To establish
our terminology, we’ll call the origi-
nal FIR filter the prototype filter and
introduce the filter with expanded de-
lays as the band-edge shaping
subfilter. Shortly we’ll see why this
nomenclature is appropriate.

We can express a prototype FIR
filter’s z-domain transfer function as

H z h k z
k

N
k

pr pr( ) ( )=
=

−
−∑

0

1

(1)

where N is the length of hpr . The
transfer function of a general band

edge shaping FIR filter, with z in (1)
replaced with z M , is

H z h k z
k

N
kM

be pr( ) ( )=
=

−
−∑

0

1

.
(2)

If the unit impulse response length
(number of taps) of the prototype fil-
ter is N pr , the band-edge shaping fil-
ter has N pr nonzero taps and an
expanded impulse response length of

L M Nbe pr= +( – ) .1 1 (3)

Later we’ll see how Lbe has an impor-
tant effect on the implementation of
IFIR filters.

The frequency-domain effect of
those M-unit delays is shown in Fig-
ure 2 where the frequency axis is mea-
sured in hertz. As we should expect,
an M-fold expansion of the time-do-
main filter impulse response causes an
M-fold compression (and repetition)
of the frequency-domain | ( )|H fpr

magnitude response as in Figure
2(b). The frequency axis of these
curves is normalized to f s with f s be-
ing the signal sample rate in sam-
ples/second. For example, the
normalized frequency f pass is equiva-
lent to a cyclic frequency of f f spass ⋅
Hz. Those repetitive passbands in
| ( )|H fbe centered about integer multi-
ples of 1/ ( / )M f Ms Hz are called
images, and we now focus our atten-
tion on them.

If we follow the band-edge shap-
ing subfilter with a lowpass masking
subfilter [Figure 2(c)] whose task is
to attenuate the image passbands, we
can realize a multistage filter whose
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frequency response is shown in Fig-
ure 2(d). The resultant| ( )|H fifir fre-
quency magnitude response is

H f H f H fifir be ma( ) ( ) ( ).= ⋅ (4)

The structure of the cascaded subfilters
is the so-called IFIR filter shown in
Figure 3.

If a desired lowpass fi lter’s
passband width is f pass , its stopband
begins a f stop , and the transition re-
gion width is f f ftrans stop pass= − ,
then the prototype subfilter’s normal-
ized frequency parameters are defined
as

f Mfpr -pass pass= (5a)

f Mfpr -stop stop= (5b)

( )f Mf M f fpr -trans trans stop pass= = − .

(5c)

The masking subfilter’s frequency pa-
rameters are

f fma -pass pass= (6a)

f
M

fma -stop stop= −1 .
(6b)

The stopband attenuations of the
prototype filter and masking subfilter
are identical and set equal to the de-
sired IFIR filter stopband attenua-
tion. The word “interpolated” in the
acronym IFIR is used because the
masking subfilter interpolates the
zero-valued samples in the band-edge
shaping subfilter’s h kbe ( ) impulse re-
sponse making the overall IFIR fil-
ter ’s impulse response nearly
equivalent to that of a traditional
Lbe -length direct-convolution FIR
filter. Some authors emphasize this
attribute by referring to the masking
subfilter as an interpolator. The sam-
ple rate remains unchanged within an
IFIR filter, so no signal interpolation
takes place.
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▲ 1. (a) Band-edge shaping FIR filter with M-unit delays between the taps; (b) the im-
pulse response of a prototype FIR filter; (c) the impulse response of a expanded delay
band-edge shaping FIR filter with M = 3.
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▲ 2. IFIR filter magnitude responses: (a) the prototype filter; (b) band-edge shaping
subfilter; (c) masking subfilter; (d) final IFIR filter.



The following example illustrates
the computational advantage of using
IFIR filters. Consider the design of a
desired linear-phase FIR filter whose
normalized passband width is
f pass = 01. , its passband ripple is 0.1
dB, the transition region width is
f trans = 002. , and the stopband attenu-
ation is 60 dB. (In this article, passband
ripple is a peak-peak specification mea-
sured in decibels.) With an expansion
factor of M = 3, the | ( )|H fpr fre-
quency magnitude response of the pro-
totype filter is shown in Figure 4(a).
The normalized frequency axis for
these curves is such that a value of 0.5
on the abscissa represents the cyclic fre-
quency f s /2 Hz, half the sample rate.
The frequency response of the band-
edge shaping subfilter, for M = 3, is
provided in Figure 4(b) with an image
passband centered about ( / )1 M Hz.
The response of the masking subfilter is
the solid curve in Figure 4(c) with the
response of the overall IFIR filter pro-
vided in Figure 4(d).

Satisfying the original desired filter
specifications in Figure 4(d) would re-
quire a traditional FIR filter with
N tfir = 137 taps, where the tfir sub-
script means traditional FIR. In our
IFIR filter, the band-edge shaping and
the masking subfilters require
N pr = 45 and N ma = 25 taps, respec-
tively, for a total of N ifir = 70taps. We
can define the percent reduction in
computational workload of an IFIR
filter, over a traditional FIR filter, as

% computation reduction

tfir pr ma

tfir

= ⋅
− −

100
N N N

N
.
(7a)

As such, the above example IFIR fil-
ter has achieved a computational
workload reduction, over a tradi-
tional FIR filter, of

% computational reduction

= ⋅ =100 137 70
137

49– %.
(7b)

Figure 4 shows how the transition
region width (the band-edge shape) of
| ( )|H fifir is determined by the transi-
tion region width of | ( )|H fbe , and
this justifies the decision to call h kbe ( )
the “band-edge shaping” subfilter.

Choosing the Optimum
Expansion Factor M
The expansion factor M deserves our
attention because it can have a pro-
found effect on the computational ef-
ficiency of IFIR filters. To show this,
had we used M = 2 in our Figure 4
example we would have realized an
IFIR filter described by the M = 2
column in Table 1. In that case the
computation reduction over a con-
ventional FIR filter is 43%. With
M = 2, a reduced amount of fre-
quency-domain compression occurred
in H fbe ( ), which mandated more
taps in h kbe ( ) than that needed in the
M = 3 case.

Now had M = 4 been used, the
computation reduction would only
be 8% as shown in the rightmost
column of Table 1. This is because
the H fbe ( ) passband images would
be so close together that a high per-
formance (increased number of
taps) masking subfilter would be re-
quired. As so often happens in sig-
nal processing designs, there is a
tradeoff to be made. We would like
to use a large value for M to com-
press the H fbe ( )’s transition region
width as much as possible, but a
large M reduces the transition re-
gion width of the masking subfilter
which increases the number of taps
in h kma ( )and its computational work-
load. In the Figure 4 IFIR filter ex-
ample an expansion factor of M = 3
is optimum because it yields the
greatest computation reduction
over a traditional FIR filter.

It follows from Figure 2(b) that
the maximum M is the largest integer
satisfying 1/ –M f fstop stop≥ , ensur-
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▲ 3. The structure of an interpolated FIR filter.
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▲ 4. Example lowpass IFIR filter magnitude responses: (a) the prototype filter; (b)
band-edge shaping subfilter; (c) masking subfilter; (d) final IFIR filter.



ing no passband image overlap. This
yields an upper bound on M of

M
fmax
1

2 stop











 (8a)

where  x indicates truncation of x to
an integer. Thus the acceptable ex-
pansion factors are integers in the
range 2 ≤ ≤M Mmax . Evaluating
(8a) for the Figure 4 IFIR filter exam-
ple yields

Mmax ( . . )
1

2 01 002
4

+








 =

(8b)

justifying the range of M used in Ta-
ble 1.

Estimating the Number
of FIR Filter Taps
To estimate the computation reduc-
tion of IFIR filters, an algorithm is
needed to compute the number of
taps, N, in an arbitrary traditional FIR
filter. Several authors have proposed
empirical relationships for estimating
N for traditional direct-convolution
FIR filters (also known as optimal
FIR, Parks-McClellan, remez ex-
change, Chebyshev approximation, or
equiripple filters) based on passband
ripple, stopband attenuation, and
transition region width [4]-[7]. A par-
ticularly simple expression for N, giv-
ing results consistent with other
estimates for passband ripple values
near 0.1 dB, is

( )
N

f f
tfir

stop pass

Atten≈
⋅ −22

(9a)

where Atten is the stopband attenua-
tion measured in decibels, and f pass and
f stop are the normalized frequencies in
Figure 2(d) [7]. Likewise, the number
of taps in the prototype and masking
subfilters can be estimated using

( )
N

M f f
pr

stop pass

Atten≈
⋅ −22 (9b)

( )
N

M f f
ma

stop pass

Atten≈
⋅ − −22 1 /

.

(9c)

Modeling IFIR
Filter Performance
As it turns out, IFIR filter computa-
tional workload reduction depends
on the expansion factor M, the
passband width, and transition re-
gion width of the desired IFIR fil-
ter. To show this, we substitute the

expressions in (9) into (7a) and
write

% computation reduction

trans

trans

=

⋅ − −
− −

100

1
1

M
M

Mf
Mf 2 Mf pass













.

(10)

Equation (10) is plotted in Figure 5(a),
for a passband width is 10% of the sam-
ple rate ( . )f pass = 01 showing the per-
cent computation reduction afforded
by an IFIR filter versus transition re-
gion width for expansion factors of 2,
3, and 4. Focusing on Figure 5(a), we
see when the transition region width is
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Table 1. IFIR filter computation
reduction versus M.

Expansion factor, M 2 3 4

Number of h kbe( ) taps 69 45 35

Number of h kma ( ) taps 8 25 95

Total number of IFIR filter taps 77 70 130

Number of traditional FIR taps 137 137 137

Computation reduction 43% 49% 8%

▲ 5. IFIR filter performance versus transition region width for fpass = 01. : (a) percent com-
putation reduction; (b) optimum expansion factors.



large (say, f trans = 007. ), the IFIR fil-
ter’s passband plus transition region
width is so wide rhat only an expansion
factor of M = 2 will avoid passband
image overlap.

At smaller transition region widths
expansion factors of 3 and 4 are possi-
ble. For example, over the transition
region width range of roughly 0.005
to 0.028 an expansion factor of
M = 3 provides greater computation
reduction than using M = 2. The op-
timum (greatest percent computation
reduction) expansion factor, as a
function of transition region width, is
shown in Figure 5(b). The black dots
in Figure 5 represent the Figure 4

IFIR filter example with a transition
region width of f trans = 002. .

To see how the percent computa-
tion reduction of IFIR filters varies
with the desired passband width, Fig-
ure 6 shows IFIR filter performance
when the desired passband width is
5% of the sample rate ( . )f pass = 005 .
The numbers on the curves in Figure
6(a) are the expansion factors.

The optimum M values versus
transition region width are pre-
sented in Figure 6(b). The curves in
Figure 6(a) illustrate, as the first ra-
tio within the brackets of (10) indi-
cates, that when the transition region
width approaches zero the percent

computation reduction approaches
100 1( – )/M M.

We continue describing the effi-
ciency of IFIR filters by considering
the bold curve in Figure 7(a), which
is the maximum percent computation
reduction as a function of transition
region width for the f pass = 01. IFIR
filter described for Figure 5(a). That
bold curve is plotted on a logarithmic
frequency axis, in Figure 7(b), to
show maximum percent computation
reduction over a wider transition re-
gion width range.

Next, we duplicate the curve in
Figure 7(b) in Figure 8(a) and in-
clude the maximum percent compu-
tation reduction versus transition
region width curves for five other
IFIR fi l ters having different
passband widths, showing how sig-
nificant computation reduction can
be achieved by using lowpass IFIR
filters. The optimum expansion fac-
tors, used to compute the curves in
Figure 8(a), are shown in Figure
8(b). To keep the lower portion of
Figure 8(b) from being too cluttered,
curve fitting was performed to con-
vert the stairstep curves to smooth
curves. Shortly we’ll see how the
curves in Figure 8(b) are used in an
IFIR filter design example.

Passband Ripple
Considerations
The passband ripple of an IFIR filter is
a function of the individual band-edge
shaping and masking subfilters’
passband ripple. If we represent an ar-
bitrary FIR filter’s peak passband rip-
ple as shown in Figure 9, we can
estimate IFIR filter passband ripple.

From (4), the upper bound of an
IFIR filter’s passband response is the
product of the band-edge shaping
and masking subfi l ters ’ peak
passband responses as

1 1 1
1

+ = + ⋅ +
= + + +

δ δ δ
δ δ δ δ

ifir be ma

be ma be ma

( ) ( )
.(11)
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▲ 7. Maximum percent computation reduction versus transition region width for fpass = 01.
plotted on (a) a linear axis and (b) a logarithmic axis.

▲ 6. IFIR filter performance versus transition region width for fpass = 005. : (a) percent com-
putation reduction; (b) optimum expansion factors.



For small values of δ be and δ ma , the
δ δbe ma term becomes negligible, and
we state

δ δ δifir be ma= + . (12)

Thus, in the design of the band-edge
shaping and masking subfilters, it’s
prudent to specify their passband rip-
ple values to be roughly half the de-
sired ripple specification for the final
IFIR filter as

δ δ δbe ma ifir= ≈ / .2 (13)

IFIR Filter
Implementation Issues
The computation reduction of IFIR
filters is based on the assumption that
they are implemented as two separate
subfilters as in Figure 3. We have re-
sisted the temptation to combine the
two subfilters into a single filter whose
coefficients are the convolution of the
subfilters’ impulse responses. Such a
maneuver would eliminate the
zero-valued coefficients of the
band-edge shaping subfilter and elimi-
nate any computation reduction.

The curves in Figure 8(b) indicate
an important implementation issue
when using IFIR filters. With de-
creasing IFIR filter passband width,
larger expansion factors, M, can be
used. When using programmable
DSP chips, larger values of M require
a larger block of hardware data mem-
ory, in the form of a circular buffer, be
allocated to hold a sufficient number
of input x n( ) samples for the band-
edge shaping subfilter. The size of
this data memory must be equal to
Lbe as indicated in (3). Some authors
refer to this data memory allocation
requirement, to accommodate all the
stuffed zeros in the h kbe ( ) impulse re-
sponse, as a disadvantage of IFIR fil-
ters. This is a misleading viewpoint
because, as it turns out, the Lbe length
of h kbe ( ) is only few percent larger
than the length of the impulse re-

sponse of a traditional FIR filter hav-
ing the same performance as an IFIR
filter. So from a data storage stand-
point the price we pay to use IFIR fil-
ters is a slight increase in the memory
of size to accommodate Lbe , plus the
data memory of size Lma needed for
the masking subfilter. In practice, for
narrowband lowpass IFIR filters Lma

is typically less than 10% of Lbe . The
Lbe -sized data memory allocation, for
the band-edge shaping subfilter, is
not necessary in field programmable
gate array (FPGA) IFIR filter imple-
mentations because the FPGA area is
not a strong function of the expansion
factor M [8].

When implementing an IFIR filter
with a programmable DSP chip, the
filter’s computation reduction gain
can only be realized if the chip’s archi-
tecture enables zero-overhead loop-
ing through the circular data memory
using an increment equal to the ex-
pansion factor M. That looping capa-
bility ensures that only the nonzero-
valued coefficients of h kbe ( ) are used
in the band-edge shaping subfilter
computations.

In practice the band-edge shaping
and masking subfilters should be im-
plemented with a folded nonrecursive
FIR structure, exploiting their im-

pulse response symmetry, to reduce
the number of necessary multiplica-
tions by a factor of two. Using a folded
structure does not alter the perfor-
mance curves provided in this article.
Regarding an IFIR filter’s implemen-
tation in fixed-point hardware, its sen-
sitivity to coefficient quantization
errors is no greater than that exhibited
by traditional FIR filters [2].

IFIR Filter Design Example
The design of practical lowpass IFIR
filters is straightforward and com-
prises four steps:
▲ define the desired lowpass filter
performance requirements
▲ determine a candidate value for the
expansion factor M
▲ design and evaluate the band-edge
shaping and masking subfilters
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▲ 9. Definition of FIR filter peak passband
ripple δ.

▲ 8. IFIR filter performance versus transition region width for various passband widths:
(a) maximum percent computation reduction; (b) optimum expansion factors.



� investigate IFIR performance for
alternate expansion factors near the
initial M value.
As a design example, refer to Figure
2(d) and assume that we desire a
lowpass IFIR filter with f pass = 002. ,
a passband ripple of 0.1 dB, a transi-
t ion region bandwidth of
f trans = 0005. (thus f stop = 0025. ), and
60 dB of stopband attenuation. First,
we find the f trans = 0005. point on the
abscissa of Figure 8(b) and follow it
up to the point where it intersects the
f pass = 002. curve. This intersection
indicates we should start our design
with an expansion factor of M = 8.
(The same intersection point in Fig-
ure 8(a) suggests we can achieve a
computational workload reduction of
roughly 80%.)

With M = 8 and applying (5), we
use our favorite traditional FIR filter
design software to design a lin-
ear-phase prototype FIR filter with
the following parameters:

f Mpr -pass

passband ripple dB

= ⋅ =

= =

( . ) . ,

( . )/

002 016

01 2 0. ,

( . ) . ,

05

0025 02

dB

and

stopband attenuati
pr -stopf M= ⋅ =

on dB= 60 .

Such a prototype FIR filter will have
N pr = 76 taps and, from (3), when
expanded by M = 8 the band-edge
shaping subfilter will have an im-
pulse response length of Lbe = 601
samples.

Next, using (6) we design a mask-
ing subfilter having the following pa-
rameters:

f fma -pass pass

passband ripple dB

= =

= =

002

01 2 005

. ,

( . )/ . dB

and stopband a

ma -stop stop

,
/

/ . . ,

f M f= −

= − =

1

1 8 0025 01
ttenuation dB= 60 .

This masking subfilter will have
N ma = 40 taps and when cascaded
with the band-edge shaping subfilter
will yield an IFIR filter requiring 116
multiplications per filter output sam-
ple. The frequency response of the
IFIF filter is shown in Figure 10(a),
with passband response detail pro-
vided in Figure 10(b).

A traditional FIR filter satisfying
our design example specifications
would require approximately
N tfir = 588 taps. Because the IFIR
filter requires only 116 multiplica-
tions per output sample, using (7a),
we have realized a computational
workload reduction of 80%.

Further modeling for alternate ex-
pansion factors yields the IFIR filter
performance results in Table 2. There
we see how the M expansion factors
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Table 2. IFIR design example computation
reduction versus M.

Expansion factor, M 5 6 7 8 9 10 11

Number of h kbe( ) taps 123 100 86 76 69 62 56

Number of h kma ( ) taps 21 26 33 40 50 59 71

Total IFIR filter taps 144 126 119 116 119 121 127

Traditional FIR taps 588 588 588 588 588 588 588

Lbe data storage rqmt. 611 595 596 601 613 611 606

Computation reduction 76% 79% 80% 80% 80% 79% 78%

dB

0

−60

0 0.1 0.2 0.3 0.4

(a)

dB

0

−0.1

−0.2

−0.3

0 0.005 0.01 0.015 0.02

(b)

0.5 0.025

 H fifir( )
 H fifir( )

� 10. IFIR filter design example magnitude responses: (a) full response; (b) passband
ripple response.



of 7, 8, and 9 provide equivalent com-
putational reductions; however we
select M = 7 because it requires the
smallest of Lbe -sized data storage for
the band-edge shaping subfilter. The
final IFIR filter design step is to sit
back and enjoy a job well done.

Concluding Remarks
IFIR filters are suitable whenever
narrowband lowpass linear-phase fil-
tering is required; for example, the fil-
tering prior to decimation for
narrowband channel selection within
wireless communications receivers or
in digital television. IFIR filters are
essential components in sharp-transi-
tion wideband frequency-response
masking (FRM) FIR filters [9], [10].
In addition, IFIR filters can also be
employed in narrowband two-di-
mensional filtering applications.

While this article focused on
lowpass IFIR filters, highpass IFIR fil-
ters can be designed using the same
prototype filter expansion and masking
principles. Upon expansion by M of a
highpass prototype filter’s impulse re-
sponse, the resulting highpass
band-edge shaping subfilter will exhibit
passband images centered about odd
integer multiples of 1 2/( )M . There are
two restrictions associated with the de-
sign of a highpass IFIR filter. First, the
prototype highpass FIR filter must
have an odd impulse response length.
(Even-length nonrecursive FIR filters
have a zero magnitude response at
f s /2, preventing their use as highpass
filters.) The second restriction is the
band-edge shaping subfilter’s expan-
sion factor must be an odd integer to
ensure an| ( )|H fbe passband image re-
siding at f s /2.

Additional, and more compli-
cated, IFIR design methods have
been described in the literature. Im-
proved computational workload re-
duction, on the order of 30-40%
beyond that presented here, has been
reported using an intricate design
scheme when the Figure 3 masking
subfilter is replaced with multiple
stages of filtering [11].

We’ve introduced the theory of
linear-phase narrowband lowpass
IFIR filters and shown how they
achieve significant computational
workload reduction (as large as
90%) relative to traditional di-
rect-convolution FIR filters, at the
cost of less than a 10% increase in
hardware data memory require-
ments. IFIR filters were seen to
have a simple cascade structure and
straightforward implementation.
Performance curves were presented
to aid the designer in choosing the
appropriate band-edge shaping
subfilter expansion factor to maxi-
mize IFIR filter efficiency. Finally, a
straightforward IFIR filter design
procedure was presented based on
frequency-domain analysis and the
use of readily-available traditional
FIR filter design software.
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