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’I ife.augmented Application note

Floating point unit demonstration on STM32 microcontrollers

Introduction

This application note explains how to use floating-point units (FPUs) available in STM32
Cortex®-M4 and STM32 Cortex®-M7 microcontrollers, and also provides a short overview
of: floating-point arithmetic.

The X-CUBE-FPUDEMO firmware is developed to promote double precision FPUs, and to
demonstrate the improvements coming from the use of this hardware implementation.

Two examples are given in Section 4: Application example.
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Floating-point arithmetic

Floating-point numbers are used to represent non-integer numbers. They are composed of
three fields:

e the sign

e the exponent

e the mantissa

Such a representation allows a very wide range of number coding, making floating-point

numbers the best way to deal with real numbers. Floating-point calculations can be
accelerated using a Floating-point unit (FPU) integrated in the processor.

Fixed-point or floating-point

One alternative to floating-point is fixed-point, where the exponent field is fixed. But if
fixed-point is giving better calculation speed on FPU-less processors, the range of numbers
and their dynamic is low. As a consequence, a developer using the fixed-point technique will
have to check carefully any scaling/saturation issues in the algorithm.

Table 1. Integer numbers dynamic

Coding Dynamic
Int8 48 dB
Int16 96 dB
Int32 192 dB
Int64 385 dB

The C language offers the float and the double types for floating-point operations. At a
higher level, modelization tools, such as MATLAB or Scilab, are generating C code mainly
using float or double. No floating-point support means modifying the generated code to
adapt it to fixed-point. And all the fixed-point operations have to be hand-coded by the
programmer.

Table 2. Floating-point numbers dynamic

Coding Dynamic
Half precision 180 dB
Single precision 1529 dB
Double precision 12318 dB

When used natively in code, floating-point operations will decrease the development time of
a project. It is the most efficient way to implement any mathematical algorithm.

3
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3

Floating-point unit (FPU)

Floating-point calculations require a lot of resources, as for any operation between two
numbers. For example, we need to:

e  Align the two numbers (have them with the same exponent)

e  Perform the operation

e  Round out the result

e  Code the result

On an FPU-less processor, all these operations are done by software through the C
compiler library and are not visible to the programmer; but the performances are very low.

On a processor having an FPU, all of the operations are entirely done by hardware in a
single cycle, for most of the instructions. The C compiler does not use its own floating-point
library but directly generates FPU native instructions.

When implementing a mathematical algorithm on a microprocessor having an FPU, the
programmer does not have to choose between performance and development time. The
FPU brings reliability allowing to use directly any generated code through a high level tool,
such as MATLAB or Scilab, with the highest level of performance.
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IEEE standard for floating-point arithmetic (IEEE 754)

The usage of the floating-point arithmetic has always been a need in computer science
since the early ages. At the end of the 30’s, when Konrad Zuse developed his Z series in
Germany, floating-points were already in. But the complexity of implementing a hardware
support for the floating-point arithmetic has discarded its usage for decades.

In the mid 50’s, IBM, with its 704, introduced the FPU in mainframes; and in the 70’s,
various platforms were supporting floating-point operations but with their own coding
techniques.

The unification took place in 1985 when the IEEE published the standard 754 to define a
common approach for floating-point arithmetic support.

Overview

The various types of floating-point implementations over the years led the IEEE to
standardize the following elements:

e number formats

e  arithmetic operations

e number conversions

e special values coding

e four rounding modes

e five exceptions and their handling

Number formats

All values are composed of three fields:
e Sign:s
e Biased exponent:
— sum of the exponent = e
— constant value = bias
e  Fraction (or mantissa): f

The values can be coded on various lengths:
e  16-bit: half precision format

e  32-bit: single precision format

e  64-bit: double precision format

3
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AN4044 IEEE standard for floating-point arithmetic (IEEE 754)
Figure 1. IEEE.754 single and double precision floating-point coding
31 0
s e(7..0) f(1..23)
1-bit  8-bit 23-bit
Single precision format
64 0
s e(10..0) f(1..52)
1-bit 11-bit 52-bit
Double precision format
Five different classes of numbers have been defined by the IEEE:
e Normalized numbers
e  Denormalized numbers
e Zeros
e Infinites
e NaN (Not-a-Number)
The different classes of numbers are identified by particular values of those fields.
2.21 Normalized numbers

A normalized number is a “standard” floating-point number. Its value is given by the above
formula:

Normalized number = (=1)$ X (1 + Y, f; x 27%) x 2¢7b%s (with i > 0)

The bias is a fixed value defined for each format (8-bit, 16-bit, 32-bit and 64-bit).

Table 3. Normalized numbers range

3

Mode

Exponent

Exp. Bias

Exp. Range

Mantissa

Min. value

Max. Value

Half

5-bit

15

-14, +15

10-bit

6,10.10°

65504

Single

8-bit

127

-126,+127

23-bit

1,18. 10738

3,40.10%8

Double

11-bit

1023

-1022,+1023

52-bit

2,23.107308

1,8.10%08

Example: single-precision coding of -7

e Signbit=1
. 7=1.75x4=(1+1/2+1/4)x4=(1+1/2+1/4)x22
e Exponent =2 + bias =2 + 127 = 129 = 0b10000001

e Mantissa = 2" + 22 = 0b11000000000000000000000
e Binary value = 0b 1 10000001 11000000000000000000000
e Hexadecimal value = 0xCOE00000
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2.2.2

2.2.3

224

2.2.5

2.2.6
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Denormalized numbers

A denormalized number is used to represent values which are too small to be normalized
(when the exponent is equal to 0). Its value is given by the formula:

Denormalized number = (—1)° X (X, f; x 27%) x 27545 (withi > 0)

Table 4. Denormalized numbers range

Mode Min value
Half 5,96.108
Single 1,4.1074°
Double 4,94.10324

Zeros

A Zero value is signed to indicate the saturation (positive or negative). Both exponent and
fraction are null.

Infinites

An Infinite value is signed to indicate +« or -«. Infinite values are resulting of an overflow or
a division by 0. The exponent is set to its maximum value, whereas the mantissa is null.

NaN (Not-a-Number)

A NaN is used for an undefined result of an operation, for example 0/0 or the square root of
a negative number. The exponent is set to its maximum value, whereas the mantissa is not
null. The MSB of the mantissa indicates if it is a Quiet NaN (which can be propagated
through the next operations) or a Signaling NaN (which generates an error).

Summary
Table 5. Value range for IEEE.754 number formats
Sign Exponent Fraction Number
0 0 0 +0
1 0 0 -0
0 Max 0 +00
1 Max 0 -0
[0, 1] Max 1=0 & MSB=1 QNaN
[0, 1] Max 1=0 & MSB=0 SNaN
[0, 1] 0 1=0 Denormalized Number
[0, 1] [1, Max-1] [0, Max] Normalized Number
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AN4044 IEEE standard for floating-point arithmetic (IEEE 754)
2.3 Rounding modes
Four main rounding modes are defined:
e Round to nearest
e Direct rounding toward +
e Direct rounding toward -«
e Direct rounding toward 0
Round to nearest is the default rounding mode (the most commonly used). If the two
nearest are equally near, the selected one is the one with the LSB equal to 0.
The rounding mode is very important as it changes the result of an arithmetic operation. It
can be changed through the FPU configuration register.
24 Arithmetic operations
The IEEE.754 standard defines 6 arithmetic operations:
e Add
e  Subftract
e Multiply
e Divide
e  Remainder
e  Square root
2.5 Number conversions
The IEEE standard also defines some format conversion operations and comparison:
e Floating-point and integer conversion
e Round floating-point to integer value
e Binary-Decimal
e  Comparison
2.6 Exception and exception handling

3

5 exceptions are supported:

e Invalid operation: the result of the operation is a NaN

e Division by zero

e  Overflow: the result of the operation is £~ or tMax depending on the rounding mode
e  Underflow: the result of the operation is a denormalized number

e Inexact result: caused by rounding

An exception can be managed in two ways:

e Atrap can be generated. The trap handler returns a value to be used instead of an
exceptional result.

e Aninterrupt can be generated. The interrupt handler cannot return a value to be used
instead of an exceptional result.
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2.7 Summary

The IEEE.754 standard defines how floating-point numbers are coded and processed.

An FPU implemented in hardware accelerates IEEE 754 floating point calculations. Thus, it
can implement the whole IEEE standard or a subset. The associated software library
manages the unaccelerated features.

For a “basic” usage, floating-point handling is transparent to the user, as if using f1oat in C
code. For more advanced applications, an exception can be managed through traps or
interrupts.

3
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3

STM32 Cortex®-M floating-point unit (FPU)

Table 6 shows the implementation of FPU for STM32 Cortex®-M4 and Cortex®-M7.

Table 6. FPU implementation within the STM32 Cortex®-M4/-M7

STM32 Implementation
Features Configurable options g;mgg:ﬁi;;
STM32F76x/7x
STM32F74x/5x
STM32L4xx
No FPU - i
FPU Single Precision (SP) only Yes -
SP and DP - Yes

The Cortex® M4 FPU is an implementation of the ARM® FPv4-SP single-precision FPU.

It has its own 32-bit single precision register set (S0-S31) to handle operands and result.
These registers can be viewed as 16 double-word registers (D0-15) for load/store
operations.

A Status & Configuration Register stores the FPU configuration (rounding mode and special
configuration), the condition code bits (negative, zero, carry and overflow) and the exception
flags.

Some of the IEEE.754 operations are not supported by hardware and are done by software:
e Remainder

¢ Round floating-point to integer-value floating-point number

e Binary-to-decimal and decimal-to-binary conversions

e Direct comparison of single-precision and double-precision values

The exceptions are handled through interrupts (traps are not supported).

The Cortex®-M7 double precision FPU is an implementation of the ARM® FPv5 floating
point. The FPv5 fully supports single-precision and double-precision, it also provides
conversions between fixed-point and floating-point data formats, and floating-point constant
instructions.

The FPU provides IEEE754-compliant operations on 32-bit single-precision and 64-bit
double-precision floating-point values.

The FPU provides an extension register file containing 32 single-precision registers. These
can be viewed as:

e  Sixteen 64-bit double word registers, (D0-D15), which is the same as for the FPv4 with
no additional registers.

e  Thirty-two 32-bit single-word registers, (S0-S31), load/store instructions are identical to
the supported instructions by the FPv4 which already includes support for 64-bit data
types.

The FPv5 provides a hardware support for denormals and all IEEE Standard 754-2008
rounding modes.
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3.1 Special operating modes
The Cortex®M4 FPU is fully compliant with IEEE.754 specifications. However, some
non-standard operating modes can be activated:
e Alternative Half-precision format (AHP control bit)
—  Specific 16-bit mode with no exponent value and no denormalized number support.
. b s S -i 16
Alternative Half-precision = (—1)° X (3, f; X 27") x 2
e  Flush-to-zero mode (FZ control bit)
— All the denormalized numbers are treated as zeros. A flag is associated to input
and output flush.
e  Default NaN mode (DN control bit)
— Any operation with a NaN as an input, or which generates a NaN, returns the
default NaN (Quiet NaN).
3.2 Floating-point status and control register (FPSCR)
The FPSCR stores the status (condition bit and exception flags) and the configuration
(rounding modes and alternative modes) of the FPU.
As a consequence, this register may be saved in the stack when the context is changing.
FPSCR is accessed with dedicated instructions:
e Read: VMRS Rx, FPSCR
e  Write: VMSR FPSCR, Rx
Table 7. FPSCR register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
N 4 C Vv AHP | DN FZ RM
Res. Reserved
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDC IXC | UFC | OFC | DZC | I10C
Reserved Reserved
w w w w w
3.21 Code condition bits: N, Z, C, V
They are set after a comparison operation.
3.2.2 Mode bits: AHP, DN, FZ, RM

14/31

They are configuring the alternative modes (AHP, DN, FZ) and the rounding mode (RM).
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3.23 Exception flags
They are raised when an exception occurs in case of:
e  Flush to zero (IDC)
e Inexact result (IXC)
e Underflow (UFC)
e  Overflow (OFC)
e Division by zero (DZC)
e Invalid operation (I0OC)
Note: The exception flags are not reset by the next instruction.
3.3 Exception management
Exceptions cannot be trapped. They are managed through the interrupt controller.
Five exception flags (IDC, UFC, OFC, DZC, 10C) are ORed and connected to the interrupt
controller. There is no individual mask and the enable/disable of the FPU interrupt is done at
the interrupt controller level.
The IXC flag is not connected to the interrupt controller and cannot generate an interrupt as
its occurrence is very high. If needed, it must be managed by polling.
When the FPU is enabled, its context can be saved in the CPU stack using one of the three
methods:
e No floating-point registers saving
e Lazy saving/restoring (only space allocation in the stack)
e Automatic floating-point registers saving/restoring
The stack frame consists of 17 entries:
e FPSCR
e S0toS15
3.4 Programmers model

3

When the MCU is coming out of reset, the FPU has to be enabled specifying the access
level of the code using the FPU (denied, privilege or full) in the Coprocessor Access Control
Register (CPACR).

The FPSCR can be configured to define alternative modes or the rounding mode.

The FPU also has 5 system registers:

e FPCCR (FP Context Control Register) to indicate the context when the FP stack frame
has been allocated, together with the context preservation setting.

e FPCAR (FP Context Address Register) to point to the stack location reserved for SO.

e FPDSCR (FP Default Status Control Register) where the default values for the

Alternative half-precision mode, the Default NaN mode, the Flush-to-zero mode and
the Rounding mode are stored.

¢ MVFRO & MVFR1 (Media and VFP Feature Registers 0 and 1) where the supported
features of the FPU are detailed.
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3.5 FPU instructions

The FPU supports instructions for arithmetic operation, compare, convert and load/store.

3.51 FPU arithmetic instructions

The FPU offers arithmetic instructions for:

Absolute value (1 cycle)

Negate of a float or of multiple floats (1 cycle)

Addition (1 cycle)

Subtraction (1 cycle)

Multiply, multiply accumulate/subtract, multiply accumulate/subtract, then negate (3

cycles)

Divide (14 cycles)
Square root (14 cycles)

Table 8 shows some of the floating-point single-precision data processing instructions:

Table 8. Some floating-point single-precision data processing instructions

Instruction Description Cycles
VABS.F32 Absolute value 1
VADD.F32 Addition 1
VSUB.F32 Subtraction 1
VMUL.F32 Multiply 1
VDIV.F32 Division 14
o o 1
VSQRT.F32 Square root 14

Table 9 shows some of the floating-point double-precision data processing instructions:

Table 9. Some floating-point double-precision data processing instructions

Instruction Description Cycles

VADD.F64 Addition 3

VSUB.F64 Subtraction 3
VCVT.F<32(64> Conversion to/from 3

Integer/fixed-point

All the MAC operations can be standard or fused (rounding done at the end of the MAC for
a better accuracy).

16/31
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3.5.2 FPU compare & convert instructions

The FPU has compare instructions (1 cycle) and a convert instruction (1 cycle).

Conversion can be done between integer, fixed point, half precision and float.
3.5.3 FPU load/store instructions

3

The FPU follows the standard load/store architecture:

Load and store on multiple doubles, multiple floats, single double or single float
Move from/to core register, immediate of float or double

Move from/to control/status register

Pop and push double or float from/to the stack
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Application example

Two examples are given with this application note that show the benefit brought by the
STM32 FPU.

The first example is Julia set, which highlights performances comparison between the
hardware FPU versus the software one.

The second example is Mandelbrot set, which highlights the gain in precision with the
hardware double precision FPU versus the single precision FPU.

Julia set

The target is to compute a simple mathematical fractal: the Julia set.

The generation algorithm for such a mathematical object is quite simple: for each point of
the complex plan, we are evaluating the divergence speed of a define sequence. The Julia
set equation for the sequence is:

Zn+1 = Zn2 +C

For each x + i.y point of the complex plan, we compute the sequence with ¢ = ¢, + i.Cy!
Xnat +Yne1 = XgZ = Yn? + 2.0.X0.Yp + Oy +i.cy
Xn+1 = Xn? - Vo2 + Cand Ypeq = 2Xq. Y + Cy

As soon as the resulting complex value is going out of a given circle (number’s magnitude
greater than the circle radius), the sequence is diverging, and the number of iterations done
to reach this limit is associated to the point. This value is translated into a color, to show
graphically the divergence speed of the points of the complex plan.

After a given number of iterations, if the resulting complex value remains in the circle, the
calculation stops, considering the sequence is not diverging:

void GenerateJulia fpu(uintl6é t size x, uintl6 t size y, uintlé t
offset x, uintl6_t offset y, uintl6 t zoom, uint8 t * buffer)
{

float tmpl, tmp2;

float num_real, num_img;
float radius;

uint8 t i;

uintlé_ t X, Y7

for (y=0; y<size y; y++)
{
for (x=0; x<size x; x++)

{

num real =y - offset y;
num_real = num real / zoom;
num _img = x - offset x;

num img = num_img / zoom;
i=0;

3
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radius = 0;
while ((i<ITERATION-1) && (radius < 4))

{
tmpl = num real * num real;
tmp2 = num _img * num img;
num img = 2*num real*num img + IMG CONSTANT;
num real = tmpl - tmp2 + REAL CONSTANT;
radius = tmpl + tmp2;
i++;

}

/* Store the value in the buffer */

buffer([x+y*size x] = 1i;

}

Such an algorithm is very efficient to show the benefits of the FPU: no code modification is
needed, the FPU just needs to be activated or not during the compilation phase.

No additional code is needed to manage the FPU, as it is used in its default mode.

Figure 2. Julia set with value coded on 8 bpp blue (¢=0.285+i.0.01)

4.2 Implementation on STM32F4

To have a better rendering on the RGB565 screen of the STM3240G-EVAL evaluation
board, we are using a special palette to code the color values.

The maximum iteration value is set to 128. As a consequence, the color palette will have
128 entries. The circle radius is set to 2.

The main routine calls all the initialization functions of the board to set up the display and the
buttons.

e  The WAKUP button switches from automatic mode (continuous zoom in and out) to
manual mode.

¢ In manual mode, the KEY button is used to launch another calculation, alternatively
with and without an FPU, with performance comparison in between.

The whole project is compiled with the FPU enabled, except for GenerateJulia_noFPU.c
which is compiled forcing the FPU off.

3
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Figure 3. Julia set with value coded on an RGB565 palette (c=0.285+i.0.01)

Implementation on STM32F7

The same algorithm is implemented on the STM32F769i-Eval. The microcontroller is
running at 216 MHz, with the following two configurations: FPU single precision enabled and

FPU double precision enabled. This is done through the RealView Microcontroller

Development Kit (MDK-ARM™) tool-chain V5.17 as shown in Figure 4.

Figure 4. Configure FPU with MDK-ARM™ tool-chain V5.17

L

. kJ Options for Target 'STM32F7x01 EVAL{AXIM-FLASH)_CM7DP*

=

Device Target ]Output] Listing] User ] CJ"CH] Asm ] IJnkerl Debug] Lhili‘ties]

ARM ARMCM7_DP

¥al (MHz): 120

Code Generation

ARM Compiler:

| Use default compiler version

BN

Operating system: | None |

System Viewer File: I Use Cross-Module Optimization

ARMCMT svd ™ Use MicroLIB I~ Big Endian

[~ Use Custom File Floating Point Hardware: lm
Read/Only Memory Areas Read/Write Memory Areas
default  off-chip Statt Size Statup | | defatt offchip  Stat
I RoMI: | | C ~  RAut: | | r
I RoM2: | | ' ™ RAMZ: | | ~
I Rom3: | | s I~ Raua: | | -

on-chip on-chip
W IROM1: |BB000000  [B200000 S ¥ IRaMi: |B20000000 020000 r
I Rom2: | | ™ IRau2: | | -
| ok || cancel || Defauts | Help

Only the manual mode is available for the STM32F7, once a touch screen is detected, this
will launch another calculation.
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The algorithm has been changed too:

void GeneratedJulia_fpu(uintl6_t size_x, uintl6_t size_y, uintlé6_t

offset_x,
{

double
double
double
uint8_t

uintlé_t

for

{

tmpl,

uintlé6_t offset_y, uintl6_t zoom, uint8_t * buffer)

tmp2 ;

num_real, num_img;

radius;

i;

X, Yi

(y=0; y<size_y; y++)

for (x

{

while

=0;

x<size_x; X++)

num_real = y - offset_vy;

num_real = num_real / zoom;

num_img = x - offset_x;

num_img = num_img / zoom;

i=0;
radius = 0;
((i<ITERATION-1) && (radius < 4))

{

}

tmpl = num_real * num_real;

tmp2 = num_img * num_img;

num_img = 2*num_real*num_img + IMG_CONSTANT;
num_real = tmpl - tmp2 + REAL_CONSTANT;
radius = tmpl + tmp2;

1++;

/* Store the value in the buffer */

buffer[x+y*size_x] = 1i;

DoclD022737 Rev 2 21/31




Application example AN4044

4.4 Results

Table 10 shows the time spent by the Cortex®-M4 based STM32F4 to calculate the Julia
set, for several zooming factors, as shown in the demonstration firmware.

Table 10. Cortex®-M4 performance comparison HW SP FPU vs. SW implementation
FPU with MDK-ARM™ tool-chain V5.17

Frame Zoom Duration with HW FPU . Duration'with SW Ratio
[ms] implementation FPU [ms]
0 120 195 2426 12,44
1 110 170 2097 12,34
2 100 146 1782 12,21
3 150 262 3323 12,68
4 200 275 3494 12,71
5 275 261 3307 12,67
6 350 250 3165 12,66
7 450 254 3221 12,68
8 600 240 3038 12,66
9 800 235 2965 12,62
10 1000 230 2896 12,59
11 1200 224 2824 12,61
12 1500 213 2672 12,54
13 2000 184 2293 12,46
14 1500 213 2672 12,54
15 1200 224 2824 12,61
16 1000 230 2896 12,59
17 800 235 2965 12,62
18 600 240 3038 12,66
19 450 254 3221 12,68
20 350 250 3165 12,66
21 275 261 3307 12,67
22 200 275 3494 12,71
23 150 262 3323 12,68
24 100 146 1781 12,20
25 110 170 2097 12,34

3

22/31 DocID022737 Rev 2




AN4044 Application example

Table 11 shows the time spent by the Cortex®-M7 based STM32F7 to calculate the Julia set
with the same algorithm running on the Cortex®-M4 based STM32F4, for several zooming
factors, as shown in the demonstration firmware.

Table 11. Cortex®-M7 performance comparison HW SP FPU vs. SW implementation
FPU with MDK-ARM™ tool-chain V5.17

Frame Zoom | Duration with HW FPU [ms] implzumr::t: :i:;tgsl‘;’v[ms] Ratio
0 120 134 1759 13,13
1 110 118 1519 12,87
2 100 102 1291 12,66
3 150 179 2407 13,45
4 200 187 2529 13,52
5 275 178 2396 13,46
6 350 171 2294 13,42
7 450 174 2335 13,42
8 600 165 2204 13,36
9 800 161 2150 13,35
10 1000 157 2101 13,38
1 1200 154 2048 13,30
12 1500 146 1936 13,26
13 2000 127 1661 13,08
14 1500 146 1936 13,26
15 1200 154 2048 13,30
16 1000 157 2101 13,38
17 800 161 2150 13,35
18 600 165 2204 13,36
19 450 174 2335 13,42
20 350 171 2294 13,42
21 275 178 2396 13,46
22 200 187 2529 13,52
23 150 179 2407 13,45
24 100 102 1291 12,66
25 110 118 1519 12.87

"_l DoclD022737 Rev 2 23/31




Application example

AN4044

24/31

Table 12 shows the time spent by the Cortex®-M7 based STM32F7 to calculate the Julia set

with the above described algorithm, for several zooming factors, as shown in the

demonstration firmware.

Table 12. Performance comparison HW DP FPU versus SW implementation FPU
with MDK-ARM™ tool-chain V5.17

Frame Zoom Duration with HW DP FPU . Duration_with SW Ratio
[ms] implementation FPU [ms]

0 120 408 2920 7,16
1 110 355 2523 7,11
2 100 305 2145 7,03
3 150 550 3995 7,26
4 200 577 4197 7,27
5 275 547 3971 7,26
6 350 524 3799 7,25
7 450 533 3866 7,25
8 600 504 3643 7,23
9 800 492 3557 7,23
10 1000 481 3476 7,23
1 1200 470 3390 7,21
12 1500 446 3206 7,19
13 2000 386 2752 7,13
14 1500 446 3206 7,19
15 1200 470 3390 7,21
16 1000 481 3476 7,23
17 800 492 3557 7,23
18 600 504 3643 7,23
19 450 533 3866 7,25
20 350 524 3799 7,25
21 275 547 3971 7,26
22 200 577 4197 7,27
23 150 550 3995 7,26
24 100 305 2145 7,03
25 110 355 2523 7,11

We can observe that the ratio between using the hardware SP FPU versus the software
implementation of the FPU is better than the ratio between using the hardware DP FPU
versus the software implementation of the FPU, user should use “double” only when he
needs to get more precisions. However if user seeks to get better performances and to

reduce RAM usage, he should use the “float”.
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4.5 Mandelbrot set

To generate a Mandelbrot set, we used the same iterative function as the Julia Set, the ¢
variable will represent the position if the pixel and z will start at the position (x=0, y=0).

void drawMandelbrot_Double(float centre_X, float centre_Y, float Zoom,
uintl6_t IterationMax)

{
double X_Min = centre_X - 1.0/Zoom;

double X_Max = centre_X + 1.0/Zoom;

double Y Min = centre_Y - (YSIZE_PHYS-CONTROL_SIZE_Y) / (XSIZE_PHYS *
Zoom) ;

double Y_Max = centre_Y + (YSIZE_PHYS-CONTROL_SIZE_Y) / (XSIZE_PHYS
*Zoom) ;

double dx = (X _Max - X _Min) / XSIZE_PHYS;

double dy = (Y_Max - Y_Min) / (YSIZE_PHYS-CONTROL_SIZE_Y) ;

double y = Y_Min;

double c;

for (uintl6_t j = 0; j < (YSIZE_PHYS-CONTROL_SIZE_Y); Jj++)

double x = X_Min;

for (uintl6_t i = 0; 1 < XSIZE_PHYS; i++)
{

double Zx X;

double Zy = vy;

int n = 0;

while (n < IterationMax)

{
double Zx2 = Zx * 7Zx;
double Zy2 = 2y * Zvy;
double Zxy = 2.0 * Zx * Zy;

ZX = ZX2 - Zy2 + X;
Zy = IXy + V;

if(zx2 + Zy2 > 16.0)
{
break;

n++;

x += dx;

3
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y += dy;
}
}
Figure 5 shows the image generated with zoom=1.

Figure 5. Picture of Mandelbrot-set with zoom in =1

Every time the user touches the screen the picture will be zoomed in four times.

Figure 6 shows a picture that was zoomed in so much, that the numerical limit of 64-bit
floating point numbers was reached.

It starts looking blocky. It's zoomed in more than 48 times though.

3
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Figure 6. Picture of Mandelbrot-set using Double precision FPU with zoom in 48 times

The same algorithm used with single precision FPU. Figure 7 shows that the picture starts
looking blocky after zooming in 32 times.

Figure 7. Picture of Mandelbrot-set using Single precision FPU with zoom in 32 times
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Using the hardware double precision, FPU will not only allow us to gain in calculation time
as we already seen when running Julia Set, but also it allows us to gain in precision.

4.6 Conclusion

The hardware FPU makes the Julia Set algorithm 12.5 times faster when we are using
“float”, and 7.2 times faster when we are using “double”. No code modification is needed,
the FPU is activated in the compiler options.

It also allows a wider range for precision.
The STM32 FPU allows very fast mathematical computation on float and double.

FPU is a key benefit for many applications needing floating-point mathematical handling
such as loop control, audio processing or audio decoding or digital filtering.

It makes the development faster and safer, from high level design tools to software
generation.
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5 Reference documents

Table 13. Reference documents

Title Author Editor
The fi Raul Roj
' e first comp.uters aul Rojas MIT Press
History and Architectures UIf Hashagen
IEEE754-2008 Standard IEEE IEEE
ARMv-7M Architecture Reference Manual ARM ARM
ARM® Cortex® -M7 Processor ARM ARM
RMO0385 Reference manual STMicroelectronics | STMicroelectronics
RMO0090 Reference Manual STMicroelectronics | STMicroelectronics
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6 Revision history

Table 14. Document revision history

Date Revision Changes
16-Mar-2012 1 Initial release.
Updated:
— Introduction

— Section 3: STM32 Cortex®-M floating-point unit (FPU)
— Section 4.6: Conclusion

— Table 10: Cortex®-M4 performance comparison HW SP FPU vs.
SW implementation FPU with MDK-ARM™ tool-chain V/5.17

— Table 13: Reference documents

Added:

— Table 6: FPU implementation within the STM32 Cortex®-M4/-M7
— Table 7: FPSCR register

— Table 8: Some floating-point single-precision data processing
30-May-2016 2 instructions

— Table 9: Some floating-point double-precision data processing
instructions

— Table 11: Cortex®-M7 performance comparison HW SP FPU vs.
SW implementation FPU with MDK-ARM™ tool-chain V5.17

— Figure 4: Configure FPU with MDK-ARM™ tool-chain VV5.17
— Figure 5: Picture of Mandelbrot-set with zoom in =1

— Figure 6: Picture of Mandelbrot-set using Double precision FPU
with zoom in 48 times

— Figure 7: Picture of Mandelbrot-set using Single precision FPU
with zoom in 32 times

Removed former Table 1: Applicable products and tools.
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the design of Purchasers’ products.
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Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
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