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This note will review the process by which VCO (Voltage Controlled Oscillator) 
designers choose their oscillator’s topology and devices based on performance requirements, 
components types and DC power requirements. 
            Basic oscillator design specifications often require a given output power into a specified 
load at the design frequency. The drive level and bias current set the fundamental output 
current and the oscillation frequency is set by the resonator components. 

Transistor selection of the transistor should consider noise, frequency, and power 
requirements. Based on the particular device, the design may account for parasitics of the 
device affecting resonator components as well as nonlinear performance specifications.  
All the VCO schematics presented below were practical build using the Infineon SiGe transistor 
BFP420, and any of them can be re-tuned for different frequency ranges changing varicaps and 
LC tank values. 
  

VCO Specifications 

  
 The VCO must exhibit a low Phase Noise in order to meet the Sensitivity, Adjacent 

Channel and Blocking requirements. In digital modulation scheme the VCO’s Phase 
Noise affects the Bit Error Rate requirements. High Pushing (change of the oscillation 
frequency with supply voltage) can cause Phase Noise degradation due to increased 
sensitivity to the power supply noise.  
Phase Noise varies typically by 3dB with temperature, in the –55ºC to +85ºC range. 

 A buffer at the output is necessarily to isolate the VCO from any output load variations 
(Pulling) and to provide the required output power. Meeting simultaneously the output 
power and load pull specification directly with a stand-alone oscillator would be difficult. 
However, this buffer amplifier requires a higher supply current. Alternative would include 
to use at the output circulators, isolators or passive attenuators.  

 VCO output power is usually measured into a 50 ohm load. Output power requirements 
specified in dBm, and tolerances vs tuning frequency in ± dB. 

 The tuning slope is the slope of the frequency to voltage tuning characteristic at any 
point and is the same as modulation sensitivity. The slope could be positive or negative. 
For a positive slope, the output frequency. increases as the tuning voltage increases. 
Similarly for a negative slope, the output frequency decreases as the tuning voltage 
increases 

 A monotonic tuning characteristic means that the frequency is single valued at any 
tuning voltage and that the slope has the same sign across the tuning range. 

 Tuning sensitivity as a function of tuning voltage is a measure of tuning linearity. For 
any given application, have to specify the minimum and maximum of the tuning 
sensitivity. In the case of a VCO, the frequency coverage is rather restricted since the 
influence of the feedback network is small compared to the active device itself. 
Conventional oscillator designs (with a LC circuit or transmission-line equivalent coupled 
to a negative-resistance active device will only provide a restricted frequency coverage 
and poor stability). A negative resistance can easily be obtained from most microwave 
transistors when considering chip and package parasitics. 
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 Tuning flatness - As the VCO frequency range is increased, the difficulty to achieve a 
flat output power is increased. Adding an output filter to suppress harmonics may in some 
cases degrade power output flatness.  

 The drive level should consider the trade-off between harmonic content, oscillator 
stability, and noise. 

VCO Design Recommendations 

Nonlinear Effects in VCOs 
  
    Oscillator circuit nonlinearities cause low-frequency noise components to be up-converted 
and to appear as noise sidebands on the VCO output. Although this statement is intuitively 
obvious, quantifying this mechanism is much more complex. Second-order nonlinear distortion 
determines the degree of noise contamination of the oscillator output for instance.  
Therefore, second-order distortion in the oscillator should be minimized. The degree to which 
any oscillator accomplishes this goal can be judged based on the second harmonic output level 
of the oscillator.  

 A good oscillator should exhibit 2
nd 

harmonic levels on the order of -40 dBc. 
 
Another useful indicator of good oscillator design is the change in oscillation frequency versus 
DC bias reduction.  
 

 A slow reduction of the supply voltage from nominal to the point at which oscillation just 
ceases, should result in a very small frequency change (for example, should be on the 
order of about of 20 kHz for a well-designed 2 GHz oscillator). 
  

 The oscillator excess open-loop gain (which is necessary for initial oscillator build-up) 
should be minimized in order to prevent amplitude fluctuations from being converted into 
significant frequency fluctuations. 
The 2

nd
 harmonic currents in the oscillator sustaining stage can appear in phase 

quadrature with the fundamental current, thereby worsening the conversion of AM noise 
to PM noise.  

 Ideally, the 2
nd

 and 3
rd

 harmonic frequencies should be placed well above the fT cut-off 
frequency of the oscillator sustaining stage transistor, thereby minimizing this effect. 

 In many VCOs, the spectral purity is dominated by AM to FM conversion mechanisms 
near the carrier frequency. One method to predict the AM-to-FM conversion effect in a 
varactor-tuned VCO is based on a simple observation of the VCO output frequency 
oscillator signal amplitude. A change in the RF voltage amplitude across the tuning 
varactor normally affects the observed tuning capacitance value in the resonator, thereby 
providing one substantial AM-to-FM conversion mechanism in the oscillator. 

  

Other VCO impairments including injection locking, load pulling, and power supply frequency 
pushing can cause serious oscillator performance degradation, particularly in phase-locked 
systems. If the induced impairments fall within the closed-loop bandwidth of the system, 
potentially chaotic spectral behavior can result.  
Design margins must be identified and held for each of these potential problem areas. 
  



Injection Locking 
     
Injection locking can be shown that when a signal of sufficient amplitude and sufficiently small 
frequency error is impressed on a free-running oscillator. Over time, the free-running oscillator 
changes its frequency to that of the impressed signal with a corresponding change in its signal 
phase and amplitude. Normally, injection locking is a very undesirable situation, but it has been 
used to advantage on occasion such as in narrowband bit synchronizers. 
  

Load Pulling 
     
VCO load pulling refers to the change in oscillator frequency that occurs when the oscillator 
load impedance is changed. If this impedance change is dynamic in nature, load pulling of the 
oscillator leads to direct frequency modulation of the oscillator. Obviously, if the VCO is 
contained within a phase-locked loop and the frequency of modulation lies within the closed-
loop bandwidth, unwanted interactions can result. 
One of the most serious load pulling situations that can occur in practice arises in modulators 
where the modulation signal causes (low-frequency) baseband frequency modulation of the 
load.  
In this situation the load reflection coefficient, become a function of the modulation signal. 
  

Frequency Pushing 
    
 VCO frequency pushing is the technical term applied to the oscillator frequency perturbations 
that result from small changes in the oscillator's supply voltage(s). These perturbations can 
result from a number of factors including changes in device capacitance values caused by 
modified reverse biased junction capacitances, changes in the oscillator self-limiting signal 
mechanism, and changes in the sustaining stage gain.  
Oscillator frequency pushing can lead to substantial phase noise degradation because any 
power supply noise directly can lead to frequency modulation of the oscillator. 
  

Varactor Diode Nonlinear Effects 
  
    One of the main nonlinear VCO elements, particularly in wideband VCOs, is the varactor 
diode. The potentially large voltage swing across the varactor(s) leads to departures in the 
frequency tuning curve from nominal and up-conversion of low-frequency noise components 
that contribute to VCO phase noise sidebands. 
It can be shown that minimal varactor distortion occurs when the VCO tuning varactors are 
used in the back-to-back topology. Second-order distortion is theoretically reduced to zero when 
matched abrupt junction varactor diodes are used in this configuration. 
 

 Back-to-back varactor diode configuration is used to improved balance and to minimize 
even-order varactor nonlinearities. 

 Varactors should be placed at minimum voltage swing in the resonator. 
 Resistors should be placed about the varactors in order to maintain reverse bias and 

have their noise voltage short-circuited through an inductor. 
 

 

 

 



 In order to lower the VCO Phase Noise, a number of design rules should be respected: 
  

 The active device has noise properties which generally dominate the noise characteristic 
limits of an oscillator. Since all noise sources, except thermal noise, are generally 
proportional to average current flow through the active device, it is logical that reducing 
the current flow through the device will lead to lower noise levels.  

 Narrowing the current pulse width in the active device will decrease the time that noise is 
present in the circuit and therefore, decrease Phase Noise even further. 

 Maximize the loaded Q of the tuned circuit in the oscillator. 
There is a trade-off between the Q factor of the oscillator, its size and its price. The low Q-
Factor of an LC tank and its component tolerances  needs careful design for phase noise 
without individual readjustment of the oscillators. 
Usually a larger resonator will have a higher Q (e.g. a quarter wavelength coaxial 

resonator). 
 Choose an active device that has a low flicker corner frequency. 

A bipolar transistor biased at a low collector current will keep the flicker corner frequency 
to a minimum, typically around 6 to 15 KHz (Most semi-conductor manufacturers can 
provide the frequency corner (fc) of their devices as well as the 1/f characteristic. 

 Maximize the power at the output of the oscillator. 
In order to increase the power at the input of the oscillator, the current has to be 
increased. However, a low current consumption is critical to preserving battery life and 
keeping a low fc. In a practical application, the current will be set  based on output power 
required to drive the system (typically a mixer), and then the Phase Noise will need to be 
achieved through other means. 

 Choose a varactor diode with a low equivalent noise resistance. 
 The varactor diode manufacturers do not measure or specify this parameter. The best 

approach is then empirical; by obtaining varactors from several vendors and 
experimentally finding out which one yields the lowest phase noise in the VCO circuit and 
thus has the lowest equivalent noise resistance.  

 There are two basic types of varactors: Abrupt and Hyperabrupt.  
- The abrupt tuning diodes will provide a very high Q and will also operate over a very 
wide tuning voltage range (0 to 60 V). The abrupt tuning diode provides the best phase 
noise performance because of its high quality factor. 
- The hyperabrupt tuning diodes, because of their linear voltage vs. capacitance 
characteristic, will provide a much more linear tuning characteristic than the abrupt 
diodes. These are the best choice for wide band tuning VCO's. An octave tuning range 
can be covered in less than 20 V tuning range. Their disadvantage is that they have a 
much lower Q and therefore provide a phase noise characteristic higher than that 
provided by the abrupt diodes. 
CAD analysis can be used to chose the varactor diode doping profiles for linear frequency 
tuning even in the presence of large signals.  

 Keep the voltage tuning gain (Ko) to the minimum value required. 
This is the most challenging compromise because the thermal noise from the equivalent 
noise resistance of the varactor works together with the tuning gain of the VCO to 
generate phase noise. This compromise will be the limiting factor determining the phase 
noise performance. 

 Noisy power supplies may cause additional noise. Power supply induced noise may be 
seen at offsets from 20 Hz to 1 MHZ from the carrier. If the VCO is powered from a 



regulated power supply, the regulator noise will increase depending upon the external 
load current drawn from the regulator. The phase noise performance of the VCO may 
degrade depending upon the type of regulator used, and also upon the load current 
drawn from the regulator. To improve the phase noise performance of the VCO under 
external load conditions it is always a good design philosophy to provide RF bypassing of 
power and DC control lines to the VCO. RF chokes and good bypassing capacitors (low 
ESR) is recommended at the DC supply lines. This will minimize the possibility of 
feedback between stages in a complex subsystem. Improved bypassing may be provided 
by incorporating an active filter circuit.  
Power supply cleaning is provided to reduce pushing effects and noise contamination. 

 "Noiseless" biasing should be used in the transistor base circuits. Absence of any 
significant DC current in the base resistors minimizes shot noise current. 

 Tuning line resistance should be kept very low, thereby keeping Johnson noise effects to 
minimal. 

 Any reduction in sensitivity of the tuning curve to signal amplitude is desirable because 
this leads to a corresponding decrease in AM to FM conversion within the oscillator. 

 In BJT VCOs, the amount of feedback to the emitter from the collector must not result in 
base-emitter junction voltage breakdown (critical point for most microwave transistors).  

 Oscillator self-limiting mechanism should be implemented such that the resonator Q is not 
degraded. Actual limiting occurs across the base-emitter junction rather than the base-
collector junction. 
The collector supply currents should be inserted with negligible resonator loading. 

  

VCO Topologies 

  

Parallel Tuned Colpitts VCO 

  
There are 3 types of BJT Colpitts VCOs. Common-Collector, Common-Emitter and Common-
Base. 
The most used is Common-Collector configuration where the output is often taken from the 
collector terminal, simply acting as a buffer for the oscillator connection at the base-emitter 
terminals.  
This is the only Colpitts arrangement in which the load is not part of the three-terminal model or 
the oscillator equation; though care must be taken to ensure that the collector output voltage 
does not significantly feedback through the base-collector junction capacitance.  
As an alternative, the output of the common collector could also be taken across emitter 
resistance Re. 



 
 The ratio of the feedback capacitors in the Colpitts VCO (C3 and C4), is more important 

than the capacitor’s actual values. A good place to start is with a one to one ratio. The 
loaded Q of the resonator circuit can be increased by reducing C3 or increasing C4. 
Doing so however, reduces the loop gain in the oscillator, and enough loop gain must be 
maintained to guarantee oscillation start-up under all conditions (mainly under different 
temperatures and system output loads). 

 The value of the collector resistor, R3 affects the oscillator loop gain. As in a common 
collector amplifier, the lower the impedance in the collector circuit the more loop gain the 
circuit will have. This resistor provides another means of controlling the loop gain of the 
oscillator since a good oscillator design has just enough loop gain to guarantee reliable 
oscillation start-up. If there is to much loop gain the oscillator will operate in deep 
compression which will load the Q of the resonator circuit because the input impedance at 
the base of the transistor is very low when current saturation occurs. The resistor also 
tends to minimize the level of the harmonics.  

 L2 is chosen as an RF choke to provide a high impedance in the emitter circuit and 
ensure that most of the oscillator power is fed back to the base of Q1 instead of being 
dissipated in R2.  

 Emitter resistor R2 is used for current feedback thus providing a stable DC bias point that 
will be independent of the beta of the transistor.  

 C1 capacitor defines the amount of coupling between the active device and the resonator. 
The lighter the coupling (a smaller value of C1), the better the loaded Q of the resonator 
is, which results in a better phases noise performance. However, the compromise is a 
reduced output power and the potential for the VCO not to start under all operating 
conditions (especially at higher temperatures when current gain is reduced). Designing 
the system with too light of a coupling may also results in a sensitive design which may 
yield potential manufacturing problems. 

 The final tuning component of the oscillator, C2 sets the voltage tuning gain of the 
oscillator. This capacitor should keep the coupling as light as possible while maintaining 
the required frequency tuning range of the VCO so that the varactor’s phase noise 
contribution is reduced to a minimum. If the coupling is too light, the oscillator may not 
start under certain conditions. The worst case condition for this oscillator topology is when 
V-varicap is set at zero volts.  



 A good way to check if C2 is large enough for reliable oscillator start up is to monitor the 
output power of the VCO with zero volts on the tune line. The power with V-varicap at 0V 
should be within 1 dB of the power with V-varicap at 3V. If C2 is too small, the output 
power of the VCO will fall off sharply when V-varicap approaches zero volts or the 
oscillator may stop completely. 

 One good reason to use a transistor with a high Ft such as the BFP420 (Ft = 25GHz) is 
that C2 can be small and oscillation start-up will be reliable simultaneously. 

 In order to ensure that the loaded Q of the resonator circuit is not the limiting factor in 
phase noise performance, the varactor can be replaced with a fixed 2.5pF capacitor and 
compare the results. A varactor can degrade up to 5-6dB 

 The varactor can reduce the Q of the resonator circuit but this effect is secondary to the 
varactor modulation due to its own equivalent noise resistance. One way of reducing this 
effect is to parallel two or more varactors of smaller value while keeping the same tuning 
curve. This effectively reduces the equivalent noise resistance. 

  
 
 
 
 
 
 

Series Tuned Colpitts VCO (Clapp VCO) 

 
The series-tuned Colpitts circuit (or Clapp oscillator) works in much the same way as the 
parallel one.  

 The difference is that the variable capacitor, C1, is positioned so that it is well-protected 
from being swamped by the large values of C3 and C4.  

 In fact, small values of C3, C4 would act to limit the tuning range. Fixed capacitance, C2, 
is often added across the varicap to allow the tuning range to be reduced to that required, 
without interfering with C3 and C4, which set the amplifier coupling. 

 The series-tuned Colpitts has a reputation for better stability than the parallel-tuned 
original. Note how C3 and C4 swamp the capacitances of the amplifier in both versions. 

 The oscillation frequency is given by: ω
2 

L = [1/(C2+Cvar)]+(1/C3)+(1/C4) 
  



Wideband Colpitts VCO 

 
 This wideband Colpitts VCO uses a series back-to-back connection of two SMV1232 

varactors instead of a single varactor. This connection allows lower capacitance at high 
voltages, while maintaining the tuning ratio of a single varactor. The back-to-back varactor 
connection also helps reduce distortion and the effect of fringing and mounting 
capacitances. 

 The wideband Colpitts feedback capacitances C3, C4 were optimized to provide a flat 
power response over the wide tuning range. These values may also be re-optimized for 
phase noise if required. 

 The circuit is very sensitive to the transistor choice (tuning range and stability) due to the 
wide bandwidth requirement. 

 DC bias is provided through resistors R6 and R7, which may affect phase noise, but 
allows the exclusion of RF chokes. This reduces costs and the possibility of parasitic 
resonances which is the common cause of spurious responses and frequency instability. 

  

Hartley VCO 

 
 The Hartley VCO is similar to the parallel tuned Colpitts, but the amplifier source is tapped 

up on the tank inductance instead of the tank capacitance. A typical tap placement is 10 
to 20% of the total turns up from the “cold” end of the inductor. (It’s usual to refer to the 



lowest-signal voltage end of an inductor as cold and the other, with the highest signal 
voltage as hot.).  The same as in Colpitts case a good place to start is with a one to one 
ratio.  

 C2 limits the tuning range as required.  
 C1 is reduced to the minimum value that allows reliable starting. This is necessary 

because the Hartley’s lack of the Colpitts’s capacitive divider would otherwise couple the 
transistor capacitances to the tank more strongly than in the Colpitts, potentially affecting 
the circuit’s frequency stability. 

  

Wideband Differential Push-Push VCO 
 

 
 

 The circuit schematic shows a pair of transistors in a single feedback loop, connected so 
that collector currents would be 180° shifted. A pair of back-to-back connected SMV1232 
varactors is used to allows lower capacitance at the high voltage range, without changing 
the tuning ratio.  

 Varactor DC biasing is provided through resistors R8, R9 and R10, which may affect the 
phase noise, but eliminate the need for inductive chokes. This eliminates the possibility of 
parasitic resonances that could affect the wide tuning range and also cause for frequency 
instability and spurs. 

 The DC chokes, L1 and L2 are used for phase correction between pairs and their losses 
is dominated by the series emitter resistors R6 and R7.  

 The DC blocking series capacitances C1 and C2, including associated parasitics, shall 
have the SRF outside of the tuning range. 

 A three-pole Low Pass Filter at the output is used to filter the unwanted spurious. 
 

 

 

 

 

 

 

  



Differential Cross-Coupled VCO 

  

The cross-coupled differential transistor pair presents a negative resistance to the 
resonator due to positive feedback. 
This negative resistance cancel the losses from the resonator enabling sustained oscillation. 
Frequency variation is achieved with two varicap diodes BB135. 

 An optimal trade-off between thermal noise- induced phase noise and DC power 
dissipation can be achieved when the oscillation amplitude is designed to set the 
differential pair transistors to operate at the boundary between saturation and linear 
regions. 

 The excess noise factor F is dominated by the noise from the tail current source near 
even harmonics of the carrier frequency. In order to improve phase noise this contribution 
has to be minimized. An efficient way of doing this is to use a noise filtering technique. An 
inductor L3 and capacitor C5 forms a 2nd order low-pass filter which prevents noise at 
even harmonics from being injected into the feedback path of the oscillator. 

 The noise filter leaves low-frequency noise from the tail current source unaffected. Low-
frequency noise from the tail current source is also up-converted to the carrier as 
amplitude modulation. Low-frequency noise on the tuning line modulates the non-linear 
capacitance of the varactors giving rise to phase noise variation with control voltage. 

 The phase noise degradation due to control voltage noise is very significant at the lower 
tuning range where the varactors are most non-linear. The stack of two varactors reduces 
the varactor gain Kvco at the lower tuning range which in turn reduces phase noise 
variation with control voltage. 

  
 
 
 
 
 



Negative Resistance VCO 
 

 
 The resonator of the Negative Resistance VCO is a series-tuned base network consisting 

of two series varicap capacitances and an inductor for the positive reactance element. 
 Performance is highly dependent on the transistor type. Certain component values are 

critical.  
 This oscillator actually works best when lower Ft transistors are used. The circuit can be 

envisioned as a series-tuned Clapp, with internal transistor base-to-emitter capacitance 
and collector-to-emitter capacitance acting as a voltage divider. Microwave transistors 
with little internal capacitance do not work well except at the high end of the useful range 
of this oscillator type. Higher Ft devices required increased capacitance added at the 
emitter. At the low end of the frequency range, adding external base-to-emitter 
capacitance is sometimes necessary, 

 If bias conditions result in a emitter resistance below about 200 ohms, an RF choke may 
be required in series with the resistance. This choke must be free of any resonances in 
the operating frequency range. 

 The output can be taken from several points. The L1 inductor can be tapped. As the tap is 
moved toward the transistor, more power is coupled out. If the tap is too close to the 
transistor, the loading reduces the oscillation margin, and the operating frequency 
becomes more load dependent. 
The output can be taken by capacitive coupling at the emitter (low level) or at the collector 
(higher level, but have more spurious). 

 Because the negative resistance oscillator uses a series-tuned resonator, the varactors 
lead inductance becomes a part of the resonator. This is an advantage over varactor-
tuned oscillators using parallel resonators. The base coupling capacitor inductance and 
transistor base inductance are also absorbed. 

 The loaded Q of negative resistance oscillators is typically less than 5 and this circuit 
defies attempts at improving the Q. When used as a broadband varactor-tuned VCO, the 
low loaded Q does not limit phase noise performance significantly because varactor 
modulation noise predominates, particularly at higher offset frequencies. 

 
 
 
  



Franklin VCO 

  
Franklin oscillator uses two transistor stages having the same common terminal (emitter 

for bipolar device) when the greater power gain and better isolation from the resonant circuit 
is possible compared with the case of a single-stage configuration. 
There are two possible configurations for the resonant circuit, parallel and series. The circuit 
presented below uses a parallel LC resonant circuit (L1 and the varctor diode). 
In the case of a parallel resonant circuit configuration, the resonant LC circuit is isolated from 
the input of the first stage and the output of the second stage by means of small shunt 
capacitances C1 and C2 having high reactances at the resonant frequency. 

 
    In this circuit, each stage shifts phase 180° so that the total phase shift is 360° which is 
equivalent to zero phase shift. We may say that one stage serves as the phase inverting 
element in place of the RC or LC network which generally performs this function. It is, from 
an analytical viewpoint, immaterial which stage we choose to look upon as amplifier or phase 
inverter. The configuration is essentially symmetrical in this respect; both stages provide 
amplification and phase inversion.  

 The salient feature of the Franklin oscillator is that the tremendous amplification 
enables operation with very small coupling to the resonant circuit.  

 Therefore, the frequency is relatively little influenced by changes in the active device, 
and the Q of the resonant circuit is substantially free from degradation.  

 The closest approach to the high frequency stability inherent in this oscillator is 
attained by restriction of operation to, or near to, the Class-A region. This should not 
be accomplished by lowering the amplification of the two stages, but, rather by making 
the capacitors C1 and C2 very small.  

 Additionally, a voltage-follower 'buffer' stage is helpful in this regard. Extraction of 
energy directly from the resonant tank, would, of course, definitely negate the 
frequency stability otherwise attainable.  

 Obviously, the Franklin oscillator is intended as a low-power frequency-governing 
stage, not as a power oscillator.  

  

 



Goral VCO 

  

 

 
  

    The Goral VCO has an emitter-follower stage inserted in the feedback path of an 
otherwise conventional Colpitts oscillator circuit.  
 

 The midpoint of the capacitive divider (which is actually part of the resonant tank) now 
sees a much lower impedance with respect to ground than would be the case without 
the emitter follower.  

 Because the feedback gain of a Goral VCO is greater than a standard Colpitts, placing 
a feedback resistor R*, helps improving the overall phase noise performance and 
improving also the linearity, reducing the VCO generated harmonics.  

 The power gain of the JFET/BJT combination is much greater than that of the JFET 
'oscillator' alone. There is latitude for considerable experimentation in the ratio of the 
two capacitors used in the Colpitts section of the circuit. This ratio can be optimized for 
frequency stability without easily running out of feedback.  

   
  Note that the emitter-follower is directly coupled to the JFET. It may be necessary to 
experiment with bias-determining resistances to ascertain Class-A operation from the 
emitter-follower. Also, the output transistor is intended to operate in its Class-A region. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



Cascode VCO 

  
To provide higher isolation of the load from the VCO resonant circuit a cascode VCO 
configuration, can be used.  
The negative resistance oscillation conditions for common emitter transistor Q1 are provided 
by using the feedback inductance L1. 

 
Vackar VCO 

  
And here is the winner. If you want to build a very stable, low phase noise, and low spurious 
VCO, definitely Vackar VCO is the choice.  
This is not a common type in the RF “professional” world, one reason could be the name of 
its inventor. 
A Vackar VCO is a variation of the split-capacitance oscillator model. It is similar to a Colpitts 
or Clapp VCO in this respect. It differs in that the output level is more stable over frequency, 
and has a wider bandwidth when compared to a Colpitts or Clapp design. 
  

 

    The Vackar VCO circuit incorporates a π-section tank to attain the needed 180° phase-

reversal in the feedback loop.  

http://en.wikipedia.org/wiki/Colpitts_oscillator
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http://en.wikipedia.org/wiki/Bandwidth


 However, the inverted feedback signal is not directly fed back to the input of the active 
device; rather, it is loosely coupled through a small capacitor. Often, a shunt capacitor 
is introduced to further reduce the coupling.  

 The basic idea is to isolate the resonant circuit as much as possible from the input of 
the active device, consistent with obtaining reliable oscillation.  

 This circuit is particularly advantageous with solid-state devices, and especially with 
bipolar transistors that have inordinately-low input impedances and that present a 
widely-varying reactance to the tuned circuit as a consequence of temperature and 
voltage changes.  

 Once the overall circuit is operational, the values of capacitance C1 in series with Cvar  
and collector capacitance (C2) may be optimized for best stability. Generally, it will be 
found that the capacitor closest to the collector of the transistor can be several times 
larger than the capacitor associated with the base circuit.  

 The introduction of attenuation in the feedback loop (via the small capacitor in the 
Vackar) prevents over-excitation and effectively isolates the resonant circuit from the 
active device.  

 The frequency tuning range of Vackar VCO is above one octave, not observable to 
many oscillator types. 

 The frequency tuning is provided independently of the coupling to the LC tank circuit. 
 The parametric variables of the transistor (which depends by the bias current and 

temperature), are isolated from the resonator.  
 The transistor input is not overloaded as other VCO circuits and the collector output 

has low impedance providing low gain just to maintain the oscillation.  
 The feedback division ratio is fixed (typical range for coupling ratio is 1:4 up to 1:9). 

Even if the VCO is tuned, the impedance divider is fixed, in this way increasing the 
stability. 

 Two negative sides of Vackar VCO are the critical starting oscillation point, and the low 
output level, which always requires to use a buffer amplifier. When the oscillation 
doesn’t start means that it doesn’t have enough positive feedback, as for to begin the 
oscillation and maintain it in the time. In the above schematic C3 and C4 are critical 
values finding this point. 

 L2 is used as an RF choke with SRF outside of the frequency range, to don’t affect the 
tuning range and flatness over frequency. It is important that the RF choke in the 
collector circuit 'looks good' at the operating frequency (presents a high inductive 
reactance). Resonances from distributed capacitance in the choke windings, especially 
those in the series-resonant mode, can degrade stability or even inhibit oscillation. 
Ferrite-core chokes are generally suitable for this application. Sensitivity to RF choke 
characteristics is common to all oscillator circuits that use chokes for shunt-feeding the 
DC operating voltage to the oscillator. 
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