
Programmer's Guide

Microsoft® MASM

Assembly-Language Development System

Version 6.1

For MS-DOS® and Windows™ Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names,
and data used in examples herein are fictitious unless otherwise noted. No part of this
document maybe reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Microsoft
Corporation.

©1992 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, XENIX, CodeView, and QuickC are registered trademarks
and Microsoft QuickBasic, QuickPascal, Windows and Windows NT are trademarks
of Microsoft Corporation in the USA and other countries.

U.S. Patent No. 4,955,066

Hercules is a registered trademark of Hercules Computer Technology.

IBM, PS/2, and OS/2 are registered trademarks of International Business Machines
Corporation.

Intel is a registered trademark of Intel Corporation.

NEC and V25 are registered trademarks and V35 is a trademark of NEC Corporation.

Document No. DB35747-1292

Printed in the United States of America.

Introduction
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 1

Introduction

The Microsoft® Macro Assembler Programmer’s Guide provides the information you need to write and
debug assembly-language programs with the Microsoft Macro Assembler (MASM), version 6.1. This
book documents enhanced features of the language and the programming environment for MASM 6.1.

This Programmer’s Guide is written for experienced programmers who know assembly language and
are familiar with an assembler. The book does not teach the basics of assembly language; it does
explain Microsoft-specific features. If you want to learn or review the basics of assembly language,
refer to “Books for Further Reading” in this introduction.

This book teaches you how to write efficient code with the new and advanced features of MASM.
Getting Started explains how to set up MASM 6.1. Environment and Tools introduces the integrated
development environment called the Programmer’s WorkBench (PWB). It also includes a detailed
reference to Microsoft tools and utilities such as Microsoft® CodeView®, LINK, and NMAKE. The
Microsoft Macro Assembler Reference provides a full listing of all MASM instructions, directives,
statements, and operators, and it serves as a quick reference to utility commands.

For more information on these same topics, see the online Microsoft Advisor, which is a complete
reference to Macro Assembler language topics, to the utilities, and to PWB. You should be able to find
most of the information you need in the Microsoft Advisor.

New and Extended Features in MASM 6.1

MASM 6.1 continues the break with tradition established by version 6.0. It incorporates conveniences
of high-level languages while offering all the traditional advantages of assembly-language programming.

For example, MASM 6.1 includes the Programmer’s WorkBench, which provides the same integrated
software development environment enjoyed by programmers of Microsoft high-level languages such as
C and Basic. From within PWB you can edit, build, debug, or run a program. You can perform most of
these operations with either menu selections or keyboard commands. You can also customize PWB
to suit your individual programming and editing requirements and preferences.

MASM Features New Since Version 5.1

MASM 6.1 includes several features designed to make programming more efficient and productive. The
following list briefly describes how MASM 6.1 improves on the language features of the popular version
5.1.

• MASM 6.1 has many enhancements related to types. You can now use the same type specifiers
in initializations as in other contexts (BYTE instead of DB). You can also define your own types,
including pointer types, with the new TYPEDEF directive. See Chapter 3, “Using Addresses and
Pointers,” and Chapter 4, “Defining and Using Simple Data Types.”

• The syntax for defining and using structures and records has been enhanced since version 5.1.
You can also define unions with the new UNION directive. See Chapter 5, “Defining and Using
Complex Data Types.”

• MASM now generates complete CodeView information for all types. See Chapter 3, “Using
Addresses and Pointers,” and Chapter 4, “Defining and Using Simple Data Types.”

• New control-flow directives let you use high-level – language constructs such as loops and
if-then-else blocks defined with .REPEAT and .UNTIL (or

MASM Features New Since Version 5.1
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 2

.UNTILCXZ); .WHILE and .ENDW; and .IF, .ELSE, and .ELSEIF. The assembler generates the
appropriate code to implement the control structure. See Chapter 7, “Controlling Program Flow.”

• MASM now has more powerful features for defining and calling procedures. The extended PROC
syntax for generating stack frames has been enhanced since version 5.1. You can also use the
PROTO directive to prototype a procedure, which you can then call with the INVOKE directive.
INVOKE automatically generates code to pass arguments (converting them to a related type, if
appropriate) and makes the call according to the specified calling convention. See Chapter 7,
“Controlling Program Flow.”

• MASM optimizes jumps by automatically determining the most efficient coding for a jump and
then generating the appropriate code. See Chapter 7, “Controlling Program Flow.”

• Maintaining multiple-module programs is easier in MASM 6.1 than in version 5.1. The
EXTERNDEF and PROTO directives make it easy to maintain all global definitions in include files
shared by all the source modules of a project. See Chapter 8, “Sharing Data and Procedures
Among Modules and Libraries.”

The assembler has many new macro features that make complex macros clearer and easier to write:

• You can specify default values for macro arguments or mark arguments as required. And with the
VARARG keyword, one parameter can accept a variable number of arguments.

• You can implement loops inside of macros in various ways. For example, the new WHILE directive
expands the statements in a macro body while an expression is not zero.

• You can define macro functions, which return text macros. Several predefined text macros are
also provided for processing strings. Macro operators and other features related to processing text
macros and macro arguments have been enhanced. For more information on all these macro
features, see Chapter 9, “Using Macros.”

MASM 6.1 has other improved capabilities, such as:

• The .STARTUP and .EXIT directives automatically generate appropriate startup and exit code for
your assembly-language programs. See Chapter 2, “Organizing Segments.”

• MASM 6.1 supports flat memory model, available with the new Microsoft® Windows NT™
operating system. Flat model allows segments as large as 4 gigabytes instead of 64K (kilobytes).
Offsets are 32 bits instead of 16 bits. See Chapter 2, “Organizing Segments.”

• The program H2INC.EXE converts C include files to MASM include files and translates data
structures and declarations. See Chapter 20 in Environment and Tools.

• MASM 6.1 provides a library of assembly routines that let you create a
terminate-and-stay-resident program (TSR) in a high-level language.

MASM 6.1 includes many other minor new features as well as extensive support for features of earlier
versions of MASM. For a complete list of enhancements, refer to Appendix A, “Differences between
MASM 6.1 and 5.1.” The cross-references in Appendix A guide you to the chapters where the new
features are described in detail.

MASM Features New Since Version 6.0

MASM 6.1 offers several new features:

• ML now runs in 32-bit protected mode under MS-DOS, giving it direct access to extended memory
for assembling very large source files.

• A collection of tools lets you write a dynamic-link library (DLL) for the Microsoft® Windows™
operating system without the Windows Software Development Kit. The LIBW.LIB library provides
access to all functions in the Windows application programming interface (API), so your DLL can

MASM Features New Since Version 6.0
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 3

display menus, dialog boxes, and scroll bars. Chapter 10, “Writing a Dynamic-Link Library for
Windows,” shows you how.

• Program listings now show instruction timings. The number of required processor cycles appears
adjacent to each instruction in the listing, based on the selected processor. For an example listing
and instructions on how to use this feature, see Appendix C, “Generating and Reading Assembly
Listings.”

• All utilities have been updated for version 6.1. Documentation is clearer and better arranged, with a
new Environment and Tools reference book.

• Version 6.1 generates debugging information for CodeView version 4.0 and later.

• MASM 6.1 provides even greater compatibility with version 5.1 than does MASM 6.0. Many
programs written with version 5.1 will assemble unchanged under MASM 6.1.

ML and MASM Command Lines

MASM 6.1 provides an updated version of the command-line driver, ML, introduced in version 6.0. ML
is more powerful and flexible than the MASM driver of version 5.1. ML assembles and links with one
command. It recognizes all the old MASM driver command syntax, however, to support existing batch
files and makefiles that use MASM command lines.

Note The name MASM has traditionally referred to the Microsoft Macro Assembler. It is used in that
context throughout this book. However, MASM also refers to MASM.EXE, which has been replaced by
ML.EXE. In MASM 6.1, MASM.EXE is a small utility that translates command-line options to those
accepted by ML.EXE, and then calls ML.EXE. The distinction between ML.EXE and MASM.EXE is
made whenever necessary. Otherwise, MASM refers to the assembler and its features.

Compatibility with Earlier Versions of MASM

MASM 6.1 is fully compatible with version 6.0 and, in many cases, with version 5.1. Code written for
MASM 5.1 will often assemble correctly without modification under MASM 6.1. However, MASM 6.1
provides the OPTION directive to let you selectively modify the assembly process. In particular, you
can use the M510 argument with OPTION or the /Zm command-line option to set most features to be
compatible with version 5.1 code.

For information about obsolete features that will not assemble correctly under MASM 6.1, see
Appendix A, “Differences Between MASM 6.1 and 5.1.” The appendix also explains how to update
code to use the new features.

A Word About Instruction Timings

As an assembly-language programmer, whether novice or expert, you are probably interested in
producing lightning-fast code. After all, one of the main reasons to program in assembly is to take
advantage of its ability to streamline execution speeds to the limit of the processor. This book will help
you write efficient and fast programs.

When discussing the speed of individual instructions, the chapters in this book often speak of “timing,”
which is the number of processor cycles required to carry out an instruction. The Reference lists

A Word About Instruction Timings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 4

instruction timings for processors in the 8086 family. It is tempting to use timing as the only criterion
when judging an instruction’s actual execution speed, but the world within the processor is not so
simple.

The clock for instruction timing does not begin ticking until the processor has read and begins to
execute an instruction. When you read about instruction timings (in this book or any other), keep in
mind that other factors also influence the real speed of an instruction: the instruction’s size, whether it
resides in cache memory, whether it accesses memory, its position in the processor’s prefetch queue,
and the processor type. These factors make it impossible to say precisely how fast an instruction
executes. Accept the references to timing in this book as guidelines, but use these simple rules to
write fast code:

• Whenever possible, use registers rather than constant values, and constant values rather than
memory.

• Minimize changes in program flow.

• Smaller is often better. For example, the instructions

 dec bx
 sub bx, 1

accomplish the same thing and have the same timings on 80386/486 processors. But the first
instruction is 3 bytes smaller than the second, and so may reach the processor faster.

• When possible, use the string instructions described in Chapter 5, “Defining and Using Complex
Data Types.”

Books for Further Reading

The following books may help you learn to program in assembly language or write specialized
programs. These books are listed only for your convenience. Microsoft makes no specific
recommendations concerning any of these books.

Books About Programming in Assembly Language

Abrash, Michael. Zen of Assembly Language. Glenview, IL: Scott, Foresman and Co., 1990. Out of
print.

Duntemann, Jeff. Assembly Language from Square One: For the PC AT and Compatibles. Glenview,
IL: Scott, Foresman and Co., 1990. Out of print.

Fernandez, Judi N., and Ruth Ashley. Assembly Language Programming for the 80386. New York:
McGraw-Hill, 1990.

Miller, Alan R. DOS Assembly Language Programming. San Francisco: SYBEX, 1988. Out of print.

Scanlon, Leo J. 80286 Assembly Language Programming on MS-DOS Computers. New York: Brady
Communications, 1986. Out of print.

Turley, James L. Advanced 80386 Programming Techniques. Berkeley, CA: Osborne McGraw-Hill,
1988.

Books About MS-DOS and BIOS

“Terminate-and-Stay-Resident Utilities.” MS-DOS Encyclopedia. Redmond, WA: Microsoft Press,
1989.

Duncan, Ray. Advanced MS-DOS Programming: The Microsoft Guide for Assembly Language and C

Books for Further Reading
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 5

Programmers. 2d ed. Redmond, WA: Microsoft
Press, 1988.

Duncan, Ray. Extending DOS: Programmer’s Guide to Protected-Mode DOS. Redding, MA:
Addison-Wesley. 1991.

Jourdain, Robert. Programmer’s Problem Solver for the IBM PC, XT and AT. New York: Brady
Communications, 1985. Out of print.

Microsoft MS-DOS Programmer’s Reference. Redmond, WA: Microsoft Press, 1991.

Norton, Peter and Richard Wilton. The New Peter Norton Programmer’s Guide to the IBM PC and
PS/2. Redmond, WA: Microsoft Press, 1988.

Wilton, Richard. Programmer’s Guide to PC & PS/2 Video Systems: Maximum Video Performance
from the EGA, VGA, HGC, and MCGA. Redmond, WA: Microsoft Press, 1987. Out of print.

Books and Articles About Windows

Kauler, Barry. Windows Assembly Language & Systems Programming: Object-Oriented & Systems
Programming in Assembly Language for Windows 3.0 and 3.1. New York, NY: Prentice Hall, 1993.

Klein, Mike. Windows Programmer’s Guide to DLLs & Memory Management. Carmel, IN: Sams, 1992.

Petzold, Charles. Programming Windows . 3d ed. Redmond, WA: Microsoft
Press, 1992.

Petzold, Charles. “Environments.” PC Magazine. New York, NY: Ziff-Davis Publishing Company, June
1990–1992.

Programmer’s Reference. 4 vols. Microsoft Windows Software Development Kit (SDK). Redmond, WA:
Microsoft Press, 1992.

Books About Other Topics

Nelson, Ross P. The 80386/80486 Programming Guide. 2d ed. Redmond, WA: Microsoft Press, 1991.

Startz, Richard. 8087/80287/80387 for the IBM PC and Compatibles: Applications and Programming
with Intel’s Math Coprocessors. Bowie, MD: Robert J. Brady Co., 1988. Out of print.

Document Conventions

The following document conventions are used throughout this manual:

Example of
Convention Description

SAMPLE2.ASM Uppercase letters indicate filenames, segment names, registers, and terms
used at the command level.

.MODEL Boldface type indicates assembly-language directives, instructions, type
specifiers, and predefined macros, as well as keywords in other programming
languages.

placeholder Italic letters indicate placeholders for information you must supply, such as a
filename. Italics are used occasionally for emphasis in the text.

target This font is used to indicate example programs, user input, and screen output.
; A semicolon in the first column of an example signals illegal code. A

Document Conventions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 6

semicolon also marks a comment.

SHIFT Small capital letters signify names of keys on the keyboard. Notice that a plus
(+) indicates a combination of keys. For example, CTRL+E means to hold down
the CTRL key while pressing the E key.

[[argument]] Items inside double square brackets are optional.

{register|memory} Braces and a vertical bar indicate a choice between two or more items. You
must choose one of the items unless double square brackets surround the
braces.

Repeating elements... A horizontal ellipsis (...) following an item indicates that more items having the
same form may appear.

Program
.
.
.
Fragment

A vertical ellipsis tells you that part of a program has been intentionally
omitted.

Getting Assistance and Reporting Problems

If you need help or think you have discovered a problem in the software, please provide the following
information to help us locate the source of the problem:

• The version of MS-DOS or Windows you run.

• Your system configuration: the type of machine you use, its total memory, and its total free
memory at assembler execution time, as well as any other information you think might be useful.

• The command line you used for the assembler, linker, or other MASM tool that was running when
the problem occurred.

• Any object files or libraries you linked with if the problem occurred at link time.

If your program is very large, reduce it to the smallest possible program that still produces the problem.

Note the circumstances of the error and notify Microsoft Corporation by following the instructions in the
section “Microsoft Support Services” in the introduction to Environment and Tools. If you have
comments or suggestions regarding any of the books accompanying this product, please indicate
them on the Document Feedback page at the back of this book and send it to Microsoft.

If you have not yet registered your copy of the Macro Assembler, you should fill out and return the
Registration Card. This enables Microsoft to keep you informed of updates and other information about
the assembler.

Chapter 1 Understanding Global Concepts

With the development of the Microsoft Macro Assembler (MASM) version 6.1, you now have more
options available to you for approaching a programming task. This chapter explains the general
concepts of programming in assembly language, beginning with the environment and a review of the
components you need to work in the assembler environment. Even if you are familiar with previous
versions of MASM, you should examine this chapter for information on new terms and features.

The first section of this chapter reviews available processors and operating systems and how they
work together. The section also discusses segmented architecture and how it affects a
protected-mode operating environment such as Windows.

Chapter 1 Understanding Global Concepts
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 7

The second section describes some of the language components of MASM that are common to most
programs, such as reserved words, constant expressions, operators, and registers. The remainder of
this book was written with the assumption that you understand the information presented in this
section.

The last section summarizes the assembly process, from assembling a program through running it.
You can affect this process by the way you develop your code. Finally, this section explores how you
can change the assembly process with the OPTION directive and conditional assembly.

The Processing Environment

The processing environment for MASM 6.1 includes the processor on which your programs run, the
operating system your programs use, and the aspects of the segmented architecture that influence the
choice of programming models. This section summarizes these elements of the environment and how
they affect your programming choices.

8086-Based Processors

The 8086 “family” of processors uses segments to control data and code. The later 8086-based
processors have larger instruction sets and more memory capacity, but they still support the same
segmented architecture. Knowing the differences between the various 8086-based processors can help
you select the appropriate target processor for your programs.

The instruction set of the 8086 processor is upwardly compatible with its successors. To write code
that runs on the widest number of machines, select the 8086 instruction set. By using the instruction
set of a more advanced processor, you increase the capabilities and efficiency of your program, but
you also reduce the number of systems on which the program can run.

Table 1.1 lists modes, memory, and segment size of processors on which your application may need
to run. Each processor is discussed in more detail following.

Table 1.1 8086 Family of Processors

Processor
Available
Modes

Addressable
Memory

Segment
Size

8086/8088 Real 1 megabyte 16 bits

80186/80188 Real 1 megabyte 16 bits

80286 Real and Protected 16 megabytes 16 bits

80386 Real and Protected 4 gigabytes 16 or 32 bits

80486 Real and Protected 4 gigabytes 16 or 32 bits

Processor Modes

Real mode allows only one process to run at a time. The mode gets its name from the fact that
addresses in real mode always correspond to real locations in memory. The MS-DOS operating
system runs in real mode.

Windows 3.1 operates only in protected mode, but runs MS-DOS programs in real mode or in a
simulation of real mode called virtual-86 mode. In protected mode, more than one process can be
active at any one time. The operating system protects memory belonging to one process from access

8086-Based Processors
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 8

by another process; hence the name protected mode.

Protected-mode addresses do not correspond directly to physical memory. Under protected-mode
operating systems, the processor allocates and manages memory dynamically. Additional privileged
instructions initialize protected mode and control multiple processes. For more information, see
“Operating Systems,” following.

8086 and 8088

The 8086 is faster than the 8088 because of its 16-bit data bus; the 8088 has only an 8-bit data bus.
The 16-bit data bus allows you to use EVEN and ALIGN on an 8086 processor to word-align data and
thus improve data-handling efficiency. Memory addresses on the 8086 and 8088 refer to actual
physical addresses.

80186 and 80188

These two processors are identical to the 8086 and 8088 except that new instructions have been
added and several old instructions have been optimized. These processors run significantly faster than
the 8086.

80286

The 80286 processor adds some instructions to control protected mode, and it runs faster. It also
provides protected mode services, allowing the operating system to run multiple processes at the
same time. The 80286 is the minimum for running Windows 3.1 and 16-bit versions of OS/2®.

80386

Unlike its predecessors, the 80386 processor can handle both 16-bit and 32-bit data. It supports the
entire instruction set of the 80286, and adds several new instructions as well. Software written for the
80286 runs unchanged on the 80386, but is faster because the chip operates at higher speeds.

The 80386 implements many new hardware-level features, including paged memory, multiple virtual
8086 processes, addressing of up to 4 gigabytes of memory, and specialized debugging registers.
Thirty-two–bit operating systems such as Windows NT and OS/2 2.0 can run only on an 80386 or
higher processor.

80486

The 80486 processor is an enhanced version of the 80386, with instruction “pipelining” that executes
many instructions two to three times faster. The chip incorporates both a math coprocessor and an 8K
(kilobyte) memory cache. (The math coprocessor is disabled on a variation of the chip called the
80486SX.) The 80486 includes new instructions and is fully compatible with 80386 software.

8087, 80287, and 80387

These math coprocessors work concurrently with the 8086 family of processors. Performing
floating-point calculations with math coprocessors is up to 100 times faster than emulating the
calculations with integer instructions. Although there are technical and performance differences among
the three coprocessors, the main difference to the applications programmer is that the 80287 and
80387 can operate in protected mode. The 80387 also has several new instructions. The 80486 does
not use any of these coprocessors; its floating-point processor is built in and is functionally equivalent
to the 80387.

Operating Systems
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 9

Operating Systems

With MASM, you can create programs that run under MS-DOS, Windows, or Windows NT — or all
three, in some cases. For example, ML.EXE can produce executable files that run in any of the target
environments, regardless of the programmer’s environment. For information on building programs for
different environments, see “Building and Running Programs” in Help for PWB.

MS-DOS and Windows 3.1 provide different processing modes. MS-DOS runs in the single-process
real mode. Windows 3.1 operates in protected mode, allowing multiple processes to run
simultaneously.

Although Windows requires another operating system for loading and file services, it provides many
functions normally associated with an operating system. When an application requests an MS-DOS
service, Windows often provides the service without invoking MS-DOS. For consistency, this book
refers to Windows as an operating system.

MS-DOS and Windows (in protected mode) differ primarily in system access methods, size of
addressable memory, and segment selection. Table 1.2 summarizes these differences.

Table 1.2 The MS-DOS and Windows Operating Systems Compared

Operating
System

System
Access

Available
Active
Processes

Addressable
Memory

Contents of
Segment
Register

Word
Length

MS-DOS and
Windows real
mode

Direct to
hardware and
OS call

One 1 megabyte Actual
address

16 bits

Windows
virtual-86
mode

Operating
system call

Multiple 1 megabyte Segment
selectors

16 bits

Windows
protected
mode

Operating
system call

Multiple 16 megabytes Segment
selectors

16 bits

Windows NT Operating
system call

Multiple 512 megabytes Segment
selectors

32 bits

MS-DOS

In real-mode programming, you can access system functions by calling MS-DOS, calling the basic
input/output system (BIOS), or directly addressing hardware. Access is through MS-DOS Interrupt 21h.

Windows

As you can see in Table 1.2, protected mode allows for much larger data structures than real mode,
since addressable memory extends to 16 megabytes. In protected mode, segment registers contain
selector values rather than actual segment addresses. These selectors cannot be calculated by the
program; they must be obtained by calling the operating system. Programs that attempt to calculate
segment values or to address memory directly do not work in protected mode.

Protected mode uses privilege levels to maintain system integrity and security. Programs cannot
access data or code that is in a higher privilege level. Some instructions that directly access ports or
affect interrupts (such as CLI, STI, IN, and OUT) are available at privilege levels normally used only by
systems programmers.

Windows protected mode provides each application with up to 16 megabytes of “virtual memory,” even
on computers that have less physical memory. The term virtual memory refers to the operating

Operating Systems
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 10

system’s ability to use a swap area on the hard disk as an extension of real memory. When a
Windows application requires more memory than is available, Windows writes sections of occupied
memory to the swap area, thus freeing those sections for other use. It then provides the memory to the
application that made the memory request. When the owner of the swapped data regains control,
Windows restores the data from disk to memory, swapping out other memory if required.

Windows NT

Windows NT uses the so-called “flat model” of 80386/486 processors. This model places the
processor’s entire address space within one 32-bit segment. The section “Defining Basic Attributes
with .MODEL” in Chapter 2 explains how to use the flat model. In flat model, your program can (in
theory) access up to 4 gigabytes of virtual memory. Since code, data, and stack reside in the same
segment, each segment register can hold the same value, which need never change.

Segmented Architecture

The 8086 family of processors employs a segmented architecture — that is, each address is
represented as a segment and an offset. Segmented addresses affect many aspects of
assembly-language programming, especially addresses and pointers.

Segmented architecture was originally designed to enable a 16-bit processor to access an address
space larger than 64K. (The section “Segmented Addressing,” later in this chapter, explains how the
processor uses both the segment and offset to create addresses larger than 64K.) MS-DOS is an
example of an operating system that uses segmented architecture on a 16-bit processor.

With the advent of protected-mode processors such as the 80286, segmented architecture gained a
second purpose. Segments can separate different blocks of code and data to protect them from
undesirable interactions. Windows takes advantage of the protection features of the 16-bit segments
on the 80286.

Segmented architecture went through another significant change with the release of 32-bit processors,
starting with the 80386. These processors are compatible with the older 16-bit processors, but allow
flat model 32-bit offset values up to 4 gigabytes. Offset values of this magnitude remove the memory
limitations of segmented architecture. The Windows NT operating system uses 32-bit addressing.

Segment Protection

Segmented architecture is an important part of the Windows memory-protection scheme. In a
“multitasking” operating system in which numerous programs can run simultaneously, programs
cannot access the code and data of another process without permission.

In MS-DOS, the data and code segments are usually allocated adjacent to each other, as shown in
Figure 1.1. In Windows, the data and code segments can be anywhere in memory. The programmer
knows nothing about, and has no control over, their location. The operating system can even move the
segments to a new memory location or to disk while the program is running.

Segment Protection
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 11

Figure 1.1 Segment Allocation

Segment protection makes software development easier and more reliable in Windows than in
MS-DOS, because Windows immediately detects illegal memory accesses. The operating system
intercepts illegal memory accesses, terminates the program, and displays a message. This makes it
easier for you to track down and fix the bug.

Because it runs in real mode, MS-DOS contains no mechanism for detecting an improper memory
access. A program that overwrites data not belonging to it may continue to run and even terminate
correctly. The error may not surface until later, when MS-DOS or another program reads the corrupted
memory.

Segmented Addressing

Segmented addressing refers to the internal mechanism that combines a segment value and an offset
value to form a complete memory address. The two parts of an address are represented as

segment:offset

The segment portion always consists of a 16-bit value. The offset portion is a 16-bit value in 16-bit
mode or a 32-bit value in 32-bit mode.

In real mode, the segment value is a physical address that has an arithmetic relationship to the offset
value. The segment and offset together create a 20-bit physical address (explained in the next
section). Although 20-bit addresses can access up to 1 megabyte of memory, the BIOS and operating
system on International Standard Architecture (IBM PC/AT and compatible) computers use part of this
memory, leaving the remainder available for programs.

Segmented Addressing
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 12

Segment Arithmetic

Manipulating segment and offset addresses directly in real-mode programming is called “segment
arithmetic.” Programs that perform segment arithmetic are not portable to protected-mode operating
systems, in which addresses do not correspond to a known segment and offset.

To perform segment arithmetic successfully, it helps to understand how the processor combines a
16-bit segment and a 16-bit offset to form a 20-bit linear address. In effect, the segment selects a 64K
region of memory, and the offset selects the byte within that region. Here’s how it works:

 1. The processor shifts the segment address to the left by four binary places, producing a 20-bit
address ending in four zeros. This operation has the effect of multiplying the segment address by
16.

 2. The processor adds this 20-bit segment address to the 16-bit offset address. The offset address is
not shifted.

 3. The processor uses the resulting 20-bit address, called the “physical address,” to access an
actual location in the 1-megabyte address space.

Figure 1.2 illustrates this process.

Figure 1.2 Calculating Physical Addresses

A 20-bit physical address may actually be specified by 4,096 equivalent
segment:offset addresses. For example, the addresses 0000:F800, 0F00:0800, and 0F80:0000 all
refer to the same physical address 0F800.

Segment Arithmetic
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 13

Language Components of MASM

Programming with MASM requires that you understand the MASM concepts of reserved words,
identifiers, predefined symbols, constants, expressions, operators, data types, registers, and
statements. This section defines important terms and provides lists that summarize these topics. For
detailed information, see Help or the Reference.

Reserved Words

A reserved word has a special meaning fixed by the language. You can use it only under certain
conditions. Reserved words in MASM include:

• Instructions, which correspond to operations the processor can execute.

• Directives, which give commands to the assembler.

• Attributes, which provide a value for a field, such as segment alignment.

• Operators, which are used in expressions.

• Predefined symbols, which return information to your program.

MASM reserved words are not case sensitive except for predefined symbols (see “Predefined
Symbols,” later in this chapter).

The assembler generates an error if you use a reserved word as a variable, code label, or other
identifier within your source code. However, if you need to use a reserved word for another purpose, the
OPTION NOKEYWORD directive can selectively disable a word’s status as a reserved word.

For example, to remove the STR instruction, the MASK operator, and the NAME directive from the set
of words MASM recognizes as reserved, use this statement in the code segment of your program
before the first reference to STR, MASK, or NAME:

OPTION NOKEYWORD:<STR MASK NAME>

The section “Using the OPTION Directive,” later in this chapter, discusses the OPTION directive.
Appendix D provides a complete list of MASM reserved words.

With the /Zm command-line option or OPTION M510 in effect, MASM does not reserve any operators
or instructions that do not apply to the current CPU mode. For example, you can use the symbol
ENTER when assembling under the default CPU mode but not under .286 mode, since the 80186/486
processors recognize ENTER as an instruction. The USE32, FLAT, FAR32, and NEAR32 segment
types and the 80386/486 register names are not keywords with processors other than the 80386/486.

Identifiers

An identifier is a name that you invent and attach to a definition. Identifiers can be symbols
representing variables, constants, procedure names, code labels, segment names, and user-defined
data types such as structures, unions, records, and types defined with TYPEDEF. Identifiers longer
than 247 characters generate an error.

Certain restrictions limit the names you can use for identifiers. Follow these rules to define a name for
an identifier:

Identifiers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 14

• The first character of the identifier can be an alphabetic character (A–Z) or any of these four
characters: @ _ $?

• The other characters in the identifier can be any of the characters listed above or a decimal digit
(0–9).

Avoid starting an identifier with the at sign (@), because MASM 6.1 predefines some special symbols
starting with @ (see “Predefined Symbols,” following). Beginning an identifier with @ may also cause
conflicts with future versions of the Macro Assembler.

The symbol — and thus the identifier — is visible as long as it remains within scope. (For more
information about visibility and scope, see “Sharing Symbols with Include Files” in Chapter 8.)

Predefined Symbols

The assembler includes a number of predefined symbols (also called predefined equates). You can
use these symbol names at any point in your code to represent the equate value. For example, the
predefined equate @FileName represents the base name of the current file. If the current source file is
TASK.ASM, the value of @FileName is TASK. The MASM predefined symbols are listed according to
the kinds of information they provide. Case is important only if the /Cp option is used. (For additional
details, see Help on ML command-line options.)

The predefined symbols for segment information include:

Symbol Description

@code Returns the name of the code segment.

@CodeSize Returns an integer representing the default code distance.

@CurSeg Returns the name of the current segment.

@data Expands to DGROUP.

@DataSize Returns an integer representing the default data distance.

@fardata Returns the name of the segment defined by the .FARDATA directive.

@fardata? Returns the name of the segment defined by the .FARDATA? directive.

@Model Returns the selected memory model.

@stack Expands to DGROUP for near stacks or STACK for far stacks. (See “Creating a Stack”
in Chapter 2.)

@WordSize Provides the size attribute of the current segment.

The predefined symbols for environment information include:

Symbol Description

@Cpu Contains a bit mask specifying the processor mode.

@Environ Returns values of environment variables during assembly.

@Interface Contains information about the language parameters.

@Version Represents the text equivalent of the MASM version number. In MASM 6.1, this
expands to 610.

The predefined symbols for date and time information include:

Symbol Description

@Date Supplies the current system date during assembly.

@Time Supplies the current system time during assembly.

Predefined Symbols
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 15

The predefined symbols for file information include:

Symbol Description

@FileCur Names the current file (base and suffix).

@FileName Names the base name of the main file being assembled as it appears on the command
line.

@Line Gives the source line number in the current file.

The predefined symbols for macro string manipulation include:

Symbol Description

@CatStr Returns concatenation of two strings.

@InStr Returns the starting position of a string within another string.

@SizeStr Returns the length of a given string.

@SubStr Returns substring from a given string.

Integer Constants and Constant Expressions

An integer constant is a series of one or more numerals followed by an optional radix specifier. For
example, in these statements

 mov ax, 25
 mov bx, 0B3h

the numbers 25 and 0B3h are integer constants. The h appended to 0B3 is a radix specifier. The
specifiers are:

• y for binary (or b if the default radix is not hexadecimal)

• o or q for octal

• t for decimal (or d if the default radix is not hexadecimal)

• h for hexadecimal

Radix specifiers can be either uppercase or lowercase letters; sample code in this book is in
lowercase. If you do not specify a radix, the assembler interprets the integer according to the current
radix. The default radix is decimal, but you can change the default with the .RADIX directive.

Hexadecimal numbers must always start with a decimal digit (0–9). If necessary, add a leading zero to
distinguish between symbols and hexadecimal numbers that start with a letter. For example, MASM
interprets ABCh as an identifier. The hexadecimal digits A through F can be either uppercase or
lowercase letters. Sample code in this book is in uppercase letters.

Constant expressions contain integer constants and (optionally) operators such as shift, logical, and
arithmetic operators. The assembler evaluates constant expressions at assembly time. (In addition to
constants, expressions can contain labels, types, registers, and their attributes.) Constant
expressions do not change value during program execution.

Symbolic Integer Constants

You can define symbolic integer constants with either of the data assignment directives, EQU or the
equal sign (=). These directives assign values to symbols during assembly, not during program
execution. Symbolic constants are used to assign names to constant values. You can use a symbol
with an assigned value in place of an immediate operand. For example, instead of referring in your
code to keyboard scan codes with numbers such as 30 or 48, you can create more recognizable

Integer Constants and Constant Expressions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 16

symbols:

SCAN_A EQU 30
SCAN_B EQU 48

then use the appropriate symbol in your program rather than the number. Using symbolic constants
instead of undescriptive numbers makes your code more readable and easier to maintain. The
assembler does not allocate data storage when you use either EQU or =. It simply replaces each
occurrence of the symbol with the value of the expression.

The directives EQU and = have slightly different purposes. Integers defined with the = directive can be
redefined with another value in your source code, but those defined with EQU cannot. Once you’ve
defined a symbolic constant with the EQU directive, attempting to redefine it generates an error. The
syntax is:

symbol EQU expression

The symbol is a unique name of your choice, except for words reserved by MASM. The expression can
be an integer, a constant expression, a one- or two-character string constant (four-character on the
80386/486), or an expression that evaluates to an address. Symbolic constants let you change a
constant value used throughout your source code by merely altering expression in the definition. This
removes the potential for error and saves you the inconvenience of having to find and replace each
occurrence of the constant in your program.

The following example shows the correct use of EQU to define symbolic integers.

column EQU 80 ; Constant - 80
row EQU 25 ; Constant - 25
screen EQU column * row ; Constant - 2000
line EQU row ; Constant - 25

 .DATA

 .CODE
 .
 .
 .
 mov cx, column
 mov bx, line

The value of a symbol defined with the = directive can be different at different places in the source
code. However, a constant value is assigned during assembly for each use, and that value does not
change at run time.

The syntax for the = directive is:

symbol = expression

Size of Constants

The default word size for MASM 6.1 expressions is 32 bits. This behavior can be modified using
OPTION EXPR16 or OPTION M510. Both of these options set the expression word size to 16 bits,
but OPTION M510 affects other assembler behavior as well (see Appendix A).

It is illegal to change the expression word size once it has been set with OPTION M510, OPTION
EXPR16, or OPTION EXPR32. However, you can repeat the same directive in your source code as
often as you wish. You can place the same directive in every include file, for example.

Operators
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 17

Operators

Operators are used in expressions. The value of the expression is determined at assembly time and
does not change when the program runs.

Operators should not be confused with processor instructions. The reserved
word ADD is an instruction; the plus sign (+) is an operator. For example, Amount+2 illustrates a valid
use of the plus operator (+). It tells the assembler to add 2 to the constant value Amount, which might
be a value or an address. Contrast this operation, which occurs at assembly time, with the processor’s
ADD instruction. ADD tells the processor at run time to add two numbers and store the result.

The assembler evaluates expressions that contain more than one operator according to the following
rules:

• Operations in parentheses are performed before adjacent operations.

• Binary operations of highest precedence are performed first.

• Operations of equal precedence are performed from left to right.

• Unary operations of equal precedence are performed right to left.

Table 1.3 lists the order of precedence for all operators. Operators on the same line have equal
precedence.

Table 1.3 Operator Precedence

Precedence Operators

1 (), []

2 LENGTH, SIZE, WIDTH, MASK, LENGTHOF, SIZEOF

3 . (structure-field-name operator)

4 : (segment-override operator), PTR

5 LROFFSET, OFFSET, SEG, THIS, TYPE

6 HIGH, HIGHWORD, LOW, LOWWORD

7 + ,– (unary)

8 *, /, MOD, SHL, SHR

9 +, – (binary)

10 EQ, NE, LT, LE, GT, GE

11 NOT

12 AND

13 OR, XOR

14 OPATTR, SHORT, .TYPE

Data Types

A “data type” describes a set of values. A variable of a given type can have any of a set of values within
the range specified for that type.

The intrinsic types for MASM 6.1 are BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, FWORD,
QWORD, and TBYTE. These types define integers and binary coded decimals (BCDs), as discussed
in Chapter 6. The signed data types SBYTE, SWORD, and SDWORD work in conjunction with
directives such as INVOKE (for calling procedures) and .IF (introduced in Chapter 7). The REAL4,
REAL8, and REAL10 directives define floating-point types. (See Chapter 6.)

Data Types
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 18

Versions of MASM prior to 6.0 had separate directives for types and initializers. For example, BYTE is
a type and DB is the corresponding initializer. The distinction does not apply in MASM 6.1. You can
use any type (intrinsic or user-defined) as an initializer.

MASM does not have specific types for arrays and strings. However, you can treat a sequence of data
units as arrays, and character or byte sequences as strings. (See “Arrays and Strings” in Chapter 5.)

Types can also have attributes such as langtype and distance (NEAR and FAR). For information on
these attributes, see “Declaring Parameters with the PROC Directive” in Chapter 7.

You can also define your own types with STRUCT, UNION, and RECORD. The types have fields that
contain string or numeric data, or records that contain bits. These data types are similar to the
user-defined data types in high-level languages such as C, Pascal, and FORTRAN. (See Chapter 5,
“Defining and Using Complex Data Types.”)

You can define new types, including pointer types, with the TYPEDEF directive. TYPEDEF assigns a
qualifiedtype (explained in the following) to a typename of your choice. This lets you build new types
with descriptive names of your choosing, making your programs more readable. For example, the
following statement makes the symbol CHAR a synonym for the intrinsic type BYTE:

CHAR TYPEDEF BYTE

The qualifiedtype is any type or pointer to a type of the form:

[[distance]] PTR [[qualifiedtype]]

where distance is NEAR, FAR, or any distance modifier. (For more information on distance, see
“Declaring Parameters with the PROC Directive” in Chapter 7.)

The qualifiedtype can also be any type previously defined with TYPEDEF. For example, if you use
TYPEDEF to create an alias for BYTE — say, CHAR as in the preceding example — you can use
CHAR as a qualifiedtype when defining the pointer type PCHAR, like this:

CHAR TYPEDEF BYTE
PCHAR TYPEDEF PTR CHAR

The typename CHAR in the first line becomes a qualifiedtype in the second line. Use of the TYPEDEF
directive to define pointers is explained in “Accessing Data with Pointers and Addresses” in Chapter 3.

Since distance and qualifiedtype are optional syntax elements, you can use variables of type PTR or
FAR PTR. You can also define procedure prototypes with qualifiedtype. For more information about
procedure prototypes, see “Declaring Procedure Prototypes” in Chapter 7.

These rules govern the use of qualifiedtype:

• The only component of a qualifiedtype definition that can be forward-
referenced is a structure or union type identifier.

• If you do not specify distance, the assembler assumes a distance that corresponds to the
memory model. The assumed distance is NEAR for tiny, small, and medium models, and FAR for
other models.

• If you do not specify a memory model with .MODEL, the assembler assumes SMALL model (and
therefore NEAR pointers).

You can use a qualifiedtype in seven places:

Use Example

In procedure arguments proc1 PROC pMsg:PTR BYTE
In prototype arguments proc2 PROTO pMsg:FAR PTR WORD
With local variables declared inside
procedures

LOCAL pMsg:PTR

Data Types
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 19

With the LABEL directive TempMsg LABEL PTR WORD
With the EXTERN and EXTERNDEF
directives

EXTERN pMsg:FAR PTR BYTE
EXTERNDEF MyProc:PROTO

With the COMM directive COMM var1:WORD:3
With the TYPEDEF directive PBYTE TYPEDEF PTR BYTE

PFUNC TYPEDEF PROTO MyProc
“Defining Pointer Types with TYPEDEF” in Chapter 3 shows ways to write a TYPEDEF type for a
qualifiedtype. Attributes such as NEAR and FAR can also apply to a qualifiedtype.

You can determine an accurate definition for TYPEDEF and qualifiedtype from the BNF grammar
definitions given in Appendix B. The BNF grammar defines each component of the syntax for any
directive, showing the recursive properties of components such as qualifiedtype.

Registers

The 8086 family of processors have the same base set of 16-bit registers. Each processor can treat
certain registers as two separate 8-bit registers. The 80386/486 processors have extended 32-bit
registers. To maintain compatibility with their predecessors, 80386/486 processors can access their
registers as 16-bit or, where appropriate, as 8-bit values.

Figure 1.3 shows the registers common to all the 8086-based processors. Each register has its own
special uses and limitations.

Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 20

Figure 1.3 Registers for 8088 – 80286 Processors

80386/486 Only

The 80386/486 processors use the same 8-bit and 16-bit registers used by the rest of the 8086 family.
All of these registers can be further extended to 32 bits, except segment registers, which always
occupy 16 bits. The extended register names begin with the letter “E.” For example, the 32-bit
extension of AX is EAX. The 80386/486 processors have two additional segment registers, FS and GS.
Figure 1.4 shows the extended registers of the 80386/486.

Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 21

Figure 1.4 Extended Registers for the 80386/486 Processors

Segment Registers

At run time, all addresses are relative to one of four segment registers: CS, DS, SS, or ES. (The
80386/486 processors add two more: FS and GS.) These registers, their segments, and their
purposes include:

Register and Segment Purpose

CS (Code Segment) Contains processor instructions and their immediate operands.

Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 22

DS (Data Segment) Normally contains data allocated by the program.

SS (Stack Segment) Contains the program stack for use by PUSH, POP, CALL,
and RET.

Register and Segment Purpose

ES (Extra Segment) References secondary data segment. Used by string instructions.

FS, GS Provides extra segments on the 80386/486.

General-Purpose Registers

The AX, DX, CX, BX, BP, DI, and SI registers are 16-bit general-purpose registers, used for temporary
data storage. Since the processor accesses registers more quickly than it accesses memory, you
can make your programs run faster by keeping the most-frequently used data in registers.

The 8086-based processors do not perform memory-to-memory operations. For example, the
processor cannot directly copy a variable from one location in memory to another. You must first copy
from memory to a register, then from the register to the new memory location. Similarly, to add two
variables in memory, you must first copy one variable to a register, then add the contents of the
register to the other variable in memory.

The processor can access four of the general registers — AX, DX, CX, and BX — either as two 8-bit
registers or as a single 16-bit register. The AH, DH, CH, and BH registers represent the high-order 8
bits of the corresponding registers. Similarly, AL, DL, CL, and BL represent the low-order 8 bits of the
registers.

The 80386/486 processors can extend all the general registers to 32 bits, though as Figure 1.4 shows,
you cannot treat the upper 16 bits as a separate register as you can the lower 16 bits. To use EAX as
an example, you can directly reference the low byte as AL, the next lowest byte as AH, and the low
word as AX. To access the high word of EAX, however, you must first shift the upper 16 bits into the
lower 16 bits.

Special-Purpose Registers

The 8086 family of processors has two additional registers, SP and IP, whose values are changed
automatically by the processor.

SP (Stack Pointer)

The SP register points to the current location within the stack segment. Pushing a value onto the
stack decreases the value of SP by two; popping from the stack increases the value of SP by two.
Thirty-two–bit operands on 80386/486 processors increase or decrease SP by four instead of two. The
CALL and INT instructions store the return address on the stack and reduce SP accordingly. Return
instructions retrieve the stored address from the stack and reset SP to its value before the call. SP
can also be adjusted with instructions such as ADD. The program stack is described in detail in
Chapter 3.

IP (Instruction Pointer)

The IP register always contains the address of the next instruction to be executed. You cannot directly
access or change the instruction pointer. However, instructions that control program flow (such as
calls, jumps, loops, and interrupts) automatically change the instruction pointer.

Flags Register

The 16 bits in the flags register control the execution of certain instructions and reflect the current
status of the processor. In 80386/486 processors, the flags register is extended to 32 bits. Some bits

Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 23

are undefined, so there are actually 9 flags for real mode, 11 flags (including a 2-bit flag) for 80286
protected mode, 13 for the 80386, and 14 for the 80486. The extended flags register of the 80386/486
is sometimes called “Eflags.”

Figure 1.5 shows the bits of the 32-bit flags register for the 80386/486. Earlier 8086-family processors
use only the lower word. The unmarked bits are reserved for processor use, and should not be
modified.

Figure 1.5 Flags for 8088-80486 Processors

In the following descriptions and throughout this book, “set” means a bit value of 1, and “cleared”
means the bit value is 0. The nine flags common to all 8086-family processors, starting with the
low-order flags, include:

Flag Description

Carry Set if an operation generates a carry to or a borrow from a destination operand.

Parity Set if the low-order bits of the result of an operation contain an even number of set
bits.

Auxiliary Carry Set if an operation generates a carry to or a borrow from the low-order 4 bits of an
operand. This flag is used for binary coded decimal (BCD) arithmetic.

Zero Set if the result of an operation is 0.

Sign Equal to the high-order bit of the result of an operation (0 is positive, 1 is negative).

Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 24

Trap If set, the processor generates a single-step interrupt after each instruction. A
debugging program can use this feature to execute a program one instruction at a
time.

Interrupt Enable If set, interrupts are recognized and acted on as they are received. The bit can be
cleared to turn off interrupt processing temporarily.

Direction If set, string operations process down from high addresses to low addresses. If
cleared, string operations process up from low addresses to high addresses.

Overflow Set if the result of an operation is too large or small to fit in the destination
operand.

Although all flags serve a purpose, most programs require only the carry, zero, sign, and direction
flags.

Statements

Statements are the line-by-line components of source files. Each MASM statement specifies an
instruction or directive for the assembler. Statements have up to four fields, as shown here:

[[name:]] [[operation]] [[operands]] [[;comment]]

The following list explains each field:

Field Purpose

 name Labels the statement, so that instructions elsewhere in the program can refer to the
statement by name. The name field can label a variable, type, segment, or code
location.

operation Defines the action of the statement. This field contains either an instruction or an
assembler directive.

operands Lists one or more items on which the instruction or directive operates.

comment Provides a comment for the programmer. Comments are for documentation only; they
are ignored by the assembler.

The following line contains all four fields:

mainlp: mov ax, 7 ; Load AX with the value 7

Here, mainlp is the label, mov is the operation, and ax and 7 are the operands, separated by a
comma. The comment follows the semicolon.

All fields are optional, although certain directives and instructions require an entry in the name or
operand field. Some instructions and directives place restrictions on the choice of operands. By
default, MASM is not case sensitive.

Each field (except the comment field) must be separated from other fields by white-space characters
(spaces or tabs). MASM also requires code labels to be followed by a colon, operands to be separated
by commas, and comments to be preceded by a semicolon.

A logical line can contain up to 512 characters and occupy one or more physical lines. To extend a
logical line into two or more physical lines, put the backslash character (\) as the last non-whitespace
character before the comment or end of the line. You can place a comment after the backslash as
shown in this example:

 .IF (x > 0) \ ; X must be positive
 && (ax > x) \ ; Result from function must be > x

Statements
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 25

 mov dx, 20h
 .ENDIF

Multiline comments can also be specified with the COMMENT directive. The assembler ignores all text
and code between the delimiters or on the same line as the delimiters. This example illustrates the
use of COMMENT.

COMMENT ^ The assembler
 ignores this text
^ mov ax, 1 and this code

The Assembly Process

Creating and running an executable file involves four steps:

 1. Assembling the source code into an object file

 2. Linking the object file with other modules or libraries into an executable program

 3. Loading the program into memory

 4. Running the program

Once you have written your assembly-language program, MASM provides several options for
assembling it. The OPTION directive has several different arguments that let you control the way
MASM assembles your programs.

Conditional assembly allows you to create one source file that can generate a variety of programs,
depending on the status of various conditional-assembly statements.

Generating and Running Executable Programs

This section briefly lists all the actions that take place during each of the assembly steps. You can
change the behavior of some of these actions in various ways, such as using macros instead of
procedures, or using the OPTION directive or conditional assembly. The other chapters in this book
include specific programming methods; this section simply gives you an overview.

Assembling

The ML.EXE program does two things to create an executable program. First, it assembles the source
code into an intermediate object file. Second, it calls the linker, LINK.EXE, which links the object files
and libraries into an executable program.

At assembly time, the assembler:

• Evaluates conditional-assembly directives, assembling if the conditions are true.

• Expands macros and macro functions.

• Evaluates constant expressions such as MYFLAG AND 80H, substituting the calculated value for
the expression.

• Encodes instructions and nonaddress operands. For example, mov cx, 13 can be encoded at
assembly time because the instruction does not access memory.

• Saves memory offsets as offsets from their segments.

• Places segments and segment attributes in the object file.

Generating and Running Executable Programs
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 26

• Saves placeholders for offsets and segments (relocatable addresses).

• Outputs a listing if requested.

• Passes messages (such as INCLUDELIB and .DOSSEG) directly to the linker.

For information about conditional assembly, see “Conditional Directives” in this chapter; for macros,
see Chapter 9. Further details about segments and offsets are included in Chapters 2 and 3.
Assembly listings are explained in Appendix C.

Linking

Once your source code is assembled, the resulting object file is passed to the linker. At this point, the
linker may combine several object files into an executable program. The linker:

• Combines segments according to the instructions in the object files, rearranging the positions of
segments that share the same class or group.

• Fills in placeholders for offsets (relocatable addresses).

• Writes relocations for segments into the header of .EXE files (but not .COM files).

• Writes the result as an executable program file.

Classes and groups are defined in “Defining Segment Groups” in Chapter 2. Segments and offsets are
explained in Chapter 3, “Using Addresses and Pointers.”

Loading

After loading the executable file into memory, the operating system:

• Creates the program segment prefix (PSP) header in memory.

• Allocates memory for the program, based on the values in the PSP.

• Loads the program.

• Calculates the correct values for absolute addresses from the relocation table.

• Loads the segment registers SS, CS, DS, and ES with values that point to the proper areas of
memory.

For information about segment registers, the instruction pointer (IP), and the stack pointer (SP), see
“Registers” earlier in this chapter. For more information on the PSP see Help or an MS-DOS reference.

Running

To run your program, MS-DOS jumps to the program’s first instruction. Some program operations,
such as resolving indirect memory operands, cannot be handled until the program runs. For a
description of indirect references, see “Indirect Operands” in Chapter 7.

Using the OPTION Directive

The OPTION directive lets you modify global aspects of the assembly process. With OPTION, you
can change command-line options and default arguments. These changes affect only statements that
follow the OPTION keyword.

For example, you may have MASM code in which the first character of a variable, macro, structure, or
field name is a dot (.). Since a leading dot causes MASM 6.1 to generate an error, you can use this
statement in your program:

OPTION DOTNAME

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 27

This enables the use of the dot for the first character.

Changes made with OPTION override any corresponding command-line option. For example, suppose
you compile a module with this command line (which enables M510 compatibility):

ML /Zm TEST.ASM

The assembler disables M510 compatibility options for all code following this statement:

OPTION NOM510

The following lists explain each of the arguments for the OPTION directive. Where appropriate, an
underline identifies the default argument. If you wish to place more than one OPTION statement on a
line, separate them by commas.

Options for M510 compatibility include:

Argument Description

CASEMAP: maptype CASEMAP:NONE (or /Cx) causes internal symbol
recognition to be case sensitive and causes the case of
identifiers in the .OBJ file to be the same as specified in
the EXTERNDEF, PUBLIC, or COMM statement. The
default is CASEMAP:NOTPUBLIC (or /Cp). It specifies
case insensitivity for internal symbol recognition and the
same behavior as CASEMAP:NONE for case of identifiers
in .OBJ files. CASEMAP:ALL (/Cu) specifies case
insensitivity for identifiers and converts all identifier names
to uppercase.

DOTNAME | NODOTNAME Enables the use of the dot (.) as the leading character in
variable, macro, structure, union, and member names.

M510 | NOM510 Sets all features to be compatible with MASM version 5.1,
disabling the SCOPED argument and enabling
OLDMACROS, DOTNAME, and, OLDSTRUCTS. OPTION
M510 conditionally sets other arguments for the OPTION
directive. For more information on using OPTION M510,
see Appendix A.

Argument Description

OLDMACROS | NOOLDMACROS Enables the version 5.1 treatment of macros. MASM 6.1
treats macros differently.

OLDSTRUCTS | NOOLDSTRUCTS Enables compatibility with MASM 5.1 for treatment of
structure members. See Chapter 5 for information on
structures.

SCOPED | NOSCOPED Guarantees that all labels inside procedures are local to
the procedure when SCOPED (the default) is enabled.

SETIF2: TRUE | FALSE If TRUE, .ERR2 statements and IF2 and ELSEIF2
conditional blocks are evaluated on every pass. If FALSE,
they are not evaluated. If SETIF2 is not specified (or
implied), .ERR2, IF2, and ELSEIF2 expressions cause an
error. Both the /Zm command-line argument and OPTION
M510 imply SETIF2:TRUE.

Options for procedure use include:

Argument Description

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 28

LANGUAGE: langtype Specifies the default language type (C, PASCAL,
FORTRAN, BASIC, SYSCALL, or STDCALL) to be used
with PROC, EXTERN, and PUBLIC. This use of the
OPTION directive overrides the .MODEL directive but is
normally used when .MODEL is not given.

EPILOGUE: macroname Instructs the assembler to call the macroname to generate
a user-defined epilogue instead of the standard epilogue
code when a RET instruction is encountered. See Chapter
7.

PROLOGUE: macroname Instructs the assembler to call macroname to generate a
user-defined prologue instead of generating the standard
prologue code. See Chapter 7.

PROC: visibility Lets you explicitly set the default visibility as PUBLIC,
EXPORT, or PRIVATE.

Other options include:

Argument Description

EXPR16 | EXPR32 Sets the expression word size to 16 or 32 bits. The default
is 32 bits. The M510 argument to the OPTION directive
sets the word size to 16 bits. Once set with the OPTION
directive, the expression word size cannot be changed.

Argument Description

EMULATOR | NOEMULATOR Controls the generation of floating-point instructions.The
NOEMULATOR option generates the coprocessor
instructions directly. The EMULATOR option generates
instructions with special fixup records for the linker so that
the Microsoft floating-point emulator, supplied with other
Microsoft languages, can be used. It produces the same
result as setting the /Fpi command-line option. You can
set this option only once per module.

LJMP | NOLJMP Enables automatic conditional-jump lengthening. For
information about conditional-jump lengthening, see
Chapter 7.

NOKEYWORD:<keywordlist> Disables the specified reserved words. For an example of
the syntax for this argument, see “Reserved Words” in this
chapter.

NOSIGNEXTEND Overrides the default sign-extended opcodes for the AND,
OR, and XOR instructions and generates the larger
non-sign-extended forms of these instructions. Provided for
compatibility with NEC V25 and NEC V35 controllers.

OFFSET: offsettype Determines the result of OFFSET operator fixups.
SEGMENT sets the defaults for fixups to be
segment-relative (compatible with MASM 5.1). GROUP,
the default, generates fixups relative to the group (if the
label is in a group). FLAT causes fixups to be relative to a
flat frame. (The .386 mode must be enabled to use FLAT.)
See Appendix A.

READONLY | NOREADONLY Enables checking for instructions that modify code
segments, thereby guaranteeing that read-only code
segments are not modified. Same as the /p command-line

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 29

option of MASM 5.1, except that it affects only segments
with at least one assembly instruction, not all segments.
The argument is useful for protected mode programs,
where code segments must remain read-only.

SEGMENT: segSize Allows global default segment size to be set. Also
determines the default address size for external symbols
defined outside any segment. The segSize can be USE16,
USE32, or FLAT.

Conditional Directives

MASM 6.1 provides conditional-assembly directives and conditional-error directives.
Conditional-assembly directives let you test for a specified condition and assemble a block of
statements if the condition is true. Conditional-error directives allow you to test for a specified condition
and generate an assembly error if the condition is true.

Both kinds of conditional directives test assembly-time conditions, not run-time conditions. You can
test only expressions that evaluate to constants during assembly. For a list of the predefined symbols
often used in conditional assembly, see “Predefined Symbols,” earlier in this chapter.

Conditional-Assembly Directives

The IF and ENDIF directives enclose the conditional statements. The optional ELSEIF and ELSE
blocks follow the IF directive. There are many forms of the IF and ELSE directives. Help provides a
complete list.

The following statements show the syntax for the IF directives. The syntax for other
condition-assembly directives follow the same form.

IF expression1
ifstatements
[[ELSEIF expression2
elseifstatements]]
[[ELSE
elsestatements]]
ENDIF

The statements within an IF block can be any valid instructions, including other conditional blocks,
which in turn can contain any number of ELSEIF blocks. ENDIF ends the block.

MASM assembles the statements following the IF directive only if the corresponding condition is true.
If the condition is not true and the block contains an ELSEIF directive, the assembler checks to see if
the corresponding condition is true. If so, it assembles the statements following the ELSEIF directive.
If no IF or ELSEIF conditions are satisfied, the assembler processes only the statements following the
ELSE directive.

For example, you may want to assemble a line of code only if your program defines a particular
variable. In this example,

IFDEF buffer
buff BYTE buffer DUP(?)
ENDIF

the assembler allocates buff only if buffer has been previously defined.

MASM 6.1 provides the directives IF1, IF2, ELSEIF1, and ELSIF2 to grant assembly only on pass one

Conditional Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 30

or pass two. To use these directives, you must either enable 5.1 compatibility (with the /Zm
command-line switch or OPTION M510) or set OPTION SETIF2:TRUE, as described in the previous
section.

The following list summarizes the conditional-assembly directives:

The Directive Grants Assembly If

IF expression expression is true (nonzero)

IFE expression expression is false (zero)

IFDEF name name has been previously defined

IFNDEF name name has not been previously defined

IFB argument* argument is blank

IFNB argument* argument is not blank

IFIDN[I] arg1, arg2* arg1 equals arg2

IFDIF[I] arg1, arg2* arg1 does not equal arg2

The optional I suffix (IFIDNI and IFDIFI) makes comparisons insensitive to
differences in case.

* Used only in macros.

Conditional-Error Directives

You can use conditional-error directives to debug programs and check for assembly-time errors. By
inserting a conditional-error directive at a key point in your code, you can test assembly-time
conditions at that point. You can also use conditional-error directives to test for boundary conditions in
macros.

Like other severe errors, those generated by conditional-error directives cause the assembler to return
a nonzero exit code. If MASM encounters a severe error during assembly, it does not generate the
object module.

For example, the .ERRNDEF directive produces an error if the program has not defined a given label. In
the following example, .ERRNDEF makes sure a label called publevel actually exists.

.ERRNDEF publevel
IF publevel LE 2
PUBLIC var1, var2
ELSE
PUBLIC var1, var2, var3
ENDIF

The conditional-error directives use the syntax given in the previous section. The following list
summarizes the conditional-error directives. Note their close correspondence with the previous list of
conditional-assembly directives.

The Directive Generates an Error

.ERR Unconditionally where it occurs in the source file. Usually placed within
a conditional-assembly block.

.ERRE expression If expression is false (zero).

.ERRNZ expression If expression is true (nonzero).

.ERRDEF name If name has been defined.

.ERRNDEF name If name has not been defined.

.ERRB argument* If argument is blank.

Conditional Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 31

.ERRNB argument* If argument is not blank.

.ERRIDN[I] arg1, arg2* If arg1 equals arg2.

.ERRDIF[I] arg1, arg2* If arg1 does not equal arg2.

The optional I suffix (.ERRIDNI and .ERRDIFI) makes comparisons
insensitive to case.

* Used only in macros

Two special conditional-error directives, .ERR1 and .ERR2, generate an error only on pass one or pass
two. To use these directives, you must either enable 5.1 compatibility (with the /Zm command-line
switch or OPTION M510) or set OPTION SETIF2:TRUE, as described in the previous section.

Chapter 2 Organizing Segments

Understanding segments is an essential part of programming in assembly language. In the family of
8086-based processors, the term segment has two meanings:

• A block of memory of discrete size, called a “physical segment.” The number of bytes in a
physical memory segment is 64K for 16-bit processors or 4 gigabytes for 32-bit processors.

• A variable-sized block of memory, called a “logical segment,” occupied by a program’s code or
data.

As you read this chapter, the distinction between the two definitions will become clear. The adjectives
“physical” and “logical” are not often used when speaking of segments. The beginning programmer is
left to infer from context which definition applies. Fortunately, this is not difficult, and a distinction is
often not required.

This chapter begins with a close look at physical memory segments. This lays the foundation for
understanding logical segments, which form the subject of most of the following sections.

The section “Using Simplified Segment Directives” explains how to begin, end, and organize
segments. It also explains how to access far data and code with simplified segment directives.

The next section, “Using Full Segment Definitions,” describes how to order, combine, and divide
segments, and how to use the SEGMENT directive to define full segments. It also explains how to
create a segment group so that you can use one segment address to access all the data.

Most of the information in this chapter also applies to writing modules to be called from other
programs. Exceptions are noted when they apply. For more information about multiple-module
programming, see Chapter 8, “Sharing Data and Procedures Among Modules and Libraries.”

Physical Memory Segments

As explained in Chapter 1, a physical segment can begin only at memory locations evenly divisible by
16, including address 0. Intel calls such locations “paragraphs.” You can easily recognize a paragraph
location because its hexadecimal address always ends with 0, as in 10000h or 2EA70h. The 8086/286
processors allow segments 64K in size, the largest number 16 bits can represent. The 80386/486
processors still adhere to the 64K limit when running in real mode. In protected mode, however, they
use 32-bit registers that can hold addresses up to 4 gigabytes.

Segmented architecture presents certain hurdles for the assembly-language programmer. For small

Physical Memory Segments
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 32

programs, the limitations lose importance. Code and data each occupy less than 64K and reside in
individual segments. A simple offset locates each variable or instruction within a segment.

Larger programs, however, must contend with problems of segmented memory areas. If data occupies
two or more segments, the program must specify both segment and offset to access a variable. When
the data forms a continuous stream across segments — such as the text in a word processor’s
workspace — the problems become more acute. Whenever it adds or deletes text in the first segment,
the word processor must seamlessly move data back and forth over the boundaries of each following
segment.

The problem of segment boundaries disappears in the so-called flat address space of 32-bit protected
mode. Although segments still exist, they easily hold all the code and data of the largest programs.
Even a very large program becomes in effect a small application, able to reach all code and data with a
single offset address.

Logical Segments

Logical segments contain the three components of a program: code, data, and stack. MASM
organizes the three parts for you so they occupy physical segments of memory. The segment
registers CS, DS, and SS contain the addresses of the physical memory segments where the logical
segments reside.

You can define segments in two ways: with simplified segment directives and with full segment
definitions. You can also use both kinds of segment definitions in the same program.

Simplified segment directives hide many of the details of segment definition and assume the same
conventions used by Microsoft high-level languages. (See the following section, “Using Simplified
Segment Directives.”) The simplified segment directives generate necessary code, specify segment
attributes, and arrange segment order.

Full segment definitions require more complex syntax but provide more complete control over how the
assembler generates segments. (See “Using Full Segment Definitions” later in this chapter.) If you use
full segment definitions, you must write code to handle all the tasks performed automatically by the
simplified segment directives.

Using Simplified Segment Directives

Structuring a MASM program using simplified segments requires use of several directives to assign
standard names, alignment, and attributes to the segments in your program. These directives define
the segments in such a way that linking with Microsoft high-level languages is easy.

The simplified segment directives are .MODEL, .CODE, .CONST, .DATA, .DATA?, .FARDATA,
.FARDATA?, .STACK, .STARTUP, and .EXIT. The following sections discuss these directives and
the arguments they take.

MASM programs consist of modules made up of segments. Every program written only in MASM has
one main module, where program execution begins. This main module can contain code, data, or
stack segments defined with all of the simplified segment directives. Any additional modules should
contain only code and data segments. Every module that uses simplified segments must, however,
begin with the .MODEL directive.

The following example shows the structure of a main module using simplified segment directives. It
uses the default processor (8086) and the default stack distance (NEARSTACK). Additional modules

Using Simplified Segment Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 33

linked to this main program would use only the .MODEL, .CODE, and .DATA directives and the END
statement.

; This is the structure of a main module
; using simplified segment directives

 .MODEL small, c ; This statement is required before you
 ; can use other simplified segment directives

 .STACK ; Use default 1-kilobyte stack

 .DATA ; Begin data segment

 ; Place data declarations here

 .CODE ; Begin code segment
 .STARTUP ; Generate start-up code

 ; Place instructions here

 .EXIT ; Generate exit code
 END

The .DATA and .CODE statements do not require any separate statements to define the end of a
segment. They close the preceding segment and then open a new segment. The .STACK directive
opens and closes the stack segment but does not close the current segment. The END statement
closes the last segment and marks the end of the source code. It must be at the end of every module.

Defining Basic Attributes with .MODEL

The .MODEL directive defines the attributes that affect the entire module: memory model, default
calling and naming conventions, operating system, and stack type. This directive enables use of
simplified segments and controls the name of the code segment and the default distance for
procedures.

You must place .MODEL in your source file before any other simplified segment directive. The syntax
is:

.MODEL memorymodel [[, modeloptions]]

The memorymodel field is required and must appear immediately after the .MODEL directive. The use
of modeloptions, which define the other attributes, is optional. The modeloptions must be separated by
commas. You can also use equates passed from the ML command line to define the modeloptions.

The following list summarizes the memorymodel field and the modeloptions fields, which specify
language and stack distance:

Field Description

Memory model TINY, SMALL, COMPACT, MEDIUM, LARGE, HUGE, or FLAT. Determines
size of code and data pointers. This field is required.

Language C, BASIC, FORTRAN, PASCAL, SYSCALL, or STDCALL. Sets calling and
naming conventions for procedures and public symbols.

Stack distance NEARSTACK or FARSTACK. Specifying NEARSTACK groups the stack
segment into a single physical segment (DGROUP) along with data. SS is
assumed to equal DS. FARSTACK does not group the stack with DGROUP;

Defining Basic Attributes with .MODEL
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 34

thus SS does not equal DS.

You can use no more than one reserved word from each field. The following examples show how you
can combine various fields:

 .MODEL small ; Small memory model
 .MODEL large, c, farstack ; Large memory model,
 ; C conventions,
 ; separate stack
 .MODEL medium, pascal ; Medium memory model,
 ; Pascal conventions,
 ; near stack (default)

The next four sections give more detail on each field.

Defining the Memory Model

MASM supports the standard memory models used by Microsoft high-level languages — tiny, small,
medium, compact, large, huge, and flat. You specify the memory model with attributes of the same
name placed after the .MODEL directive. With the exception of the flat model, which requires
instructions specific to the 80386/486, your choice of a memory model does not limit the kind of
instructions you can write. The memory model does, however, control segment defaults and determine
whether data and code are near or far by default, as indicated in the following table.

Table 2.1 Attributes of Memory Models
Memory
Model

Default Code Default Data Operating
System

Data and Code
Combined

Tiny Near Near MS-DOS Yes

Small Near Near MS-DOS, Windows No

Medium Far Near MS-DOS, Windows No

Compact Near Far MS-DOS, Windows No

Large Far Far MS-DOS, Windows No

Huge Far Far MS-DOS, Windows No

Flat Near Near Windows NT Yes

When writing assembler modules for a high-level language, you should use the same memory model
as the calling language. Choose the smallest memory model available that can contain your data and
code, since near references operate more efficiently than far references.

The predefined symbol @Model returns the memory model, encoding memory models as integers 1
through 7. For more information on predefined symbols, see “Predefined Symbols” in Chapter 1. For an
example of how to use them, see Help.

The seven memory models supported by MASM 6.1 fall into three groups, described in the following
paragraphs.

Small, Medium, Compact, Large, and Huge Models

The traditional memory models recognized by many languages are small, medium, compact, large,
and huge. Small model supports one data segment and one code segment. All data and code are near
by default. Large model supports multiple code and multiple data segments. All data and code are far
by default. Medium and compact models are in-between. Medium model supports multiple code and
single data segments; compact model supports multiple data segments and a single code segment.

Huge model implies individual data items larger than a single segment, but the implementation of huge
data items must be coded by the programmer. Since the assembler provides no direct support for this
feature, huge model is essentially the same as large model.

Defining Basic Attributes with .MODEL
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 35

In each of these models, you can override the default. For example, you can make large data items far
in small model, or internal procedures near in large model.

Tiny Model

Tiny-model programs run only under MS-DOS. Tiny model places all data and code in a single
segment. Therefore, the total program file size can occupy no more than 64K. The default is near for
code and static data items; you cannot override this default. However, you can allocate far data
dynamically at run time using MS-DOS memory allocation services.

Tiny model produces MS-DOS .COM files. Specifying .MODEL tiny automatically sends the /TINY
argument to the linker. Therefore, the /AT argument is not necessary with .MODEL tiny. However,
/AT does not insert a .MODEL directive. It only verifies that there are no base or pointer fixups, and
sends /TINY to the linker.

Flat Model

The flat memory model is a nonsegmented configuration available in 32-bit operating systems. It is
similar to tiny model in that all code and data go in a single 32-bit segment.

To write a flat model program, specify the .386 or .486 directive before .MODEL FLAT. All data and
code (including system resources) are in a single 32-bit segment. The operating system automatically
initializes segment registers at load time; you need to modify them only when mixing 16-bit and 32-bit
segments in a single application. CS, DS, ES, and SS all occupy the supergroup FLAT. Addresses
and pointers passed to system services are always 32-bit near addresses and pointers.

Choosing the Language Convention

The language option facilitates compatibility with high-level languages by determining the internal
encoding for external and public symbol names, the code generated for procedure initialization and
cleanup, and the order that arguments are passed to a procedure with INVOKE. It also facilitates
compatibility with high-level – language modules. The PASCAL, BASIC, and FORTRAN conventions
are identical. C and SYSCALL have the same calling convention but different naming conventions.
Functions in the Windows API use the Pascal calling convention.

Procedure definitions (PROC) and high-level procedure calls (INVOKE) automatically generate code
consistent with the calling convention of the specified language. The PROC, INVOKE, PUBLIC, and
EXTERN directives all use the naming convention of the language. These directives follow the default
language conventions from the .MODEL directive unless you specifically override the default. Use of
these directives is explained in “Controlling Program Flow,” Chapter 7. You can also use the OPTION
directive to set the language type. (See “Using the OPTION Directive” in Chapter 1.) Not specifying a
language type in either the .MODEL, OPTION, EXTERN, PROC, INVOKE, or PROTO statement
causes the assembler to generate an error.

The predefined symbol @Interface provides information about the language parameters. For a
description of the bit flags, see Help.

For more information on calling and naming conventions, see Chapter 12, “Mixed-Language
Programming.” For information about writing procedures and prototypes, see Chapter 7, “Controlling
Program Flow.” For information on multiple-module programming, refer to Chapter 8, “Sharing Data and
Procedures Among Modules and Libraries.”

Setting the Stack Distance

The NEARSTACK keyword places the stack segment in the group DGROUP along with the data
segment. The .STARTUP directive then generates code to adjust SS:SP so that SS (Stack Segment
register) holds the same address as DS (Data Segment register). If you do not use .STARTUP, you

Defining Basic Attributes with .MODEL
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 36

must make this adjustment or your program may fail to run. (For information about startup code, see
“Starting and Ending Code with .STARTUP and .EXIT,” later in this chapter.) In this case, you can use
DS to access stack items (including parameters and local variables) and SS to access near data.
Furthermore, since stack items share the same segment address as near data, you can reliably pass
near pointers to stack items.

The FARSTACK setting gives the stack a segment of its own. That is, SS does not equal DS. The
default stack type, NEARSTACK, is a convenient setting for most programs. Use FARSTACK for
special cases such as memory-resident programs

and dynamic-link libraries (discussed in Chapters 10 and 11) when you cannot assume that the
caller’s stack is near. You can use the predefined symbol @Stack to determine if the stack location is
DGROUP (for near stacks) or STACK (for far stacks).

Specifying a Processor and Coprocessor

MASM supports a set of directives for selecting processors and coprocessors. Once you select a
processor, you must use only the instruction set for that processor. The default is the 8086 processor.
If you always want your code to run on this processor, you do not need to add any processor
directives.

To enable a different processor mode and the additional instructions available on that processor, use
the directives .186, .286, .386, and .486. The instruction timings on a listing (see Appendix C,
“Generating and Reading Assembly Listings”) correspond to whichever processor directive you select.

The .286P, .386P, and .486P directives enable the instructions available only at higher privilege levels
in addition to the normal instruction set for the given processor. Generally, you don’t need privileged
instructions unless you are writing operating-systems code or device drivers.

In addition to enabling different instruction sets, the processor directives also affect the behavior of
extended language features. For example, the INVOKE directive pushes arguments onto the stack. If
the .286 directive is in effect, INVOKE takes advantage of operations possible only on 80286 and later
processors.

Use the directives .8087 (the default), .287, .387, and .NO87 to select a math coprocessor instruction
set. The .NO87 directive turns off assembly of all coprocessor instructions. Note that .486 also
enables assembly of all coprocessor instructions because the 80486 processor has a complete set of
coprocessor registers and instructions built into the chip. The processor instructions imply the
corresponding coprocessor directive. The coprocessor directives are provided to override the defaults.

Creating a Stack

The stack is the section of memory used for pushing or popping registers and storing the return
address when a subroutine is called. The stack often holds temporary and local variables.

If your main module is written in a high-level language, that language handles the details of creating a
stack. Use the .STACK directive only when you write a main module in assembly language.

The .STACK directive creates a stack segment. By default, the assembler allocates 1K of memory for
the stack. This size is sufficient for most small programs.

To create a stack of a size other than the default size, give .STACK a single numeric argument
indicating stack size in bytes:

Creating a Stack
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 37

.STACK 2048 ; Use 2K stack

For a description of how stack memory is used with procedure calls and local variables, see Chapter
7, “Controlling Program Flow.”

Creating Data Segments

Programs can contain both near and far data. In general, you should place important and frequently
used data in the near data area, where data access is faster. This area can get crowded, however,
because in 16-bit operating systems the total amount of all near data in all modules cannot exceed
64K. Therefore, you may want to place infrequently used or particularly large data items in a far data
segment.

The .DATA, .DATA?, .CONST, .FARDATA, and .FARDATA? directives create data segments. You
can access the various segments within DGROUP without reloading segment registers (see “Defining
Segment Groups,” later in this chapter). These five directives also prevent instructions from appearing
in data segments by assuming CS to ERROR.

Near Data Segments

The .DATA directive creates a near data segment. This segment contains the frequently used data for
your program. It can occupy up to 64K in MS-DOS or 512 megabytes under flat model in Windows NT.
It is placed in a special group identified as DGROUP, which is also limited to 64K.

When you use .MODEL, the assembler automatically defines DGROUP for your near data segment.
The segments in DGROUP form near data, which can normally be accessed directly through DS or SS.

You can also define the .DATA? and .CONST segments that go into DGROUP unless you are using
flat model. Although all of these segments (along with the stack) are eventually grouped together and
handled as data segments, .DATA? and .CONST enhance compatibility with Microsoft high-level
languages. In
Microsoft languages, .CONST is used to define constant data such as strings and floating-point
numbers that must be stored in memory. The .DATA? segment is used for storing uninitialized
variables. You can follow this convention if you want. If you use C startup code, .DATA? is initialized
to 0.

You can use @data to determine the group of the data segment and @DataSize to determine the
size of the memory model set by the .MODEL directive. The predefined symbols @WordSize and
@CurSeg return the size attribute and name of the current segment, respectively. See “Predefined
Symbols” in Chapter 1.

Far Data Segments

The compact, large, and huge memory models use far data addresses by default. With these memory
models, however, you can still construct data segments using .DATA, .DATA?, and .CONST. The
effect of these directives does not change from one memory model to the next. They always contribute
segments to the default data area, DGROUP, which has a total limit of 64K.

When you use .FARDATA or .FARDATA? in the small and medium memory models, the assembler
creates far data segments FAR_DATA and FAR_BSS, respectively. You can access variables with:

 mov ax, SEG farvar2
 mov ds, ax

For more information on far data, see “Near and Far Addresses” in Chapter 3.

Creating Data Segments
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 38

Creating Code Segments

Whether you are writing a main module or a module to be called from another module, you can have
both near and far code segments. This section explains how to use near and far code segments and
how to use the directives and predefined equates that relate to code segments.

Near Code Segments

The small memory model is often the best choice for assembly programs that are not linked to
modules in other languages, especially if you do not need more than 64K of code. This memory model
defaults to near (two-byte) addresses for code and data, which makes the program run faster and use
less memory.

When you use .MODEL and simplified segment directives, the .CODE directive in your program
instructs the assembler to start a code segment. The next segment directive closes the previous
segment; the END directive at the end of your program closes remaining segments. The example at
the beginning of “Using Simplified Segment Directives,” earlier in this chapter, shows how to do this.

You can use the predefined symbol @CodeSize to determine whether code pointers default to NEAR
or FAR.

Far Code Segments

When you need more than 64K of code, use the medium, large, or huge memory model to create far
segments.

The medium, large, and huge memory models use far code addresses by default. In the larger memory
models, the assembler creates a different code segment for each module. If you use multiple code
segments in the small, compact, or tiny model, the linker combines the .CODE segments for all
modules into one segment.

For far code segments, the assembler names each code segment MODNAME_TEXT, in which
MODNAME is the name of the module. With near code, the assembler names every code segment
_TEXT, causing the linker to concatenate these segments into one. You can override the default name
by providing an argument after .CODE. (For a complete list of segment names generated by MASM,
see Appendix E, “Default Segment Names.”)

With far code, a single module can contain multiple code segments. The .CODE directive takes an
optional text argument that names the segment. For instance, the following example creates two
distinct code segments, FIRST_TEXT and
SECOND_TEXT.

 .CODE FIRST
 .
 . ; First set of instructions here
 .
 .CODE SECOND
 .
 . ; Second set of instructions here
 .

Whenever the processor executes a far call or jump, it loads CS with the new segment address. No
special action is necessary other than making sure that you use far calls and jumps. See “Near and
Far Addresses” in Chapter 3.

Note The assembler always assumes that the CS register contains the address of the current code
segment or group.

Creating Code Segments
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 39

Starting and Ending Code with .STARTUP and .EXIT

The easiest way to begin and end an MS-DOS program is to use the .STARTUP and .EXIT directives
in the main module. The main module contains the starting point and usually the termination point.
You do not need these directives in a module called by another module.

These directives make MS-DOS programs easy to maintain. They automatically generate code
appropriate to the stack distance specified with .MODEL. However, they do not apply to flat-model
programs written for 32-bit operating systems. Thus, you should not use .STARTUP or .EXIT in
programs written for Windows NT.

To start a program, place the .STARTUP directive where you want execution to begin. Usually, this
location immediately follows the .CODE directive:

 .CODE
 .STARTUP
 .
 . ; Place executable code here
 .
 .EXIT
 END

Note that .EXIT generates executable code, while END does not. The END directive informs the
assembler that it has reached the end of the module. All modules must end with the END directive
whether you use simplified or full segments.

If you do not use .STARTUP, you must give the starting address as an argument to the END directive.
For example, the following fragment shows how to identify a program’s starting instruction with the
label start:

 .CODE
start:
 .
 . ; Place executable code here
 .
 END start

Only the END directive for the module with the starting instruction should have an argument. When
.STARTUP is present, the assembler ignores any argument to END.

For the default NEARSTACK attribute, .STARTUP points DS to DGROUP and sets SS:SP relative to
DGROUP, generating the following code:

@Startup:
 mov dx, DGROUP
 mov ds, dx
 mov bx, ss
 sub bx, dx
 shl bx, 1 ; If .286 or higher, this is
 shl bx, 1 ; shortened to shl bx, 4
 shl bx, 1
 shl bx, 1
 cli ; Not necessary in .286 or higher
 mov ss, dx
 add sp, bx
 sti ; Not necessary in .286 or higher

Starting and Ending Code with .STARTUP and .EXIT
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 40

 .
 .
 END @Startup

An MS-DOS program with the FARSTACK attribute does not need to adjust SS:SP, so .STARTUP
just initializes DS, like this:

@Startup:
 mov dx, DGROUP
 mov ds, dx
 .
 .
 .
 END @Startup

When the program terminates, you can return an exit code to the operating system. Applications that
check exit codes usually assume that an exit code of 0 means no problem occurred, and that an exit
code of 1 means an error terminated the program. The .EXIT directive accepts a 1-byte exit code as
its optional argument:

 .EXIT 1 ; Return exit code 1

.EXIT generates the following code that returns control to MS-DOS, thus terminating the program. The
return value, which can be a constant, memory reference, or 1-byte register, goes into AL:

 mov al, value
 mov ah, 04Ch
 int 21h

If your program does not specify a return value, .EXIT returns whatever value happens to be in AL.

Using Full Segment Definitions

If you need complete control over segments, you can fully define the segments in your program. This
section explains segment definitions, including how to order segments and how to define the segment
types.

If you write a program under MS-DOS without .MODEL and .STARTUP, you must initialize registers
yourself and use the END directive to indicate the starting address. The Windows operating system
does not require you to initialize registers, as described in Chapter 3. For a description of typical
startup code, see “Controlling the Segment Order,” later in this chapter.

Defining Segments with the SEGMENT Directive

A defined segment begins with the SEGMENT directive and ends with the ENDS directive:

name SEGMENT [[align]] [[READONLY]] [[combine]] [[use]] [[’class’]] statements
name ENDS

The name defines the name of the segment. Within a module, all segment definitions with the same
name are treated as though they reference the same segment. The linker also combines identically
named segments from different modules unless the combine type is PRIVATE. In addition, segments
can be nested.

The optional types that follow the SEGMENT directive give the linker and the assembler instructions on

Defining Segments with the SEGMENT Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 41

how to set up and combine segments. The optional types, which are explained in detail in the following
sections, include:

Type Description

align Defines the memory boundary on which a new segment begins.

READONLY Tells the assembler to report an error if it detects an instruction modifying any
item in a READONLY segment.

combine Determines how the linker combines segments from different modules when
building executable files.

use (80386/486 only) Determines the size of a segment. USE16 indicates that offsets in the
segment are 16 bits wide. USE32 indicates 32-bit offsets.

class Provides a class name for the segment. The linker automatically groups
segments of the same class in memory.

Types can be specified in any order. You can specify only one attribute from each of these fields; for
example, you cannot have two different align types.

You can close a segment and reopen it later with another SEGMENT directive. When you reopen a
segment, you need only give the segment name. You cannot change the attributes of a segment once
you have defined it.

Note The PAGE align type and the PUBLIC combine type are distinct from the PAGE and PUBLIC
directives. The assembler distinguishes them by means of context.

Aligning Segments

The optional align type in the SEGMENT directive defines the range of memory addresses from which
a starting address for the segment can be selected. The align type can be any of the following:

Align Type Starting Address

BYTE Next available byte address.

WORD Next available word address.

DWORD Next available doubleword address.

PARA Next available paragraph address (16 bytes per paragraph). Default.

PAGE Next available page address (256 bytes per page).

The linker uses the alignment information to determine the relative starting address for each segment.
The operating system calculates the actual starting address when the program is loaded.

Making Segments Read-Only

The optional READONLY attribute is helpful when creating read-only code segments for protected
mode, or when writing code to be placed in read-only memory (ROM). It protects against illegal
self-modifying code.

The READONLY attribute causes the assembler to check for instructions that modify the segment and
to generate an error if it finds any. The assembler generates an error if you attempt to write directly to
a read-only segment.

Combining Segments

The optional combine type in the SEGMENT directive defines how the linker combines segments
having the same name but appearing in different modules.

The combine type controls linker behavior, not assembler behavior. The combine types, which are

Defining Segments with the SEGMENT Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 42

described in full detail in Help, include:

Combine Type Linker Action

PRIVATE Does not combine the segment with segments from other modules, even if
they have the same name. Default.

PUBLIC Concatenates all segments having the same name to form a single,
contiguous segment.

STACK Concatenates all segments having the same name and causes the
operating system to set SS:00 to the bottom and SS:SP to the top of the
resulting segment. Data initialization is unreliable, as discussed following.

COMMON Overlaps segments. The length of the resulting area is the length of the
largest of the combined segments. Data initialization is unreliable, as
discussed following.

MEMORY Used as a synonym for the PUBLIC combine type.

AT address Assumes address as the segment location. An AT segment cannot
contain any code or initialized data, but is useful for defining structures or
variables that correspond to specific far memory locations, such as a
screen buffer or low memory.
You cannot use the AT combine type in protected-mode programs.

Do not place initialized data in STACK or COMMON segments. With these combine types, the linker
overlays initialized data for each module at the beginning of the segment. The last module containing
initialized data writes over any data from other modules.

Note Normally, you should provide at least one stack segment (having STACK combine type) in a
program. If no stack segment is declared, LINK displays a warning message. You can ignore this
message if you have a specific reason for not declaring a stack segment. For example, you would not
have a separate stack segment in a MS-DOS tiny model (.COM) program, nor would you need a
separate stack in a DLL that uses the caller’s stack.

Setting Segment Word Sizes (80386/486 Only)

The use type in the SEGMENT directive specifies the segment word size on the 80386/486
processors. Segment word size determines the default operand and address size of all items in a
segment.

The size attribute can be USE16, USE32, or FLAT. If you specify the .386 or .486 directive before the
.MODEL directive, USE32 is the default. This attribute specifies that items in the segment are
addressed with a 32-bit offset rather than a

16-bit offset. If .MODEL precedes the .386 or .486 directive, USE16 is the default. To make USE32 the
default, put .386 or .486 before .MODEL. You can override the USE32 default with the USE16 attribute,
or vice versa.

Note Programs written for MS-DOS must not specify USE32. Mixing 16-bit and 32-bit segments in
the same program is possible but usually applies only to systems programming.

Setting Segment Order with Class Type

The optional class type in the SEGMENT directive helps control segment ordering. Two segments with
the same name are not combined if their class is different. The linker arranges segments so that all
segments identified with a given class type are next to each other in the executable file. However,
within a particular class, the linker arranges segments in the order encountered. The .ALPHA, .SEQ,
or .DOSSEG directive determines this order in each .OBJ file. The most common method for
specifying a class type is to place all code segments first in the executable file.

Defining Segments with the SEGMENT Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 43

Controlling the Segment Order

The assembler normally positions segments in the object file in the order in which they appear in
source code. The linker, in turn, processes object files in the order in which they appear on the
command line. Within each object file, the linker outputs segments in the order they appear, subject to
any group, class, and .DOSSEG requirements.

You can usually ignore segment ordering. However, it is important whenever you want certain
segments to appear at the beginning or end of a program or when you make assumptions about which
segments are next to each other in memory. For tiny model (.COM) programs, code segments must
appear first in the executable file, because execution must start at the address 100h.

Segment Order Directives

You can control the order in which segments appear in the executable program with three directives.
The default, .SEQ, arranges segments in the order in which you declare them.

The .ALPHA directive specifies alphabetical segment ordering within a module. .ALPHA is provided for
compatibility with early versions of the IBM assembler. If you have trouble running code from older
books on assembly language, try using .ALPHA.

The .DOSSEG directive specifies the MS-DOS segment-ordering convention. It places segments in the
standard order required by Microsoft languages. Do not use .DOSSEG in a module to be called from
another module.

The .DOSSEG directive orders segments as follows:

 1. Code segments

 2. Data segments, in this order:

 1. a. Segments not in class BSS or STACK

 2. b. Class BSS segments

 3. c. Class STACK segments

When you declare two or more segments to be in the same class, the linker automatically makes
them contiguous. This rule overrides the segment-ordering directives. (For more about segment
classes, see “Setting Segment Order with Class Type” in the previous section.)

Linker Control

Most of the segment-ordering techniques (class names, .ALPHA, and .SEQ) control the order in which
the assembler outputs segments. Usually, you are more interested in the order in which segments
appear in the executable file. The linker controls this order.

The linker processes object files in the order in which they appear on the command line. Within each
module, it then outputs segments in the order given in the object file. If the first module defines
segments DSEG and STACK and the second module defines CSEG, then CSEG is output last. If you
want to place CSEG first, there are two ways to do so.

The simpler method is to use .DOSSEG. This directive is output as a special record to the object file
linker, and it tells the linker to use the Microsoft segment-ordering convention. This convention
overrides command-line order of object files, and it places all segments of class 'CODE' first. (See
“Defining Segments with the SEGMENT Directive,” previous.)

The other method is to define all the segments as early as possible (in an include file, for example, or

Controlling the Segment Order
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 44

in the first module). These definitions can be “dummy segments” — that is, segments with no content.
The linker observes the segment ordering given, then later combines the empty segments with
segments in other modules that have the same name.

For example, you might include the following at the start of the first module of your program or in an
include file:

_TEXT SEGMENT WORD PUBLIC 'CODE'
_TEXT ENDS
_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS
CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS
STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

Later in the program, the order in which you write _TEXT, _DATA, or other segments does not matter
because the ultimate order is controlled by the segment order defined in the include file.

Setting the ASSUME Directive for Segment Registers

Many of the assembler instructions assume a default segment. For example, JMP assumes the
segment associated with the CS register, PUSH and POP assume the segment associated with the
SS register, and MOV instructions assume the segment associated with the DS register.

When the assembler needs to reference an address, it must know what segment contains the
address. It finds this by using the default segment or group addresses assigned with the ASSUME
directive. The syntax is:

ASSUME segregister : seglocation [, segregister : seglocation]]
ASSUME dataregister : qualifiedtype [, dataregister : qualifiedtype]
ASSUME register : ERROR [, register : ERROR]
ASSUME [register :] NOTHING [, register : NOTHING]
ASSUME register : FLAT [, register : FLAT]

The seglocation must be the name of the segment or group that is to be associated with segregister.
Subsequent instructions that assume a default register for referencing labels or variables automatically
assume that if the default segment is segregister, the label or variable is in the seglocation. MASM 6.1
automatically gives CS the address of the current code segment. Therefore, you do not need to include

ASSUME CS : MY_CODE

at the beginning of your program if you want the current segment associated
with CS.

Note Using the ASSUME directive to tell the assembler which segment to associate with a segment
register is not the same as telling the processor. The ASSUME directive affects only assembly-time
assumptions. You may need to use instructions to change run-time conditions. Initializing segment
registers at run time is discussed in “Informing the Assembler About Segment Values,” Chapter 3.

The ASSUME directive can define a segment for each of the segment registers. The segregister can
be CS, DS, ES, or SS (and FS and GS on the 80386/486). The seglocation must be one of the
following:

• The name of a segment defined in the source file with the SEGMENT
directive.

• The name of a group defined in the source file with the GROUP directive.

Setting the ASSUME Directive for Segment Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 45

• The keyword NOTHING, ERROR, or FLAT.

• A SEG expression (see “Immediate Operands” in Chapter 3).

• A string equate (text macro) that evaluates to a segment or group name (but not a string equate
that evaluates to a SEG expression).

It is legal to combine assumes to FLAT with assumes to specific segments. Combinations might be
necessary in operating-system code that handles both 16- and 32-bit segments.

The keyword NOTHING cancels the current segment assumptions. For example, the statement
ASSUME NOTHING cancels all register assumptions made by previous ASSUME statements.

Usually, a single ASSUME statement defines all four segment registers at the start of the source file.
However, you can use the ASSUME directive at any point to change segment assumptions.

Using the ASSUME directive to change segment assumptions is often equivalent to changing
assumptions with the segment-override operator (:). See “Direct Memory Operands” in Chapter 3. The
segment-override operator is more convenient for one-time overrides. The ASSUME directive may be
more convenient if previous assumptions must be overridden for a sequence of instructions.

However, in either case, your program must explicitly load a segment register with a segment address
before accessing data within the segment. ASSUME only tells the assembler to assume that the
register is correctly initialized; it does not by itself generate any code to load the register.

You can also prevent the use of a register with:

ASSUME SegRegister : ERROR

The assembler generates an ASSUME CS:ERROR when you use simplified directives to create data
segments, effectively preventing instructions or code labels from appearing in a data segment.

For more information about ASSUME, refer to “Defining Register Types with ASSUME” in Chapter 3.

Defining Segment Groups

A group is a collection of segments totalling not more than 64K in 16-bit mode. A program addresses
a code or data item in the group relative to the beginning of the group.

A group lets you develop separate logical segments for different kinds of data and then combine these
into one segment (a group) for all the data. Using a group can save you from having to continually
reload segment registers to access different segments. As a result, the program uses fewer
instructions and runs faster.

The most common example of a group is the specially named group for near data, DGROUP. In the
Microsoft segment model, several segments (_DATA, _BSS, CONST, and STACK) are combined into
a single group called DGROUP. Microsoft high-level languages place all near data segments in this
group. (By default, the stack is placed here, too.) The .MODEL directive automatically defines
DGROUP. The DS register normally points to the beginning of the group, giving you relatively fast
access to all data in DGROUP.

The syntax of the group directive is:

name GROUP segment [[, segment]]...

The name labels the group. It can refer to a group that was previously defined. This feature lets you
add segments to a group one at a time. For example, if
MYGROUP was previously defined to include ASEG and BSEG, then the
statement

Defining Segment Groups
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 46

MYGROUP GROUP CSEG

is perfectly legal. It simply adds CSEG to the group MYGROUP; ASEG and BSEG are not removed.

Each segment can be any valid segment name (including a segment defined later in source code),
with one restriction: a segment cannot belong to more than one group.

The GROUP directive does not affect the order in which segments of a group are loaded. You can
place any number of 16-bit segments in a group as long as the total size does not exceed 65,536
bytes. If the processor is in 32-bit mode, the maximum size is 4 gigabytes. You need to make sure
that non-grouped segments do not get placed between grouped segments in such a way that the size
of the group exceeds 64K or 4 gigabytes. Neither can you place a 16-bit and a 32-bit segment in the
same group.

Chapter 3 Using Addresses and Pointers

MASM applications running in real mode require segmented addresses to access code and data. The
address of the code or data in a segment is relative to a segment address in a segment register. You
can also use pointers to access data in assembly language programs. (A pointer is a variable that
contains an address as its value.)

The first section of this chapter describes how to initialize default segment registers to access near
and far addresses. The next section describes how to access code and data. It also describes related
operators, syntax, and displacements. The discussion of memory operands lays the foundation for the
third section, which describes the stack.

The fourth section of this chapter explains how to use the TYPEDEF directive to declare pointers and
the ASSUME directive to give the assembler information about registers containing pointers. This
section also shows you how to do typical pointer operations and how to write code that works for
pointer variables in any memory model.

Programming Segmented Addresses

Before you use segmented addresses in your programs, you need to initialize the segment registers.
The initialization process depends on the registers used and on your choice of simplified segment
directives or full segment definitions. The simplified segment directives (introduced in Chapter 2) handle
most of the initialization process for you. This section explains how to inform the assembler and the
processor of segment addresses, and how to access the near and far code and data in those
segments.

Initializing Default Segment Registers

The segmented architecture of the 8086-family of processors does not require that you specify two
addresses every time you access memory. As explained in Chapter 2, “Organizing Segments,” the
8086 family of processors uses a system of default segment registers to simplify access to the most
commonly used data and code.

The segment registers DS, SS, and CS are normally initialized to default segments at the beginning of
a program. If you write the main module in a high-level language, the compiler initializes the segment

Initializing Default Segment Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 47

registers. If you write the main module in assembly language, you must initialize the segment
registers yourself. Follow these steps to initialize segments:

 1. Tell the assembler which segment is associated with a register. The assembler must know the
default segments at assembly time.

 2. Tell the processor which segment is associated with a register by writing the necessary code to
load the correct segment value into the segment register on the processor.

These steps are discussed separately in the following sections.

Informing the Assembler About Segment Values

The first step in initializing segments is to tell the assembler which segment to associate with a
register. You do this with the ASSUME directive. If you use simplified segment directives, the
assembler automatically generates the appropriate ASSUME statements. If you use full segment
definitions, you must code the ASSUME statements for registers other than CS yourself. (ASSUME
can also be used on general-purpose registers, as explained in “Defining Register Types with
ASSUME” later in this chapter.)

The .STARTUP directive generates startup code that sets DS equal to SS (unless you specify
FARSTACK), allowing default data to be accessed through either SS or DS. This can improve
efficiency in the code generated by compilers. The “DS equals SS” convention may not work with
certain applications, such as memory-resident programs in MS-DOS and Windows dynamic-link
libraries (see Chapter 10). The code generated for .STARTUP is shown in “Starting and Ending Code
with .STARTUP and .EXIT” in Chapter 2. You can use similar code to set DS equal to SS in programs
using full segment definitions.

Here is an example of ASSUME using full segment definitions:

ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP

This example is equivalent to the ASSUME statement generated with simplified segment directives in
small model with NEARSTACK. Note that DS and SS are part of the same segment group. It is also
possible to have different segments for data and code, and to use ASSUME to set ES, as shown here:

ASSUME cs:MYCODE, ds:MYDATA, ss:MYSTACK, es:OTHER

Correct use of the ASSUME statement can help find addressing errors. With .CODE, the assembler
assumes CS is the current segment. When you use the simplified segment directives .DATA,
.DATA?, .CONST, .FARDATA, or .FARDATA?, the assembler automatically assumes CS is the
ERROR segment. This prevents instructions from appearing in these segments. If you use full segment
definitions, you can accomplish the same by placing ASSUME CS:ERROR in a data segment.

With simple or full segments, you can cancel the control of an ASSUME statement by assuming
NOTHING. You can cancel the previous assumption for ES with the following statement:

ASSUME es:NOTHING

Prior to the .MODEL statement (or in its absence), the assembler sets the
ASSUME statement for DS, ES, and SS to the current segment.

Informing the Processor About Segment Values

The second and final step in initializing segments is to inform the processor of segment values at run
time. How segment values are initialized at run time differs for each segment register and depends on
the operating system and on your use of simplified segment directives or full segment definitions.

Specifying a Starting Address

A program’s starting address determines where execution begins. After the operating system loads a

Initializing Default Segment Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 48

program, it simply jumps to the starting address, giving processor control to the program. The true
starting address is known only to the loader; the linker determines only the offset of the address within
an undetermined code segment. That’s why a normal application is often referred to as “relocatable
code,” because it runs regardless of where the loader places it in memory.

The offset of the starting address depends on the program type. Programs with an .EXE extension
contain a header from which the loader reads the offset and combines it with a segment to form the
starting address. Programs with a .COM extension (tiny model) have no such header, so by
convention the loader jumps to the first byte of the program.

In either case, the .STARTUP directive identifies where execution begins, provided you use simplified
segment directives. For an .EXE program, place .STARTUP immediately before the instruction where
you want execution to start. In a .COM program, place .STARTUP before the first assembly
instruction in your source code.

If you use full segment directives or prefer not to use .STARTUP, you must identify the starting
instruction in two steps:

 1. Label the starting instruction.

 2. Provide the same label in the END directive.

These steps tell the linker where execution begins in the program. The following example illustrates
the two steps for a tiny model program:

_TEXT SEGMENT WORD PUBLIC 'CODE'
 ORG 100h ; Use this declaration for .COM files only
start: . ; First instruction here
 .
 .
_TEXT ENDS
 END start ; Name of starting label

Notice the ORG statement in this example. This statement is mandatory in a tiny model program
without the .STARTUP directive. It places the first instruction at offset 100h in the code segment to
create space for a 256-byte (100h) data area called the Program Segment Prefix (PSP). The operating
system takes care of initializing the PSP, so you need only make sure the area exists. (For a
description of what data resides in the PSP, refer to the “Tables” chapter in the Reference.)

Initializing DS

The DS register is automatically initialized to the correct value (DGROUP) if you use .STARTUP or if
you are writing a program for Windows. If you do not use .STARTUP with MS-DOS, you must initialize
DS using the following instructions:

 mov ax, DGROUP
 mov ds, ax

The initialization requires two instructions because the segment name is a constant and the
assembler does not allow a constant to be loaded directly to a segment register. The previous
example loads DGROUP, but you can load any valid segment or group.

Initializing SS and SP

The SS and SP registers are initialized automatically if you use the .STACK directive with simplified
segments or if you define a segment that has the STACK combine type with full segment definitions.
Using the STACK directive initializes SS to the stack segment. If you want SS to be equal to DS, use
.STARTUP or its equivalent. (See “Combining Segments,” page 45.) For an .EXE file, the stack
address is encoded into the executable header and resolved at load time. For a .COM file, the loader
sets SS equal to CS and initializes SP to 0FFFEh.

Initializing Default Segment Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 49

If your program does not access far data, you do not need to initialize the ES register. If you choose to
initialize, use the same technique as for the DS register. You can initialize SS to a far stack in the
same way.

Near and Far Addresses

Addresses that have an implied segment name or segment registers associated with them are called
“near addresses.” Addresses that have an explicit segment associated with them are called “far
addresses.” The assembler handles near and far code automatically, as described in the following
sections. You must specify how to handle far data.

The Microsoft segment model puts all near data and the stack in a group called DGROUP. Near code
is put in a segment called _TEXT. Each module’s far code or far data is placed in a separate segment.
This convention is described in “Controlling the Segment Order” in Chapter 2.

The assembler cannot determine the address for some program components; these are said to be
relocatable. The assembler generates a fixup record and the linker provides the address once it has
determined the location of all segments. Usually a relocatable operand references a label, but there
are exceptions. Examples in the next two sections include information about relocating near and far
data.

Near Code

Control transfers within near code do not require changes to segment registers. The processor
automatically handles changes to the offset in the IP register when control-flow instructions such as
JMP, CALL, and RET are used. The statement

 call nearproc ; Change code offset

changes the IP register to the new address but leaves the segment unchanged. When the procedure
returns, the processor resets IP to the offset of the next instruction after the CALL instruction.

Far Code

The processor automatically handles segment register changes when dealing with far code. The
statement

 call farproc ; Change code segment and offset

automatically moves the segment and offset of the farproc procedure to the CS and IP registers.
When the procedure returns, the processor sets CS to the original code segment and sets IP to the
offset of the next instruction after the call.

Near Data

A program can access near data directly, because a segment register already holds the correct
segment for the data item. The term “near data” is often used to refer to the data in the DGROUP
group.

After the first initialization of the DS and SS registers, these registers normally point into DGROUP. If
you modify the contents of either of these registers during the execution of the program, you must
reload the register with DGROUP’s address before referencing any DGROUP data.

The processor assumes all memory references are relative to the segment in the DS register, with the
exception of references using BP or SP. The processor associates these registers with the SS
register. (You can override these assumptions with the segment override operator, described in “Direct

Near and Far Addresses
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 50

Memory Operands,” on page 62.)

The following lines illustrate how the processor accesses either the DS or SS segments, depending on
whether the pointer operand contains BP or SP. Note the distinction loses significance when DS and
SS are equal.

nearvar WORD 0
 .
 .
 .
 mov ax, nearvar ; Reads from DS:[nearvar]
 mov di, [bx] ; Reads from DS:[bx]
 mov [di], cx ; Writes to DS:[di]
 mov [bp+6], ax ; Writes to SS:[bp+6]
 mov bx, [bp] ; Reads from SS:[bp]

Far Data

To read or modify a far address, a segment register must point to the segment of the data. This
requires two steps. First load the segment (normally either ES or DS) with the correct value, and then
(optionally) set an assume of the segment register to the segment of the address.

Note Flat model does not require far addresses. By default, all addressing is relative to the initial
values of the segment registers. Therefore, this section on far addressing does not apply to flat model
programs.

One method commonly used to access far data is to initialize the ES segment register. This example
shows two ways to do this:

; First method
 mov ax, SEG farvar ; Load segment of the
 mov es, ax , far address into ES
 mov ax, es:farvar ; Provide an explicit segment
 ; override on the addressing
; Second method
 mov ax, SEG farvar2 ; Load the segment of the
 mov es, ax ; far address into ES
 ASSUME ES:SEG farvar2 ; Tell the assembler that ES points
 ; to the segment containing farvar2
 mov ax, farvar2 ; The assembler provides the ES
 ; override since it knows that
 ; the label is addressable

After loading the segment of the address into the ES segment register, you can explicitly override the
segment register so that the addressing is correct (method 1) or allow the assembler to insert the
override for you (method 2). The assembler uses ASSUME statements to determine which segment
register can be used to address a segment of memory. To use the segment override operator, the left
operand must be a segment register, not a segment name. (For more information on segment
overrides, see “Direct Memory Operands” on page 62.)

If an instruction needs a segment override, the resulting code is slightly larger and slower, since the
override must be encoded into the instruction. However, the resulting code may still be smaller than
the code for multiple loads of the default segment register for the instruction.

The DS, SS, FS, and GS segment registers (FS and GS are available only on the 80386/486
processors) may also be used for addressing through other segments.

If a program uses ES to access far data, it need not restore ES when finished (unless the program
uses flat model). However, some compilers require that you restore ES before returning to a module
written in a high-level language.

Near and Far Addresses
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 51

To access far data, first set DS to the far segment and then restore the original DS when finished. Use
the ASSUME directive to let the assembler know that DS no longer points to the default data segment,
as shown here:

 push ds ; Save original segment
 mov ax, SEG fararray ; Move segment into data register
 mov ds, ax ; Initialize segment register
 ASSUME ds:SEG fararray ; Tell assembler where data is
 mov ax, fararray[0] ; Set DX:AX = dword variable
 mov dx, fararray[2] ; fararray
 .
 .
 .
 pop ds ; Restore segment
 ASSUME ds:@DATA ; and default assumption

“Direct Memory Operands,”on page 62, describes an alternative method for accessing far data. The
technique of resetting DS as shown in the previous example is best for a lengthy series of far data
references. The segment override method described in “Direct Memory Operands” serves best when
accessing only one or two far variables.

If your program changes DS to access far data, it should restore DS when finished. This allows
procedures to assume that DS is the segment for near data. Many compilers, including Microsoft
compilers, use this convention.

Operands

With few exceptions, assembly language instructions work on sources of data called operands. In a
listing of assembly code (such as the examples in this book), operands appear in the operand field
immediately to the right of the instructions.

This section describes the four kinds of instruction operands: register, immediate, direct memory, and
indirect memory. Some instructions, such as POPF and STI, have implied operands which do not
appear in the operand field. Otherwise, an implied operand is just as real as one stated explicitly.

Certain other instructions such as NOP and WAIT deserve special mention. These instructions affect
only processor control and do not require an operand.

The following four types of operands are described in the rest of this section:

Operand Type Addressing Mode

Register An 8-bit or 16-bit register on the 8086–80486; can also be 32-bit on the 80386/486.

Immediate A constant value contained in the instruction itself.

Direct memory A fixed location in memory.

Indirect memory A memory location determined at run time by using the address stored in one or
two registers.

Instructions that take two or more operands always work right to left. The right operand is the source
operand. It specifies data that will be read, but not changed, in the operation. The left operand is the
destination operand. It specifies the data that will be acted on and possibly changed by the instruction.

Register Operands

Register Operands
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 52

Register operands refer to data stored in registers. The following examples show typical register
operands:

 mov bx, 10 ; Load constant to BX
 add ax, bx ; Add BX to AX
 jmp di ; Jump to the address in DI

An offset stored in a base or index register often serves as a pointer into memory. You can store an
offset in one of the base or index registers, then use the register as an indirect memory operand. (See
“Indirect Memory Operands,” following.) For example:

 mov [bx], dl ; Store DL in indirect memory operand
 inc bx ; Increment register operand
 mov [bx], dl ; Store DL in new indirect memory operand

This example moves the value in DL to 2 consecutive bytes of a memory location pointed to by BX.
Any instruction that changes the register value also changes the data item pointed to by the register.

Immediate Operands

An immediate operand is a constant or the result of a constant expression. The assembler encodes
immediate values into the instruction at assembly time. Here are some typical examples showing
immediate operands:

 mov cx, 20 ; Load constant to register
 add var, 1Fh ; Add hex constant to variable
 sub bx, 25 * 80 ; Subtract constant expression

Immediate data is never permitted in the destination operand. If the source operand is immediate, the
destination operand must be either a register or direct memory to provide a place to store the result of
the operation.

Immediate expressions often involve the useful OFFSET and SEG operators, described in the following
paragraphs.

The OFFSET Operator

An address constant is a special type of immediate operand that consists of an offset or segment
value. The OFFSET operator returns the offset of a memory location, as shown here:

 mov bx, OFFSET var ; Load offset address

For information on differences between MASM 5.1 behavior and MASM 6.1 behavior related to
OFFSET, see Appendix A.

Since data in different modules may belong to a single segment, the assembler cannot know for each
module the true offsets within a segment. Thus, the offset for var, although an immediate value, is not
determined until link time.

The SEG Operator

The SEG operator returns the segment of a memory location:

 mov ax, SEG farvar ; Load segment address
 mov es, ax

The actual value of a particular segment is not known until the program is loaded into memory. For
.EXE programs, the linker makes a list in the program’s header of all locations in which the SEG

Immediate Operands
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 53

operator appears. The loader reads this list and fills in the required segment address at each location.
Since .COM programs have no header, the assembler does not allow relocatable segment expressions
in tiny model programs.

The SEG operator returns a variable’s “frame” if it appears in the instruction. The frame is the value of
the segment, group, or segment override of a nonexternal variable. For example, the instruction

 mov ax, SEG DGROUP:var

places in AX the value of DGROUP, where var is located. If you do not include a frame, SEG returns
the value of the variable’s group if one exists. If the variable is not defined in a group, SEG returns the
variable’s segment address.

This behavior can be changed with the /Zm command-line option or with the OPTION
OFFSET:SEGMENT statement. (See Appendix A, “Differences between MASM 6.1 and 5.1.”) “Using
the OPTION Directive” in Chapter 1 introduces the OPTION directive.

Direct Memory Operands

A direct memory operand specifies the data at a given address. The instruction acts on the contents of
the address, not the address itself. Except when size is implied by another operand, you must specify
the size of a direct memory operand so the instruction accesses the correct amount of memory. The
following example shows how to explicitly specify data size with the BYTE directive:

 .DATA? ; Segment for uninitialized data
var BYTE ? ; Reserve one byte, labeled "var"
 .CODE
 .
 .
 .
 mov var, al ; Copy AL to byte at var

Any location in memory can be a direct memory operand as long as a size is specified (or implied)
and the location is fixed. The data at the address can change, but the address cannot. By default,
instructions that use direct memory addressing use the DS register. You can create an expression
that points to a memory location using any of the following operators:

Operator Name Symbol

Plus +

Minus –

Index []

Structure member .

Segment override :

These operators are discussed in more detail in the following section.

Plus, Minus, and Index

The plus and index operators perform in exactly the same way when applied to direct memory
operands. For example, both the following statements move the second word value from an array into
the AX register:

 mov ax, array[2]
 mov ax, array+2

The index operator can contain any direct memory operand. The following statements are equivalent:

Direct Memory Operands
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 54

 mov ax, var
 mov ax, [var]

Some programmers prefer to enclose the operand in brackets to show that the contents, not the
address, are used.

The minus operator behaves as you would expect. Both the following instructions retrieve the value
located at the word preceding array:

 mov ax, array[-2]
 mov ax, array-2

Structure Field

The structure operator (.) references a particular element of a structure or “field,” to use C terminology:

 mov bx, structvar.field1

The address of the structure operand is the sum of the offsets of structvar and field1. For more
information about structures, see “Structures and Unions” in Chapter 5.

Segment Override

The segment override operator (:) specifies a segment portion of the address that is different from the
default segment. When used with instructions, this operator can apply to segment registers or
segment names:

 mov ax, es:farvar ; Use segment override

The assembler will not generate a segment override if the default segment is explicitly provided. Thus,
the following two statements assemble in exactly the same way:

 mov [bx], ax
 mov ds:[bx], ax

A segment name override or the segment override operator identifies the operand as an address
expression.

 mov WORD PTR FARSEG:0, ax ; Segment name override
 mov WORD PTR es:100h, ax ; Legal and equivalent
 mov WORD PTR es:[100h], ax ; expressions
; mov WORD PTR [100h], ax ; Illegal, not an address

As the example shows, a constant expression cannot be an address expression unless it has a
segment override.

Indirect Memory Operands

Like direct memory operands, indirect memory operands specify the contents of a given address.
However, the processor calculates the address at run time by referring to the contents of registers.
Since values in the registers can change at run time, indirect memory operands provide dynamic
access to memory.

Indirect memory operands make possible run-time operations such as pointer indirection and dynamic
indexing of array elements, including indexing of multidimensional arrays.

Strict rules govern which registers you can use for indirect memory operands under 16-bit versions of
the 8086-based processors. The rules change significantly for 32-bit processors starting with the

Indirect Memory Operands
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 55

80386. However, the new rules apply only to code that does not need to be compatible with earlier
processors.

This section covers features of indirect operands in either mode. The specific 16-bit rules and 32-bit
rules are then explained separately.

Indirect Operands with 16- and 32-Bit Registers

Some rules and options for indirect memory operands always apply, regardless of the size of the
register. For example, you must always specify the register and operand size for indirect memory
operands. But you can use various syntaxes to indicate an indirect memory operand. This section
describes the rules that apply to both 16-bit and 32-bit register modes.

Specifying Indirect Memory Operands

The index operator specifies the register or registers for indirect operands. The processor uses the
data pointed to by the register. For example, the following instruction moves into AX the word value at
the address in DS:BX.

 mov ax, WORD PTR [bx]

When you specify more than one register, the processor adds the contents of the two addresses
together to determine the effective address (the address of the data to operate on):

 mov ax, [bx+si]

Specifying Displacements

You can specify an address displacement, which is a constant value added to the effective address. A
direct memory specifier is the most common displacement:

 mov ax, table[si]

In this relocatable expression, the displacement table is the base address of an array; SI holds an
index to an array element. The SI value is calculated at run time, often in a loop. The element loaded
into AX depends on the value of SI at the time the instruction executes.

Each displacement can be an address or numeric constant. If there is more than one displacement,
the assembler totals them at assembly time and encodes the total displacement. For example, in the
statement

table WORD 100 DUP (0)
 .
 .
 .
 mov ax, table[bx][di]+6

both table and 6 are displacements. The assembler adds the value of 6 to table to get the total
displacement. However, the statement

 mov ax, mem1[si] + mem2

is not legal, because it attempts to use a single command to join the contents of two different
addresses.

Specifying Operand Size

You must give the size of an indirect memory operand in one of three ways:

• By the variable’s declared size

• With the PTR operator

Indirect Memory Operands
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 56

• Implied by the size of the other operand

The following lines illustrate all three methods. Assume the size of the table array is WORD, as
declared earlier.

 mov table[bx], 0 ; 2 bytes - from size of table
 mov BYTE PTR table, 0 ; 1 byte - specified by BYTE
 mov ax, [bx] ; 2 bytes - implied by AX

Syntax Options

The assembler allows a variety of syntaxes for indirect memory operands. However, all registers must
be inside brackets. You can enclose each register in its own pair of brackets, or you can place the
registers in the same pair of brackets separated by a plus operator (+). All the following variations are
legal and assemble the same way:

 mov ax, table[bx][di]
 mov ax, table[di][bx]
 mov ax, table[bx+di]
 mov ax, [table+bx+di]
 mov ax, [bx][di]+table

All of these statements move the value in table indexed by BX+DI into AX.

Scaling Indexes

The value of index registers pointing into arrays must often be adjusted for zero-based arrays and
scaled according to the size of the array items. For a word array, the item number must be multiplied
by two (shifted left by one place). When using 16-bit registers, you must scale with separate
instructions, as shown here:

 mov bx, 5 ; Get sixth element (adjust for 0)
 shl bx, 1 ; Scale by two (word size)
 inc wtable[bx] ; Increment sixth element in table

When using 32-bit registers on the 80386/486 processor, you can include scaling in the operand, as
described in “Indirect Memory Operands with 32-Bit Registers,” following.

Accessing Structure Elements

The structure member operator can be used in indirect memory operands to access structure
elements. In this example, the structure member operator loads the year field of the fourth element of
the students array into AL:

STUDENT STRUCT
 grade WORD ?
 name BYTE 20 DUP (?)
 year BYTE ?
STUDENT ENDS

students STUDENT < >
 .
 . ; Assume array is initialized
 mov bx, OFFSET students ; Point to array of students
 mov ax, 4 ; Get fourth element
 mov di, SIZE STUDENT ; Get size of STUDENT
 mul di ; Multiply size times
 mov di, ax ; elements to point DI
 ; to current element
 mov al, (STUDENT PTR[bx+di]).year

Indirect Memory Operands
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 57

For more information on MASM structures, see “Structures and Unions” in
Chapter 5.

Indirect Memory Operands with 16-Bit Registers

For 8086-based computers and MS-DOS, you must follow the strict indexing rules established for the
8086 processor. Only four registers are allowed — BP, BX, SI, and DI — those only in certain
combinations.

BP and BX are base registers. SI and DI are index registers. You can use either a base or an index
register by itself. But if you combine two registers, one must be a base and one an index. Here are
legal and illegal forms:

 mov ax, [bx+di] ; Legal
 mov ax, [bx+si] ; Legal
 mov ax, [bp+di] ; Legal
 mov ax, [bp+si] ; Legal
; mov ax, [bx+bp] ; Illegal - two base registers
; mov ax, [di+si] ; Illegal - two index registers

Table 3.1 shows the register modes in which you can specify indirect memory operands.

Table 3.1 Indirect Addressing with 16-Bit Registers

Mode Syntax Effective Address

Register indirect [BX]
[BP]
[DI]
[SI]

Contents of register

Base or index displacement[BX]
displacement[BP]
displacement[DI]
displacement[SI]

Contents of register plus
displacement

Base plus index [BX][DI]
[BP][DI]
[BX][SI]
[BP][SI]

Contents of base register plus
contents of index register

Base plus index with
displacement

displacement[BX][DI]
displacement[BP][DI]
displacement[BX][SI]
displacement[BP][SI]

Sum of base register, index register,
and displacement

Different combinations of registers and displacements have different timings, as shown in Reference.

Indirect Memory Operands with 32-Bit Registers

You can write instructions for the 80386/486 processor using either 16-bit or 32-bit segments. Indirect
memory operands are different in each case.

In 16-bit real mode, the 80386/486 operates the same way as earlier 8086-based processors, with one
difference: you can use 32-bit registers. If the 80386/486 processor is enabled (with the .386 or .486
directive), 32-bit general-purpose registers are available with either 16-bit or 32-bit segments.
Thirty-two–bit

registers eliminate many of the limitations of 16-bit indirect memory operands. You can use 80386/486
features to make your MS-DOS programs run faster and more efficiently if you are willing to sacrifice
compatibility with earlier processors.

Indirect Memory Operands
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 58

In 32-bit mode, an offset address can be up to 4 gigabytes. (Segments are still represented in 16 bits.)
This effectively eliminates size restrictions on each segment, since few programs need 4 gigabytes of
memory. Windows NT uses 32-bit mode and flat model, which spans all segments. XENIX 386 uses
32-bit mode with multiple segments.

80386/486 Enhancements

On the 80386/486, the processor allows you to use any general-purpose 32-bit register as a base or
index register, except ESP, which can be a base but not an index. However, you cannot combine
16-bit and 32-bit registers. Several examples are shown here:

 add edx, [eax] ; Add double
 mov dl, [esp+10] ; Copy byte from stack
 dec WORD PTR [edx][eax] ; Decrement word
 cmp ax, array[ebx][ecx] ; Compare word from array
 jmp FWORD PTR table[ecx] ; Jump into pointer table

Scaling Factors

With 80386/486 registers, the index register can have a scaling factor of 1, 2, 4, or 8. Any register
except ESP can be the index register and can have a scaling factor. To specify the scaling factor, use
the multiplication operator (*) adjacent to the register.

You can use scaling to index into arrays with different sizes of elements. For example, the scaling
factor is 1 for byte arrays (no scaling needed), 2 for word arrays, 4 for doubleword arrays, and 8 for
quadword arrays. There is no performance penalty for using a scaling factor. Scaling is illustrated in
the following examples:

 mov eax, darray[edx*4] ; Load double of double array
 mov eax, [esi*8][edi] ; Load double of quad array
 mov ax, wtbl[ecx+2][edx*2] ; Load word of word array

Scaling is also necessary on earlier processors, but it must be done with separate instructions before
the indirect memory operand is used, as described in “Indirect Memory Operands with 16-Bit
Registers,” previous.

The default segment register is SS if the base register is EBP or ESP. However, if EBP is scaled, the
processor treats it as an index register with a value relative to DS, not SS.

All other base registers are relative to DS. If two registers are used, only one can have a scaling factor.
The register with the scaling factor is defined as the index register. The other register is defined as the
base. If scaling is not used, the first register is the base. If only one register is used, it is considered
the base for deciding the default segment unless it is scaled. The following examples illustrate how to
determine the base register:

 mov eax, [edx][ebp*4] ; EDX base (not scaled - seg DS)
 mov eax, [edx*1][ebp] ; EBP base (not scaled - seg SS)
 mov eax, [edx][ebp] ; EDX base (first - seg DS)
 mov eax, [ebp][edx] ; EBP base (first - seg SS)
 mov eax, [ebp] ; EBP base (only - seg SS)
 mov eax, [ebp*2] ; EBP*2 index (seg DS)

Mixing 16-Bit and 32-Bit Registers

Assembly statements can mix 16-bit and 32-bit registers. For example, the following statement is
legal for 16-bit and 32-bit segments:

 mov eax, [bx]

This statement moves the 32-bit value pointed to by BX into the EAX register. Although BX is a 16-bit

Indirect Memory Operands
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 59

pointer, it can still point into a 32-bit segment.

However, the following statement is never legal, since you cannot use the CX register as a 16-bit
pointer:

; mov eax, [cx] ; illegal

Operands that mix 16-bit and 32-bit registers are also illegal:

; mov eax, [ebx+si] ; illegal

The following statement is legal in either 16-bit or 32-bit mode:

 mov bx, [eax]

This statement moves the 16-bit value pointed to by EAX into the BX register. This works in 32-bit
mode. However, in 16-bit mode, moving a 32-bit pointer into a 16-bit segment is illegal. If EAX contains
a 16-bit value (the top half of the 32-bit register is 0), the statement works. However, if the top half of
the EAX register is not 0, the operand points into a part of the segment that doesn’t exist, generating
an error. If you use 32-bit registers as indexes in 16-bit mode, you must make sure that the index
registers contain valid 16-bit addresses.

The Program Stack

The preceding discussion on memory operands lays the groundwork for understanding the important
data area known as the “stack.”

A stack is an area of memory for storing data temporarily. Unlike other segments that store data
starting from low memory, the stack stores data starting from high memory. Data is always pushed
onto, or “popped” from the top of the stack.

The stack gets its name from its similarity to the spring-loaded plate holders in cafeterias. You add
and remove plates from only the top of the stack. To retrieve the third plate, you must remove — that
is, “pop” — the first two plates. Stacks are often referred to as LIFO buffers, from their last-in-first-out
operation.

A stack is an essential part of any nontrivial program. A program continually uses its stack to
temporarily store return addresses, procedure arguments, memory data, flags, or registers.

The SP register serves as an indirect memory operand to the top of the stack. At first, the stack is an
uninitialized segment of a finite size. As your program adds data to the stack, the stack grows
downward from high memory to low memory. When you remove items from the stack, it shrinks
upward from low to high memory.

Saving Operands on the Stack

The PUSH instruction stores a 2-byte operand on the stack. The POP instruction retrieves the most
recent pushed value. When a value is pushed onto the stack, the assembler decreases the SP (Stack
Pointer) register by 2. On 8086-based processors, the SP register always points to the top of the
stack. The PUSH and POP instructions use the SP register to keep track of the current position.

When a value is popped off the stack, the assembler increases the SP register by 2. Since the stack
always contains word values, the SP register changes in multiples of two. When a PUSH or POP
instruction executes in a 32-bit code segment (one with USE32 use type), the assembler transfers a

Saving Operands on the Stack
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 60

4-byte value, and ESP changes in multiples of four.

Note The 8086 and 8088 processors differ from later Intel processors in how they push and pop the
SP register. If you give the statement push sp with the 8086 or 8088, the word pushed is the word in
SP after the push operation.

Figure 3.1 illustrates how pushes and pops change the SP register.

Figure 3.1 Stack Status Before and After Pushes and Pops

On the 8086, PUSH and POP take only registers or memory expressions as their operands. The other
processors allow an immediate value to be an operand for PUSH. For example, the following statement
is legal on the 80186–80486
processors:

Saving Operands on the Stack
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 61

 push 7 ; 3 clocks on 80286

That statement is faster than these equivalent statements, which are required on the 8088 or 8086:

 mov ax, 7 ; 2 clocks plus
 push ax ; 3 clocks on 80286

Words are popped off the stack in reverse order: the last item pushed is the first popped. To return the
stack to its original status, you do the same number of pops as pushes. You can subtract the correct
number of words from the SP register if you want to restore the stack without using the values on it.

To reference operands on the stack, remember that the values pointed to by the BP (Base Pointer)
and SP registers are relative to the SS (Stack Segment) register. The BP register is often used to
point to the base of a frame of reference (a stack frame) within the stack. This example shows how
you can access values on the stack using indirect memory operands with BP as the base register.

 push bp ; Save current value of BP
 mov bp, sp ; Set stack frame
 push ax ; Push first; SP = BP - 2
 push bx ; Push second; SP = BP - 4
 push cx ; Push third; SP = BP - 6
 .
 .
 .
 mov ax, [bp-6] ; Put third word in AX
 mov bx, [bp-4] ; Put second word in BX
 mov cx, [bp-2] ; Put first word in CX
 .
 .
 .
 add sp, 6 ; Restore stack pointer
 ; (two bytes per push)
 pop bp ; Restore BP

If you often use these stack values in your program, you may want to give them labels. For example,
you can use TEXTEQU to create a label such as count TEXTEQU <[bp-6]>. Now you can replace
the mov ax, [bp - 6] statement in the previous example with mov ax, count. For more
information about the TEXTEQU directive, see “Text Macros” in Chapter 9.

Saving Flags on the Stack

Your program can push and pop flags onto the stack with the PUSHF and POPF instructions. These
instructions save and then restore the status of the flags. You can also use them within a procedure to
save and restore the flag status of the caller. The 32-bit versions of these instructions are PUSHFD
and POPFD.

This example saves the flags register before calling the systask procedure:

 pushf
 call systask
 popf

If you do not need to store the entire flags register, you can use the LAHF instruction to manually load
and store the status of the lower byte of the flag register in the AH register. SAHF restores the value.

Saving Registers on the Stack (80186-80486 Only)
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 62

Saving Registers on the Stack (80186-80486 Only)

Starting with the 80186 processor, the PUSHA and POPA instructions push or pop all the
general-purpose registers with only one instruction. These instructions save the status of all registers
before a procedure call and restore them after the return. Using PUSHA and POPA is significantly
faster and takes fewer bytes of code than pushing and popping each register individually.

The processor pushes the registers in the following order: AX, CX, DX, BX, SP, BP, SI, and DI. The SP
word pushed is the value before the first register is pushed.

The processor pops the registers in the opposite order. The 32-bit versions of these instructions are
PUSHAD and POPAD.

Accessing Data with Pointers and Addresses

A pointer is simply a variable that contains an address of some other variable. The address in the
pointer “points” to the other object. Pointers are useful when transferring a large data object (such as
an array) to a procedure. The caller places only the pointer on the stack, which the called procedure
uses to locate the array. This eliminates the impractical step of having to pass the entire array back
and forth through the stack.

There is a difference between a far address and a far pointer. A “far address” is the address of a
variable located in a far data segment. A “far pointer” is a variable that contains the segment address
and offset of some other data. Like any other variable, a pointer can be located in either the default
(near) data segment or in a far segment.

Previous versions of MASM allow pointer variables but provide little support for them. In previous
versions, any address loaded into a variable can be considered a pointer, as in the following
statements:

Var BYTE 0 ; Variable
npVar WORD Var ; Near pointer to variable
fpVar DWORD Var ; Far pointer to variable

If a variable is initialized with the name of another variable, the initialized variable is a pointer, as shown
in this example. However, in previous versions of MASM, the CodeView debugger recognizes npVar
and fpVar as word and doubleword variables. CodeView does not treat them as pointers, nor does it
recognize the type of data they point to (bytes, in the example).

The TYPEDEF directive and enhanced capabilities of ASSUME (introduced in MASM 6.0) make it
easier to manage pointers in registers and variables. The rest of this chapter describes these directives
and how they apply to basic pointer operations.

Defining Pointer Types with TYPEDEF

The TYPEDEF directive can define types for pointer variables. A type so defined is considered the
same as the intrinsic types provided by the assembler and can be used in the same contexts. When
used to define pointers, the syntax for TYPEDEF is:

typename TYPEDEF [[distance]] PTR qualifiedtype

The typename is the name assigned to the new type. The distance can be NEAR, FAR, or any
distance modifier. The qualifiedtype can be any previously intrinsic or defined MASM type, or a type

Defining Pointer Types with TYPEDEF
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 63

previously defined with TYPEDEF. (For a full definition of qualifiedtype, see “Data Types” in Chapter 1.)

Here are some examples of user-defined types:

PBYTE TYPEDEF PTR BYTE ; Pointer to bytes
NPBYTE TYPEDEF NEAR PTR BYTE ; Near pointer to bytes
FPBYTE TYPEDEF FAR PTR BYTE ; Far pointer to bytes
PWORD TYPEDEF PTR WORD ; Pointer to words
NPWORD TYPEDEF NEAR PTR WORD ; Near pointer to words
FPWORD TYPEDEF FAR PTR WORD ; Far pointer to words

PPBYTE TYPEDEF PTR PBYTE ; Pointer to pointer to bytes
 ; (in C, an array of strings)
PVOID TYPEDEF PTR ; Pointer to any type of data

PERSON STRUCT ; Structure type
 name BYTE 20 DUP (?)
 num WORD ?
PERSON ENDS
PPERSON TYPEDEF PTR PERSON ; Pointer to structure type

The distance of a pointer can be set specifically or determined automatically by the memory model
(set by .MODEL) and the segment size (16 or 32 bits). If you don’t use .MODEL, near pointers are the
default.

In 16-bit mode, a near pointer is 2 bytes that contain the offset of the object pointed to. A far pointer
requires 4 bytes, and contains both the segment and offset. In 32-bit mode, a near pointer is 4 bytes
and a far pointer is 6 bytes, since segments are

still word values in 32-bit mode. If you specify the distance with NEAR or FAR, the processor uses the
default distance of the current segment size. You can use NEAR16, NEAR32, FAR16, and FAR32 to
override the defaults set by the current segment size. In flat model, NEAR is the default.

You can declare pointer variables with a pointer type created with TYPEDEF. Here are some examples
using these pointer types.

; Type declarations
Array WORD 25 DUP (0)
Msg BYTE "This is a string", 0
pMsg PBYTE Msg ; Pointer to string
pArray PWORD Array ; Pointer to word array
npMsg NPBYTE Msg ; Near pointer to string
npArray NPWORD Array ; Near pointer to word array
fpArray FPWORD Array ; Far pointer to word array
fpMsg FPBYTE Msg ; Far pointer to string

S1 BYTE "first", 0 ; Some strings
S2 BYTE "second", 0
S3 BYTE "third", 0
pS123 PBYTE S1, S2, S3, 0 ; Array of pointers to strings
ppS123 PPBYTE pS123 ; A pointer to pointers to strings

Andy PERSON <> ; Structure variable
pAndy PPERSON Andy ; Pointer to structure variable

 ; Procedure prototype

EXTERN ptrArray:PBYTE ; External variable
Sort PROTO pArray:PBYTE ; Parameter for prototype

Defining Pointer Types with TYPEDEF
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 64

Sort PROC pArray:PBYTE
 LOCAL pTmp:PBYTE ; Local variable
 .
 .
 .
 ret
Sort ENDP

Once defined, pointer types can be used in any context where intrinsic types are allowed.

Defining Register Types with ASSUME

You can use the ASSUME directive with general-purpose registers to specify that a register is a
pointer to a certain size of object. For example:

 ASSUME bx:PTR WORD ; Assume BX is now a word pointer
 inc [bx] ; Increment word pointed to by BX
 add bx, 2 ; Point to next word
 mov [bx], 0 ; Word pointed to by BX = 0
 .
 . ; Other pointer operations with BX
 .
 ASSUME bx:NOTHING ; Cancel assumption

In this example, BX is specified as a pointer to a word. After a sequence of using BX as a pointer, the
assumption is canceled by assuming NOTHING.

Without the assumption to PTR WORD, many instructions need a size specifier. The INC and MOV
statements from the previous examples would have to be written like this to specify the sizes of the
memory operands:

 inc WORD PTR [bx]
 mov WORD PTR [bx], 0

When you have used ASSUME, attempts to use the register for other purposes generate assembly
errors. In this example, while the PTR WORD assumption is in effect, any use of BX inconsistent with
its ASSUME declaration generates an error. For example,

; mov al, [bx] ; Can't move word to byte register

You can also use the PTR operator to override defaults:

 mov al, BYTE PTR [bx] ; Legal

Similarly, you can use ASSUME to prevent the use of a register as a pointer, or even to disable a
register:

 ASSUME bx:WORD, dx:ERROR
; mov al, [bx] ; Error - BX is an integer, not a pointer
; mov ax, dx ; Error - DX disabled

For information on using ASSUME with segment registers, refer to “Setting the ASSUME Directive for
Segment Registers” in Chapter 2.

Basic Pointer and Address Operations

Basic Pointer and Address Operations
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 65

A program can perform the following basic operations with pointers and addresses:

• Initialize a pointer variable by storing an address in it.

• Load an address into registers, directly or from a pointer.

The sections in the rest of this chapter describe variations of these tasks with pointers and addresses.
The examples are used with the assumption that you have previously defined the following pointer
types with the TYPEDEF directive:

PBYTE TYPEDEF PTR BYTE ; Pointer to bytes
NPBYTE TYPEDEF NEAR PTR BYTE ; Near pointer to bytes
FPBYTE TYPEDEF FAR PTR BYTE ; Far pointer to bytes

Initializing Pointer Variables

If the value of a pointer is known at assembly time, the assembler can initialize it automatically so that
no processing time is wasted on the task at run time. The following example shows how to do this,
placing the address of msg in the pointer pmsg.

Msg BYTE "String", 0
pMsg PBYTE Msg

If a pointer variable can be conditionally defined to one of several constant addresses, initialization
must be delayed until run time. The technique is different for near pointers than for far pointers, as
shown here:

Msg1 BYTE "String1"
Msg2 BYTE "String2"
npMsg NPBYTE ?
fpMsg FPBYTE ?
 .
 .
 .
 mov npMsg, OFFSET Msg1 ; Load near pointer

 mov WORD PTR fpMsg[0], OFFSET Msg2 ; Load far offset
 mov WORD PTR fpMsg[2], SEG Msg2 ; Load far segment

If you know that the segment for a far pointer is in a register, you can load it directly:

 mov WORD PTR fpMsg[2], ds ; Load segment of
 ; far pointer

Dynamic Addresses

Often a pointer must point to a dynamic address, meaning the address depends on a run-time
condition. Typical situations include memory allocated by MS-DOS (see “Interrupt 21h Function 48h”
in Help) and addresses found by the SCAS or CMPS instructions (see “Processing Strings” in Chapter
5). The following illustrates the technique for saving dynamic addresses:

; Dynamically allocated buffer
fpBuf FPBYTE 0 ; Initialize so offset will be zero
 .
 .
 .
 mov ah, 48h ; Allocate memory
 mov bx, 10h ; Request 16 paragraphs
 int 21h ; Call DOS
 jc error ; Return segment in AX
 mov WORD PTR fpBuf[2], ax ; Load segment

Basic Pointer and Address Operations
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 66

 .
 .
error: ; Handle error

Copying Pointers

Sometimes one pointer variable must be initialized by copying from another. Here are two ways to
copy a far pointer:

fpBuf1 FPBYTE ?
fpBuf2 FPBYTE ?
 .
 .
 .
; Copy through registers is faster, but requires a spare register
 mov ax, WORD PTR fpBuf1[0]
 mov WORD PTR fpBuf2[0], ax
 mov ax, WORD PTR fpBuf1[2]
 mov WORD PTR fpBuf2[2], ax

; Copy through stack is slower, but does not use a register
 push WORD PTR fpBuf1[0]
 push WORD PTR fpBuf1[2]
 pop WORD PTR fpBuf2[2]
 pop WORD PTR fpBuf2[0]

Pointers as Arguments

Most high-level-language procedures and library functions accept arguments passed on the stack.
“Passing Arguments on the Stack” in Chapter 7 covers this subject in detail. A pointer is passed in the
same way as any other variable, as this fragment shows:

; Push a far pointer (segment always pushed first)
 push WORD PTR fpMsg[2] ; Push segment
 push WORD PTR fpMsg[0] ; Push offset

Pushing an address has the same result as pushing a pointer to the address:

; Push a far address as a far pointer
 mov ax, SEG fVar ; Load and push segment
 push ax
 mov ax, OFFSET fVar ; Load and push offset
 push ax

On the 80186 and later processors, you can push a constant in one step:

 push SEG fVar ; Push segment
 push OFFSET fVar ; Push offset

Loading Addresses into Registers

Loading a near address into a register (or a far address into a pair of registers) is a common task in
assembly-language programming. To reference data pointed to by a pointer, your program must first
place the pointer into a register or pair of registers.

Load far addresses as segment:offset pairs. The following pairs have specific uses:

Segment:Offset Pair Standard Use

DS:SI Source for string operations

ES:DI Destination for string operations

Basic Pointer and Address Operations
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 67

DS:DX Input for certain DOS functions

ES:BX Output from certain DOS functions

Addresses from Data Segments

For near addresses, you need only load the offset; the segment is assumed as SS for stack-based
data and as DS for other data. You must load both segment and offset for far pointers.

Here is an example of loading an address into DS:BX from a near data segment:

 .DATA
Msg BYTE "String"
 .
 .
 .
 mov bx, OFFSET Msg ; Load address to BX
 ; (DS already loaded)

Far data can be loaded like this:

.FARDATA
Msg BYTE "String"
 .
 .
 .
 mov ax, SEG Msg ; Load address to ES:BX
 mov es, ax
 mov bx, OFFSET Msg

You can also read a far address from a pointer in one step, using the LES and LDS instructions
described next.

Far Pointers

The LES and LDS instructions load a far pointer into a segment pair. The instructions copy the
pointer’s low word into either ES or DS, and the high word into a given register. The following example
shows how to load a far pointer into ES:DI:

OutBuf BYTE 20 DUP (0)

fpOut FPBYTE OutBuf
 .
 .
 .
 les di, fpOut ; Load far pointer into ES:DI

Stack Variables

The technique for loading the address of a stack variable is significantly different from the technique for
loading near addresses. You may need to put the correct segment value into ES for string operations.
The following example illustrates how to load the address of a local (stack) variable to ES:DI:

Task PROC
 LOCAL Arg[4]:BYTE

 push ss ; Since it's stack-based, segment is SS
 pop es ; Copy SS to ES
 lea di, Arg ; Load offset to DI

The local variable in this case actually evaluates to SS:[BP-4]. This is an offset from the stack frame
(described in “Passing Arguments on the Stack,” Chapter 7). Since you cannot use the OFFSET

Basic Pointer and Address Operations
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 68

operator to get the offset of an indirect memory operand, you must use the LEA (Load Effective
Address) instruction.

Direct Memory Operands

To get the address of a direct memory operand, use either the LEA instruction or the MOV instruction
with OFFSET. Though both methods have the same effect, the MOV instruction produces smaller and
faster code, as shown in this example:

 lea si, Msg ; Four byte instruction
 mov si, OFFSET Msg ; Three byte equivalent

Copying Between Segment Pairs

Copying from one register pair to another is complicated by the fact that you cannot copy one
segment register directly to another. Two copying methods are shown here. Timings are for the 8088
processor.

; Copy DS:SI to ES:DI, generating smaller code
 push ds ; 1 byte, 14 clocks
 pop es ; 1 byte, 12 clocks
 mov di, si ; 2 bytes, 2 clocks

; Copy DS:SI to ES:DI, generating faster code
 mov di, ds ; 2 bytes, 2 clocks
 mov es, di ; 2 bytes, 2 clocks
 mov di, si ; 2 bytes, 2 clocks

Model-Independent Techniques

Often you may want to write code that is memory-model independent. If you are writing libraries that
must be available for different memory models, you can use conditional assembly to handle different
sizes of pointers. You can use the predefined symbols @DataSize and @Model to test the current
assumptions.

You can use conditional assembly to write code that works with pointer variables that have no
specified distance. The predefined symbol @DataSize tests the pointer size for the current memory
model:

Msg1 BYTE "String1"
pMsg PBYTE ?
 .
 .
 .
 IF @DataSize ; @DataSize > 0 for far
 mov WORD PTR pMsg[0], OFFSET Msg1 ; Load far offset
 mov WORD PTR pMsg[2], SEG Msg1 ; Load far segment
 ELSE ; @DataSize = 0 for near
 mov pMsg, OFFSET Msg1 ; Load near pointer
 ENDIF

In the following example, a procedure receives as an argument a pointer to a word variable. The code
inside the procedure uses @DataSize to determine whether the current memory model supports far or
near data. It loads and processes the data accordingly:

; Procedure that receives an argument by reference
mul8 PROC arg:PTR WORD

 IF @DataSize

Basic Pointer and Address Operations
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 69

 mov ax, es:[bx] ; Load the data pointed to
 ELSE
 mov bx, arg ; Load near pointer to BX (assume DS)
 mov ax, [bx] ; Load the data pointed to
 ENDIF
 shl ax, 1 ; Multiply by 8
 shl ax, 1
 shl ax, 1
 ret
mul8 ENDP

If you have many routines, writing the conditionals for each case can be tedious. The following
conditional statements automatically generate the proper instructions and segment overrides.

; Equates for conditional handling of pointers
 IF @DataSize
lesIF TEXTEQU <les>
ldsIF TEXTEQU <lds>
esIF TEXTEQU <es:>
 ELSE
lesIF TEXTEQU <mov>
ldsIF TEXTEQU <mov>
esIF TEXTEQU <>
 ENDIF

Once you define these conditionals, you can use them to simplify code that must handle several types
of pointers. This next example rewrites the above mul8 procedure to use conditional code.

mul8 PROC arg:PTR WORD

 lesIF bx, arg ; Load pointer to BX or ES:BX
 mov ax, esIF [bx] ; Load the data from [BX] or ES:[BX]
 shl ax, 1 ; Multiply by 8
 shl ax, 1
 shl ax, 1
 ret
mul8 ENDP

The conditional statements from these examples can be defined once in an include file and used
whenever you need to handle pointers.

Chapter 4 Defining and Using Simple Data Types

This chapter covers the concepts essential for working with simple data types in assembly-language
programs. The first section shows how to declare integer variables. The second section describes
basic operations including moving, loading, and sign-extending numbers, as well as calculating. The
last section describes how to do various operations with numbers at the bit level, such as using
bitwise logical instructions and shifting and rotating bits.

The complex data types introduced in the next chapter — arrays, strings, structures, unions, and
records — use many of the operations illustrated in this chapter. Floating-point operations require a
different set of instructions and techniques. These are covered in Chapter 6, “Using Floating-Point and
Binary Coded Decimal
Numbers.”

Declaring Integer Variables
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 70

Declaring Integer Variables

An integer is a whole number, such as 4 or 4,444. Integers have no fractional part, as do the real
numbers discussed in Chapter 6. You can initialize integer variables in several ways with the data
allocation directives. This section explains how to use the SIZEOF and TYPE operators to provide
information to the assembler about the types in your program. For information on symbolic integer
constants, see “Integer Constants and Constant Expressions” in Chapter 1.

Allocating Memory for Integer Variables

When you declare an integer variable by assigning a label to a data allocation directive, the assembler
allocates memory space for the integer. The variable’s name becomes a label for the memory space.
The syntax is:

[[name]] directive initializer

The following directives indicate the integer’s size and value range:

Directive Description of Initializers

BYTE, DB (byte) Allocates unsigned numbers from 0 to 255.

SBYTE (signed byte) Allocates signed numbers from –128 to +127.

WORD, DW (word = 2 bytes) Allocates unsigned numbers from
0 to 65,535 (64K).

SWORD (signed word) Allocates signed numbers from
–32,768 to +32,767.

DWORD, DD (doubleword = 4 bytes), Allocates unsigned numbers from
0 to 4,294,967,295 (4 megabytes).

SDWORD (signed doubleword) Allocates signed numbers from
–2,147,483,648 to +2,147,483,647.

FWORD, DF (farword = 6 bytes) Allocates 6-byte (48-bit) integers. These values are normally
used only as pointer variables on the 80386/486 processors.

QWORD, DQ (quadword = 8 bytes) Allocates 8-byte integers used with 8087-family coprocessor
instructions.

TBYTE, DT (10 bytes), Allocates 10-byte (80-bit) integers if the initializer has a radix
specifying the base of the number.

See Chapter 6 for information on the REAL4, REAL8, and REAL10 directives that allocate real
numbers.

The SIZEOF and TYPE operators, when applied to a type, return the size of an integer of that type.
The size attribute associated with each data type is:

Data Type Bytes

BYTE, SBYTE 1

WORD, SWORD 2

DWORD, SDWORD 4

FWORD 6

QWORD 8

TBYTE 10

Allocating Memory for Integer Variables
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 71

The data types SBYTE, SWORD, and SDWORD tell the assembler to treat the initializers as signed
data. It is important to use these signed types with high-level constructs such as .IF, .WHILE, and
.REPEAT, and with PROTO and INVOKE directives. For descriptions of these directives, see the
sections “Loop-Generating Directives,” “Declaring Procedure Prototypes,” and “Calling Procedures with
INVOKE” in Chapter 7.

The assembler stores integers with the least significant bytes lowest in memory. Note that assembler
listings and most debuggers show the bytes of a word in the opposite order — high byte first.

Figure 4.1 illustrates the integer formats.

Figure 4.1 Integer Formats

Although the TYPEDEF directive’s primary purpose is to define pointer variables (see “Defining Pointer
Types with TYPEDEF” in Chapter 3), you can also use TYPEDEF to create an alias for any integer
type. For example, these declarations

char TYPEDEF SBYTE
long TYPEDEF DWORD
float TYPEDEF REAL4
double TYPEDEF REAL8

allow you to use char, long, float, or double in your programs if you prefer the C data labels.

Data Initialization

You can initialize variables when you declare them with constants or expressions that evaluate to
constants. The assembler generates an error if you specify an initial value too large for the variable
type.

Data Initialization
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 72

A ? in place of an initializer indicates you do not require the assembler to initialize the variable. The
assembler allocates the space but does not write in it. Use ? for buffer areas or variables your program
will initialize at run time.

You can declare and initialize variables in one step with the data directives, as these examples show.

integer BYTE 16 ; Initialize byte to 16
negint SBYTE -16 ; Initialize signed byte to -16
expression WORD 4*3 ; Initialize word to 12
signedexp SWORD 4*3 ; Initialize signed word to 12
empty QWORD ? ; Allocate uninitialized long int
 BYTE 1,2,3,4,5,6 ; Initialize six unnamed bytes
long DWORD 4294967295 ; Initialize doubleword to
 ; 4,294,967,295
longnum SDWORD -2147433648 ; Initialize signed doubleword
 ; to -2,147,433,648
tb TBYTE 2345t ; Initialize 10-byte binary number

For information on arrays and on using the DUP operator to allocate initializer lists, see “Arrays and
Strings” in Chapter 5.

Working with Simple Variables

Once you have declared integer variables in your program, you can use them to copy, move, and
sign-extend integer variables in your MASM code. This section shows how to do these operations as
well as how to add, subtract, multiply, and divide numbers and do bit-level manipulations with logical,
shift, and rotate instructions.

Since MASM instructions require operands to be the same size, you may need to operate on data in a
size other than that originally declared. You can do this with the PTR operator. For example, you can
use the PTR operator to access the high-order word of a DWORD-size variable. The syntax for the
PTR operator is

type PTR expression

where the PTR operator forces expression to be treated as having the type specified. An example of
this use is

 .DATA
num DWORD 0
 .CODE

 mov ax, WORD PTR num[0] ; Loads a word-size value from
 mov dx, WORD PTR num[2] ; a doubleword variable

Copying Data

The primary instructions for moving data from operand to operand and loading them into registers are
MOV (Move), XCHG (Exchange), CWD (Convert Word to Double), and CBW (Convert Byte to Word).

Moving Data

The most common method of moving data, the MOV instruction, is essentially a copy instruction,
since it always copies the source operand to the destination operand without affecting the source.

Copying Data
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 73

After a MOV instruction, the source and destination operands contain the same value.

The following example illustrates the MOV instruction. As explained in “General-Purpose Registers,”
Chapter 1, you cannot move a value from one location in memory to another in a single operation.

; Immediate value moves
 mov ax, 7 ; Immediate to register
 mov mem, 7 ; Immediate to memory direct
 mov mem[bx], 7 ; Immediate to memory indirect

; Register moves
 mov mem, ax ; Register to memory direct
 mov mem[bx], ax ; Register to memory indirect
 mov ax, bx ; Register to register
 mov ds, ax ; General register to segment register

; Direct memory moves
 mov ax, mem ; Memory direct to register
 mov ds, mem ; Memory to segment register

; Indirect memory moves
 mov ax, mem[bx] ; Memory indirect to register
 mov ds, mem[bx] ; Memory indirect to segment register

; Segment register moves
 mov mem, ds ; Segment register to memory
 mov mem[bx], ds ; Segment register to memory indirect
 mov ax, ds ; Segment register to general register

The following example shows several common types of moves that require two instructions.

; Move immediate to segment register
 mov ax, DGROUP ; Load AX with immediate value
 mov ds, ax ; Copy AX to segment register

; Move memory to memory
 mov ax, mem1 ; Load AX with memory value
 mov mem2, ax ; Copy AX to other memory

; Move segment register to segment register
 mov ax, ds ; Load AX with segment register
 mov es, ax ; Copy AX to segment register

The MOVSX and MOVZX instructions for the 80386/486 processors extend and copy values in one
step. See “Extending Signed and Unsigned Integers,” following.

Exchanging Integers

The XCHG (Exchange) instruction exchanges the data in the source and destination operands. You
can exchange data between registers or between registers and memory, but not from memory to
memory:

 xchg ax, bx ; Put AX in BX and BX in AX
 xchg memory, ax ; Put "memory" in AX and AX in "memory"
; xchg mem1, mem2 ; Illegal- can't exchange memory locations

Extending Signed and Unsigned Integers

Since moving data between registers of different sizes is illegal, you must “sign-extend” integers to
convert signed data to a larger size. Sign-extending means copying the sign bit of the unextended
operand to all bits of the operand’s next larger size. This widens the operand while maintaining its sign

Copying Data
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 74

and value.

8086-based processors provide four instructions specifically for sign-extending. The four instructions
act only on the accumulator register (AL, AX, or EAX), as shown in the following list.

Instruction Sign-extend

CBW (convert byte to word) AL to AX

CWD (convert word to doubleword) AX to DX:AX

CWDE (convert word to doubleword extended)* AX to EAX

CDQ (convert doubleword to quadword)* EAX to EDX:EAX

*Requires an extended register and applies only to 80386/486 processors.

On the 80386/486 processors, the CWDE instruction converts a signed 16-bit value in AX to a signed
32-bit value in EAX. The CDQ instruction converts a signed 32-bit value in EAX to a signed 64-bit value
in the EDX:EAX register pair.

This example converts signed integers using CBW, CWD, CWDE, and CDQ.

 .DATA
mem8 SBYTE -5
mem16 SWORD +5
mem32 SDWORD -5
 .CODE
 .
 .
 .
 mov al, mem8 ; Load 8-bit -5 (FBh)
 cbw ; Convert to 16-bit -5 (FFFBh) in AX
 mov ax, mem16 ; Load 16-bit +5
 cwd ; Convert to 32-bit +5 (0000:0005h) in DX:AX
 mov ax, mem16 ; Load 16-bit +5
 cwde ; Convert to 32-bit +5 (00000005h) in EAX
 mov eax, mem32 ; Load 32-bit -5 (FFFFFFFBh)
 cdq ; Convert to 64-bit -5
 ; (FFFFFFFF:FFFFFFFBh) in EDX:EAX

These four instructions efficiently convert unsigned values as well, provided the sign bit is zero. This
example, for instance, correctly widens mem16 whether you treat the variable as signed or unsigned.

The processor does not differentiate between signed and unsigned values. For instance, the value of
mem8 in the previous example is literally 251 (0FBh) to the processor. It ignores the human convention
of treating the highest bit as an indicator of sign. The processor can ignore the distinction between
signed and unsigned numbers because binary arithmetic works the same in either case.

If you add 7 to mem8, for example, the result is 258 (102h), a value too large to fit into a single byte.
The byte-sized mem8 can accommodate only the least-significant digits of the result (02h), and so
receives the value of 2. The result is the same whether we treat mem8 as a signed value (-5) or
unsigned value (251).

This overview illustrates how the programmer, not the processor, must keep track of which values are
signed or unsigned, and treat them accordingly. If AL=127 (01111111y), the instruction CBW sets
AX=127 because the sign bit is zero. If AL=128 (10000000y), however, the sign bit is 1. CBW thus
sets AX=65,280

(FF00h), which may not be what you had in mind if you assumed AL originally held an unsigned
value.To widen unsigned values, explicitly set the higher register to zero, as shown in the following
example:

Copying Data
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 75

 .DATA
mem8 BYTE 251
mem16 WORD 251
 .CODE
 .
 .
 .
 mov al, mem8 ; Load 251 (FBh) from 8-bit memory
 sub ah, ah ; Zero upper half (AH)

 mov ax, mem16 ; Load 251 (FBh) from 16-bit memory
 sub dx, dx ; Zero upper half (DX)

 sub eax, eax ; Zero entire extended register (EAX)
 mov ax, mem16 ; Load 251 (FBh) from 16-bit memory

The 80386/486 processors provide instructions that move and extend a value to a larger data size in a
single step. MOVSX moves a signed value into a register and sign-extends it. MOVZX moves an
unsigned value into a register and zero-
extends it.

; 80386/486 instructions
 movzx dx, bl ; Load unsigned 8-bit value into
 ; 16-bit register and zero-extend

These special 80386/486 instructions usually execute much faster than the equivalent 8086/286
instructions.

Adding and Subtracting Integers

You can use the ADD, ADC, INC, SUB, SBB, and DEC instructions for adding, incrementing,
subtracting, and decrementing values in single registers. You can also combine them to handle larger
values that require two registers for storage.

Adding and Subtracting Integers Directly

The ADD, INC (Increment), SUB, and DEC (Decrement) instructions operate on 8- and 16-bit values on
the 8086–80286 processors, and on 8-, 16-, and 32-bit values on the 80386/486 processors. They can
be combined with the ADC and SBB instructions to work on 32-bit values on the 8086 and 64-bit
values on the 80386/486 processors. (See “Adding and Subtracting in Multiple Registers,” following.)

These instructions have two requirements:

 1. If there are two operands, only one operand can be a memory operand.

 2. If there are two operands, both must be the same size.

To meet the second requirement, you can use the PTR operator to force an operand to the size
required. (See “Working with Simple Variables,” previous.) For example, if Buffer is an array of bytes
and BX points to an element of the array, you can add a word from Buffer with

 add ax, WORD PTR Buffer[bx] ; Add word from byte array

The next example shows 8-bit signed and unsigned addition and subtraction.

 .DATA
mem8 BYTE 39
 .CODE

Adding and Subtracting Integers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 76

; Addition
 ; signed unsigned
 mov al, 26 ; Start with register 26 26
 inc al ; Increment 1 1
 add al, 76 ; Add immediate 76 + 76
 ; ---- ----
 ; 103 103
 add al, mem8 ; Add memory 39 + 39
 ; ---- ----
 mov ah, al ; Copy to AH -114 142
 +overflow
 add al, ah ; Add register 142
 ; ----
 ; 28+carry

; Subtraction
 ; signed unsigned
 mov al, 95 ; Load register 95 95
 dec al ; Decrement -1 -1
 sub al, 23 ; Subtract immediate -23 -23
 ; ---- ----
 ; 71 71
 sub al, mem8 ; Subtract memory -122 -122
 ; ---- ----
 ; -51 205+sign

 mov ah, 119 ; Load register 119
 sub al, ah ; and subtract -51
 ; ----
 ; 86+overflow

The INC and DEC instructions treat integers as unsigned values and do not update the carry flag for
signed carries and borrows.

When the sum of 8-bit signed operands exceeds 127, the processor sets the overflow flag. (The
overflow flag is also set if both operands are negative and the sum is less than or equal to -128.)
Placing a JO (Jump on Overflow) or INTO (Interrupt on Overflow) instruction in your program at this
point can transfer control to error-recovery statements. When the sum exceeds 255, the processor
sets the carry flag. A JC (Jump on Carry) instruction at this point can transfer control to error-recovery
statements.

In the previous subtraction example, the processor sets the sign flag if the result goes below 0. At this
point, you can use a JS (Jump on Sign) instruction to transfer control to error-recovery statements.
Jump instructions are described in the “Jumps” section in Chapter 7.

Adding and Subtracting in Multiple Registers

You can add and subtract numbers larger than the register size on your processor with the ADC (Add
with Carry) and SBB (Subtract with Borrow) instructions. If the operations prior to an ADC or SBB
instruction do not set the carry flag, these instructions are identical to ADD and SUB. When you
operate on large values in more than one register, use ADD and SUB for the least significant part of
the number and ADC or SBB for the most significant part.

The following example illustrates multiple-register addition and subtraction. You can also use this
technique with 64-bit operands on the 80386/486 processors.

 .DATA
mem32 DWORD 316423
mem32a DWORD 316423

Adding and Subtracting Integers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 77

 .CODE
 .
 .
 .
; Addition
 mov ax, 43981 ; Load immediate 43981
 sub dx, dx ; into DX:AX
 add ax, WORD PTR mem32[0] ; Add to both + 316423
 adc dx, WORD PTR mem32[2] ; memory words ------
 ; Result in DX:AX 360404
; Subtraction
 mov ax, WORD PTR mem32a[0] ; Load mem32 316423
 mov dx, WORD PTR mem32a[2] ; into DX:AX
 sub ax, WORD PTR mem32b[0] ; Subtract low - 156739
 sbb dx, WORD PTR mem32b[2] ; then high ------
 ; Result in DX:AX 159684

For 32-bit registers on the 80386/486 processors, only two steps are necessary. If your program needs
to be assembled for more than one processor, you can assemble the statements conditionally, as
shown in this example:

 .DATA
mem32 DWORD 316423
mem32a DWORD 316423
mem32b DWORD 156739
p386 TEXTEQU (@Cpu AND 08h)
 .CODE
 .
 .
 .
; Addition
 IF p386
 mov eax, 43981 ; Load immediate
 add eax, mem32 ; Result in EAX
 ELSE
 .
 . ; do steps in previous example
 .
 ENDIF

; Subtraction
 IF p386
 mov eax, mem32a ; Load memory
 sub eax, mem32b ; Result in EAX
 ELSE
 .
 . ; do steps in previous example
 .
 ENDIF

Since the status of the carry flag affects the results of calculations with ADC and SBB, be sure to turn
off the carry flag with the CLC (Clear Carry Flag) instruction or use ADD or SUB for the first
calculation, when appropriate.

Multiplying and Dividing Integers

The 8086 family of processors uses different multiplication and division instructions for signed and
unsigned integers. Multiplication and division instructions also have special requirements depending on

Multiplying and Dividing Integers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 78

the size of the operands and the processor the code runs on.

Using Multiplication Instructions

The MUL instruction multiplies unsigned numbers. IMUL multiplies signed numbers. For both
instructions, one factor must be in the accumulator register (AL for 8-bit numbers, AX for 16-bit
numbers, EAX for 32-bit numbers). The other factor can be in any single register or memory operand.
The result overwrites the contents of the accumulator register.

Multiplying two 8-bit numbers produces a 16-bit result returned in AX. Multiplying two 16-bit operands
yields a 32-bit result in DX:AX. The 80386/486 processor handles 64-bit products in the same way in
the EDX:EAX pair.

This example illustrates multiplication of signed 16- and 32-bit integers.

 .DATA
mem16 SWORD -30000
 .CODE
 .
 .
 .
; 8-bit unsigned multiply
 mov al, 23 ; Load AL 23
 mov bl, 24 ; Load BL * 24
 mul bl ; Multiply BL -----
 ; Product in AX 552
 ; overflow and carry set

; 16-bit signed multiply
 mov ax, 50 ; Load AX 50
 ; -30000
 imul mem16 ; Multiply memory -----
 ; Product in DX:AX -1500000
 ; overflow and carry set

A nonzero number in the upper half of the result (AH for byte, DX or EDX for word) sets the overflow
and carry flags.

On the 80186–80486 processors, the IMUL instruction supports three additional operand
combinations. The first syntax option allows for 16-bit multipliers producing a 16-bit product or 32-bit
multipliers for 32-bit products on the 80386/486. The result overwrites the destination. The syntax for
this operation is:

IMUL register16, immediate

The second syntax option specifies three operands for IMUL. The first operand must be a 16-bit
register operand, the second a 16-bit memory (or register) operand, and the third a 16-bit immediate
operand. IMUL multiplies the memory (or register) and immediate operands and stores the product in
the register operand with this syntax:

IMUL register16,{ memory16 | register16}, immediate

For the 80386/486 only, a third option for IMUL allows an additional operand for multiplication of a
register value by a register or memory value. The syntax is:

IMUL register,{register | memory}

The destination can be any 16-bit or 32-bit register. The source must be the same size as the
destination.

In all of these options, products too large to fit in 16 or 32 bits set the overflow and carry flags. The
following examples show these three options for IMUL.

Multiplying and Dividing Integers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 79

 imul dx, 456 ; Multiply DX times 456 on 80186-80486
 imul ax, [bx],6 ; Multiply the value pointed to by BX
 ; by 6 and put the result in AX

 imul dx, ax ; Multiply DX times AX on 80386
 imul ax, [bx] ; Multiply AX by the value pointed to
 ; by BX on 80386

The IMUL instruction with multiple operands can be used for either signed or unsigned multiplication,
since the 16-bit product is the same in either case. To get a 32-bit result, you must use the
single-operand version of MUL or IMUL.

Using Division Instructions

The DIV instruction divides unsigned numbers, and IDIV divides signed numbers. Both return a
quotient and a remainder.

Table 4.1 summarizes the division operations. The dividend is the number to be divided, and the divisor
is the number to divide by. The quotient is the result. The divisor can be in any register or memory
location except the registers where the quotient and remainder are returned.

Table 4.1 Division Operations

Size of
Operand

Dividend Register Size of Divisor
Quotient Remainder

16 bits AX 8 bits AL AH

32 bits DX:AX 16 bits AX DX

64 bits (80386
and 80486)

EDX:EAX 32 bits EAX EDX

Unsigned division does not require careful attention to flags. The following examples illustrate signed
division, which can be more complex.

 .DATA
mem16 SWORD -2000
mem32 SDWORD 500000
 .CODE
 .
 .
 .
; Divide 16-bit unsigned by 8-bit
 mov ax, 700 ; Load dividend 700
 mov bl, 36 ; Load divisor DIV 36
 div bl ; Divide BL ------
 ; Quotient in AL 19
 ; Remainder in AH 16

; Divide 32-bit signed by 16-bit
 mov ax, WORD PTR mem32[0] ; Load into DX:AX
 mov dx, WORD PTR mem32[2] ; 500000
 idiv mem16 ; DIV -2000
 ; Divide memory ------
 ; Quotient in AX -250
 ; Remainder in DX 0

; Divide 16-bit signed by 16-bit
 mov ax, WORD PTR mem16 ; Load into AX -2000
 cwd ; Extend to DX:AX
 mov bx,-421 ; DIV -421

Multiplying and Dividing Integers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 80

 ; Quotient in AX 4
 ; Remainder in DX -316

If the dividend and divisor are the same size, sign-extend or zero-extend the dividend so that it is the
length expected by the division instruction. See “Extending Signed and Unsigned Integers,” earlier in
this chapter.

Manipulating Numbers at the Bit Level

The instructions introduced so far in this chapter access numbers at the byte or word level. The
logical, shift, and rotate instructions described in this section access individual bits in a number. You
can use logical instructions to evaluate characters and do other text and screen operations. The shift
and rotate instructions do similar tasks by shifting and rotating bits through registers. This section
reviews some applications of these bit-level operations.

Logical Instructions

The logical instructions AND, OR, and XOR compare bits in two operands. Based on the results of the
comparisons, the instructions alter bits in the first (destination) operand. The logical instruction NOT
also changes bits, but operates on a single operand.

The following list summarizes these four logical instructions. The list makes reference to the
“destination bit,” meaning the bit in the destination operand. The terms “both bits” and “either bit” refer
to the corresponding bits in the source and destination operands. These instructions include:

Instruction Sets Destination Bit If Clears Destination Bit If

AND Both bits set Either or both bits clear

OR Either or both bits set Both bits clear

XOR Either bit (but not both) set Both bits set or both clear

NOT Destination bit clear Destination bit set

Note Do not confuse logical instructions with the logical operators, which perform these operations at
assembly time, not run time. Although the names are the same, the assembler recognizes the
difference.

The following example shows the result of the AND, OR, XOR, and NOT instructions operating on a
value in the AX register and in a mask. A mask is any number with a pattern of bits set for an intended
operation.

 mov ax, 035h ; Load value 00110101
 and ax, 0FBh ; Clear bit 2 AND 11111011
 ; --------
 ; Value is now 31h 00110001
 or ax, 016h ; Set bits 4,2,1 OR 00010110
 ; --------
 ; Value is now 37h 00110111
 xor ax, 0ADh ; Toggle bits 7,5,3,2,0 XOR 10101101
 ; --------
 ; Value is now 9Ah 10011010
 not ax ; Value is now 65h 01100101

The AND instruction clears unmasked bits — that is, bits not protected by 1 in the mask. To mask off

Logical Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 81

certain bits in an operand and clear the others, use an appropriate masking value in the source
operand. The bits of the mask should be 0 for any bit positions you want to clear and 1 for any bit
positions you want to remain unchanged.

The OR instruction forces specific bits to 1 regardless of their current settings. The bits of the mask
should be 1 for any bit positions you want to set and 0 for any bit positions you want to remain
unchanged.

The XOR instruction toggles the value of specific bits on and off — that is, reverses them from their
current settings. This instruction sets a bit to 1 if the corresponding bits are different or to 0 if they are
the same. The bits of the mask should be 1 for any bit positions you want to toggle and 0 for any bit
positions you want to remain unchanged.

The following examples show an application for each of these instructions. The code illustrating the
AND instruction converts a “y” or “n” read from the keyboard to uppercase, since bit 5 is always clear
in uppercase letters. In the example for OR, the first statement is faster and uses fewer bytes than
cmp bx, 0. When the operands for XOR are identical, each bit cancels itself, producing 0.

;AND example - converts characters to uppercase
 mov ah, 7 ; Get character without echo
 int 21h
 and al, 11011111y ; Convert to uppercase by clearing bit 5
 cmp al, 'Y' ; Is it Y?
 je yes ; If so, do Yes actions
 . ; Else do No actions
 .
yes: .

;OR example - compares operand to 0
 or bx, bx ; Compare to 0
 jg positive ; BX is positive
 jl negative ; BX is negative
 ; else BX is zero

;XOR example - sets a register to 0
 xor cx, cx ; 2 bytes, 3 clocks on 8088
 sub cx, cx ; 2 bytes, 3 clocks on 8088
 mov cx, 0 ; 3 bytes, 4 clocks on 8088

On the 80386/486 processors, the BSF (Bit Scan Forward) and the BSR (Bit Scan Reverse)
instructions perform operations like those of the logical instructions. They scan the contents of a
register to find the first-set or last-set bit. You can use BSF or BSR to find the position of a set bit in a
mask or to check if a register value is 0.

Shifting and Rotating Bits

The 8086-based processors provide a complete set of instructions for shifting and rotating bits. Shift
instructions move bits a specified number of places to the right or left. The last bit in the direction of
the shift goes into the carry flag, and the first bit is filled with 0 or with the previous value of the first bit.

Rotate instructions also move bits a specified number of places to the right or left. For each bit rotated,
the last bit in the direction of the rotate operation moves into the first bit position at the other end of the
operand. With some variations, the carry bit is used as an additional bit of the operand. Figure 4.2
illustrates the eight variations of shift and rotate instructions for 8-bit operands. Notice that SHL and
SAL are identical.

Shifting and Rotating Bits
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 82

Shifting and Rotating Bits
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 83

Figure 4.2 Shifts and Rotates

All shift instructions use the same format. Before the instruction executes, the destination operand
contains the value to be shifted; after the instruction executes, it contains the shifted operand. The
source operand contains the number of bits to shift or rotate. It can be the immediate value 1 or the CL
register. The 8088 and 8086 processors do not accept any other values or registers with these
instructions.

Starting with the 80186 processor, you can use 8-bit immediate values larger than 1 as the source
operand for shift or rotate instructions, as shown here:

 shr bx, 4 ; 9 clocks, 3 bytes on 80286

The following statements are equivalent if the program must run on the 8088 or 8086 processor:

 mov cl, 4 ; 2 clocks, 3 bytes on 80286
 shr bx, cl ; 9 clocks, 2 bytes on 80286
 ; 11 clocks, 5 bytes total

Masks for logical instructions can be shifted to new bit positions. For example, an operand that masks
off a bit or group of bits can be shifted to move the mask to a different position, allowing you to mask
off a different bit each time the mask is used. This technique, illustrated in the following example, is
useful only if the mask value is unknown until run time.

 .DATA
masker BYTE 00000010y ; Mask that may change at run time
 .CODE
 .
 .
 .
 mov cl, 2 ; Rotate two at a time
 mov bl, 57h ; Load value to be changed 01010111y
 rol masker, cl ; Rotate two to left 00001000y
 or bl, masker ; Turn on masked values ---------
 ; New value is 05Fh 01011111y
 rol masker, cl ; Rotate two more 00100000y
 or bl, masker ; Turn on masked values ---------
 ; New value is 07Fh 01111111y

Multiplying and Dividing with Shift Instructions

You can use the shift and rotate instructions (SHR, SHL, SAR, and SAL) for multiplication and
division. Shifting a value right by one bit has the effect of dividing by two; shifting left by 1 bit has the
effect of multiplying by two. You can take advantage of shifts to do fast multiplication and division by
powers of two. For example, shifting left twice multiplies by four, shifting left three times multiplies by
eight, and so on.

Use SHR (Shift Right) to divide unsigned numbers. You can use SAR (Shift Arithmetic Right) to divide
signed numbers, but SAR rounds negative numbers down — IDIV always rounds negative numbers up
(toward 0). Division using SAR must adjust for this difference. Multiplication by shifting is the same for
signed and unsigned numbers, so you can use either SAL or SHL.

Multiply and divide instructions are relatively slow, particularly on the 8088 and 8086 processors.
When multiplying or dividing by a power of two, use shifts to speed operations by a factor of 10 or
more. For example, these statements take only four clocks on an 8088 or 8086 processor:

 sub ah, ah ; Clear AH
 shl ax, 1 ; Multiply byte in AL by 2

Multiplying and Dividing with Shift Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 84

The following statements produce the same results, but take between 74 and 81 clocks on the 8088 or
8086 processors. The same statements take 15 clocks on the 80286 and between 11 and 16 clocks
on the 80386. (For a discussion about instruction timings, see “A Word on Instruction Timings” in the
Introduction.)

 mov bl, 2 ; Multiply byte in AL by 2
 mul bl

As the following macro shows, it’s possible to multiply by any number — in this case, 10 — without
resorting to the MUL instruction. However, such a procedure is no more than an interesting arithmetic
exercise, since the additional code almost certainly takes more time to execute than a single MUL.
You should consider using shifts in your program only when multiplying or dividing by a power of two.

mul_10 MACRO factor ; Factor must be unsigned
 mov ax, factor ; Load into AX
 shl ax, 1 ; AX = factor * 2
 mov bx, ax ; Save copy in BX
 shl ax, 1 ; AX = factor * 4
 shl ax, 1 ; AX = factor * 8
 add ax, bx ; AX = (factor * 8) + (factor * 2)
 ENDM ; AX = factor * 10

Here’s another macro that divides by 512. In contrast to the previous example, this macro uses little
code and operates faster than an equivalent DIV instruction.

div_512 MACRO dividend ; Dividend must be unsigned
 mov ax, dividend ; Load into AX
 shr ax, 1 ; AX = dividend / 2 (unsigned)
 xchg al, ah ; XCHG is like rotate right 8
 ; AL = (dividend / 2) / 256
 cbw ; Clear upper byte
 ENDM ; AX = (dividend / 512)

If you need to shift a value that is too large to fit in one register, you can shift each part separately. The
RCR (Register Carry Right) and RCL (Register Carry Left) instructions carry values from the first
register to the second by passing the leftmost or rightmost bit through the carry flag.

This example shifts a multiword value.

 .DATA
mem32 DWORD 500000
 .CODE

; Divide 32-bit unsigned by 16
 mov cx, 4 ; Shift right 4 500000
again: shr WORD PTR mem32[2], 1 ; Shift into carry DIV 16
 rcr WORD PTR mem32[0], 1 ; Rotate carry in ------
 loop again ; 31250

Since the carry flag is treated as part of the operand (it’s like using a 9-bit or 17-bit operand), the flag
value before the operation is crucial. The carry flag can be adjusted by a previous instruction, but you
can also set or clear the flag directly with the CLC (Clear Carry Flag), CMC (Complement Carry Flag),
and STC (Set Carry Flag) instructions.

On the 80386 and 80486 processors, an alternate method for multiplying quickly by constants takes
advantage of the LEA (Load Effective Address) instruction and the scaling of indirect memory
operands. By using a 32-bit value as both the index and the base register in an indirect memory
operand, you can multiply by the constants 2, 3, 4, 5, 8, and 9 more quickly than you can by using
the MUL instruction. LEA calculates the offset of the source operand and stores it into the destination
register, EBX, as this example shows:

Multiplying and Dividing with Shift Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 85

 lea ebx, [eax*2] ; EBX = 2 * EAX
 lea ebx, [eax*2+eax] ; EBX = 3 * EAX
 lea ebx, [eax*4] ; EBX = 4 * EAX
 lea ebx, [eax*4+eax] ; EBX = 5 * EAX
 lea ebx, [eax*8] ; EBX = 8 * EAX
 lea ebx, [eax*8+eax] ; EBX = 9 * EAX

Scaling of 80386 indirect memory operands is reviewed in “Indirect Memory Operands with 32-Bit
Registers” in Chapter 3. LEA is introduced in “Loading Addresses into Registers” in Chapter 3.

The next chapter deals with more complex data types — arrays, strings, structures, unions, and
records. Many of the operations presented in this chapter can also be applied to the data structures
covered in Chapter 5, “Defining and Using Complex Data Types.”

Chapter 5 Defining and Using Complex Data Types

With the complex data types available in MASM 6.1 — arrays, strings, records, structures, and unions
— you can access data as a unit or as individual elements that make up a unit. The individual
elements of complex data types are often the integer types discussed in Chapter 4, “Defining and
Using Simple Data Types.”

“Arrays and Strings” reviews how to declare, reference, and initialize arrays and strings. This section
summarizes the general steps needed to process arrays and strings and describes the MASM
instructions for moving, comparing, searching, loading, and storing.

“Structures and Unions” covers similar information for structures and unions: how to declare structure
and union types, how to define structure and union variables, and how to reference structures and
unions and their fields.

“Records” explains how to declare record types, define record variables, and use record operators.

Arrays and Strings

An array is a sequential collection of variables, all of the same size and type, called “elements.” A
string is an array of characters. For example, in the string “ABC,” each letter is an element. You can
access the elements in an array or string relative to the first element. This section explains how to
handle arrays and strings in your programs.

Declaring and Referencing Arrays

Array elements occupy memory contiguously, so a program references each element relative to the
start of the array. To declare an array, supply a label name, the element type, and a series of
initializing values or ? placeholders. The following examples declare the arrays warray and xarray:

warray WORD 1, 2, 3, 4
xarray DWORD 0FFFFFFFFh, 789ABCDEh

Initializer lists of array declarations can span multiple lines. The first initializer must appear on the
same line as the data type, all entries must be initialized, and, if you want the array to continue to the
new line, the line must end with a comma. These examples show legal multiple-line array declarations:

Declaring and Referencing Arrays
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 86

big BYTE 21, 22, 23, 24, 25,
 26, 27, 28

somelist WORD 10,
 20,
 30

If you do not use the LENGTHOF and SIZEOF operators discussed later in this section, an array may
span more than one logical line, although a separate type declaration is needed on each logical line:

var1 BYTE 10, 20, 30
 BYTE 40, 50, 60
 BYTE 70, 80, 90

The DUP Operator

You can also declare an array with the DUP operator. This operator works with any of the data
allocation directives described in “Allocating Memory for Integer Variables” in Chapter 4. In the syntax

count DUP (initialvalue [[, initialvalue]]...)

the count value sets the number of times to repeat all values within the parentheses. The initialvalue
can be an integer, character constant, or another DUP operator, and must always appear within
parentheses. For example, the statement

barray BYTE 5 DUP (1)

allocates the integer 1 five times for a total of 5 bytes.

The following examples show various ways to allocate data elements with the DUP operator:

array DWORD 10 DUP (1) ; 10 doublewords
 ; initialized to 1
buffer BYTE 256 DUP (?) ; 256-byte buffer

masks BYTE 20 DUP (040h, 020h, 04h, 02h) ; 80-byte buffer
 ; with bit masks
three_d DWORD 5 DUP (5 DUP (5 DUP (0))) ; 125 doublewords
 ; initialized to 0

Referencing Arrays

Each element in an array is referenced with an index number, beginning with zero. The array index
appears in brackets after the array name, as in

array[9]

Assembly-language indexes differ from indexes in high-level languages, where the index number
always corresponds to the element’s position. In C, for example, array[9] references the array’s
tenth element, regardless of whether each element is 1 byte or 8 bytes in size.

In assembly language, an element’s index refers to the number of bytes between the element and the
start of the array. This distinction can be ignored for arrays of byte-sized elements, since an element’s
position number matches its index. For example, defining the array

prime BYTE 1, 3, 5, 7, 11, 13, 17

gives a value of 1 to prime[0], a value of 3 to prime[1], and so forth.

However, in arrays with elements larger than 1 byte, index numbers (except zero) do not correspond to
an element’s position. You must multiply an element’s position by its size to determine the element’s
index. Thus, for the array

Declaring and Referencing Arrays
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 87

wprime WORD 1, 3, 5, 7, 11, 13, 17

wprime[4] represents the third element (5), which is 4 bytes from the beginning of the array.
Similarly, the expression wprime[6] represents the fourth element (7) and wprime[10] represents
the sixth element (13).

The following example determines an index at run time. It multiplies the position by two (the size of a
word element) by shifting it left:

 mov si, cx ; CX holds position number
 shl si, 1 ; Scale for word referencing
 mov ax, wprime[si] ; Move element into AX

The offset required to access an array element can be calculated with the following formula:

nth element of array = array[(n-1) * size of element]

Referencing an array element by distance rather than position is not difficult to master, and is actually
very consistent with how assembly language works. Recall that a variable name is a symbol that
represents the contents of a particular address in memory. Thus, if the array wprime begins at
address DS:2400h, the reference wprime[6] means to the processor “the word value contained in
the DS segment at offset 2400h-plus-6-bytes.”

As described in “Direct Memory Operands,” Chapter 3, you can substitute the plus operator (+) for
brackets, as in:

wprime[9]
wprime+9

Since brackets simply add a number to an address, you don’t need them when referencing the first
element. Thus, wprime and wprime[0] both refer to the first element of the array wprime.

If your program runs only on an 80186 processor or higher, you can use the BOUND instruction to
verify that an index value is within the bounds of an array. For a description of BOUND, see the
Reference.

LENGTHOF, SIZEOF, and TYPE for Arrays

When applied to arrays, the LENGTHOF, SIZEOF, and TYPE operators return information about the
length and size of the array and about the type of the
initializers.

The LENGTHOF operator returns the number of elements in the array. The SIZEOF operator returns
the number of bytes used by the initializers in the array definition. TYPE returns the size of the
elements of the array. The following examples illustrate these operators:

array WORD 40 DUP (5)

larray EQU LENGTHOF array ; 40 elements
sarray EQU SIZEOF array ; 80 bytes
tarray EQU TYPE array ; 2 bytes per element

num DWORD 4, 5, 6, 7, 8, 9, 10, 11

lnum EQU LENGTHOF num ; 8 elements
snum EQU SIZEOF num ; 32 bytes
tnum EQU TYPE num ; 4 bytes per element

warray WORD 40 DUP (40 DUP (5))

len EQU LENGTHOF warray ; 1600 elements
siz EQU SIZEOF warray ; 3200 bytes

Declaring and Referencing Arrays
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 88

typ EQU TYPE warray ; 2 bytes per element

Declaring and Initializing Strings

A string is an array of characters. Initializing a string like "Hello, there" allocates and initializes 1
byte for each character in the string. An initialized string can be no longer than 255 characters.

For data directives other than BYTE, a string may initialize only the first element. The initializer value
must fit into the specified size and conform to the expression word size in effect (see “Integer
Constants and Constant Expressions” in Chapter 1), as shown in these examples:

wstr WORD "OK"
dstr DWORD "DATA" ; Legal under EXPR32 only

As with arrays, string initializers can span multiple lines. The line must end with a comma if you want
the string to continue to the next line.

str1 BYTE "This is a long string that does not ",
 "fit on one line."

You can also have an array of pointers to strings.

PBYTE TYPEDEF PTR BYTE
 .DATA
msg1 BYTE "Operation completed successfully."
msg2 BYTE "Unknown command"
msg3 BYTE "File not found"
pmsg PBYTE msg1 ; pmsg is an array
 PBBYTE msg2 ; of pointers to
 PBYTE msg3 ; above messages

Strings must be enclosed in single (') or double (") quotation marks. To put a single quotation mark
inside a string enclosed by single quotation marks, use two single quotation marks. Likewise, if you
need quotation marks inside a string enclosed by double quotation marks, use two sets. These
examples show the various uses of quotation marks:

char BYTE 'a'
message BYTE "That's the message." ; That's the message.
warn BYTE 'Can''t find file.' ; Can't find file.
string BYTE "This ""value"" not found." ; This "value" not found.

You can always use single quotation marks inside a string enclosed by double quotation marks, as
the initialization for message shows, and vice versa.

The ? Initializer

You do not have to initialize an array. The ? operator lets you allocate space for the array without
placing specific values in it. Object files contain records for initialized data. Unspecified space left in
the object file means that no records contain initialized data for that address. The actual values stored
in arrays allocated with ? depend on certain conditions. The ? initializer is treated as a zero in a DUP
statement that contains initializers in addition to the ? initializer. If the ? initializer does not appear in a
DUP statement, or if the DUP statement contains only ? initializers, the assembler leaves the
allocated space unspecified.

LENGTHOF, SIZEOF, and TYPE for Strings

Because strings are simply arrays of byte elements, the LENGTHOF, SIZEOF, and TYPE operators
behave as you would expect, as illustrated in this example:

Declaring and Initializing Strings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 89

msg BYTE "This string extends ",
 "over three ",
 "lines."

lmsg EQU LENGTHOF msg ; 37 elements
smsg EQU SIZEOF msg ; 37 bytes
tmsg EQU TYPE msg ; 1 byte per element

Processing Strings

The 8086-family instruction set has seven string instructions for fast and efficient processing of entire
strings and arrays. The term “string” in “string instructions” refers to a sequence of elements, not just
character strings. These instructions work directly only on arrays of bytes and words on the
8086–80486 processors, and on arrays of bytes, words, and doublewords on the 80386/486
processors. Processing larger elements must be done indirectly with loops.

The following list gives capsule descriptions of the five instructions discussed in this section.

Instruction Description

MOVS Copies a string from one location to another

STOS Stores contents of the accumulator register to a string

CMPS Compares one string with another

LODS Loads values from a string to the accumulator register

SCAS Scans a string for a specified value

All of these instructions use registers in a similar way and have a similar syntax. Most are used with
the repeat instruction prefixes REP, REPE (or REPZ), and REPNE (or REPNZ). REPZ is a synonym for
REPE (Repeat While Equal) and REPNZ is a synonym for REPNE (Repeat While Not Equal).

This section first explains the general procedures for using all string instructions. It then illustrates
each instruction with an example.

Overview of String Instructions

The string instructions have specific requirements for the location of strings and the use of registers.
To operate on any string, follow these three steps:

 1. Set the direction flag to indicate the direction in which you want to process the string. The STD
instruction sets the flag, while CLD clears it.

If the direction flag is clear, the string is processed upward (from low addresses to high addresses,
which is from left to right through the string). If the direction flag is set, the string is processed
downward (from high addresses to low addresses, or from right to left). Under MS-DOS, the
direction flag is normally clear if your program has not changed it.

 2. Load the number of iterations for the string instruction into the CX register.

If you want to process 100 elements in a string, move 100 into CX. If you wish the string
instruction to terminate conditionally (for example, during a search when a match is found), load
the maximum number of iterations that can be performed without an error.

 3. Load the starting offset address of the source string into DS:SI and the starting address of the
destination string into ES:DI. Some string instructions take only a destination or source, not both
(see Table 5.1).

Normally, the segment address of the source string should be DS, but you can use a segment

Processing Strings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 90

override to specify a different segment for the source operand. You cannot override the segment
address for the destination string. Therefore, you may need to change the value of ES. For
information on changing segment registers, see “Programming Segmented Addresses” in Chapter
3.

Note Although you can use a segment override on the source operand, a segment override combined
with a repeat prefix can cause problems in certain situations on all processors except the 80386/486.
If an interrupt occurs during the string operation, the segment override is lost and the rest of the string
operation processes incorrectly. Segment overrides can be used safely when interrupts are turned off
or with the 80386/486 processors.

You can adapt these steps to the requirements of any particular string operation. The syntax for the
string instructions is:

[[prefix]] CMPS [[segmentregister:]] source, [[ES:]] destination
LODS [[segmentregister:]] source

[[prefix]] MOVS [[ES:]] destination, [[segmentregister:]] source
[[prefix]] SCAS [[ES:]] destination
[[prefix]] STOS [[ES:]] destination

Some instructions have special forms for byte, word, or doubleword operands. If you use the form of
the instruction that ends in B (BYTE), W (WORD), or D (DWORD) with LODS, SCAS, and STOS, the
assembler knows whether the element is in the AL, AX, or EAX register. Therefore, these instruction
forms do not require operands.

Table 5.1 lists each string instruction with the type of repeat prefix it uses and indicates whether the
instruction works on a source, a destination, or both.

Table 5.1 Requirements for String Instructions

Instruction Repeat Prefix Source/Destination Register Pair

MOVS REP Both DS:SI, ES:DI

SCAS REPE/REPNE Destination ES:DI

CMPS REPE/REPNE Both DS:SI, ES:DI

LODS None Source DS:SI

STOS REP Destination ES:DI

INS REP Destination ES:DI

OUTS REP Source DS:SI

The repeat prefix causes the instruction that follows it to repeat for the number of times specified in the
count register or until a condition becomes true. After each iteration, the instruction increments or
decrements SI and DI so that it points to the next array element. The direction flag determines whether
SI and DI are incremented (flag clear) or decremented (flag set). The size of the instruction determines
whether SI and DI are altered by 1, 2, or 4 bytes each time.

Each prefix governs the number of repetitions as follows:

Prefix Description

REP Repeats instruction CX times

REPE, REPZ Repeats instruction maximum CX times while values are equal

REPNE, REPNZ Repeats instruction maximum CX times while values are not equal

The prefixes apply to only one string instruction at a time. To repeat a block of instructions, use a loop
construction. (See “Loops” in Chapter 7.)

At run time, if a string instruction is preceded by a repeat sequence, the processor:

Processing Strings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 91

 1. Checks the CX register and exits if CX is 0.

 2. Performs the string operation once.

 3. Increases SI and/or DI if the direction flag is clear. Decreases SI and/or DI if the direction flag is
set. The amount of increase or decrease is 1 for byte operations, 2 for word operations, and 4 for
doubleword operations.

 4. Decrements CX without modifying the flags.

 5. Checks the zero flag (for SCAS or CMPS) if the REPE or REPNE prefix is used. If the repeat
condition holds, loops back to step 1. Otherwise, the loop ends and execution proceeds to the
next instruction.

When the repeat loop ends, SI (or DI) points to the position following a match (when using SCAS or
CMPS), so you need to decrement or increment DI or SI to point to the element where the last match
occurred.

Although string instructions (except LODS) are used most often with repeat prefixes, they can also be
used by themselves. In these cases, the SI and/or DI registers are adjusted as specified by the
direction flag and the size of operands.

Using String Instructions

To use the 8086-family string instructions, follow the steps outlined in the previous section. Examples
in this section illustrate each instruction.

You can also use the techniques in this section with structures and unions, since arrays and strings
can be fields in structures and unions. (See the section “Structures and Unions,” following.)

Moving Array Data

The MOVS instruction copies data from one area of memory to another. To move data, first load the
count, source and destination addresses into the appropriate registers. Then use REP with the MOVS
instruction.

 .MODEL small
 .DATA
source BYTE 10 DUP ('0123456789')
destin BYTE 100 DUP (?)
 .CODE
 mov ax, @data ; Load same segment
 mov ds, ax ; to both DS
 mov es, ax ; and ES
 .
 .
 .
 cld ; Work upward
 mov cx, LENGTHOF source ; Set iteration count to 100
 mov si, OFFSET source ; Load address of source
 mov di, OFFSET destin ; Load address of destination
 rep movsb ; Move 100 bytes

Filling Arrays

The STOS instruction stores a specified value in each position of a string. The string is the destination,
so it must be pointed to by ES:DI. The value to store must be in the accumulator.

The next example stores the character 'a' in each byte of a 100-byte string, filling the entire string
with “aaaa....” Notice how the code stores 50 words rather than

100 bytes. This makes the fill operation faster by reducing the number of iterations. To fill an odd

Processing Strings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 92

number of bytes, you need to adjust for the last byte.

 .MODEL small, C
 .DATA
destin BYTE 100 DUP (?)
ldestin EQU (LENGTHOF destin) / 2
 .CODE
 . ; Assume ES = DS
 .
 .
 cld ; Work upward
 mov ax, 'aa' ; Load character to fill
 mov cx, ldestin ; Load length of string
 mov di, OFFSET destin ; Load address of destination
 rep stosw ; Store 'aa' into array

Comparing Arrays

The CMPS instruction compares two strings and points to the address after which a match or
nonmatch occurs. If the values are the same, the zero flag is set. Either string can be considered the
destination or the source unless a segment override is used. This example using CMPSB assumes
that the strings are in different segments. Both segments must be initialized to the appropriate
segment register.

 .MODEL large, C
 .DATA
string1 BYTE "The quick brown fox jumps over the lazy dog"
 .FARDATA
string2 BYTE "The quick brown dog jumps over the lazy fox"
lstring EQU LENGTHOF string2
 .CODE
 mov ax, @data ; Load data segment
 mov ds, ax ; into DS
 mov ax, @fardata ; Load far data segment
 mov es, ax ; into ES
 .
 .
 .
 cld ; Work upward
 mov cx, lstring ; Load length of string
 mov si, OFFSET string1 ; Load offset of string1
 mov di, OFFSET string2 ; Load offset of string2
 repe cmpsb ; Compare
 je allmatch ; Jump if all match
 .
 .
 .
allmatch: ; Special case for all match

Loading Data from Arrays

The LODS instruction loads a value from a string into the accumulator register. This instruction is not
used with a repeat instruction prefix, since continually reloading the accumulator serves no purpose.

The code in this example loads, processes, and displays each byte in a string.

 .DATA
info BYTE 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
linfo WORD LENGTHOF info
 .CODE

Processing Strings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 93

 .
 .
 cld ; Work upward
 mov cx, linfo ; Load length
 mov si, OFFSET info ; Load offset of source
 mov ah, 2 ; Display character function

get:
 lodsb ; Get a character
 add al, '0' ; Convert to ASCII
 mov dl, al ; Move to DL
 int 21h ; Call DOS to display character
 loop get ; Repeat

Searching Arrays

The SCAS instruction compares the value pointed to by ES:DI with the value in the accumulator. If
both values are the same, it sets the zero flag.

A repeat prefix lets SCAS work on an entire string, scanning (from which SCAS gets its name) for a
particular value called the target. REPNE SCAS sets the zero flag if it finds the target value in the
array. REPE SCAS sets the zero flag if the scanned array contains nothing but the target value.

This example assumes that ES is not the same as DS and that the address of the string is stored in a
pointer variable. The LES instruction loads the far address of the string into ES:DI.

 .DATA
string BYTE "The quick brown fox jumps over the lazy dog"
pstring PBYTE string ; Far pointer to string
lstring EQU LENGTHOF string ; Length of string
 .CODE
 .
 .
 .
 cld ; Work upward
 mov cx, lstring ; Load length of string
 les di, pstring ; Load address of string
 mov al, 'z' ; Load character to find
 repne scasb ; Search
 jne notfound ; Jump if not found
 . ; ES:DI points to character
 . ; after first 'z'
 .
notfound: ; Special case for not found

Translating Data in Byte Arrays

The XLAT (Translate) instruction copies a byte from an array of bytes into the AL register. The
instruction takes its name from its ability to translate an element’s number into the element itself. For
example, given the number 7, XLAT returns byte #7 from the array. The array may hold byte-sized
integers or, very often, a table or list of characters. The syntax for XLAT is:

XLAT[[B]] [[[[segment:]]memory]]

The optional B suffix (for “byte”) reflects the size of data the instruction handles. Both XLAT and
XLATB assemble to exactly the same machine code.

To use XLAT, place the offset of the start of the array in the BX register and the desired index value in
AL. Array indexes always begin with 0 in assembly language. To retrieve the first byte of the array, set
AL to 0; to retrieve the second byte, set AL to 1, and so forth. XLAT returns the byte element in AL,
overwriting the index number.

Processing Strings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 94

By default, the DS register contains the segment of the table, but you can use a segment override to
specify a different segment. You need not give an operand except when specifying a segment override.
(For information about the segment override operator, see “Direct Memory Operands” in Chapter 3.)

This example illustrates XLAT by looking up hexadecimal characters in a list. The code converts an
eight-bit binary number to a string representing a hexadecimal number.

; Table of hexadecimal digits
hex BYTE "0123456789ABCDEF"
convert BYTE "You pressed the key with ASCII code "
key BYTE ?,?,"h",13,10,"$"
 .CODE
 .
 .
 .
 mov ah, 8 ; Get a key in AL
 int 21h ; Call DOS
 mov bx, OFFSET hex ; Load table address
 mov ah, al ; Save a copy in high byte
 and al, 00001111y ; Mask out top character
 xlat ; Translate
 mov key[1], al ; Store the character
 mov cl, 12 ; Load shift count
 shr ax, cl ; Shift high char into position
 xlat ; Translate
 mov key, al ; Store the character
 mov dx, OFFSET convert ; Load message
 mov ah, 9 ; Display character
 int 21h ; Call DOS

Although AL cannot contain an index value greater than 255, you can use XLAT with arrays containing
more than 256 elements. Simply treat each 256-byte block of the array as a smaller sub-array. For
example, to retrieve the 260th element of an array, add 256 to BX and set AL=3 (260-256-1).

Structures and Unions

A structure is a group of possibly dissimilar data types and variables that can be accessed as a unit or
by any of its components. The fields within the structure can have different sizes and data types.

Unions are identical to structures, except that the fields of a union overlap in memory, which allows
you to define different data formats for the same memory space. Unions can store different types of
data depending on the situation. They also can store data as one data type and retrieve it as another
data type.

Whereas each field in a structure has an offset relative to the first byte of the structure, all the fields in
a union start at the same offset. The size of a structure is the sum of its components; the size of a
union is the length of the longest field.

A MASM structure is similar to a struct in the C language, a STRUCTURE in FORTRAN, and a
RECORD in Pascal. Unions in MASM are similar to unions in C and FORTRAN, and to variant records
in Pascal.

Follow these steps when using structures and unions:

 1. Declare a structure (or union) type.

 2. Define one or more variables having that type.

Structures and Unions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 95

 3. Reference the fields directly or indirectly with the field (dot) operator.

You can use the entire structure or union variable or just the individual fields as operands in assembler
statements. This section explains the allocating, initializing, and nesting of structures and unions.

MASM 6.1 extends the functionality of structures and also makes some changes to MASM 5.1
behavior. If you prefer, you can retain MASM 5.1 behavior by specifying OPTION OLDSTRUCTS in
your program.

Declaring Structure and Union Types

When you declare a structure or union type, you create a template for data. The template states the
sizes and, optionally, the initial values in the structure or union, but allocates no memory.

The STRUCT keyword marks the beginning of a type declaration for a structure. (STRUCT and STRUC
are synonyms.) The format for STRUCT and UNION type declarations is:

name {STRUCT | UNION} [[alignment]] [[,NONUNIQUE]]
fielddeclarations
name ENDS

The fielddeclarations is a series of one or more variable declarations. You can declare default initial
values individually or with the DUP operator. (See “Defining Structure and Union Variables,” following.)
“Referencing Structures, Unions, and Fields,” later in this chapter, explains the NONUNIQUE keyword.
You can nest structures and unions, as explained in “Nested Structures and Unions,” also later in this
chapter.

Initializing Fields

If you provide initializers for the fields of a structure or union when you declare the type, these
initializers become the default value for the fields when you define a variable of that type. “Defining
Structure and Union Variables,” following, explains default initializers.

When you initialize the fields of a union type, the type and value of the first field become the default
value and type for the union. In this example of an initialized union declaration, the default type for the
union is DWORD:

DWB UNION
 d DWORD 00FFh
 w WORD ?
 b BYTE ?
DWB ENDS

If the size of the first member is less than the size of the union, the assembler initializes the rest of the
union to zeros. When initializing strings in a type, make sure the initial values are long enough to
accommodate the largest possible string.

Field Names

Structure and union field names must be unique within a nesting level because they represent the
offset from the beginning of the structure to the corresponding field.

A label elsewhere in the code may have the same name as a structure field, but a text macro cannot.
Also, field names between structures need not be unique. Field names must be unique if you place
OPTION M510 or OPTION OLDSTRUCTS in your code or use the /Zm option from the command line,
since versions of MASM prior to 6.0 require unique field names. (See Appendix A.)

Declaring Structure and Union Types
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 96

Alignment Value and Offsets for Structures

Data access to structures is faster on aligned fields than on unaligned fields. Therefore, alignment
gains speed at the cost of space. Alignment improves access on 16-bit and 32-bit processors but
makes no difference in programs executing on an 8-bit 8088 processor.

The way the assembler aligns structure fields determines the amount of space required to store a
variable of that type. Each field in a structure has an offset relative to 0. If you specify an alignment in
the structure declaration (or with the /Zpn command-line option), the offset for each field may be
modified by the alignment (or n).

The only values accepted for alignment are 1, 2, and 4. The default is 1. If the type declaration includes
an alignment, each field is aligned to either the field’s size or the alignment value, whichever is less. If
the field size in bytes is greater than the alignment value, the field is padded so that its offset is evenly
divisible by the alignment value. Otherwise, the field is padded so that its offset is evenly divisible by
the field size.

Any padding required to reach the correct offset for the field is added prior to allocating the field. The
padding consists of zeros and always precedes the aligned field. The size of the structure must also
be evenly divisible by the structure alignment value, so zeros may be added at the end of the structure.

If neither the alignment nor the /Zp command-line option is used, the offset is incremented by the size
of each data directive. This is the same as a default alignment equal to 1. The alignment specified in
the type declaration overrides the /Zp command-line option.

These examples show how the assembler determines offsets:

STUDENT2 STRUCT 2 ; Alignment value is 2
 score WORD 1 ; Offset = 0
 id BYTE 2 ; Offset = 2 (1 byte padding added)
 year DWORD 3 ; Offset = 4
 sname BYTE 4 ; Offset = 8 (1 byte padding added)
STUDENT2 ENDS

One byte of padding is added at the end of the first byte-sized field. Otherwise, the offset of the year
field would be 3, which is not divisible by the alignment value of 2. The size of this structure is now 9
bytes. Since 9 is not evenly divisible by 2, 1 byte of padding is added at the end of student2.

STUDENT4 STRUCT 4 ; Alignment value is 4
 sname BYTE 1 ; Offset = 0 (1 byte padding added)
 score WORD 10 DUP (100) ; Offset = 2
 year BYTE 2 ; Offset = 22 (1 byte padding
 ; added so offset of next field
 ; is divisible by 4)
 id DWORD 3 ; Offset = 24
STUDENT4 ENDS

The alignment value affects the alignment of structure variables, so adding an alignment value affects
memory usage. This feature provides compatibility with structures in Microsoft C. MASM 6.1 provides
an improved H2INC utility, which C programmers can use to translate C structures to assembly. (See
Environment and Tools, Chapter 20.)

The ALIGN, EVEN, and ORG directives can modify how field offsets are placed during structure
definition. The EVEN and ALIGN directives insert padding bytes to round the field offset up to the
specified alignment boundary. The ORG directive changes the offset of the next field to a given value,
either positive or negative. If you use ORG when declaring a structure, you cannot define a structure of
that type. ORG is useful when accessing existing data structures, such as a stack frame created by a
high-level language.

Declaring Structure and Union Types
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 97

Defining Structure and Union Variables

Once you have declared a structure or union type, you can define variables of that type. For each
variable defined, memory is allocated in the current segment in the format declared by the type. The
syntax for defining a structure or union variable is:

[[name]] typename < [[initializer [[,initializer]]...]] >

[[name]] typename { [[initializer [[,initializer]]...]] }

[[name]] typename constant DUP ({ [[initializer [[,initializer]]...]] })

The name is the label assigned to the variable. If you do not provide a name, the assembler allocates
space for the variable but does not give it a symbolic name. The typename is the name of a previously
declared structure or union type.

You can give an initializer for each field. Each initializer must correspond in type with the field defined
in the type declaration. For unions, the type of the initializer must be the same as the type for the first
field. An initialization list can also use the DUP operator.

The list of initializers can be broken only after a comma unless you end the line with a continuation
character (\). The last curly brace or angle bracket must appear on the same line as the last initializer.
You can also use the line continuation character to extend a line as shown in the Item4 declaration
that follows. Angle brackets and curly braces can be intermixed in an initialization as long as they
match. This example illustrates the options for initializing lists in structures of type ITEMS:

ITEMS STRUCT
 Iname BYTE 'Item Name'
 Inum WORD ?
 UNION ITYPE ; UNION keyword appears first
 oldtype BYTE 0 ; when nested in structure.
 newtype WORD ? ; (See "Nested Structures
 ENDS ; and Unions," following).
ITEMS ENDS
 .
 .
 .
 .DATA
Item1 ITEMS < > ; Accepts default initializers
Item2 ITEMS { } ; Accepts default initializers
Item3 ITEMS <'Bolts', 126> ; Overrides default value of first
 ; 2 fields; use default of
 ; the third field
Item4 ITEMS { \
 'Bolts', ; Item name
 126 \ ; Part number
 }

The example defines — that is, allocates space for — four structures of the ITEMS type. The
structures are named Item1 through Item4. Each definition requires the angle brackets or curly
braces even when not initialized. If you initialize more than one field, separate the values with commas,
as shown in Item3 and Item4.

You need not initialize all fields in a structure. If a field is blank, the assembler uses the structure’s
initial value given for that field in the declaration. If there is no default value, the field value is left
unspecified.

For nested structures or unions, however, these are equivalent:

Defining Structure and Union Variables
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 98

Item5 ITEMS {'Bolts', , }
Item6 ITEMS {'Bolts', , { } }

A variable and an array of union type WB look like this:

WB UNION
 w WORD ?
 b BYTE ?
WB ENDS

num WB {0Fh} ; Store 0Fh
array WB (40 / SIZEOF WB) DUP ({2}) ; Allocates and
 ; initializes 20 unions

Arrays as Field Initializers

The size of the initializer determines the length of the array that can override the contents of a field in a
variable definition. The override cannot contain more elements than the default. Specifying fewer
override array elements changes the first n values of the default where n is the number of values in the
override. The rest of the array elements take their default values from the initializer.

Strings as Field Initializers

If the override is shorter, the assembler pads the override with spaces to equal the length of the
initializer. If the initializer is a string and the override value is not a string, the override value must be
enclosed in angle brackets or curly braces.

A string can override any member of type BYTE (or SBYTE). You need not enclose the string in angle
brackets or curly braces unless mixed with other override methods.

If a structure has an initialized string field or an array of bytes, any new string assigned to a variable of
the field that is smaller than the default is padded with spaces. The assembler adds four spaces at the
end of 'Bolts' in the variables of type ITEMS previously shown. The Iname field in the ITEMS
structure cannot contain a field initializer longer than 'Item Name'.

Structures as Field Initializers

Initializers for structure variables must be enclosed in curly braces or angle brackets, but you can
specify overrides with fewer elements than the defaults.

This example illustrates the use of default values with structures as field
initializers:

DISKDRIVES STRUCT
 a1 BYTE ?
 b1 BYTE ?
 c1 BYTE ?
DISKDRIVES ENDS

INFO STRUCT
 buffer BYTE 100 DUP (?)

Defining Structure and Union Variables
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 99

 query BYTE 'Filename: ' ; String <= can override
 endmark BYTE 36
 drives DISKDRIVES <0, 1, 1>
INFO ENDS

info1 INFO { , , 'Dir' }

; Next line illegal since name in query field is too long:
; info2 INFO {"TESTFILE", , "DirectoryName"}

lotsof INFO { , , 'file1', , {0,0,0} },
 { , , 'file2', , {0,0,1} },
 { , , 'file3', , {0,0,2} }

The following diagram shows how the assembler stores info1.

The initialization for drives gives default values for all three fields of the structure. The fields left blank
in info1 use the default values for those fields. The info2 declaration is illegal because
“DirectoryName” is longer than the initial string for that field.

Arrays of Structures and Unions

You can define an array of structures using the DUP operator (see “Declaring and Referencing Arrays,”
earlier in this chapter) or by creating a list of structures. For example, you can define an array of
structure variables like this:

Item7 ITEMS 30 DUP ({,,{10}})

The Item7 array defined here has 30 elements of type ITEMS, with the third field of each element (the
union) initialized to 10.

You can also list array elements as shown in the following example.

Item8 ITEMS {'Bolts', 126, 10},
 {'Pliers',139, 10},
 {'Saws', 414, 10}

Redeclaring a Structure

The assembler generates an error when you declare a structure more than once unless the following
are the same:

• Field names

• Offsets of named fields

Defining Structure and Union Variables
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 100

• Initialization lists

• Field alignment value

LENGTHOF, SIZEOF, and TYPE for Structures

The size of a structure determined by SIZEOF is the offset of the last field, plus the size of the last
field, plus any padding required for proper alignment. (For information about alignment, see “Declaring
Structure and Union Types,” earlier in this chapter.)

This example, using the preceding data declarations, shows how to use the LENGTHOF, SIZEOF, and
TYPE operators with structures.

INFO STRUCT
 buffer BYTE 100 DUP (?)
 crlf BYTE 13, 10
 query BYTE 'Filename: '
 endmark BYTE 36
 drives DISKDRIVES <0, 1, 1>
INFO ENDS

info1 INFO { , , 'Dir' }
lotsof INFO { , , 'file1', , {0,0,0} },
 { , , 'file2', , {0,0,1} },
 { , , 'file3', , {0,0,2} }

sinfo1 EQU SIZEOF info1 ; 116 = number of bytes in
 ; initializers
linfo1 EQU LENGTHOF info1 ; 1 = number of items
tinfo1 EQU TYPE info1 ; 116 = same as size

slotsof EQU SIZEOF lotsof ; 116 * 3 = number of bytes in
 ; initializers
llotsof EQU LENGTHOF lotsof ; 3 = number of items
tlotsof EQU TYPE lotsof ; 116 = same as size for structure
 ; of type INFO

LENGTHOF, SIZEOF, and TYPE for Unions

The size of a union determined by SIZEOF is the size of the longest field plus any padding required.
The length of a union variable determined by LENGTHOF equals the number of initializers defined
inside angle brackets or curly braces. TYPE returns a value indicating the type of the longest field.

DWB UNION
 d DWORD ?
 w WORD ?
 b BYTE ?
DWB ENDS

num DWB {0FFFFh}
array DWB (100 / SIZEOF DWB) DUP ({0})

snum EQU SIZEOF num ; = 4
lnum EQU LENGTHOF num ; = 1
tnum EQU TYPE num ; = 4
sarray EQU SIZEOF array ; = 100 (4*25)
larray EQU LENGTHOF array ; = 25
tarray EQU TYPE array ; = 4

Referencing Structures, Unions, and Fields
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 101

Referencing Structures, Unions, and Fields

Like other variables, structure variables can be accessed by name. You can access fields within
structure variables with this syntax:

variable. field

References to fields must always be fully qualified, with the structure or union names and the dot
operator preceding the field name. The assembler requires that you use the dot operator only with
structure fields, not as an alternative to the plus operator; nor can you use the plus operator as an
alternative to the dot operator.

The following example shows several ways to reference the fields of a structure of type DATE.

DATE STRUCT ; Defines structure type
 month BYTE ?
 day BYTE ?
 year WORD ?
DATE ENDS

yesterday DATE {1, 20, 1993} ; Declare structure
 ; variable
 .
 .
 .
 mov al, yesterday.day ; Use structure variables
 mov bx, OFFSET yesterday ; Load structure address
 mov al, (DATE PTR [bx]).month ; Use as indirect operand
 mov al, [bx].date.month ; This is necessary only if
 ; month is already a
 ; field in a different
 ; structure

Under OPTION M510 or OPTION OLDSTRUCTS, unique structure names do not need to be qualified.
However, if the NONUNIQUE keyword appears in a structure definition, all fields of the structure must
be fully qualified when referenced, even if the OPTION OLDSTRUCTS directive appears in the code.
Also, you must qualify all references to a field. (For information on the OPTION directive, see Chapter
1.)

Even if the initialized union is the size of a WORD or DWORD, members of structures or unions are
accessible only through the field’s names.

In the following example, the two MOV statements show how you can access the elements of an array
of unions.

WB UNION
 w WORD ?
 b BYTE ?
WB ENDS

array WB (100 / SIZEOF WB) DUP ({0})

 mov array[12].w, 40h
 mov array[32].b, 2

Referencing Structures, Unions, and Fields
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 102

As the preceding code illustrates, you can use unions to access the same data in more than one
form. One application of structures and unions is to simplify the task of reinitializing a far pointer. For a
far pointer declared as

FPWORD TYPEDEF FAR PTR WORD

 .DATA
WordPtr FPWORD ?

you must follow these steps to point WordPtr to a word value named ThisWord in the current data
segment.

 mov WORD PTR WordPtr[2], ds
 mov WORD PTR WordPtr, OFFSET ThisWord

The preceding method requires that you remember whether the segment or the offset is stored first.
However, if your program declares a union like this:

uptr UNION
 dwptr FPWORD 0
 STRUCT
 offs WORD 0
 segm WORD 0
 ENDS
uptr ENDS

You can initialize a far pointer with these steps:

 .DATA
WrdPtr2 uptr <>
 .
 .
 .
 mov WrdPtr2.segm, ds
 mov WrdPtr2.offs, OFFSET ThisWord

This code moves the segment and the offset into the pointer and then moves the pointer into a register
with the other field of the union. Although this technique does not reduce the code size, it avoids
confusion about the order for loading the segment and offset.

Nested Structures and Unions

You can nest structures and unions in several ways. This section explains how to refer to the fields in
a nested structure or union. The following example illustrates the four techniques for nesting, and how
to reference the fields. Note the syntax for nested structures. The techniques are reviewed following
the example.

ITEMS STRUCT
 Inum WORD ?
 Iname BYTE 'Item Name'
ITEMS ENDS

INVENTORY STRUCT
 UpDate WORD ?
 oldItem ITEMS { \
 100,
 'AF8' \ ; Named variable of

Nested Structures and Unions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 103

 ITEMS { ?, '94C' } ; Unnamed variable of
 ; existing type
 STRUCT ups ; Named nested structure
 source WORD ?
 shipmode BYTE ?
 ENDS
 STRUCT ; Unnamed nested structure
 f1 WORD ?
 f2 WORD ?
 ENDS
INVENTORY ENDS

 .DATA

yearly INVENTORY { }
; Referencing each type of data in the yearly structure:

 mov ax, yearly.oldItem.Inum
 mov yearly.ups.shipmode, 'A'
 mov yearly.Inum, 'C'
 mov ax, yearly.f1

To nest structures and unions, you can use any of these techniques:

• The field of a structure or union can be a named variable of an existing structure or union type, as
in the oldItem field. Because INVENTORY contains two structures of type ITEMS , the field
names in oldItem are not unique. Therefore, you must use the full field names when referencing
those fields, as in the statement

 mov ax, yearly.oldItem.Inum

• To declare a named structure or union inside another structure or union, give the STRUCT or
UNION keyword first and then define a label for it. Fields of the nested structure or union must
always be qualified:

 mov yearly.ups.shipmode, 'A'

• As shown in the Items field of Inventory, you also can use unnamed variables of existing
structures or unions inside another structure or union. In these cases, you can reference fields
directly:

 mov yearly.Inum, 'C'
 mov ax, yearly.f1

Records

Records are similar to structures, except that fields in records are bit strings. Each bit field in a record
variable can be used separately in constant operands or expressions. The processor cannot access
bits individually at run time, but it can access bit fields with instructions that manipulate bits.

Records are bytes, words, or doublewords in which the individual bits or groups of bits are considered
fields. In general, the three steps for using record variables are the same as those for using other
complex data types:

 1. Declare a record type.

 2. Define one or more variables having the record type.

 3. Reference record variables using shifts and masks.

Records
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 104

Once it is defined, you can use the record variable as an operand in assembler statements.

This section explains the record declaration syntax and the use of the MASK and WIDTH operators. It
also shows some applications of record variables and constants.

Declaring Record Types

A record type creates a template for data with the sizes and, optionally, the initial values for bit fields
in the record. It does not allocate memory space for the
record.

The RECORD directive declares a record type for an 8-bit, 16-bit, or 32-bit record that contains one or
more bit fields. The maximum size is based on the expression word size. See OPTION EXPR16 and
OPTION EXPR32 in Chapter 1. The syntax is:

recordname RECORD field [[, field]]...

The field declares the name, width, and initial value for the field. The syntax for each field is:

fieldname:width[[=expression]]

Global labels, macro names, and record field names must all be unique, but record field names can
have the same names as structure field names. Width is the number of bits in the field, and expression
is a constant giving the initial (or default) value for the field. Record definitions can span more than one
line if the continued lines end with commas.

If expression is given, it declares the initial value for the field. The assembler generates an error
message if an initial value is too large for the width of its field.

The first field in the declaration always goes into the most significant bits of the record. Subsequent
fields are placed to the right in the succeeding bits. If the fields do not total exactly 8, 16, or 32 bits as
appropriate, the entire record is shifted right, so the last bit of the last field is the lowest bit of the
record. Unused bits in the high end of the record are initialized to 0.

The following example creates a byte record type COLOR having four fields: blink, back, intense,
and fore. The contents of the record type are shown after the example. Since no initial values are
given, all bits are set to 0. Note that this is only a template maintained by the assembler. It allocates
no space in the data segment.

COLOR RECORD blink:1, back:3, intense:1, fore:3

The next example creates a record type CW that has six fields. Each record declared with this type
occupies 16 bits of memory. Initial (default) values are given for each field. You can use them when
declaring data for the record. The bit diagram after the example shows the contents of the record type.

CW RECORD r1:3=0, ic:1=0, rc:2=0, pc:2=3, r2:2=1, masks:6=63

Declaring Record Types
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 105

Defining Record Variables

Once you have declared a record type, you can define record variables of that type. For each variable,
the assembler allocates memory in the format declared by the type. The syntax is:

[[name]] recordname <[[initializer [[,initializer]]...]] >

[[name]] recordname { [[initializer [[,initializer]]...]] }

[[name]] recordname constant DUP ([[initializer [[,initializer]]...]])

The recordname is the name of a record type previously declared with the RECORD directive.

A fieldlist for each field in the record can be a list of integers, character constants, or expressions that
correspond to a value compatible with the size of the field. You must include curly braces or angle
brackets even when you do not specify an initial value.

If you use the DUP operator (see “Declaring and Referencing Arrays,” earlier in this chapter) to
initialize multiple record variables, only the angle brackets and any initial values need to be enclosed in
parentheses. For example, you can define an array of record variables with

xmas COLOR 50 DUP (<1, 2, 0, 4>)

You do not have to initialize all fields in a record. If an initial value is blank, the assembler
automatically stores the default initial value of the field. If there is no default value, the assembler
clears each bit in the field.

The definition in the following example creates a variable named warning whose type is given by the
record type COLOR. The initial values of the fields in the variable are set to the values given in the
record definition. The initial values override any default record values given in the declaration.

COLOR RECORD blink:1,back:3,intense:1,fore:3 ; Record
 ; declaration
warning COLOR <1, 0, 1, 4> ; Record
 ; definition

Defining Record Variables
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 106

LENGTHOF, SIZEOF, and TYPE with Records

The SIZEOF and TYPE operators applied to a record name return the number of bytes used by the
record. SIZEOF returns the number of bytes a record variable occupies. You cannot use LENGTHOF
with a record declaration, but you can use it with defined record variables. LENGTHOF returns the
number of records in an array of records, or 1 for a single record variable. The following example
illustrates these points.

; Record definition
; 9 bits stored in 2 bytes
RGBCOLOR RECORD red:3, green:3, blue:3

 mov ax, RGBCOLOR ; Equivalent to "mov ax, 01FFh"
; mov ax, LENGTHOF RGBCOLOR ; Illegal since LENGTHOF can
 ; apply only to data label
 mov ax, SIZEOF RGBCOLOR ; Equivalent to "mov ax, 2"
 mov ax, TYPE RGBCOLOR ; Equivalent to "mov ax, 2"

; Record instance
; 8 bits stored in 1 byte
RGBCOLOR2 RECORD red:3, green:3, blue:2
rgb RGBCOLOR2 <1, 1, 1> ; Initialize to 00100101y

 mov ax, RGBCOLOR2 ; Equivalent to
 ; "mov ax, 00FFh"
 mov ax, LENGTHOF rgb ; Equivalent to "mov ax, 1"
 mov ax, SIZEOF rgb ; Equivalent to "mov ax, 1"
 mov ax, TYPE rgb ; Equivalent to "mov ax, 1"

Record Operators

The WIDTH operator (used only with records) returns the width in bits of a record or record field. The
MASK operator returns a bit mask for the bit positions occupied by the given record field. A bit in the
mask contains a 1 if that bit corresponds to a bit field. The following example shows how to use MASK
and WIDTH.

 .DATA
COLOR RECORD blink:1, back:3, intense:1, fore:3
message COLOR <1, 5, 1, 1>
wblink EQU WIDTH blink ; "wblink" = 1
wback EQU WIDTH back ; "wback" = 3
wintens EQU WIDTH intense ; "wintens" = 1
wfore EQU WIDTH fore ; "wfore" = 3
wcolor EQU WIDTH COLOR ; "wcolor" = 8

Record Operators
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 107

 .
 .
 .
 mov ah, message ; Load initial 1101 1001
 and ah, NOT MASK back ; Turn off AND 1000 1111
 ; "back" ---------
 ; 1000 1001
 or ah, MASK blink ; Turn on OR 1000 0000
 ; "blink" ---------
 ; 1000 1001
 xor ah, MASK intense ; Toggle XOR 0000 1000
 ; "intense" ---------
 ; 1000 0001

 IF (WIDTH COLOR) GT 8 ; If color is 16 bit, load
 mov ax, message ; into 16-bit register
 ELSE ; else
 mov al, message ; load into low 8-bit register
 xor ah, ah ; and clear high 8-bits
 ENDIF

The example continues by illustrating several ways in which record fields can serve as operands and
expressions:

; Rotate "back" of "message" without changing other values

mov al, message ; Load value from memory
mov ah, al ; Save a copy for work 1101 1001=ah/al
and al, NOT MASK back; Mask out old bits AND 1000 1111=mask
 ; to save old message ---------
 ; 1000 1001=al
mov cl, back ; Load bit position
shr ah, cl ; Shift to right 0000 1101=ah
inc ah ; Increment 0000 1110=ah

shl ah, cl ; Shift left again 1110 0000=ah
and ah, MASK back ; Mask off extra bits AND 0111 0000=mask
 ; to get new message ---------
 ; 0110 0000 ah
or ah, al ; Combine old and new OR 1000 1001 al
 ; ---------
mov message, ah ; Write back to memory 1110 1001 ah

Record variables are often used with the logical operators to perform logical operations on the bit fields
of the record, as in the previous example using the MASK operator.

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers

MASM requires different techniques for handling floating-point (real) numbers and binary coded decimal
(BCD) numbers than for handling integers. You have two choices for working with real numbers — a
math coprocessor or emulation routines.

Math coprocessors — the 8087, 80287, and 80387 chips — work with the main processor to handle
real-number calculations. The 80486 processor performs
floating-point operations directly. All information in this chapter pertaining to the 80387 coprocessor
applies to the 80486DX processor as well. It does not apply to the 80486SX, which does not provide an
on-chip coprocessor.

Chapter 6 Using Floating-Point and Binary Coded Decimal Numbers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 108

This chapter begins with a summary of the directives and formats of floating-point data that you need
to allocate memory storage and initialize variables before you can work with floating-point numbers.

The chapter then explains how to use a math coprocessor for floating-point operations. It covers:

• The architecture of the registers.

• The operands for the coprocessor instruction formats.

• The coordination of coprocessor and main processor memory access.

• The basic groups of coprocessor instructions — for loading and storing data, doing arithmetic
calculations, and controlling program flow.

The next main section describes emulation libraries. The emulation routines provided with all Microsoft
high-level languages enable you to use coprocessor instructions as though your computer had a math
coprocessor. However, some coprocessor instructions are not handled by emulation, as this section
explains.

Finally, because math coprocessor and emulation routines can also operate on BCD numbers, this
chapter includes the instruction set for these numbers.

Using Floating-Point Numbers

Before using floating-point data in your program, you need to allocate the memory storage for the data.
You can then initialize variables either as real numbers in decimal form or as encoded hexadecimals.
The assembler stores allocated data in 10-byte IEEE format. This section covers floating-point
declarations and floating-point data formats.

Declaring Floating-Point Variables and Constants

You can allocate real constants using the REAL4, REAL8, and REAL10 directives. These directives
allocate the following floating-point numbers:

Directive Size

REAL4 Short (32-bit) real numbers

REAL8 Long (64-bit) real numbers

REAL10 10-byte (80-bit) real numbers and BCD numbers

Table 6.1 lists the possible ranges for floating-point variables. The number of significant digits can vary
in an arithmetic operation as the least-significant digit may be lost through rounding errors. This occurs
regularly for short and long real numbers, so you should assume the lesser value of significant digits
shown in Table 6.1. Ten-byte real numbers are much less susceptible to rounding errors for reasons
described in the next section. However, under certain circumstances, 10-byte real operations can have
a precision of only 18 digits.

Table 6.1 Ranges of Floating-Point Variables

Data Type Bits
Significant Digits

Approximate Range

Short real 32 6–7 1.18 x 10-38 to 3.40 x 1038

Long real 64 15–16 2.23 x 10-308 to 1.79 x 10308

10-byte real 80 19 3.37 x 10-4932 to 1.18 x 104932

Declaring Floating-Point Variables and Constants
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 109

With versions of MASM prior to 6.0, the DD, DQ, and DT directives could allocate real constants.
MASM 6.1 still supports these directives, but the variables are integers rather than floating-point
values. Although this makes no difference in the assembly code, CodeView displays the values
incorrectly.

You can specify floating-point constants either as decimal constants or as encoded hexadecimal
constants. You can express decimal real-number constants in the form:

[[+ | –]] integer[[fraction]][[E[[+ | –]]exponent]]

For example, the numbers 2.523E1 and -3.6E-2 are written in the correct decimal format. You can
use these numbers as initializers for real-number
variables.

The assembler always evaluates digits of real numbers as base 10. It converts real-number constants
given in decimal format to a binary format. The sign, exponent, and decimal part of the real number are
encoded as bit fields within the number.

You can also specify the encoded format directly with hexadecimal digits (0–9 plus A–F). The number
must begin with a decimal digit (0–9) and end with the real-number designator (R). It cannot be signed.
For example, the hexadecimal number 3F800000r can serve as an initializer for a doubleword-sized
variable.

The maximum range of exponent values and the number of digits required in the hexadecimal number
depend on the directive. The number of digits for encoded numbers used with REAL4, REAL8, and
REAL10 must be 8, 16, and 20 digits, respectively. If the number has a leading zero, the number must
be 9, 17, or 21 digits.

Examples of decimal constant and hexadecimal specifications are shown here:

; Real numbers
short REAL4 25.23 ; IEEE format
double REAL8 2.523E1 ; IEEE format
tenbyte REAL10 2523.0E-2 ; 10-byte real format

; Encoded as hexadecimals
ieeeshort REAL4 3F800000r ; 1.0 as IEEE short
ieeedouble REAL8 3FF0000000000000r ; 1.0 as IEEE long
temporary REAL10 3FFF8000000000000000r ; 1.0 as 10-byte
 ; real

The section “Storing Numbers in Floating-Point Format,” following, explains the IEEE formats — the
way the assembler actually stores the data.

Pascal or C programmers may prefer to create language-specific TYPEDEF declarations, as illustrated
in this example:

; C-language specific
float TYPEDEF REAL4
double TYPEDEF REAL8
long_double TYPEDEF REAL10
; Pascal-language specific
SINGLE TYPEDEF REAL4
DOUBLE TYPEDEF REAL8
EXTENDED TYPEDEF REAL10

For applications of TYPEDEF, see “Defining Pointer Types with TYPEDEF,” page 75.

Storing Numbers in Floating-Point Format
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 110

Storing Numbers in Floating-Point Format

The assembler stores floating-point variables in the IEEE format. MASM 6.1 does not support
.MSFLOAT and Microsoft binary format, which are available in version 5.1 and earlier. Figure 6.1
illustrates the IEEE format for encoding short (4-byte), long (8-byte), and 10-byte real numbers.
Although this figure places the most significant bit first for illustration, low bytes actually appear first in
memory.

Storing Numbers in Floating-Point Format
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 111

Storing Numbers in Floating-Point Format
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 112

Figure 6.1 Encoding for Real Numbers in IEEE Format

The following list explains how the parts of a real number are stored in the IEEE format. Each item in
the list refers to an item in Figure 6.1.

• Sign bit (0 for positive or 1 for negative) in the upper bit of the first byte.

• Exponent in the next bits in sequence (8 bits for a short real number, 11 bits for a long real
number, and 15 bits for a 10-byte real number).

• The integer part of the significand in bit 63 for the 10-byte real format. By absorbing carry values,
this bit allows 10-byte real operations to preserve precision to 19 digits. The integer part is always
1 in short and long real numbers; consequently, these formats do not provide a bit for the integer,
since there is no point in storing it.

• Decimal part of the significand in the remaining bits. The length is 23 bits for short real numbers,
52 bits for long real numbers, and 63 bits for 10-byte real numbers.

The exponent field represents a multiplier 2n. To accommodate negative exponents (such as 2-6), the
value in the exponent field is biased; that is, the actual exponent is determined by subtracting the
appropriate bias value from the value in the exponent field. For example, the bias for short real
numbers is 127. If the value in the exponent field is 130, the exponent represents a value of 2130-127, or
23. The bias for long real numbers is 1,023. The bias for 10-byte real numbers is 16,383.

Once you have declared floating-point data for your program, you can use coprocessor or emulator
instructions to access the data. The next section focuses on the coprocessor architecture,
instructions, and operands required for floating-point operations.

Using a Math Coprocessor

When used with real numbers, packed BCD numbers, or long integers, coprocessors (the 8087,
80287, 80387, and 80486) calculate many times faster than the 8086-based processors. The
coprocessor handles data with its own registers. The organization of these registers can be one of the
four formats for using operands explained in “Instruction and Operand Formats,” later in this section.

This section describes how the coprocessor transfers data to and from the coprocessor, coordinates
processor and coprocessor operations, and controls program flow.

Coprocessor Architecture

The coprocessor accesses memory as the CPU does, but it has its own data and control registers —
eight data registers organized as a stack and seven control registers similar to the 8086 flag registers.
The coprocessor’s instruction set provides direct access to these registers.

The eight 80-bit data registers of the 8087-based coprocessors are organized as a stack, although
they need not be used as a stack. As data items are pushed into the top register, previous data items
move into higher-numbered registers, which are lower on the stack. Register 0 is the top of the stack;
register 7 is the bottom. The syntax for specifying registers is:

ST [[(number)]]

The number must be a digit between 0 and 7 or a constant expression that evaluates to a number from
0 to 7. ST is another way to refer to ST(0).

All coprocessor data is stored in registers in the 10-byte real format. The registers and the register

Coprocessor Architecture
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 113

format are shown in Figure 6.2.

Figure 6.2 Coprocessor Data Registers

Internally, all calculations are done on numbers of the same type. Since 10-byte real numbers have the
greatest precision, lower-precision numbers are guaranteed not to lose precision as a result of
calculations. The instructions that transfer values between the main memory and the coprocessor
automatically convert numbers to and from the 10-byte real format.

Instruction and Operand Formats

Because of the stack organization of registers, you can consider registers either as elements on a
stack or as registers much like 8086-family registers. Table 6.2 lists the four main groups of
coprocessor instructions and the general syntax for each. The names given to the instruction format
reflect the way the instruction uses the coprocessor registers. The instruction operands are placed in
the coprocessor data registers before the instruction executes.

Table 6.2 Coprocessor Operand Formats

Instruction
Format Syntax

Implied
Operands Example

Classical stack Finstruction ST, ST(1) fadd
Memory Finstruction memory ST fadd memloc
Register Finstruction ST(num), ST

Finstruction ST, ST(num)

 — fadd st(5), st
fadd st, st(3)

Register pop FinstructionP ST(num), ST — faddp st(4), st
You can easily recognize coprocessor instructions because, unlike all 8086-family instruction
mnemonics, they start with the letter F. Coprocessor instructions can never have immediate operands

Instruction and Operand Formats
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 114

and, with the exception of the FSTSW instruction, they cannot have processor registers as operands.

Classical-Stack Format

Instructions in the classical-stack format treat the coprocessor registers like items on a stack — thus
its name. Items are pushed onto or popped off the top elements of the stack. Since only the top item
can be accessed on a traditional stack, there is no need to specify operands. The first (top) register
(and the second, if the instruction needs two operands) is always assumed.

ST (the top of the stack) is the source operand in coprocessor arithmetic operations. ST(1), the
second register, is the destination. The result of the operation replaces the destination operand, and
the source is popped off the stack. This leaves the result at the top of the stack.

The following example illustrates the classical-stack format; Figure 6.3 shows the status of the register
stack after each instruction.

 fld1 ; Push 1 into first position
 fldpi ; Push pi into first position
 fadd ; Add pi and 1 and pop

Figure 6.3 Status of the Register Stack

Memory Format

Instructions that use the memory format, such as data transfer instructions, also treat coprocessor
registers like items on a stack. However, with this format, items are pushed from memory onto the top
element of the stack, or popped from the top element to memory. You must specify the memory
operand.

Some instructions that use the memory format specify how a memory operand is to be interpreted —
as an integer (I) or as a binary coded decimal (B). The letter I or B follows the initial F in the syntax.
For example, FILD interprets its operand as an integer and FBLD interprets its operand as a BCD
number. If the instruction name does not include a type letter, the instruction works on real numbers.

You can also use memory operands in calculation instructions that operate on two values (see “Using
Coprocessor Instructions,” later in this section). The memory operand is always the source. The stack
top (ST) is always the implied destination.

The result of the operation replaces the destination without changing its stack position, as shown in
this example and in Figure 6.4:

 .DATA
m1 REAL4 1.0
m2 REAL4 2.0
 .CODE
 .

Instruction and Operand Formats
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 115

 .
 fld m1 ; Push m1 into first position
 fld m2 ; Push m2 into first position
 fadd m1 ; Add m2 to first position
 fstp m1 ; Pop first position into m1
 fst m2 ; Copy first position to m2

Figure 6.4 Status of the Register Stack and Memory Locations

Register Format

Instructions that use the register format treat coprocessor registers as registers rather than as stack
elements. Instructions that use this format require two register operands; one of them must be the
stack top (ST).

In the register format, specify all operands by name. The first operand is the destination; its value is
replaced with the result of the operation. The second operand is the source; it is not affected by the
operation. The stack positions of the operands do not change.

The only instructions that use the register operand format are the FXCH instruction and arithmetic
instructions for calculations on two values. With the FXCH instruction, the stack top is implied and
need not be specified, as shown in this example and in Figure 6.5:

 fadd st(1), st ; Add second position to first -
 ; result goes in second position
 fadd st, st(2) ; Add first position to third -
 ; result goes in first position
 fxch st(1) ; Exchange first and second positions

Instruction and Operand Formats
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 116

Figure 6.5 Status of the Previously Initialized Register Stack

Register-Pop Format

The register-pop format treats coprocessor registers as a modified stack. The source register must
always be the stack top. Specify the destination with the register’s name.

Instructions with this format place the result of the operation into the destination operand, and the top
pops off the stack. The register-pop format is used only for instructions for calculations on two values,
as in this example and in Figure 6.6:

 faddp st(2), st ; Add first and third positions and pop -
 ; first position destroyed;
 ; third moves to second and holds result

Figure 6.6 Status of the Already Initialized Register Stack

Coordinating Memory Access

The math coprocessor and main processor work simultaneously. However, since the coprocessor
cannot handle device input or output, data originates in the main processor.

The main processor and the coprocessor have their own registers, which are separate and
inaccessible to each other. They exchange data through memory, since memory is available to both.

When using the coprocessor, follow these three steps:

 1. Load data from memory to coprocessor registers.

 2. Process the data.

Coordinating Memory Access
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 117

 3. Store the data from coprocessor registers back to memory.

Step 2, processing the data, can occur while the main processor is handling other tasks. Steps 1 and
3 must be coordinated with the main processor so that the processor and coprocessor do not try to
access the same memory at the same time; otherwise, problems of coordinating memory access can
occur. Since the processor and coprocessor work independently, they may not finish working on
memory in the order in which you give instructions. The two potential timing conflicts that can occur
are handled in different ways.

One timing conflict results from a coprocessor instruction following a processor instruction. The
processor may have to wait until the coprocessor finishes if the next processor instruction requires the
result of the coprocessor’s calculation. You do not have to write your code to avoid this conflict,
however. The assembler coordinates this timing automatically for the 8088 and 8086 processors, and
the processor coordinates it automatically on the 80186–80486 processors. This is the case shown in
the first example that follows.

Another conflict results from a processor instruction that accesses memory following a coprocessor
instruction that accesses the same memory. The processor can try to load a variable that is still being
used by the coprocessor. You need careful synchronization to control the timing, and this
synchronization is not automatic on the 8087 coprocessor. For code to run correctly on the 8087, you
must include WAIT or FWAIT (mnemonics for the same instruction) to ensure that the coprocessor
finishes before the processor begins, as shown in the second example.

In this situation, the processor does not generate the FWAIT instruction automatically.

; Processor instruction first - No wait needed
 mov WORD PTR mem32[0], ax ; Load memory
 mov WORD PTR mem32[2], dx
 fild mem32 ; Load to register

; Coprocessor instruction first - Wait needed (for 8087)
 fist mem32 ; Store to memory
 fwait ; Wait until coprocessor
 ; is done
 mov ax, WORD PTR mem32[0] ; Move to register
 mov dx, WORD PTR mem32[2]

When generating code for the 8087 coprocessor, the assembler automatically inserts a WAIT
instruction before the coprocessor instruction. However, if you use the .286 or .386 directive, the
compiler assumes that the coprocessor instructions are for the 80287 or 80387 and does not insert the
WAIT instruction. If your code does not need to run on an 8086 or 8088 processor, you can make your
programs smaller and more efficient by using the .286 or .386 directive.

Using Coprocessor Instructions

The 8087 family of coprocessors has separate instructions for each of the following operations:

• Loading and storing data

• Doing arithmetic calculations

• Controlling program flow

The following sections explain the available instructions and show how to use them for each of these
operations. For general syntax information, see “Instruction and Operand Formats,” earlier in this
section.

Loading and Storing Data

Using Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 118

Data-transfer instructions copy data between main memory and the coprocessor registers or between
different coprocessor registers. Two principles govern data transfers:

• The choice of instruction determines whether a value in memory is considered an integer, a BCD
number, or a real number. The value is always considered a 10-byte real number once transferred
to the coprocessor.

• The size of the operand determines the size of a value in memory. Values in the coprocessor
always take up 10 bytes.

You can transfer data to stack registers using load commands. These commands push data onto the
stack from memory or from coprocessor registers. Store commands remove data. Some store
commands pop data off the register stack into memory or coprocessor registers; others simply copy
the data without changing it on the stack.

If you use constants as operands, you cannot load them directly into coprocessor registers. You must
allocate memory and initialize a variable to a constant value. That variable can then be loaded by using
one of the load instructions in the following list.

The math coprocessor offers a few special instructions for loading certain constants. You can load 0,
1, pi, and several common logarithmic values directly. Using these instructions is faster and often
more precise than loading the values from initialized variables.

All instructions that load constants have the stack top as the implied destination operand. The
constant to be loaded is the implied source operand.

The coprocessor data area, or parts of it, can also be moved to memory and later loaded back. You
may want to do this to save the current state of the coprocessor before executing a procedure. After
the procedure ends, restore the previous status. Saving coprocessor data is also useful when you want
to modify coprocessor behavior by writing certain data to main memory, operating on the data with
8086-family instructions, and then loading it back to the coprocessor data area.

Use the following instructions for transferring numbers to and from
registers:

Instruction(s) Description

FLD, FST, FSTP Loads and stores real numbers

FILD, FIST, FISTP Loads and stores binary integers

FBLD Loads BCD

FBSTP Stores BCD

FXCH Exchanges register values

FLDZ Pushes 0 into ST

FLD1 Pushes 1 into ST

FLDPI Pushes the value of pi into ST

FLDCW mem2byte Loads the control word into the coprocessor

F[[N]]STCW mem2byte Stores the control word in memory

FLDENV mem14byte Loads environment from memory

F[[N]]STENV mem14byte Stores environment in memory

Instruction(s) Description

FRSTOR mem94byte Restores state from memory

F[[N]]SAVE mem94byte Saves state in memory

FLDL2E Pushes the value of log2e into ST

FLDL2T Pushes log210 into ST

Using Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 119

FLDLG2 Pushes log102 into ST

FLDLN2 Pushes loge2 into ST

The following example and Figure 6.7 illustrate some of these instructions:

 .DATA
m1 REAL4 1.0
m2 REAL4 2.0
 .CODE
 fld m1 ; Push m1 into first item
 fld st(2) ; Push third item into first
 fst m2 ; Copy first item to m2
 fxch st(2) ; Exchange first and third items
 fstp m1 ; Pop first item into m1

Figure 6.7 Status of the Register Stack: Main Memory and Coprocessor

Doing Arithmetic Calculations

Most of the coprocessor instructions for arithmetic operations have several forms, depending on the
operand used. You do not need to specify the operand type in the

instruction if both operands are stack registers, since register values are always 10-byte real numbers.
In most of the arithmetic instructions listed here, the result replaces the destination register. The
instructions include:

Instruction Description

FADD Adds the source and destination

Using Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 120

FSUB Subtracts the source from the destination

FSUBR Subtracts the destination from the source

FMUL Multiplies the source and the destination

FDIV Divides the destination by the source

FDIVR Divides the source by the destination

FABS Sets the sign of ST to positive

FCHS Reverses the sign of ST

FRNDINT Rounds ST to an integer

FSQRT Replaces the contents of ST with its square root

FSCALE Multiplies the stack-top value by 2 to the power contained in ST(1)

FPREM Calculates the remainder of ST divided by ST(1)

80387 Only

Instruction Description

FSIN Calculates the sine of the value in ST

FCOS Calculates the cosine of the value in ST

FSINCOS Calculates the sine and cosine of the value in ST

FPREM1 Calculates the partial remainder by performing modulo division on the top two stack
registers

FXTRACT Breaks a number down into its exponent and mantissa and pushes the mantissa
onto the register stack

F2XM1 Calculates 2x–1

FYL2X Calculates Y * log2 X

FYL2XP1 Calculates Y * log2 (X+1)

FPTAN Calculates the tangent of the value in ST

FPATAN Calculates the arctangent of the ratio Y/X

F[[N]]INIT Resets the coprocessor and restores all the default conditions in the control and
status words

F[[N]]CLEX Clears all exception flags and the busy flag of the status word

FINCSTP Adds 1 to the stack pointer in the status word

FDECSTP Subtracts 1 from the stack pointer in the status word

FFREE Marks the specified register as empty

The following example illustrates several arithmetic instructions. The code solves quadratic equations,
but does no error checking and fails for some values because it attempts to find the square root of a
negative number. Both Help and the MATH.ASM sample file show a complete version of this
procedure. The complete form uses the FTST (Test for Zero) instruction to check for a negative number
or 0 before calculating the square root.

 .DATA
a REAL4 3.0
b REAL4 7.0
cc REAL4 2.0
posx REAL4 0.0
negx REAL4 0.0

 .CODE

Using Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 121

 .
 .
; Solve quadratic equation - no error checking
; The formula is: -b +/- squareroot(b2 - 4ac) / (2a)
 fld1 ; Get constants 2 and 4
 fadd st,st ; 2 at bottom
 fld st ; Copy it
 fmul a ; = 2a

 fmul st(1),st ; = 4a
 fxch ; Exchange
 fmul cc ; = 4ac

 fld b ; Load b
 fmul st,st ; = b2

 fsubr ; = b2 - 4ac
 ; Negative value here produces error
 fsqrt ; = square root(b2 - 4ac)
 fld b ; Load b
 fchs ; Make it negative
 fxch ; Exchange

 fld st ; Copy square root
 fadd st,st(2) ; Plus version = -b + root(b2 - 4ac)
 fxch ; Exchange
 fsubp st(2),st ; Minus version = -b - root(b2 - 4ac)

 fdiv st,st(2) ; Divide plus version
 fstp posx ; Store it
 fdivr ; Divide minus version
 fstp negx ; Store it

Controlling Program Flow

The math coprocessor has several instructions that set control flags in the status word. The
8087-family control flags can be used with conditional jumps to direct program flow in the same way
that 8086-family flags are used. Since the coprocessor does not have jump instructions, you must
transfer the status word to memory so that the flags can be used by 8086-family instructions.

An easy way to use the status word with conditional jumps is to move its upper byte into the lower
byte of the processor flags, as shown in this example:

 fstsw mem16 ; Store status word in memory
 fwait ; Make sure coprocessor is done
 mov ax, mem16 ; Move to AX
 sahf ; Store upper word in flags

The SAHF (Store AH into Flags) instruction in this example transfers AH into the low bits of the flags
register.

You can save several steps by loading the status word directly to AX on the 80287 with the FSTSW
and FNSTSW instructions. This is the only case in which data can be transferred directly between
processor and coprocessor registers, as shown in this example:

 fstsw ax

The coprocessor control flags and their relationship to the status word are described in “Control
Registers,” following.

The 8087-family coprocessors provide several instructions for comparing operands and testing control
flags. All these instructions compare the stack top (ST) to a source operand, which may either be

Using Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 122

specified or implied as ST(1).

The compare instructions affect the C3, C2, and C0 control flags, but not the C1 flag. Table 6.3 shows
the flags’ settings for each possible result of a comparison or test.

Table 6.3 Control-Flag Settings After Comparison or Test

After FCOM After FTEST C3 C2 C0

ST > source ST is positive 0 0 0

ST < source ST is negative 0 0 1

ST = source ST is 0 1 0 0

Not comparable ST is NAN or projective infinity 1 1 1

Variations on the compare instructions allow you to pop the stack once or twice and to compare
integers and zero. For each instruction, the stack top is always the implied destination operand. If you
do not give an operand, ST(1) is the
implied source. With some compare instructions, you can specify the source as
a memory or register operand.

All instructions summarized in the following list have implied operands: either ST as a
single-destination operand or ST as the destination and ST(1) as the source. Each instruction in the
list has implied operands. Some instructions have a wait version and a no-wait version. The no-wait
versions have N as the second letter. The instructions for comparing and testing flags include:

Instruction Description

FCOM Compares the stack top to the source. The
source and destination are unaffected by the comparison.

FTST Compares ST to 0.

FCOMP Compares the stack top to the source and then pops the stack.

FUCOM, FUCOMP, FUCOMPP Compares the source to ST and sets the condition codes of the
status word according to the result (80386/486 only).

F[[N]]STSW mem2byte Stores the status word in memory.

FXAM Sets the value of the control flags based on the type of the number
in ST.

FPREM Finds a correct remainder for large operands. It uses the C2 flag to
indicate whether the remainder returned is partial (C2 is set) or
complete (C2 is clear). If the bit is set, the operation should be
repeated. It also returns the least-significant three bits of the
quotient in C0, C3, and C1.

FNOP Copies the stack top onto itself, thus padding the executable file
and taking up processing time without having any effect on
registers or memory.

FDISI, FNDISI, FENI, FNENI Enables or disables interrupts (8087 only).

FSETPM Sets protected mode. Requires a .286P or .386P directive (80287,
80387, and 80486 only).

The following example illustrates some of these instructions. Notice how conditional blocks are used
to enhance 80287 code.

 .DATA
down REAL4 10.35 ; Sides of a rectangle
across REAL4 13.07

Using Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 123

status WORD ?
P287 EQU (@Cpu AND 00111y)
 .CODE
 .
 .
 .
; Get area of rectangle
 fld across ; Load one side
 fmul down ; Multiply by the other

; Get area of circle: Area = PI * (D/2)2
 fld1 ; Load one and
 fadd st, st ; double it to get constant 2
 fdivr diamtr ; Divide diameter to get radius
 fmul st, st ; Square radius
 fldpi ; Load pi
 fmul ; Multiply it

; Compare area of circle and rectangle
 fcompp ; Compare and throw both away
 IF p287
 fstsw ax ; (For 287+, skip memory)
 ELSE
 fnstsw status ; Load from coprocessor to memory
 mov ax, status ; Transfer memory to register
 ENDIF
 sahf ; Transfer AH to flags register
 jp nocomp ; If parity set, can't compare
 jz same ; If zero set, they're the same
 jc rectangle ; If carry set, rectangle is bigger
 jmp circle ; else circle is bigger

nocomp: ; Error handler
 .
 .
 .
same: ; Both equal
 .
 .
 .
rectangle: ; Rectangle bigger
 .
 .
 .
circle: ; Circle bigger

Additional instructions for the 80387/486 are FLDENVD and FLDENVW for loading the environment;
FNSTENVD, FNSTENVW, FSTENVD, and FSTENVW for storing the environment state; FNSAVED,
FNSAVEW, FSAVED, and FSAVEW for saving the coprocessor state; and FRSTORD and FRSTORW
for restoring the coprocessor state.

The size of the code segment, not the operand size, determines the number of bytes loaded or stored
with these instructions. The instructions ending with W store the 16-bit form of the control register
data, and the instructions ending with D store the 32-bit form. For example, in 16-bit mode FSAVEW
saves the 16-bit control register data. If you need to store the 32-bit form of the control register data,
use FSAVED.

Control Registers

Some of the flags of the seven 16-bit control registers control coprocessor operations, while others

Using Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 124

maintain the current status of the coprocessor. In this sense, they are much like the 8086-family flags
registers (see Figure 6.8).

Figure 6.8 Coprocessor Control Registers

The status word register is the only commonly used control register. (The others are used mostly by
systems programmers.) The format of the status word register is shown in Figure 6.9, which shows
how the coprocessor control flags align with the processor flags. C3 overwrites the zero flag, C2
overwrites the parity flag, and C0 overwrites the carry flag. C1 overwrites an undefined bit, so it cannot
be used directly with conditional jumps, although you can use the TEST instruction to

check C1 in memory or in a register. The status word register also overwrites the sign and
auxiliary-carry flags, so you cannot count on their being unchanged after the operation.

Figure 6.9 Coprocessor and Processor Control Flags

Using An Emulator Library
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 125

Using An Emulator Library

If you do not have a math coprocessor or an 80486 processor, you can do most floating-point
operations by writing assembly-language procedures and accessing an emulator from a high-level
language. All Microsoft high-level languages come with emulator libraries for all memory models.

To use emulator functions, first write your assembly-language procedure using coprocessor
instructions. Then assemble the module with the /FPi option and link it with your high-level – language
modules. You can enter options in the Programmer’s WorkBench (PWB) environment, or you can use
the OPTION EMULATOR in your source code.

In emulation mode, the assembler generates instructions for the linker that the Microsoft emulator can
use. The form of the OPTION directive in the following example tells the assembler to use emulation
mode. This option (introduced in Chapter 1) can be defined only once in a module.

OPTION EMULATOR

You can use emulator functions in a stand-alone assembler program by assembling with the /Cx
command-line option and linking with the appropriate emulator library. The following fragment outlines a
small-model program that contains floating-point instructions served by an emulator:

 .MODEL small, c
 OPTION EMULATOR
 .
 .
 .
 PUBLIC main
 .CODE
main: ; Program entry point must
 .STARTUP ; have name 'main'
 .
 fadd st, st ; Floating-point instructions
 fldpi ; emulated

Emulator libraries do not allow for all of the coprocessor instructions. The following floating-point
instructions are not emulated:

FBLD
FBSTP
FCOS
FDECSTP
FINCSTP
FINIT
FLDENV
FNOP
FPREM1
FRSTOR
FRSTORW
FRSTORD
FSAVE
FSAVEW
FSAVED
FSETPM
FSIN
FSINCOS
FSTENV
FUCOM
FUCOMP

Using An Emulator Library
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 126

FUCOMPP
FXTRACT

For information about writing assembly-language procedures for high-level languages, see Chapter 12,
“Mixed-Language Programming.”

Using Binary Coded Decimal Numbers

Binary coded decimal (BCD) numbers allow calculations on large numbers without rounding errors.
This characteristic makes BCD numbers a common choice for monetary calculations. Although BCDs
can represent integers of any precision, the 8087-based coprocessors accommodate BCD numbers
only in the range ±999,999,999,999,999,999.

This section explains how to define BCD numbers, how to access them with a math coprocessor or
emulator, and how to perform simple BCD calculations on the main processor.

Defining BCD Constants and Variables

Unpacked BCD numbers are made up of bytes containing a single decimal digit in the lower 4 bits of
each byte. Packed BCD numbers are made up of bytes containing two decimal digits: one in the upper
4 bits and one in the lower 4 bits. The leftmost digit holds the sign (0 for positive, 1 for negative).

Packed BCD numbers are encoded in the 8087 coprocessor’s packed BCD format. They can be up to
18 digits long, packed two digits per byte. The assembler zero-pads BCDs initialized with fewer than
18 digits. Digit 20 is the sign bit, and digit 19 is reserved.

When you define an integer constant with the TBYTE directive and the current radix is decimal (t), the
assembler interprets the number as a packed BCD number.

The syntax for specifying packed BCDs is the same as for other integers.

pos1 TBYTE 1234567890 ; Encoded as 00000000001234567890h
neg1 TBYTE -1234567890 ; Encoded as 80000000001234567890h

Unpacked BCD numbers are stored one digit to a byte, with the value in the lower
4 bits. They can be defined using the BYTE directive. For example, an unpacked BCD number could
be defined and initialized as follows:

unpackedr BYTE 1,5,8,2,5,2,9 ; Initialized to 9,252,851
unpackedf BYTE 9,2,5,2,8,5,1 ; Initialized to 9,252,851

As these two lines show, you can arrange digits backward or forward, depending on how you write the
calculation routines that handle the numbers.

BCD Calculations on a Coprocessor

As the previous section explains, BCDs differ from other numbers only in the way a program stores
them in memory. Internally, a math coprocessor does not distinguish BCD integers from any other
type. The coprocessor can load, calculate, and store packed BCD integers up to 18 digits long.

The coprocessor instruction

BCD Calculations on a Coprocessor
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 127

 fbld bcd1

pushes the packed BCD number at bcd1 onto the coprocessor stack. When your code completes
calculations on the number, place the result back into memory in BCD format with the instruction

 fbstp bcd1

which discards the variable from the stack top.

BCD Calculations on the Main Processor

The 8086-family of processors can perform simple arithmetic operations on BCD integers, but only one
digit at a time. The main processor, like the coprocessor, operates internally on the number’s binary
value. It requires additional code to translate the binary result back into BCD format.

The main processor provides instructions specifically designed to translate to and from BCD format.
These instructions are called “ASCII-adjust” and “decimal-adjust” instructions. They get their names
from Intel mnemonics that use the term “ASCII” to refer to unpacked BCD numbers and “decimal” to
refer to packed BCD numbers.

Unpacked BCD Numbers

When a calculation using two one-digit values produces a two-digit result, the instructions AAA, AAS,
AAM, and AAD place the first digit in AL and the second in AH. If the digit in AL needs to carry to or
borrow from the digit in AH, the instructions set the carry and auxiliary carry flags. The four
ASCII-adjust instructions for unpacked BCDs are:

Instruction Description

AAA Adjusts after an addition operation.

AAS Adjusts after a subtraction operation.

AAM Adjusts after a multiplication operation. Always use with MUL, not with IMUL.

AAD Adjusts before a division operation. Unlike other BCD instructions, AAD converts a
BCD value to a binary value before the operation. After the operation, use AAM to
adjust the quotient. The remainder is lost. If you need the remainder, save it in
another register before adjusting the quotient. Then move it back to AL and adjust if
necessary.

For processor arithmetic on unpacked BCD numbers, you must do the 8-bit arithmetic calculations on
each digit separately, and assign the result to the AL register. After each operation, use the
corresponding BCD instruction to adjust the result. The ASCII-adjust instructions do not take an
operand and always work on the value in the AL register.

The following examples show how to use each of these instructions in BCD addition, subtraction,
multiplication, and division.

; To add 9 and 3 as BCDs:
 mov ax, 9 ; Load 9
 mov bx, 3 ; and 3 as unpacked BCDs
 add al, bl ; Add 09h and 03h to get 0Ch
 aaa ; Adjust 0Ch in AL to 02h,
 ; increment AH to 01h, set carry
 ; Result 12 (unpacked BCD in AX)

; To subtract 4 from 13:

BCD Calculations on the Main Processor
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 128

 mov bx, 4 ; and 4 as unpacked BCDs
 sub al, bl ; Subtract 4 from 3 to get FFh (-1)
 aas ; Adjust 0FFh in AL to 9,
 ; decrement AH to 0, set carry
 ; Result 9 (unpacked BCD in AX)

; To multiply 9 times 3:
 mov ax, 903h ; Load 9 and 3 as unpacked BCDs
 mul ah ; Multiply 9 and 3 to get 1Bh
 aam ; Adjust 1Bh in AL
 ; to get 27 (unpacked BCD in AX)

; To divide 25 by 2:
 mov ax, 205h ; Load 25
 mov bl, 2 ; and 2 as unpacked BCDs
 aad ; Adjust 0205h in AX
 ; to get 19h in AX
 div bl ; Divide by 2 to get
 ; quotient 0Ch in AL
 ; remainder 1 in AH
 aam ; Adjust 0Ch in AL
 ; to 12 (unpacked BCD in AX)
 ; (remainder destroyed)

If you process multidigit BCD numbers in loops, each digit is processed and adjusted in turn.

Packed BCD Numbers

Packed BCD numbers are made up of bytes containing two decimal digits: one in the upper 4 bits and
one in the lower 4 bits. The 8086-family processors provide instructions for adjusting packed BCD
numbers after addition and subtraction. You must write your own routines to adjust for multiplication
and division.

For processor calculations on packed BCD numbers, you must do the 8-bit arithmetic calculations on
each byte separately, placing the result in the AL register. After each operation, use the corresponding
decimal-adjust instruction to adjust the result. The decimal-adjust instructions do not take an operand
and always work on the value in the AL register.

The 8086-family processors provide the instructions DAA (Decimal Adjust after Addition) and DAS
(Decimal Adjust after Subtraction) for adjusting packed BCD numbers after addition and subtraction.

These examples use DAA and DAS to add and subtract BCDs.

;To add 88 and 33:
 mov ax, 8833h ; Load 88 and 33 as packed BCDs
 add al, ah ; Add 88 and 33 to get 0BBh
 daa ; Adjust 0BBh to 121 (packed BCD:)
 ; 1 in carry and 21 in AL

;To subtract 38 from 83:
 mov ax, 3883h ; Load 83 and 38 as packed BCDs
 sub al, ah ; Subtract 38 from 83 to get 04Bh
 das ; Adjust 04Bh to 45 (packed BCD:)
 ; 0 in carry and 45 in AL

Unlike the ASCII-adjust instructions, the decimal-adjust instructions never affect AH. The assembler
sets the auxiliary carry flag if the digit in the lower 4 bits carries to or borrows from the digit in the
upper 4 bits, and it sets the carry flag if the digit in the upper 4 bits needs to carry to or borrow from
another byte.

Multidigit BCD numbers are usually processed in loops. Each byte is processed and adjusted in turn.

BCD Calculations on the Main Processor
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 129

Chapter 7 Controlling Program Flow

Very few programs execute all lines sequentially from .STARTUP to .EXIT. Rather, complex program
logic and efficiency dictate that you control the flow of your program — jumping from one point to
another, repeating an action until a condition is reached, and passing control to and from procedures.
This chapter describes various ways for controlling program flow and several features that simplify
coding program-control constructs.

The first section covers jumps from one point in the program to another. It explains how MASM 6.1
optimizes both unconditional and conditional jumps under certain circumstances, so that you do not
have to specify every attribute. The section also describes instructions you can use to test conditional
jumps.

The next section describes loop structures that repeat actions or evaluate conditions. It discusses
MASM directives, such as .WHILE and .REPEAT, that generate appropriate compare, loop, and jump
instructions for you, and the .IF, .ELSE, and .ELSEIF directives that generate jump instructions.

The “Procedures” section in this chapter explains how to write an assembly-language procedure. It
covers the extended functionality for PROC, a PROTO directive that lets you write procedure
prototypes similar to those used in C, an INVOKE directive that automates parameter passing, and
options for the stack-frame setup inside procedures.

The last section explains how to pass program control to an interrupt routine.

Jumps

Jumps are the most direct way to change program control from one location to another. At the
processor level, jumps work by changing the value of the IP (Instruction Pointer) register to a target
offset and, for far jumps, by changing the CS register to a new segment address. Jump instructions fall
into only two categories: conditional and unconditional.

Unconditional Jumps

The JMP instruction transfers control unconditionally to another instruction. JMP’s single operand
contains the address of the target instruction.

Unconditional jumps skip over code that should not be executed, as shown here:

; Handle one case
label1: .
 .
 .
 jmp continue

; Handle second case
label2: .
 .
 .
 jmp continue

Unconditional Jumps
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 130

 .
 .
continue:

The distance of the target from the jump instruction and the size of the operand determine the
assembler’s encoding of the instruction. The longer the distance, the more bytes the assembler uses
to code the instruction. In versions of MASM prior to 6.0, unconditional NEAR jumps sometimes
generated inefficient code, but MASM can now optimize unconditional jumps.

Jump Optimizing

The assembler determines the smallest encoding possible for the direct unconditional jump. MASM
does not require a distance operator, so you do not have to determine the correct distance of the jump.
If you specify a distance, it overrides any assembler optimization. If the specified distance falls short of
the target address, the assembler generates an error. If the specified distance is longer than the jump
requires, the assembler encodes the given distance and does not optimize it.

The assembler optimizes jumps when the following conditions are met:

• You do not specify SHORT, NEAR, FAR, NEAR16, NEAR32, FAR16, FAR32, or PROC as the
distance of the target.

• The target of the jump is not external and is in the same segment as the jump instruction. If the
target is in a different segment (but in the same group), it is treated as though it were external.

If these two conditions are met, MASM uses the instruction, distance, and size of the operand to
determine how to optimize the encoding for the jump. No syntax changes are necessary.

Note This information about jump optimizing also applies to conditional jumps on the 80386/486.

Indirect Operands

An indirect operand provides a pointer to the target address, rather than the address itself. A pointer is
a variable that contains an address. The processor distinguishes indirect (pointer) operands from direct
(address) operands by the instruction’s context.

You can specify the pointer’s size with the WORD, DWORD, or FWORD attributes. Default sizes are
based on .MODEL and the default segment size.

 jmp [bx] ; Uses .MODEL and segment size defaults
 jmp WORD PTR [bx] ; A NEAR16 indirect call

If the indirect operand is a register, the jump is always a NEAR16 jump for a 16-bit register, and
NEAR32 for a 32-bit register:

 jmp bx ; NEAR16 jump
 jmp ebx ; NEAR32 jump

A DWORD indirect operand, however, is ambiguous to the assembler.

jmp DWORD PTR [var] ; A NEAR32 jump in a 32-bit segment;
 ; a FAR16 jump in a 16-bit segment

In this case, your code must clear the ambiguity with the NEAR32 or FAR16 keywords. The following
example shows how to use TYPEDEF to define NEAR32 and FAR16 pointer types.

NFP TYPEDEF PTR NEAR32
FFP TYPEDEF PTR FAR16
 jmp NFP PTR [var] ; NEAR32 indirect jump
 jmp FFP PTR [var] ; FAR16 indirect jump

You can use an unconditional jump as a form of conditional jump by specifying the address in a

Unconditional Jumps
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 131

register or indirect memory operand. Also, you can use indirect memory operands to construct jump
tables that work like C switch statements, Pascal CASE statements, or Basic ON GOTO, ON
GOSUB, or SELECT CASE statements, as shown in the following example.

NPVOID TYPEDEF NEAR PTR
 .DATA
ctl_tbl NPVOID extended, ; Null key (extended code)
 ctrla, ; Address of CONTROL-A key routine
 ctrlb ; Address of CONTROL-B key routine
 .CODE
 .
 .
 .
 mov ah, 8h ; Get a key
 int 21h
 cbw ; Stretch AL into AX
 mov bx, ax ; Copy
 shl bx, 1 ; Convert to address
 jmp ctl_tbl[bx] ; Jump to key routine

extended:
 mov ah, 8h ; Get second key of extended key
 int 21h
 . ; Use another jump table
 . ; for extended keys
 .
 jmp next
ctrla: . ; CONTROL-A code here
 .
 .
 jmp next
ctrlb: . ; CONTROL-B code here
 .
 .
 jmp next
 .
 .
next: . ; Continue

In this instance, the indirect memory operands point to addresses of routines for handling different
keystrokes.

Conditional Jumps

The most common way to transfer control in assembly language is to use a conditional jump. This is a
two-step process:

 1. First test the condition.

 2. Then jump if the condition is true or continue if it is false.

All conditional jumps except two (JCXZ and JECXZ) use the processor flags for their criteria. Thus,
any statement that sets or clears a flag can serve as a test basis for a conditional jump. The jump
statement can be any one of 30 conditional-jump instructions. A conditional-jump instruction takes a
single operand containing the target address. You cannot use a pointer value as a target as you can
with unconditional jumps.

Jumping Based on the CX Register

Conditional Jumps
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 132

JCXZ and JECXZ are special conditional jumps that do not consult the processor flags. Instead, as
their names imply, these instructions cause a jump only if the CX or ECX register is zero. The use of
JCXZ and JECXZ with program loops is covered in the next section, “Loops.”

Jumping Based on the Processor Flags

The remaining conditional jumps in the processor’s repertoire all depend on the status of the flags
register. As the following list shows, several conditional jumps have two or three names — JE (Jump if
Equal) and JZ (Jump if Zero), for example. Shared names assemble to exactly the same machine
instruction, so you may choose whichever mnemonic seems more appropriate. Jumps that depend on
the status of the flags register include:

Instruction Jumps if

JC/JB/JNAE Carry flag is set

JNC/JNB/JAE Carry flag is clear

JBE/JNA Either carry or zero flag is set

JA/JNBE Carry and zero flag are clear

JE/JZ Zero flag is set

JNE/JNZ Zero flag is clear

JL/JNGE Sign flag ≠ overflow flag

JGE/JNL Sign flag = overflow flag

JLE/JNG Zero flag is set or sign ≠ overflow

JG/JNLE Zero flag is clear and sign = overflow

JS Sign flag is set

JNS Sign flag is clear

JO Overflow flag is set

JNO Overflow flag is clear

JP/JPE Parity flag is set (even parity)

JNP/JPO Parity flag is clear (odd parity)

The last two jumps in the list, JPE (Jump if Parity Even) and JPO (Jump if Parity Odd), are useful only
for communications programs. The processor sets the parity flag if an operation produces a result with
an even number of set bits. A communications program can compare the flag against the parity bit
received through the serial port to test for transmission errors.

The conditional jumps in the preceding list can follow any instruction that changes the processor flags,
as these examples show:

; Uses JO to handle overflow condition
 add ax, bx ; Add two values
 jo overflow ; If value too large, adjust

; Uses JNZ to check for zero as the result of subtraction
 sub ax, bx ; Subtract
 mov cx, Count ; First, initialize CX
 jnz skip ; If the result is not zero, continue
 call zhandler ; Else do special case

As the second example shows, the jump does not have to immediately follow the instruction that
alters the flags. Since MOV does not change the flags, it can appear between the SUB instruction and
the dependent jump.

There are three categories of conditional jumps:

Conditional Jumps
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 133

• Comparison of two values

• Individual bit settings in a value

• Whether a value is zero or nonzero

Jumps Based on Comparison of Two Values

The CMP instruction is the most common way to test for conditional jumps. It compares two values
without changing either, then sets or clears the processor flags according to the results of the
comparison.

Internally, the CMP instruction is the same as the SUB instruction, except that CMP does not change
the destination operand. Both set flags according to the result of the subtraction.

You can compare signed or unsigned values, but you must choose the subsequent conditional jump to
reflect the correct value type. For example, JL (Jump if Less Than) and JB (Jump if Below) may seem
conceptually similar, but a failure to understand the difference between them can result in program
bugs. Table 7.1 shows the correct conditional jumps for comparisons of signed and unsigned values.
The table shows the zero, carry, sign, and overflow flags as ZF, CF, SF, and OF, respectively.

Table 7.1 Conditional Jumps Based on Comparisons of Two Values

Signed Comparisons
Instruction Jump if True

Unsigned Comparisons
Instruction Jump if True

JE ZF
=
1

JE ZF
=
1

JNE ZF
=
0

JNE ZF
=
0

JG/JNLE ZF
=
0
and
SF
=
OF

JA/JNBE CF
=
0
and
ZF
=
0

JLE/JNG ZF
=
1
or
SF
≠
OF

JBE/JNA CF
=
1
or
ZF
=
1

JL/JNGE SF
≠
OF

JB/JNAE CF
=
1

JGE/JNL SF
=
OF

JAE/JNB CF
=
0

The mnemonic names of jumps always refer to the comparison of CMP’s first operand (destination)
with the second operand (source). For instance, in this example, JG tests whether the first operand is
greater than the second.

Conditional Jumps
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 134

 cmp ax, bx ; Compare AX and BX
 jg next1 ; Equivalent to: If (AX > BX) goto next1
 jl next2 ; Equivalent to: If (AX < BX) goto next2

Jumps Based on Bit Settings

The individual bit settings in a single value can also serve as the criteria for a conditional jump. The
TEST instruction tests whether specific bits in an operand are on or off (set or clear), and sets the zero
flag accordingly.

The TEST instruction is the same as the AND instruction, except that TEST changes neither operand.
The following example shows an application of TEST.

 .DATA
bits BYTE ?
 .CODE
 .
 .
 .
; If bit 2 or bit 4 is set, then call task_a
 ; Assume "bits" is 0D3h 11010011
 test bits, 10100y ; If 2 or 4 is set AND 00010100
 jz skip1 ; --------
 call task_a ; Then call task_a 00010000
skip1: ; Jump taken
 .
 .
 .
; If bits 2 and 4 are clear, then call task_b
 ; Assume "bits" is 0E9h 11101001
 test bits, 10100y ; If 2 and 4 are clear AND 00010100
 jnz skip2 ; --------
 call task_b ; Then call task_b 00000000
skip2: ; Jump taken

The source operand for TEST is often a mask in which the test bits are the only bits set. The
destination operand contains the value to be tested. If all the bits set in the mask are clear in the
destination operand, TEST sets the zero flag. If any of the flags set in the mask are also set in the
destination operand, TEST clears the zero flag.

The 80386/486 processors provide additional bit-testing instructions. The BT (Bit Test) series of
instructions copy a specified bit from the destination operand to the carry flag. A JC or JNC can then
route program flow depending on the result. For variations on the BT instruction, see the Reference.

Jumps Based on a Value of Zero

A program often needs to jump based on whether a particular register contains a value of zero. We’ve
seen how the JCXZ instruction jumps depending on the value in the CX register. You can test for zero
in other data registers nearly as efficiently with the OR instruction. A program can OR a register with
itself without changing the register’s contents, then act on the resulting flags status. For example, the
following example tests whether BX is zero:

 or bx, bx ; Is BX = 0?
 jz is_zero ; Jump if so

This code is functionally equivalent to:

 cmp bx, 0 ; Is BX = 0?
 je is_zero ; Jump if so

but produces smaller and faster code, since it does not use an immediate number as an operand. The

Conditional Jumps
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 135

same technique also lets you test a register’s sign bit:

 or dx, dx ; Is DX sign bit set?
 js sign_set ; Jump if so

Jump Extending

Unlike an unconditional jump, a conditional jump cannot reference a label more than 128 bytes away.
For example, the following statement is valid as long as target is within a distance of 128 bytes:

; Jump to target less than 128 bytes away
 jz target ; If previous operation resulted
 ; in zero, jump to target

However, if target is too distant, the following sequence is necessary to enable a longer jump. Note
this sequence is logically equivalent to the preceding example:

; Jumps to distant targets previously required two steps
 jnz skip ; If previous operation result is
 ; NOT zero, jump to "skip"
 jmp target ; Otherwise, jump to target
skip:

MASM can automate jump-extending for you. If you target a conditional jump to a label farther than
128 bytes away, MASM rewrites the instruction with an unconditional jump, which ensures that the
jump can reach its target. If target lies within a 128-byte range, the assembler encodes the
instruction jz target as is. Otherwise, MASM generates two substitute instructions:

 jne $ + 2 + (length in bytes of the next instruction)
 jmp NEAR PTR target

The assembler generates this same code sequence if you specify the distance with NEAR PTR, FAR
PTR, or SHORT. Therefore,

 jz NEAR PTR target

becomes

 jne $ + 5
 jmp NEAR PTR target

even if target is less than 128 bytes away.

MASM enables automatic jump expansion by default, but you can turn it off with the NOLJMP form of
the OPTION directive. For information about the OPTION directive, see page 24.

If the assembler generates code to extend a conditional jump, it issues a level 3 warning saying that
the conditional jump has been lengthened. You can set the warning level to 1 for development and to
level 3 for a final optimizing pass to see if you can shorten jumps by reorganizing.

If you specify the distance for the jump and the target is out of range for that distance, a “Jump out of
Range” error results.

Since the JCXZ and JECXZ instructions do not have logical negations, expansion of the jump
instruction to handle targets with unspecified distances cannot be performed for those instructions.
Therefore, the distance must always be short.

The size and distance of the target operand determines the encoding for conditional or unconditional
jumps to externals or targets in different segments. The jump-extending and optimization features do
not apply in this case.

Note Conditional jumps on the 80386 and 80486 processors can be to targets up to 32K away, so
jump extension occurs only for targets greater than that distance.

Conditional Jumps
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 136

Anonymous Labels

When you code jumps in assembly language, you must invent many label names. One alternative to
continually thinking up new label names is to use anonymous labels, which you can use anywhere in
your program. But because anonymous labels do not provide meaningful names, they are best used
for jumping over only a few lines of code. You should mark major divisions of a program with actual
named labels.

Use two at signs (@@) followed by a colon (:) as an anonymous label. To jump to the nearest
preceding anonymous label, use @B (back) in the jump instruction’s operand field; to jump to the
nearest following anonymous label, use @F (forward) in the operand field.

The jump in the following example targets an anonymous label:

 jge @F
 .
 .
 .
@@:

The items @B and @F always refer to the nearest occurrences of @@:, so there is never any conflict
between different anonymous labels.

Decision Directives

The high-level structures you can use for decision-making are the .IF, .ELSEIF, and .ELSE
statements. These directives generate conditional jumps. The expression following the .IF directive is
evaluated, and if true, the following instructions are executed until the next .ENDIF, .ELSE, or .ELSEIF
directive is reached. The .ELSE statements execute if the expression is false. Using the .ELSEIF
directive puts a new expression inside the alternative part of the original .IF statement to be evaluated.
The syntax is:

.IF condition1
statements
[[.ELSEIF condition2
statements]]
[[.ELSE
statements]]
.ENDIF

The decision structure

 .IF cx == 20
 mov dx, 20
 .ELSE
 mov dx, 30
 .ENDIF

generates this code:

 .IF cx == 20
0017 83 F9 14 * cmp cx, 014h
001A 75 05 * jne @C0001
001C BA 0014 mov dx, 20
 .ELSE
001F EB 03 * jmp @C0003
0021 *@C0001:
0021 BA 001E mov dx, 30

Conditional Jumps
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 137

0024 *@C0003:

Loops

Loops repeat an action until a termination condition is reached. This condition can be a counter or the
result of an expression’s evaluation. MASM 6.1 offers many ways to set up loops in your programs.
The following list compares MASM loop structures:

Instructions Action

LOOP Automatically decrements CX. When CX = 0, the loop ends. The top of the
loop cannot be greater than 128 bytes from the LOOP instruction. (This is true
for all LOOP instructions.)

LOOPE/LOOPZ,
LOOPNE/LOOPNZ

Loops while equal or not equal. Checks both CX and the state of the zero flag.
LOOPZ ends when either CX=0 or the zero flag is clear, whichever occurs first.
LOOPNZ ends when either CX=0 or the zero flag is set, whichever occurs first.
LOOPE and LOOPZ assemble to the same machine instruction, as do
LOOPNE and LOOPNZ. Use whichever mnemonic best fits the context of your
loop. Set CX to a number out of range if you don’t want a count to control the
loop.

JCXZ, JECXZ Branches to a label only if CX = 0 or ECX = 0. Unlike other conditional-jump
instructions, which can jump to either a near or a short label under the 80386
or 80486, JCXZ and JECXZ always jump to a short label.

Conditional jumps Acts only if certain conditions met. Necessary if several conditions must be
tested. See “Conditional Jumps,” page 164.

The following examples illustrate these loop constructions.

; The LOOP instruction: For 200 to 0 do task
 mov cx, 200 ; Set counter
next: . ; Do the task here
 .
 .
 loop next ; Do again
 ; Continue after loop

; The LOOPNE instruction: While AX is not 'Y', do task
 mov cx, 256 ; Set count too high to interfere
wend: . ; But don't do more than 256 times
 . ; Some statements that change AX
 .
 cmp al, 'Y' ; Is it Y or too many times?
 loopne wend ; No? Repeat
 ; Yes? Continue

The JCXZ and JECXZ instructions provide an efficient way to avoid executing loops when the loop
counter CX is empty. For example, consider the following loops:

mov cx, LoopCount ; Load loop counter
next: . ; Iterate loop CX times
 .
 .
 loop next ; Do again

If LoopCount is zero, CX decrements to -1 on the first pass. It then must decrement 65,535 more
times before reaching 0. Use a JCXZ to avoid this problem:

Loops
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 138

mov cx, LoopCount ; Load loop counter
 jcxz done ; Skip loop if count is 0
next: . ; Else iterate loop CX times
 .
 .
 loop next ; Do again
done: ; Continue after loop

Loop-Generating Directives

The high-level control structures generate loop structures for you. These directives are similar to the
while and repeat loops of C or Pascal, and can make your assembly programs easier to code and to
read. The assembler generates the appropriate assembly code. These directives are summarized as
follows:

Directives Action

.WHILE ENDW The statements between .WHILE condition and .ENDW execute while
the condition is true.

.REPEAT UNTIL The loop executes at least once and continues until the condition given
after .UNTIL is true. Generates conditional jumps.

.REPEAT UNTILCXZ Compares label to an expression and generates appropriate loop
instructions.

.BREAK End a .REPEAT or a .WHILE loop unconditionally.

.CONTINUE Jump unconditionally past any remaining code to bottom of loop.

These constructs work much as they do in a high-level language such as C or Pascal. Keep in mind
the following points:

• These directives generate appropriate processor instructions. They are not new instructions.

• They require proper use of signed and unsigned data declarations.

These directives cause a set of instructions to execute based on the evaluation of some condition.
This condition can be an expression that evaluates to a signed or unsigned value, an expression using
the binary operators in C (&&, ||, or !), or the state of a flag. For more information about expression
operators, see page 178.

The evaluation of the condition requires the assembler to know if the operands in the condition are
signed or unsigned. To state explicitly that a named memory
location contains a signed integer, use the signed data allocation directives SBYTE, SWORD, and
SDWORD.

.WHILE Loops

As with while loops in C or Pascal, the test condition for .WHILE is checked before the statements
inside the loop execute. If the test condition is false, the loop does not execute. While the condition is
true, the statements inside the loop repeat.

Use the .ENDW directive to mark the end of the .WHILE loop. When the condition becomes false,
program execution begins at the first statement following the .ENDW directive. The .WHILE directive
generates appropriate compare and jump statements. The syntax is:

.WHILE condition
statements
.ENDW

Loop-Generating Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 139

For example, this loop copies the contents of one buffer to another until a ‘$’ character (marking the
end of the string) is found:

 .DATA
 buf1 BYTE "This is a string",'$'
 buf2 BYTE 100 DUP (?)
 .CODE
 sub bx, bx ; Zero out bx
 .WHILE (buf1[bx] != '$')
 mov al, buf1[bx] ; Get a character
 mov buf2[bx], al ; Move it to buffer 2
 inc bx ; Count forward
 .ENDW

.REPEAT Loops

MASM’s .REPEAT directive allows for loop constructions like the do loop of C and the REPEAT loop
of Pascal. The loop executes until the condition following the .UNTIL (or .UNTILCXZ) directive
becomes true. Since the condition is checked at the end of the loop, the loop always executes at
least once. The .REPEAT directive generates conditional jumps. The syntax is:

.REPEAT
statements
.UNTIL condition

.REPEAT
statements
.UNTILCXZ [[condition]]

where condition can also be expr1 == expr2 or expr1 != expr2. When two conditions are used, expr2
can be an immediate expression, a register, or (if expr1 is a register) a memory location.

For example, the following code fills a buffer with characters typed at the keyboard. The loop ends
when the ENTER key (character 13) is pressed:

 .DATA
buffer BYTE 100 DUP (0)
 .CODE
 sub bx, bx ; Zero out bx
 .REPEAT
 mov ah, 01h
 int 21h ; Get a key
 mov buffer[bx], al ; Put it in the buffer
 inc bx ; Increment the count
 .UNTIL (al == 13) ; Continue until al is 13

The .UNTIL directive generates conditional jumps, but the .UNTILCXZ directive generates a LOOP
instruction, as shown by the listing file code for these examples. In a listing file, assembler-generated
code is preceded by an asterisk.

ASSUME bx:PTR SomeStruct

 .REPEAT
 *@C0001:
 inc ax
 .UNTIL ax==6
 * cmp ax, 006h
 * jne @C0001
.REPEAT
 *@C0003:

Loop-Generating Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 140

 .UNTILCXZ
 * loop @C0003

 .REPEAT
 *@C0004:
 .UNTILCXZ [bx].field != 6
 * cmp [bx].field, 006h
 * loope @C0004

.BREAK and .CONTINUE Directives

The .BREAK and .CONTINUE directives terminate a .REPEAT or .WHILE loop prematurely. These
directives allow an optional .IF clause for conditional breaks. The syntax is:

.BREAK [[.IF condition]]

.CONTINUE [[.IF condition]]

Note that .ENDIF is not used with the .IF forms of .BREAK and .CONTINUE in this context. The
.BREAK and .CONTINUE directives work the same way as the break and continue instructions in C.
Execution continues at the instruction following the .UNTIL, .UNTILCXZ, or .ENDW of the nearest
enclosing loop.

Instead of ending the loop execution as .BREAK does, .CONTINUE causes loop execution to jump
directly to the code that evaluates the loop condition of the nearest enclosing loop.

The following loop accepts only the keys in the range ‘0’ to ‘9’ and terminates when you press ENTER.

 .WHILE 1 ; Loop forever
 mov ah, 08h ; Get key without echo
 int 21h
 .BREAK .IF al == 13 ; If ENTER, break out of the loop
 .CONTINUE .IF (al < '0') || (al > '9')
 ; If not a digit, continue looping
 mov dl, al ; Save the character for processing
 mov ah, 02h ; Output the character
 int 21h
 .ENDW

If you assemble the preceding source code with the /Fl and /Sg command-line options and then view
the results in the listing file, you will see this code:

 .WHILE 1
 0017 *@C0001:
 0017 B4 08 mov ah, 08h
 0019 CD 21 int 21h
 .BREAK .IF al == 13
 001B 3C 0D * cmp al, 00Dh
 001D 74 10 * je @C0002
 .CONTINUE .IF (al '0') || (al '9')
 001F 3C 30 * cmp al, '0'
 0021 72 F4 * jb @C0001
 0023 3C 39 * cmp al, '9'
 0025 77 F0 * ja @C0001
 0027 8A D0 mov dl, al
 0029 B4 02 mov ah, 02h
 002B CD 21 int 21h
 .ENDW
 002D EB E8 * jmp @C0001
 002F *@C0002:

The high-level control structures can be nested. That is, .REPEAT or .WHILE loops can contain
.REPEAT or .WHILE loops as well as .IF statements.

Loop-Generating Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 141

If the code generated by a .WHILE loop, .REPEAT loop, or .IF statement generates a conditional or
unconditional jump, MASM encodes the jump using the jump extension and jump optimization
techniques described in “Unconditional Jumps,” page 162, and “Conditional Jumps,” page 164.

Writing Loop Conditions

You can express the conditions of the .IF, .REPEAT, and .WHILE directives using relational operators,
and you can express the attributes of the operand with the PTR operator. To write loop conditions, you
also need to know how the assembler evaluates the operators and operands in the condition. This
section explains the operators, attributes, precedence level, and expression evaluation order for the
conditions used with loop-generating directives.

Expression Operators

The binary relational operators in MASM 6.1 are the same binary operators used in C. These operators
generate MASM compare, test, and conditional jump instructions. High-level control instructions
include:

Operator Meaning

== Equal

!= Not equal

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

& Bit test

! Logical NOT

&& Logical AND

|| Logical OR

A condition without operators (other than !) tests for nonzero as it does in C. For example, .WHILE
(x) is the same as .WHILE (x != 0), and .WHILE (!x) is the same as .WHILE (x == 0).

You can also use the flag names (ZERO?, CARRY?, OVERFLOW?, SIGN?, and PARITY?) as
operands in conditions with the high-level control structures. For example, in .WHILE (CARRY?), the
value of the carry flag determines the outcome of the condition.

Signed and Unsigned Operands

Expression operators generate unsigned jumps by default. However, if either side of the operation is
signed, the assembler considers the entire operation signed.

You can use the PTR operator to tell the assembler that a particular operand in a register or constant
is a signed number, as in these examples:

 .WHILE SWORD PTR [bx] <= 0
 .IF SWORD PTR mem1 > 0

Without the PTR operator, the assembler would treat the contents of BX as an unsigned value.

You can also specify the size attributes of operands in memory locations with SBYTE, SWORD, and
SDWORD, for use with .IF, .WHILE, and .REPEAT.

Writing Loop Conditions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 142

 .DATA
mem1 SBYTE ?
mem2 WORD ?
 .IF mem1 > 0
 .WHILE mem2 < bx
 .WHILE SWORD PTR ax < count

Precedence Level

As with C, you can concatenate conditions with the && operator for AND, the || operator for OR, and
the ! operator for negate. The precedence level is !, &&, and ||, with ! having the highest priority. Like
expressions in high-level languages, precedence is evaluated left to right.

Expression Evaluation

The assembler evaluates conditions created with high-level control structures according to short-circuit
evaluation. If the evaluation of a particular condition automatically determines the final result (such as a
condition that evaluates to false in a compound statement concatenated with AND), the evaluation
does not continue.

For example, in this .WHILE statement,

 .WHILE (ax > 0) && (WORD PTR [bx] == 0)

the assembler evaluates the first condition. If this condition is false (that is, if AX is less than or equal
to 0), the evaluation is finished. The second condition is not checked and the loop does not execute,
because a compound condition containing && requires both expressions to be true for the entire
condition to be true.

Procedures

Organizing your code into procedures that execute specific tasks divides large programs into
manageable units, allows for separate testing, and makes code more efficient for repetitive tasks.

Assembly-language procedures are similar to functions, subroutines, and procedures in high-level
languages such as C, FORTRAN, and Pascal. Two instructions control the use of assembly-language
procedures. CALL pushes the return address onto the stack and transfers control to a procedure, and
RET pops the return address off the stack and returns control to that location.

The PROC and ENDP directives mark the beginning and end of a procedure. Additionally, PROC can
automatically:

• Preserve register values that should not change but that the procedure might otherwise alter.

• Set up a local stack pointer, so that you can access parameters and local variables placed on the
stack.

• Adjust the stack when the procedure ends.

Defining Procedures

Procedures require a label at the start of the procedure and a RET instruction at the end. Procedures
are normally defined by using the PROC directive at the start of the procedure and the ENDP directive
at the end. The RET instruction normally is placed immediately before the ENDP directive. The

Defining Procedures
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 143

assembler makes sure the distance of the RET instruction matches the distance defined by the PROC
directive. The basic syntax for PROC is:

label PROC [[NEAR | FAR]]
 .
 .
 .
RET [[constant]]
label ENDP

The CALL instruction pushes the address of the next instruction in your code onto the stack and
passes control to a specified address. The syntax is:

CALL {label | register | memory}

The operand contains a value calculated at run time. Since that operand can be a register, direct
memory operand, or indirect memory operand, you can write call tables similar to the example code
on page 164.

Calls can be near or far. Near calls push only the offset portion of the calling address and therefore
must target a procedure within the same segment or group. You can specify the type for the target
operand. If you do not, MASM uses the declared distance (NEAR or FAR) for operands that are labels
and for the size of register or memory operands. The assembler then encodes the call appropriately,
as it does with unconditional jumps. (See previous “Unconditional Jumps” and “Conditional Jumps.”)

MASM optimizes a call to a far non-external label when the label is in the current segment by
generating the code for a near call, saving one byte.

You can define procedures without PROC and ENDP, but if you do, you must make sure that the size
of the CALL matches the size of the RET. You can specify the RET instruction as RETN (Return Near)
or RETF (Return Far) to override the default size:

 call NEAR PTR task ; Call is declared near
 . ; Return comes to here
 .
 .
task: ; Procedure begins with near label
 .
 . ; Instructions go here
 .
 retn ; Return declared near

The syntax for RETN and RETF is:

label: | label LABEL NEAR
statements
RETN [[constant]]

label LABEL FAR
statements
RETF [[constant]]

The RET instruction (and its RETF and RETN variations) allows an optional constant operand that
specifies a number of bytes to be added to the value of the SP register after the return. This operand
adjusts for arguments passed to the procedure before the call, as shown in the example in “Using
Local Variables,” following.

When you define procedures without PROC and ENDP, you must make sure that calls have the same
size as corresponding returns. For example, RETF pops two words off the stack. If a NEAR call is
made to a procedure with a far return, the popped value is meaningless, and the stack status may
cause the execution to return to a random memory location, resulting in program failure.

Defining Procedures
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 144

An extended PROC syntax automates many of the details of accessing arguments and saving
registers. See “Declaring Parameters with the PROC Directive,” later in this chapter.

Passing Arguments on the Stack

Each time you call a procedure, you may want it to operate on different data. This data, called
“arguments,” can be passed to the procedure in various ways. Although you can pass arguments to a
procedure in registers or in variables, the most common method is the stack. Microsoft languages
have specific conventions for passing arguments. These conventions for assembly-language modules
shared with modules from high-level languages are explained in Chapter 12, “Mixed-Language
Programming.”

This section describes how a procedure accesses the arguments passed to it on the stack. Each
argument is accessed as an offset from BP. However, if you use the PROC directive to declare
parameters, the assembler calculates these offsets for you and lets you refer to parameters by name.
The next section, “Declaring Parameters with the PROC Directive,” explains how to use PROC this
way. This example shows how to pass arguments to a procedure. The procedure expects to find those
arguments on the stack. As this example shows, arguments must be accessed as offsets of BP.

; C-style procedure call and definition

 mov ax, 10 ; Load and
 push ax ; push constant as third argument
 push arg2 ; Push memory as second argument
 push cx ; Push register as first argument
 call addup ; Call the procedure
 add sp, 6 ; Destroy the pushed arguments
 . ; (equivalent to three pops)
 .
 .
addup PROC NEAR ; Return address for near call
 ; takes two bytes
 push bp ; Save base pointer - takes two bytes
 ; so arguments start at fourth byte
 mov bp, sp ; Load stack into base pointer
 mov ax, [bp+4] ; Get first argument from
 ; fourth byte above pointer
 add ax, [bp+6] ; Add second argument from
 ; sixth byte above pointer
 add ax, [bp+8] ; Add third argument from
 ; eighth byte above pointer
 pop bp ; Restore BP
 ret ; Return result in AX
addup ENDP

Figure 7.1 shows the stack condition at key points in the process.

Passing Arguments on the Stack
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 145

Figure 7.1 Procedure Arguments on the Stack

Starting with the 80186 processor, the ENTER and LEAVE instructions simplify the stack setup and
restore instructions at the beginning and end of procedures. However, ENTER uses a lot of time. It is
necessary only with nested, statically-scoped procedures. Thus, a Pascal compiler may sometimes
generate ENTER. The LEAVE instruction, on the other hand, is an efficient way to do the stack
cleanup. LEAVE reverses the effect of the last ENTER instruction by restoring BP and SP to their
values before the procedure call.

Passing Arguments on the Stack
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 146

Declaring Parameters with the PROC Directive

With the PROC directive, you can specify registers to be saved, define param-
eters to the procedure, and assign symbol names to parameters (rather than as offsets from BP). This
section describes how to use the PROC directive to automate the parameter-accessing techniques
described in the last section.

For example, the following diagram shows a valid PROC statement for a procedure called from C. It
takes two parameters, var1 and arg1, and uses (and must save) the DI and SI registers:

The syntax for PROC is:

label PROC [[attributes]] [[USES reglist]] [[,]] [[parameter[[:tag]]...]]

The parts of the PROC directive include:

Argument Description

label The name of the procedure.

attributes Any of several attributes of the procedure, including the distance, langtype, and visibility
of the procedure. The syntax for attributes is given on the following page.

reglist A list of registers following the USES keyword that the procedure uses, and that should
be saved on entry. Registers in the list must be separated by blanks or tabs, not by
commas. The assembler generates prologue code to push these registers onto the
stack. When you exit, the assembler generates epilogue code to pop the saved register
values off the stack.

parameter The list of parameters passed to the procedure on the stack. The list can have a variable
number of parameters. See the discussion following for the syntax of parameter. This
list can be longer than one line if the continued line ends with a comma.

This diagram shows a valid PROC definition that uses several attributes:

Attributes

The syntax for the attributes field is:

[[distance]] [[langtype]] [[visibility]] [[<prologuearg>]]

The explanations for these options include:

Declaring Parameters with the PROC Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 147

Argument Description

distance Controls the form of the RET instruction generated. Can be NEAR or FAR. If distance is
not specified, it is determined from the model declared with the .MODEL directive. NEAR
distance is assumed for TINY, SMALL, COMPACT, and FLAT. The assembler
assumes FAR distance for MEDIUM, LARGE, and HUGE. For 80386/486 programming
with 16- and 32-bit segments, you can specify NEAR16, NEAR32, FAR16, or FAR32.

langtype Determines the calling convention used to access parameters and restore the stack.
The BASIC, FORTRAN, and PASCAL langtypes convert procedure names to
uppercase, place the last parameter in the parameter list lowest on the stack, and
generate a RET num instruction to end the procedure. The RET adjusts the stack
upward by num, which represents the number of bytes in the argument list. This step,
called “cleaning the stack,” returns the stack pointer SP to the value it had before the
caller pushed any arguments.

The C and STDCALL langtype prefixes an underscore to the procedure name when the
procedure’s scope is PUBLIC or EXPORT and places the first parameter lowest on the
stack. SYSCALL is equivalent to the C calling convention with no underscore prefixed to
the procedure’s name. STDCALL uses caller stack cleanup when :VARARG is
specified; otherwise the called routine must clean up the stack (see Chapter 12).

visibility Indicates whether the procedure is available to other modules. The visibility can be
PRIVATE, PUBLIC, or EXPORT. A procedure name is PUBLIC unless it is explicitly
declared as PRIVATE. If the visibility is EXPORT, the linker places the procedure’s
name in the export table for segmented executables. EXPORT also enables PUBLIC
visibility.

You can explicitly set the default visibility with the OPTION directive. OPTION
PROC:PUBLIC sets the default to public. For more information, see Chapter 1, “Using
the Option Directive.”

prologuearg Specifies the arguments that affect the generation of prologue and epilogue code (the
code MASM generates when it encounters a PROC directive or the end of a procedure).
For an explanation of prologue and epilogue code, see “Generating Prologue and
Epilogue Code,” later in this chapter.

Parameters

The comma that separates parameters from reglist is optional, if both fields appear on the same line. If
parameters appears on a separate line, you must end the reglist field with a comma. In the syntax:

parmname [[:tag]

parmname is the name of the parameter. The tag can be the qualifiedtype or the keyword VARARG.
However, only the last parameter in a list of param-
eters can use the VARARG keyword. The qualifiedtype is discussed in “Data Types,” Chapter 1. An
example showing how to reference VARARG param-
eters appears later in this section. You can nest procedures if they do not have parameters or USES
register lists. This diagram shows a procedure definition with one parameter definition.

Declaring Parameters with the PROC Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 148

The procedure presented in “Passing Arguments on the Stack,” page 182, is here rewritten using the
extended PROC functionality. Prior to the procedure call, you must push the arguments onto the stack
unless you use INVOKE. (See “Calling Procedures with INVOKE,” later in this chapter.)

addup PROC NEAR C,
 arg1:WORD, arg2:WORD, count:WORD
 mov ax, arg1
 add ax, count
 add ax, arg2
 ret
addup ENDP

If the arguments for a procedure are pointers, the assembler does not generate any code to get the
value or values that the pointers reference; your program must still explicitly treat the argument as a
pointer. (For more information about using pointers, see Chapter 3, “Using Addresses and Pointers.”)

In the following example, even though the procedure declares the parameters as near pointers, you
must code two MOV instructions to get the values of the param-
eters. The first MOV gets the address of the parameters, and the second MOV gets the parameter.

; Call from C as a FUNCTION returning an integer

 .MODEL medium, c
 .CODE
myadd PROC arg1:NEAR PTR WORD, arg2:NEAR PTR WORD

 mov bx, arg1 ; Load first argument
 mov ax, [bx]
 mov bx, arg2 ; Add second argument
 add ax, [bx]

 ret

myadd ENDP

You can use conditional-assembly directives to make sure your pointer parameters are loaded
correctly for the memory model. For example, the following version of myadd treats the parameters as
FAR parameters, if necessary.

 .MODEL medium, c ; Could be any model
 .CODE
myadd PROC arg1:PTR WORD, arg2:PTR WORD

 IF @DataSize
 les bx, arg1 ; Far parameters
 mov ax, es:[bx]
 les bx, arg2
 add ax, es:[bx]
 ELSE
 mov bx, arg1 ; Near parameters

Declaring Parameters with the PROC Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 149

 mov bx, arg2
 add ax, [bx]
 ENDIF

 ret
myadd ENDP

Using VARARG

In the PROC statement, you can append the :VARARG keyword to the last parameter to indicate that
the procedure accepts a variable number of arguments. However, :VARARG applies only to the C,
SYSCALL, or STDCALL calling conventions (see Chapter 12). A symbol must precede :VARARG so
the procedure can access arguments as offsets from the given variable name, as this example
illustrates:

addup3 PROTO NEAR C, argcount:WORD, arg1:VARARG

 invoke addup3, 3, 5, 2, 4

addup3 PROC NEAR C, argcount:WORD, arg1:VARARG
 sub ax, ax ; Clear work register
 sub si, si

 .WHILE argcount > 0 ; Argcount has number of arguments
 add ax, arg1[si] ; Arg1 has the first argument
 dec argcount ; Point to next argument
 inc si
 inc si
 .ENDW

 ret ; Total is in AX
addup3 ENDP

You can pass non-default-sized pointers in the VARARG portion of the parameter list by separately
passing the segment portion and the offset portion of the address.

Note When you use the extended PROC features and the assembler encounters a RET instruction,
it automatically generates instructions to pop saved registers, remove local variables from the stack,
and, if necessary, remove parameters. It generates this code for each RET instruction it encounters.
You can reduce code size by having only one return and jumping to it from various locations.

Using Local Variables

In high-level languages, local variables are visible only within a procedure. In Microsoft languages,
these variables are usually stored on the stack. In assembly-language programs, you can also have
local variables. These variables should not be confused with labels or variable names that are local to a
module, as described in Chapter 8, “Sharing Data and Procedures Among Modules and Libraries.”

This section outlines the standard methods for creating local variables. The next section shows how to
use the LOCAL directive to make the assembler

automatically generate local variables. When you use this directive, the assembler generates the
same instructions as those demonstrated in this section but handles some of the details for you.

If your procedure has relatively few variables, you can usually write the most efficient code by placing
these values in registers. Use local (stack) data when you have a large amount of temporary data for
the procedure.

Using Local Variables
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 150

To use a local variable, you must save stack space for it at the start of the procedure. A procedure can
then reference the variable by its position in the stack. At the end of the procedure, you must clean the
stack by restoring the stack pointer. This effectively throws away all local variables and regains the
stack space they occupied.

This example subtracts 2 bytes from the SP register to make room for a local word variable, then
accesses the variable as [bp-2].

 push ax ; Push one argument
 call task ; Call
 .
 .
 .

task PROC NEAR
 push bp ; Save base pointer
 mov bp, sp ; Load stack into base pointer
 sub sp, 2 ; Save two bytes for local variable
 .
 .
 .
 mov WORD PTR [bp-2], 3 ; Initialize local variable
 add ax, [bp-2] ; Add local variable to AX
 sub [bp+4], ax ; Subtract local from argument
 . ; Use [bp-2] and [bp+4] in
 . ; other operations
 .
 mov sp, bp ; Clear local variables
 pop bp ; Restore base
 ret 2 ; Return result in AX and pop
task ENDP ; two bytes to clear parameter

Notice the instruction mov sp,bp at the end of the procedure restores the original value of SP. The
statement is required only if the value of SP changes inside the procedure (usually by allocating local
variables). The argument passed to the procedure is removed with the RET instruction. Contrast this to
the example in “Passing Arguments on the Stack,” page 182, in which the calling code adjusts the
stack for the argument.

Figure 7.2 shows the stack at key points in the process.

Using Local Variables
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 151

Figure 7.2 Local Variables on the Stack

Creating Local Variables Automatically

MASM’s LOCAL directive automates the process for creating local variables on the stack. LOCAL
frees you from having to count stack words, and it makes your code easier to write and maintain. This
section illustrates the advantages of creating temporary data with the LOCAL directive.

To use the LOCAL directive, list the variables you want to create, giving a type for each one. The
assembler calculates how much space is required on the stack. It also generates instructions to
properly decrement SP (as described in the previous section) and to reset SP when you return from

Creating Local Variables Automatically
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 152

the procedure.

When you create local variables this way, your source code can refer to each local variable by name
rather than as an offset of the stack pointer. Moreover, the assembler generates debugging information
for each local variable. If you have programmed before in a high-level language that allows scoping,
local variables will seem familiar. For example, a C compiler sets up variables with automatic storage
class in the same way as the LOCAL directive.

We can simplify the procedure in the previous section with the following code:

task PROC NEAR arg:WORD
 LOCAL loc:WORD
 .
 .
 .
 mov loc, 3 ; Initialize local variable
 add ax, loc ; Add local variable to AX
 sub arg, ax ; Subtract local from argument
 . ; Use "loc" and "arg" in other operations
 .
 .
 ret
task ENDP

The LOCAL directive must be on the line immediately following the PROC statement with the following
syntax:

LOCAL vardef [[, vardef]]...

Each vardef defines a local variable. A local variable definition has this form:

label[[[count]]][[:qualifiedtype]]

These are the parameters in local variable definitions:

Argument Description

label The name given to the local variable. You can use this name to access the variable.

count The number of elements of this name and type to allocate on the stack. You can
allocate a simple array on the stack with count. The brackets around count are
required. If this field is omitted, one data object is assumed.

qualifiedtype A simple MASM type or a type defined with other types and attributes. For more
information, see “Data Types” in Chapter 1.

If the number of local variables exceeds one line, you can place a comma at the end of the first line
and continue the list on the next line. Alternatively, you can use several consecutive LOCAL directives.

The assembler does not initialize local variables. Your program must include code to perform any
necessary initializations. For example, the following code fragment sets up a local array and initializes
it to zero:

arraysz EQU 20

aproc PROC USES di
 LOCAL var1[arraysz]:WORD, var2:WORD
 .
 .
 .
; Initialize local array to zero
 push ss
 pop es ; Set ES=SS

Creating Local Variables Automatically
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 153

 mov cx, arraysz ; Load count
 sub ax, ax
 rep stosw ; Store zeros
; Use the array...
 .
 .
 .
 ret
aproc ENDP

Even though you can reference stack variables by name, the assembler treats them as offsets of BP,
and they are not visible outside the procedure. In the following procedure, array is a local variable.

index EQU 10
test PROC NEAR
LOCAL array[index]:WORD
 .
 .
 .
 mov bx, index
; mov array[bx], 5 ; Not legal!

The second MOV statement may appear to be legal, but since array is an
offset of BP, this statement is the same as

; mov [bp + bx + arrayoffset], 5 ; Not legal!

BP and BX can be added only to SI and DI. This example would be legal, however, if the index value
were moved to SI or DI. This type of error in your program can be difficult to find unless you keep in
mind that local variables in procedures are offsets of BP.

Declaring Procedure Prototypes

MASM provides the INVOKE directive to handle many of the details important to procedure calls, such
as pushing parameters according to the correct calling conventions. To use INVOKE, the procedure
called must have been declared previously with a PROC statement, an EXTERNDEF (or EXTERN)
statement, or a TYPEDEF. You can also place a prototype defined with PROTO before the INVOKE if
the procedure type does not appear before the INVOKE. Procedure prototypes defined with PROTO
inform the assembler of types and numbers of arguments so the assembler can check for errors and
provide automatic conversions when INVOKE calls the procedure.

Declaring procedure prototypes is good programming practice, but is optional. Prototypes in MASM
perform the same function as prototypes in C and other high-level languages. A procedure prototype
includes the procedure name, the types, and (optionally) the names of all parameters the procedure
expects. Prototypes usually are placed at the beginning of an assembly program or in a separate
include file so the assembler encounters the prototype before the actual procedure.

Prototypes enable the assembler to check for unmatched parameters and are especially useful for
procedures called from other modules and other languages. If you write routines for a library, you may
want to put prototypes into an include file for all the procedures used in that library. For more
information about using include files, see Chapter 8, “Sharing Data and Procedures among Modules
and Libraries.”

The PROTO directive provides one way to define a procedure prototype. The syntax for a prototype
definition is the same as for a procedure declaration (see “Declaring Parameters with the PROC
Directive,” earlier in this chapter), except that you do not include the list of registers, prologuearg list,
or the scope of the procedure.

Declaring Procedure Prototypes
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 154

Also, the PROTO keyword precedes the langtype and distance attributes. The attributes (like C and
FAR) are optional. However, if they are not specified, the defaults are based on any .MODEL or
OPTION LANGUAGE statement. The names of the parameters are also optional, but you must list
parameter types. A label preceding :VARARG is also optional in the prototype but not in the PROC
statement.

If a PROTO and a PROC for the same function appear in the same module, they must match in
attribute, number of parameters, and parameter types. The easiest way to create prototypes with
PROTO is to write your procedure and then copy the first line (the line that contains the PROC
keyword) to a location in your program that follows the data declarations. Change PROC to PROTO
and remove the USES reglist, the prologuearg field, and the visibility field. It is important that the
prototype follow the declarations for any types used in it to avoid any forward references used by the
parameters in the prototype.

The following example illustrates how to define and then declare two typical procedures. In both
prototype and declaration, the comma before the argument list is optional only when the list does not
appear on a separate line:

; Procedure prototypes.

addup PROTO NEAR C argcount:WORD, arg2:WORD, arg3:WORD
myproc PROTO FAR C, argcount:WORD, arg2:VARARG

; Procedure declarations

addup PROC NEAR C, argcount:WORD, arg2:WORD, arg3:WORD
.
.
.
myproc PROC FAR C PUBLIC <callcount> USES di si,
 argcount:WORD,
 arg2:VARARG

When you call a procedure with INVOKE, the assembler checks the arguments given by INVOKE
against the parameters expected by the procedure. If the data types of the arguments do not match,
MASM reports an error or converts the type to the expected type. These conversions are explained in
the next section.

Calling Procedures with INVOKE

INVOKE generates a sequence of instructions that push arguments and call a procedure. This helps
maintain code if arguments or langtype for a procedure are changed. INVOKE generates procedure
calls and automatically:

• Converts arguments to the expected types.

• Pushes arguments on the stack in the correct order.

• Cleans the stack when the procedure returns.

If arguments do not match in number or if the type is not one the assembler can convert, an error
results.

If the procedure uses VARARG, INVOKE can pass a number of arguments different from the number in
the parameter list without generating an error or warning. Any additional arguments must be at the end
of the INVOKE argument list. All other arguments must match those in the prototype parameter list.

The syntax for INVOKE is:

Calling Procedures with INVOKE
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 155

INVOKE expression [[, arguments]]

where expression can be the procedure’s label or an indirect reference to a procedure, and arguments
can be an expression, a register pair, or an expression preceded with ADDR. (The ADDR operator is
discussed later in this chapter.)

Procedures with these prototypes

addup PROTO NEAR C argcount:WORD, arg2:WORD, arg3:WORD
myproc PROTO FAR C, argcount:WORD, arg2:VARARG

and these procedure declarations

addup PROC NEAR C, argcount:WORD, arg2:WORD, arg3:WORD
.
.
.
myproc PROC FAR C PUBLIC <callcount> USES di si,
 argcount:WORD,
 arg2:VARARG

can be called with INVOKE statements like this:

 INVOKE addup, ax, x, y
 INVOKE myproc, bx, cx, 100, 10

The assembler can convert some arguments and parameter type combinations so that the correct type
can be passed. The signed or unsigned qualities of the arguments in the INVOKE statements
determine how the assembler converts them to the types expected by the procedure.

The addup procedure, for example, expects parameters of type WORD, but the arguments passed by
INVOKE to the addup procedure can be any of these types:

• BYTE, SBYTE, WORD, or SWORD

• An expression whose type is specified with the PTR operator to be one of those types

• An 8-bit or 16-bit register

• An immediate expression in the range –32K to +64K

• A NEAR PTR

If the type is smaller than that expected by the procedure, MASM widens the argument to match.

Widening Arguments

For INVOKE to correctly handle type conversions, you must use the signed data types for any signed
assignments. MASM widens an argument to match the type expected by a procedure’s parameters in
these cases:

Type Passed Type Expected

BYTE, SBYTE WORD, SWORD, DWORD, SDWORD

WORD, SWORD DWORD, SDWORD

The assembler can extend a segment if far data is expected, and it can convert the type given in the
list to the types expected. If the assembler cannot convert the type, however, it generates an error.

Detecting Errors

If the assembler needs to widen an argument, it first copies the value to AL or AX. It widens an
unsigned value by placing a zero in the higher register area, and widens a signed value with a CBW,
CWD, or CWDE instruction as required. Similarly, the assembler copies a constant argument value
into AL or AX when the .8086 directive is in effect. You can see these generated instructions in the

Calling Procedures with INVOKE
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 156

listing file when you include the /Sg command-line option.

Using the accumulator register to widen or copy an argument may lead to an error if you attempt to
pass AX as another argument. For example, consider the following INVOKE statement for a procedure
with the C calling convention

 INVOKE myprocA, ax, cx, 100, arg

where arg is a BYTE variable and myproc expects four arguments of type WORD. The assembler
widens and then pushes arg like this:

 mov al, DGROUP:arg
 xor ah, ah
 push ax

The generated code thus overwrites the last argument (AX) passed to the procedure. The assembler
generates an error in this case, requiring you to rewrite the INVOKE statement.

To summarize, the INVOKE directive overwrites AX and perhaps DX when widening arguments. It also
uses AX to push constants on the 8088 and 8086. If you use these registers (or EAX and EDX on an
80386/486) to pass arguments, they may be overwritten. The assembler’s error detection prevents this
from ever becoming a run-time bug, but AX and DX should remain your last choice for holding
arguments.

Invoking Far Addresses

You can pass a FAR pointer in a segment::offset pair, as shown in the following. Note the use of
double colons to separate the register pair. The registers could be any other register pair, including a
pair that an MS-DOS call uses to return values.

FPWORD TYPEDEF FAR PTR WORD
SomeProc PROTO var1:DWORD, var2:WORD, var3:WORD

 pfaritem FPWORD faritem
 .
 .
 .
 les bx, pfaritem
 INVOKE SomeProc, ES::BX, arg1, arg2

However, INVOKE cannot combine into a single address one argument for the segment and one for the
offset.

Passing an Address

You can use the ADDR operator to pass the address of an expression to a procedure that expects a
NEAR or FAR pointer. This example generates code to pass a far pointer (to arg1) to the procedure
proc1.

PBYTE TYPEDEF FAR PTR BYTE
arg1 BYTE "This is a string"
proc1 PROTO NEAR C fparg:PBYTE
 .
 .
 .
INVOKE proc1, ADDR arg1

For information on defining pointers with TYPEDEF, see “Defining Pointer Types with TYPEDEF” in
Chapter 3.

Calling Procedures with INVOKE
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 157

Invoking Procedures Indirectly

You can make an indirect procedure call such as call [bx + si] by using a pointer to a function
prototype with TYPEDEF, as shown in this example:

FUNCPROTO TYPEDEF PROTO NEAR ARG1:WORD
FUNCPTR TYPEDEF PTR FUNCPROTO

 .DATA
pfunc FUNCPTR OFFSET proc1, OFFSET proc2

 .CODE
 .
 .
 .
 mov bx, OFFSET pfunc ; BX points to table
 mov si, Num ; Num contains 0 or 2
 INVOKE FUNCPTR PTR [bx+si], arg1 ; Call proc1 if Num=0
 ; or proc2 if Num=2

You can also use ASSUME to accomplish the same task. The following ASSUME statement
associates the type FUNCPTR with the BX register.

 ASSUME BX:FUNCPTR
 mov bx, OFFSET pfunc
 mov si, Num
 INVOKE [bx+si], arg1

Checking the Code Generated

Code generated by the INVOKE directive may vary depending on the processor mode and calling
conventions in effect. You can check your listing files to see the code generated by the INVOKE
directive if you use the /Sg command-line
option.

Generating Prologue and Epilogue Code

When you use the PROC directive with its extended syntax and argument list, the assembler
automatically generates the prologue and epilogue code in your procedure. “Prologue code” is
generated at the start of the procedure. It sets up a stack pointer so you can access parameters from
within the procedure. It also saves space on the stack for local variables, initializes registers such as
DS, and pushes registers that the procedure uses. Similarly, “epilogue code” is the code at the end of
the procedure that pops registers and returns from the procedure.

The assembler automatically generates the prologue code when it encounters the first instruction or
label after the PROC directive. This means you cannot label the prologue for the purpose of jumping to
it. The assembler generates the epilogue code when it encounters a RET or IRET instruction. Using
the assembler-generated prologue and epilogue code saves time and decreases the number of
repetitive lines of code in your procedures.

The generated prologue or epilogue code depends on the:

• Local variables defined.

• Arguments passed to the procedure.

• Current processor selected (affects epilogue code only).

• Current calling convention.

Generating Prologue and Epilogue Code
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 158

• Options passed in the prologuearg of the PROC directive.

• Registers being saved.

The prologuearg list contains options specifying how to generate the prologue or epilogue code. The
next section explains how to use these options, gives the standard prologue and epilogue code, and
explains the techniques for defining your own prologue and epilogue code.

Using Automatic Prologue and Epilogue Code

The standard prologue and epilogue code handles parameters and local variables. If a procedure does
not have any parameters or local variables, the prologue and epilogue code that sets up and restores a
stack pointer is omitted, unless
FORCEFRAME is included in the prologuearg list. (FORCEFRAME is discussed later in this section.)
Prologue and epilogue code also generates a push and pop for each register in the register list.

The prologue code consists of three steps:

 1. Point BP to top of stack.

 2. Make space on stack for local variables.

 3. Save registers the procedure must preserve.

The epilogue cancels these three steps in reverse order, then cleans the stack, if necessary, with a
RET num instruction. For example, the procedure declaration

myproc PROC NEAR PASCAL USES di si,
 arg1:WORD, arg2:WORD, arg3:WORD
 LOCAL local1:WORD, local2:WORD

generates the following prologue code:

 push bp ; Step 1:
 mov bp, sp ; point BP to stack top
 sub sp, 4 ; Step 2: space for 2 local words
 push di ; Step 3:
 push si ; save registers listed in USES

The corresponding epilogue code looks like this:

 pop si ; Undo Step 3
 pop di
 mov sp, bp ; Undo Step 2
 pop bp ; Undo Step 1
 ret 6 ; Clean stack of pushed arguments

Notice the RET 6 instruction cleans the stack of the three word-sized arguments. The instruction
appears in the epilogue because the procedure does not use the C calling convention. If myproc used
C conventions, the epilogue would end with a RET instruction without an operand.

The assembler generates standard epilogue code when it encounters a RET instruction without an
operand. It does not generate an epilogue if RET has a nonzero operand. To suppress generation of a
standard epilogue, use RETN or RETF with or without an operand, or use RET 0.

The standard prologue and epilogue code recognizes two operands passed in the prologuearg list,
LOADDS and FORCEFRAME. These operands modify the prologue code. Specifying LOADDS saves
and initializes DS. Specifying
FORCEFRAME as an argument generates a stack frame even if no arguments are sent to the
procedure and no local variables are declared. If your procedure has any parameters or locals, you do
not need to specify FORCEFRAME.

For example, adding LOADDS to the argument list for myproc creates this prologue:

Generating Prologue and Epilogue Code
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 159

 push bp ; Step 1:
 mov bp, sp ; point BP to stack top
 sub sp, 4 ; Step 2: space for 2 locals
 push ds ; Save DS and point it
 mov ax, DGROUP ; to DGROUP, as
 mov ds, ax ; instructed by LOADDS
 push di ; Step 3:
 push si ; save registers listed in USES

The epilogue code restores DS:

 pop si ; Undo Step 3
 pop di
 pop ds ; Restore DS
 mov sp, bp ; Undo Step 2
 pop bp ; Undo Step 1
 ret 6 ; Clean stack of pushed arguments

User-Defined Prologue and Epilogue Code

If you want a different set of instructions for prologue and epilogue code in your procedures, you can
write macros that run in place of the standard prologue and epilogue code. For example, while you are
debugging your procedures, you may want to include a stack check or track the number of times a
procedure is called. You can write your own prologue code to do these things whenever a procedure
executes. Different prologue code may also be necessary if you are writing applications for Windows.
User-defined prologue macros will respond correctly if you specify FORCEFRAME in the prologuearg of
a procedure.

To write your own prologue or epilogue code, the OPTION directive must appear in your program. It
disables automatic prologue and epilogue code generation. When you specify

OPTION PROLOGUE : macroname

OPTION EPILOGUE : macroname

the assembler calls the macro specified in the OPTION directive instead of generating the standard
prologue and epilogue code. The prologue macro must be a macro function, and the epilogue macro
must be a macro procedure.

The assembler expects your prologue or epilogue macro to have this form:

macroname MACRO procname, \
flag, \
parmbytes, \
localbytes, \
<reglist>, \
userparms

Your macro must have formal parameters to match all the actual arguments passed. The arguments
passed to your macro include:

Argument Description

procname The name of the procedure.

flag A 16-bit flag containing the following information:

Bit = Value Description

Bit 0, 1, 2 For calling conventions (000=unspecified language type,
001=C, 010=SYSCALL, 011=STDCALL, 100=PASCAL,
101=FORTRAN, 110=BASIC).

Generating Prologue and Epilogue Code
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 160

Bit 3 Undefined (not necessarily zero).

Bit 4 Set if the caller restores the stack
(use RET, not RETn).

Bit 5 Set if procedure is FAR.

Bit 6 Set if procedure is PRIVATE.

Bit 7 Set if procedure is EXPORT.

Bit 8 Set if the epilogue is generated as a result of an IRET
instruction and cleared if the epilogue is generated as a result
of a RET instruction.

Bits 9–15 Undefined (not necessarily zero).

parmbytes The accumulated count in bytes of all parameters given in the PROC statement.

localbytes The count in bytes of all locals defined with the LOCAL directive.

reglist A list of the registers following the USES operator in the procedure declaration.
Enclose this list with angle brackets (< >) and separate each item with commas.
Reverse the list for epilogues.

userparms Any argument you want to pass to the macro. The prologuearg (if there is one)
specified in the PROC directive is passed to this argument.

Your macro function must return the parmbytes parameter. However, if the prologue places other
values on the stack after pushing BP and these values are not referenced by any of the local variables,
the exit value must be the number of bytes for procedure locals plus any space between BP and the
locals. Therefore, parmbytes is not always equal to the bytes occupied by the locals.

The following macro is an example of a user-defined prologue that counts the number of times a
procedure is called.

ProfilePro MACRO procname, \
 flag, \
 bytecount, \
 numlocals, \
 regs, \
 macroargs

 .DATA
procname&count WORD 0
 .CODE
 inc procname&count ; Accumulates count of times the
 ; procedure is called
 push bp
 mov bp, sp
 ; Other BP operations
 IFNB <regs>
 FOR r, regs
 push r
 ENDM
 ENDIF
 EXITM %bytecount
ENDM

Your program must also include this statement before calling any procedures that use the prologue:

OPTION PROLOGUE:ProfilePro

If you define either a prologue or an epilogue macro, the assembler uses the standard prologue or
epilogue code for the one you do not define. The form of the code generated depends on the .MODEL
and PROC options used.

Generating Prologue and Epilogue Code
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 161

If you want to revert to the standard prologue or epilogue code, use
PROLOGUEDEF or EPILOGUEDEF as the macroname in the OPTION statement.

OPTION EPILOGUE:EPILOGUEDEF

You can completely suppress prologue or epilogue generation with

OPTION PROLOGUE:None
OPTION EPILOGUE:None

In this case, no user-defined macro is called, and the assembler does not generate a default code
sequence. This state remains in effect until the next OPTION
PROLOGUE or OPTION EPILOGUE is encountered.

For additional information about writing macros, see Chapter 9, “Using Macros.” The PROLOGUE.INC
file provided in the MASM 6.1 distribution disks can create the prologue and epilogue sequences for
the Microsoft C professional development system.

MS-DOS Interrupts

In addition to jumps, loops, and procedures that alter program execution, interrupt routines transfer
execution to a different location. In this case, control goes to an interrupt routine.

You can write your own interrupt routines, either to replace an existing routine or to use an undefined
interrupt number. For example, you may want to replace an MS-DOS interrupt handler, such as the
Critical Error (Interrup 24h) and CONTROL+C (Interrupt 23h) handlers. The BOUND instruction checks
array bounds and calls Interrupt 5 when an error occurs. If you use this instruction, you need to write
an interrupt handler for it.

This section summarizes the following:

• How to call interrupts

• How the processor handles interrupts

• How to redefine an existing interrupt routine

The example routine in this section handles addition or multiplication overflow and illustrates the steps
necessary for writing an interrupt routine. For additional information about MS-DOS and BIOS
interrupts, see Chapter 11, “Writing Memory-Resident Software.”

Calling MS-DOS and ROM-BIOS Interrupts

Interrupts provide a way to access MS-DOS and ROM-BIOS from assembly language. They are called
with the INT instruction, which takes an immediate value between 0 and 255 as its only operand.

MS-DOS and ROM-BIOS interrupt routines accept data through registers. For instance, most
MS-DOS routines (and many BIOS routines) require a function number in the AH register. Many
handler routines also return values in registers. To use an interrupt, you must know what data the
handler routine expects and what data, if any, it returns. For information, consult Help or one of the
other references mentioned in the Introduction.

The following fragment illustrates a simple call to MS-DOS Function 9, which displays the string msg
on the screen:

Calling MS-DOS and ROM-BIOS Interrupts
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 162

msg BYTE "This writes to the screen$"
 .CODE
 mov ax, SEG msg ; Necessary only if DS does not
 mov ds, ax ; already point to data segment
 mov dx, offset msg ; DS:DX points to msg
 mov ah, 09h ; Request Function 9
 int 21h

When the INT instruction executes, the processor:

 1. Looks up the address of the interrupt routine in the Interrupt Vector Table. This table starts at the
lowest point in memory (segment 0, offset 0) and consists of a series of far pointers called vectors.
Each vector comprises a 4-byte address (segment:offset) pointing to an interrupt handler routine.
The table sequence implies the number of the interrupt the vector references: the first vector points
to the Interrupt 0 handler, the second vector to the Interrupt 1 handler, and so forth. Thus, the
vector at 0000:i*4 holds the address of the handler routine for Interrupt i.

 2. Clears the trap flag (TF) and interrupt enable flag (IF).

 3. Pushes the flags register, the current code segment (CS), and the current instruction pointer (IP),
in that order. (The current instruction is the one following the INT statement.) As with a CALL, this
ensures control returns to the next logical position in the program.

 4. Jumps to the address of the interrupt routine, as specified in the Interrupt Vector Table.

 5. Executes the code of the interrupt routine until it encounters an IRET
instruction.

 6. Pops the instruction pointer, code segment, and flags.

Figure 7.3 illustrates how interrupts work.

Calling MS-DOS and ROM-BIOS Interrupts
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 163

Figure 7.3 Operation of Interrupts

Replacing an Interrupt Routine

To replace an existing interrupt routine, your program must:

• Provide a new routine to handle the interrupt.

• Replace the old routine’s address in the Interrupt Vector Table with the address of your new
routine.

• Replace the old address back into the vector table before your program ends.

You can write an interrupt routine as a procedure by using the PROC and ENDP directives. The routine

Replacing an Interrupt Routine
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 164

should always be defined as FAR and should end with an IRET instruction instead of a RET
instruction.

Note You can use the full extended PROC syntax (described in “Declaring Parameters with the
PROC Directive,” earlier in this chapter) to write interrupt procedures. However, you should not make
interrupt procedures NEAR or specify arguments for them. You can use the USES keyword, however,
to correctly generate code to save and restore a register list in interrupt procedures.

The IRET instruction in MASM 6.1 has two forms that suppress epilogue code. This allows an interrupt
to have local variables or use a user-defined prologue. IRETF pops a FAR16 return address, and
IRETFD pops a FAR32 return address.

The following example shows how to replace the handler for Interrupt 4. Once registered in the Interrupt
Vector Table, the new routine takes control when the processor encounters either an INT 4 instruction
or its special variation INTO (Interrupt on Overflow). INTO is a conditional instruction that acts only
when the overflow flag is set. With INTO after a numerical calculation, your code can automatically
route control to a handler routine if the calculation results in a numerical overflow. By default, the
routine for Interrupt 4 simply consists of an IRET, so it returns without doing anything. Using INTO is
an alternative to using JO (Jump on Overflow) to jump to another set of instructions.

The following example program first executes INT 21h to invoke MS-DOS Function 35h (Get Interrupt
Vector). This function returns the existing vector for Interrupt 4. The program stores the vector, then
invokes MS-DOS Function 25h (Set Interrupt Vector) to place the address of the ovrflow procedure
in the Interrupt Vector Table. From this point on, ovrflow gains control whenever the processor
executes INTO while the overflow flag is set. The new routine displays a message and returns with AX
and DX set to 0.

 .MODEL LARGE, C
FPFUNC TYPEDEF FAR PTR
 .DATA
msg BYTE "Overflow - result set to 0",13,10,'$'
vector FPFUNC ?
 .CODE
 .STARTUP

 mov ax, 3504h ; Load Interrupt 4 and call DOS
 int 21h ; Get Interrupt Vector
 mov WORD PTR vector[2],es ; Save segment
 mov WORD PTR vector[0],bx ; and offset

 push ds ; Save DS
 mov ax, cs ; Load segment of new routine
 mov ds, ax
 mov dx, OFFSET ovrflow ; Load offset of new routine
 mov ax, 2504h ; Load Interrupt 4 and call DOS
 int 21h ; Set Interrupt Vector
 pop ds ; Restore
 .
 .
 .
 add ax, bx ; Do arithmetic
 into ; Call Interrupt 4 if overflow
 .
 .
 .
 lds dx, vector ; Load original address
 mov ax, 2504h ; Restore it to vector table
 int 21h ; with DOS set vector function

Replacing an Interrupt Routine
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 165

 int 21h

ovrflow PROC FAR
 sti ; Enable interrupts
 ; (turned off by INT)
 mov ah, 09h ; Display string function
 mov dx, OFFSET msg ; Load address
 int 21h ; Call DOS
 sub ax, ax ; Set AX to 0
 cwd ; Set DX to 0
 iret ; Return
ovrflow ENDP
 END

Before the program ends, it again uses MS-DOS Function 25h to reset the original Interrupt 4 vector
back into the Interrupt Vector Table. This reestablishes the original routine as the handler for Interrupt 4.

The first instruction of the ovrflow routine warrants further discussion. When the processor
encounters an INT instruction, it clears the interrupt flag before branching to the specified interrupt
handler routine. The interrupt flag serves a crucial role in smoothing the processor’s tasks, but must
not be abused. When clear, the flag inhibits hardware interrupts such as the keyboard or system
timer. It should be left clear only briefly and only when absolutely necessary. Unless you have a

compelling reason to leave the flag clear, always include an STI (Set Interrupt Flag) instruction at the
beginning of your interrupt handler routine to reenable hardware interrupts.

CLI (Clear Interrupt Flag) and its corollary STI are designed to protect small sections of
time-dependent code from interruptions by the hardware. If you use CLI in your program, be sure to
include a matching STI instruction as well. The sample interrupt handlers in Chapter 11, “Writing
Memory-Resident Software,” illustrate how to use these important instructions.

Chapter 8 Sharing Data and Procedures Among Modules and Libraries

To use symbols and procedures in more than one module, the assembler must be able to recognize
the shared data as global to all the modules where they are used. MASM provides techniques to
simplify data-sharing and give a high-level interface to multiple-module programming. With these
techniques, you can place shared symbols in include files. This makes the data declarations in the file
available to all modules that use the include file.

This chapter explains the two data-sharing methods MASM 6.1 offers. The first method simplifies data
sharing between modules with include files. The second does not involve include files. Instead, this
method allows modules to share procedures and data items using the PUBLIC and EXTERN directives.

The last section of this chapter explains how to create program libraries and access their routines.

Selecting Data-Sharing Methods

If data defined in one module is to be used in other modules of a program, you must declare the data
public and external. MASM provides several ways to do this:

Selecting Data-Sharing Methods
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 166

• Declare a symbol public with the PUBLIC directive in the module where it is defined. This makes
the symbol available to other modules. You must also place an EXTERN statement for that
symbol in all other modules that refer to the public symbol. This statement informs the assembler
that the symbol is external — that is, defined in another module.

• Declare the data communal with the COMM directive. However, communal variables have
limitations. You cannot depend on their location in memory because they are allocated by the
linker, and they cannot be initialized.

The EXTERNDEF directive declares a symbol either public or external, as appropriate. EXTERNDEF
simplifies the declarations for global (public and external) variables and encourages the use of include
files.

The next section provides further details on using include files. For more information on PUBLIC and
EXTERN, see “Using Alternatives to Include Files,” page 219.

Sharing Symbols with Include Files

Include files can contain any valid MASM statement, but typically consist of type and symbol
declarations. The assembler inserts the contents of the include file into a module at the location of the
INCLUDE directive. Include files are optional, but can simplify project organization by eliminating the
need to insert common declarations into all modules of a program. An alternative to using include files
is described in “Using Alternatives to Include Files,” page 219.

This section explains how to organize symbol definitions and the declarations that make them global
(available to all modules); how to make both variables and procedures public with EXTERNDEF,
PROTO, and COMM.; and where to place these directives in the modules and include files.

Organizing Modules

This section summarizes the organization of declarations and definitions in modules and include files
and the use of the INCLUDE directive.

Include Files

Type declarations that need to be identical in every module should be placed in an include file. This
ensures consistency and saves time when you update programs. Include files should contain only
symbol declarations and any other declarations that are resolved at assembly time. (For a list of
assembly-time operations, see “Generating and Running Executable Programs” in Chapter 1.)

If more than one module accesses the include file, the file cannot contain statements that define and
allocate memory for symbols. Otherwise, the assembler would attempt to allocate the same symbol
more than once.

Note An include file used in two or more modules should not allocate data variables.

Modules

An INCLUDE statement is usually placed before data and code segments in your modules. When the
assembler encounters an INCLUDE directive, it opens the specified file and assembles all its
statements. The assembler then returns to the original module and continues the assembly.

The INCLUDE directive takes the form:

Organizing Modules
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 167

INCLUDE filename

where filename is the full name of the include file. For example, the following declaration inserts the
contents of the include file SCREEN.INC in your program:

INCLUDE SCREEN.INC

The filename in the INCLUDE directive must be fully specified; no extensions are assumed. If a full
pathname is not given, the assembler first searches the directory of the source file containing the
INCLUDE directive.

If the include file is not in the source file directory, the assembler searches the paths specified in the
assembler’s command-line option /I, or in PWB’s Include Paths field in the MASM Option dialog box
(accessed from the Option menu). The /I option takes this form:

/I path

You can include more than one /I option on the command line. The assembler then searches for
include files within each specified path in the order given. If none of these directories contains the
include file, the assembler finally searches in the paths specified in the INCLUDE environment variable.
If the include file still cannot be found, an assembly error occurs. (The /x command-line option tells the
assembler to ignore the INCLUDE environment variable when searching for include files.)

An include file may specify another include file. The assembler processes the second include file
before returning to the first. Your program can nest include files this way as deeply as the amount of
free memory allows.

Include Files or Modules

You can use the EQU directive to create named constants that cannot be redefined in your program.
(For information about the EQU directive, see “Integer Constants and Constant Expressions,” page 11.)
Placing a constant defined with EQU in an include file makes it available to all modules that use that
include file.

Placing TYPEDEF, STRUCT, UNION, and RECORD definitions in an include file guarantees
consistency in type definitions. If required, the variable instances derived from these definitions can be
made public among the modules with EXTERNDEF declarations (see the next section). Macros,
including macros defined with TEXTEQU, must be placed in include files to make them visible in other
modules.

If you elect to use full segment definitions with, or instead of, simplified definitions, you can force a
consistent segment order in all files by defining segments in an include file. This technique is
explained in “Controlling the Segment Order,”
page 47.

Declaring Symbols Public and External

It is sometimes useful to make certain procedures and variables (such as status flags) global to all
program modules. Global variables are freely accessible within all routines; you do not have to
explicitly pass them to the routines that need them. This section describes how to make variables and
procedures global using the EXTERNDEF, PROTO, or COMM declarations within include files.

When a procedure is defined in one module and called in another module, it must be declared public in
the defining module and external in the calling module(s). MASM offers three ways to declare a
procedure public and external:

• Use the PUBLIC directive in the defining module and EXTERN in all other modules that reference

Declaring Symbols Public and External
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 168

the procedure. The PUBLIC and EXTERN directives are explained on page 220.

• Declare the procedure with EXTERNDEF.

• Prototype the procedure with the PROTO directive.

Using EXTERNDEF

MASM treats EXTERNDEF as a public declaration in the defining module, and as an external
declaration in the referencing module(s). You can use the EXTERNDEF statement in your include file
to make a variable common to two or more modules. EXTERNDEF works with all types of variables,
including arrays, structures, unions, and records. It also works with procedures.

As a result, a single include file can contain an EXTERNDEF declaration that works in both the
defining module and any referencing module. It is ignored in modules that neither define nor reference
the variable. Therefore, an include file for a library which is used in multiple .EXE files does not force
the definition of a symbol as EXTERN does.

The EXTERNDEF statement takes this form:

EXTERNDEF [[langtype]] name:qualifiedtype

The name is the variable’s identifier. The qualifiedtype is explained in detail in “Data Types,” page 14.

The optional langtype specifier sets the naming conventions for the name it precedes. It overrides any
language specified in the .MODEL directive. The specifier can be C, SYSCALL, STDCALL, PASCAL,
FORTRAN, or BASIC. For information on selecting the appropriate langtype type, see “Naming and
Calling Conventions,” page 308.

The following diagram shows the statements that declare an array, make it public, and use it in
another module.

Figure 8.1 Using EXTERNDEF for Variables

The file position of EXTERNDEF directives is important. For more information, see “Positioning
External Declarations,” following.

You can also make procedures visible by using EXTERNDEF without PROTO inside an include file.
This method treats the procedure name as a simple identifier, without the parameter list, so you forgo

Declaring Symbols Public and External
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 169

the assembler’s ability to check for the correct parameters during assembly. Use EXTERNDEF with
procedures in the same way as variables:

EXTERNDEF MyProc:FAR ; Declare far procedure external

You can also use EXTERNDEF to make a code label global between modules so that one module can
reference a label in another module. Give the label global scope with the double colon operator, like
this:

EXTERNDEF codelabel:NEAR
.
.
.
codelabel::

Another module can reference codelabel like this:

EXTERNDEF codelabel:NEAR
.
.
.
 jmp codelabel

Using PROTO

This section describes how to prototype a procedure with the PROTO directive. PROTO automatically
issues an EXTERNDEF for the procedure unless the PROC statement declares the procedure
PRIVATE. Defining a prototype enables type-checking for the procedure arguments.

Follow these steps to create an interface for a procedure defined in one module and called from other
modules:

 1. Place the PROTO declaration in the include file.

 2. Define the procedure with PROC in one module. The PROC directive declares the procedure
PUBLIC by default.

 3. Call the procedure with the INVOKE statement (or with CALL). Make sure that all calling modules
access the include file.

For descriptions, syntax, and examples of PROTO, PROC, and INVOKE, see Chapter 7, “Controlling
Program Flow.”

The following example illustrates these three steps. In the example, a PROTO statement defines the
far procedure CopyFile, which uses the C parameter-passing and naming conventions, and takes the
arguments filename and numberlines. The diagram following the example shows the file
placement for these statements.

This definition goes into the include file:

CopyFile PROTO FAR C filename:BYTE, numberlines:WORD

The procedure definition for CopyFile is:

CopyFile PROC FAR C USES cx, filename:BYTE, numberlines:WORD

To call the CopyFile procedure, you can use this INVOKE statement:

 INVOKE CopyFile, NameVar, 200

Declaring Symbols Public and External
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 170

Figure 8.2 Using PROTO and INVOKE

Using COMM

Another way to share variables among modules is to add the COMM (communal) declaration to your
include file. Since communal variables are allocated by the linker and cannot be initialized, you cannot
depend on their location or sequence.

Communal variables are supported by MASM primarily for compatibility with communal variables in
Microsoft C. Communal variables are not used in any other Microsoft language, and they are not
compatible with C++ and some other languages.

COMM declares a data variable external and instructs the linker to allocate the variable if it has not
been explicitly defined in a module. The memory space for communal variables may not be assigned
until load time, so using communal variables may reduce the size of your executable file.

The COMM declaration has the syntax:

COMM [[langtype]] [[NEAR | FAR]] label:type[[:count]]

The label is the name of the variable. The langtype sets the naming conventions for the name it
precedes. It overrides any language specified in the .MODEL directive.

If NEAR or FAR is not specified, the variable determines the default from the current memory model
(NEAR for TINY, SMALL, COMPACT, and FLAT; FAR for MEDIUM, LARGE, and HUGE). If you do
not provide a memory model with the .MODEL directive, you must specify a distance when accessing
a communal variable, like this:

 mov ax, NEAR PTR CommNear
 mov bx, FAR PTR CommFar

The type can be a constant expression, but it is usually a type such as BYTE, WORD, or DWORD, or
a structure, union, or record. If you first declare the type with TYPEDEF, CodeView can provide type
information. The count is the number of elements. If no count is given, one element is assumed.

The following example creates the on far variable DataBlock, which is a 1,024-element array of

Declaring Symbols Public and External
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 171

uninitialized signed doublewords:

COMM FAR DataBlock:SDWORD:1024

Note C variables declared outside functions (except static variables) are communal unless explicitly
initialized; they are the same as assembly-language communal variables. If you are writing
assembly-language modules for C, you can declare the same communal variables in both C and
MASM include files. However, communal variables in C do not have to be declared communal in
assembler. The linker will match the EXTERN, PUBLIC, and COMM statements for the variable.

EXTERNDEF (explained in the previous section) is more flexible than COMM because you can
initialize variables defined with it, and your code can rely on the position and sequence of the defined
data.

Positioning External Declarations

Although LINK determines the actual address of an external symbol, the assembler assumes a default
segment for the symbol, based on the location of the external directive in the source code. You should
therefore position EXTERN and
EXTERNDEF directives according to these rules:

• If you know which segment defines an external symbol, put the EXTERN statement in that
segment.

• If you know the group but not the segment, position the EXTERN statement outside any segment
and reference the variable with the group name. For example, if var1 is in DGROUP, reference
the variable as

 mov DGROUP:var1, 10

• If you know nothing about the location of an external variable, put the EXTERN statement outside
any segment. You can use the SEG directive to access the external variable like this:

 mov ax, SEG var1
 mov es, ax
 mov ax, es:var1

• If the symbol is an absolute symbol or a far code label, you can declare it external anywhere in the
source code.

Always close any segments opened in include files so that external declarations following an include
statement are not incorrectly placed inside a segment. If you want to be certain an external definition
lies outside a segment, you can use @CurSeg. The @CurSeg predefined symbol returns a blank if
the definition is not in a segment. For example,

 .DATA
 .
 .
 .
@CurSeg ENDS ; Close segment
 EXTERNDEF var:WORD

For information about predefined symbols such as @CurSeg, see “Predefined Symbols,” page 10.

Using Alternatives to Include Files

Using Alternatives to Include Files
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 172

If your project uses only two modules (or if it is written with a version of MASM prior to 6.0), you may
want to continue using PUBLIC in the defining module and EXTERN in the referencing module, and not
create an include file for the project. The EXTERN directive can be used in an include file, but the
include file containing EXTERN cannot be added to the module that contains the corresponding
PUBLIC directive for that symbol. This section assumes that you are not using include files.

PUBLIC and EXTERN

The PUBLIC and EXTERN directives are less flexible than EXTERNDEF and PROTO because they
are module-specific: PUBLIC must appear in the defining module and EXTERN must appear in the
calling modules. This section shows how to use PUBLIC and EXTERN. Information on where to place
the external declarations in your file is in “Positioning External Declarations,” previous.

The PUBLIC directive makes a name visible outside the module in which it is defined. This gives other
program modules access to that identifier.

The EXTERN directive performs the complementary function. It tells the assembler that a name
referenced within a particular module is actually defined and declared public in another module that will
be specified at link time.

A PUBLIC directive can appear anywhere in a file. Its syntax is:

PUBLIC [[langtype]] name[[, [[langtype]] name]]...

The name must be the name of an identifier defined within the current source file. Only code labels,
data labels, procedures, and numeric equates can be declared public.

If you specify the langtype field here, it overrides the language specified by .MODEL. The langtype field
can be C, SYSCALL, STDCALL, PASCAL, FORTRAN, or BASIC. For more information on specifying
langtype types, see “Declaring Parameters with the PROC Directive,” page 184, and “Naming and
Calling Conventions,” page 308.

The EXTERN directive tells the assembler that an identifier is external — defined in some other module
that will be supplied at link time. Its syntax is:

EXTERN [[langtype]] name:{ABS | qualifiedtype}

“Data Types,” page 14, describes qualifiedtype. You can use the ABS (absolute) keyword only with
external numeric constants. ABS causes the identifier to be imported as a relocatable unsized
constant. This identifier can then be used anywhere a constant can be used. If the identifier is not
found in another module at link time, the linker generates an error.

In the following example, the procedure BuildTable and the variable Var are declared public. The
procedure uses the Pascal naming and data-passing conventions:

PUBLIC and EXTERN
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 173

Figure 8.3 Using PUBLIC and EXTERN

Other Alternatives

You can also use the directives discussed earlier (EXTERNDEF, PROTO, and COMM) without the
include file. In this case, place the declarations to make a symbol global in the same module where
the symbol is defined. You might want to use this technique if you are linking only a few modules that
have very little data in common.

Developing Libraries

As you create reusable procedures, you can place them in a library file for convenient access.
Although you can put any routine into a library, each library file, recognizable by its .LIB extension,
usually contains related routines. For example, you might place string-manipulation functions in one
library, matrix calculations in another, and port communications in another. Do not place communal
variables (defined with the COMM directive) in a library.

A library consists of combined object modules, each created from a single source file. The object
module is the smallest independent unit in a library. If you link with one symbol in a module, the linker
adds the entire module to your program, but not the entire library.

Associating Libraries with Modules
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 174

Associating Libraries with Modules

You can choose either of two methods for associating your libraries with the modules that use them:
you can use the INCLUDELIB directive inside your source files, or link the modules from the command
line.

To associate a specified library with your object code, use INCLUDELIB. You can add this directive to
the source file to specify the libraries you want linked, rather than specifying them in the LINK
command line. The INCLUDELIB
syntax is:

INCLUDELIB libraryname

The libraryname can be a file name or a complete path specification. If you do not specify an
extension, .LIB is assumed. The libraryname is placed in the comment record of the object file. LINK
reads this record and links with the specified library file.

For example, the statement INCLUDELIB GRAPHICS passes a message from the assembler to the
linker telling LINK to use library routines from the file GRAPHICS.LIB. If you place this statement in the
source file DRAW.ASM and GRAPHICS.LIB is in the same directory, you can assemble and link the
program with the following command:

ML DRAW.ASM

Without the INCLUDELIB directive, you must link the program DRAW.ASM with either of the following
commands:

ML DRAW.ASM GRAPHICS.LIB
ML DRAW /link GRAPHICS

If you want to assemble and link separately, type

ML /c DRAW.ASM
LINK DRAW,,,GRAPHICS

If you do not specify a complete path in the INCLUDELIB statement or at the command line, LINK
searches for the library file in the following order:

 1. In the current directory.

 2. In any directories in the library field of the LINK command line.

 3. In any directories specified by the LIB environment variable.

The LIB.EXE utility helps you create, organize, and maintain run-time libraries. Refer to Environment
and Tools for instructions on LIB.EXE.

Using EXTERN with Library Routines

In some cases, EXTERN helps you limit the size of your executable file by specifying in the syntax an
alternative name for a procedure. You would use this form of the EXTERN directive when declaring a
procedure or symbol that may not need to be used.

The syntax looks like this:

EXTERN [[langtype]] name [[(altname)]] :qualifiedtype

The addition of the altname to the syntax provides the name of an alternate procedure that the linker
uses to resolve the external reference if the procedure given by name is not needed. Both name and
altname must have the same qualifiedtype.

Using EXTERN with Library Routines
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 175

When the linker encounters an external definition for a procedure that gives an altname, the linker
finishes processing that module before it links the object module that contains the procedure given by
name. If the program does not reference any symbols in the name file’s object from any of the linked
modules, the linker uses altname to satisfy the external reference. This saves space because the
library object module is not brought in.

For example, assume that the contents of STARTUP.ASM include these statements:

EXTERN init(dummy):PROC
 .
 .
 .
dummy PROC
 .
 .
 . ; A procedure definition containing no
 ret ; executable code

dummy ENDP
 .
 .
 .
 call init ; Defined in FLOAT.OBJ

In this example, the reference to the routine init (defined in FLOAT.OBJ) does not force the module
FLOAT.OBJ to be linked into the executable file. If another reference causes FLOAT.OBJ to be linked
into the executable file, then init will refer to the init label in FLOAT.OBJ. If there are no
references that force linkage with FLOAT.OBJ, the linker will use the alternate name for
init(dummy).

Chapter 9 Using Macros

A “macro” is a symbolic name you give to a series of characters (a text macro) or to one or more
statements (a macro procedure or function). As the assembler evaluates each line of your program, it
scans the source code for names of previously defined macros. When it finds one, it substitutes the
macro text for the macro name. In this way, you can avoid writing the same code several places in
your program.

This chapter describes the following types of macros:

• Text macros, which expand to text within a source statement.

• Macro procedures, which expand to one or more complete statements and can optionally take
parameters.

• Repeat blocks, which generate a group of statements a specified number of times or until a
specified condition becomes true.

• Macro functions, which look like macro procedures and can be used like text macros but which
also return a value.

• Predefined macro functions and string directives, which perform string
operations.

This chapter explains how to use macros for simple code substitutions and how to write sophisticated
macros with parameter lists and repeat loops. It also describes how to use these features in
conjunction with local symbols, macro operators, and predefined macro functions.

Chapter 9 Using Macros
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 176

Text Macros

You can give a sequence of characters a symbolic name and then use the name in place of the text
later in the source code. The named text is called a text macro.

The TEXTEQU directive defines a text macro, as these examples show:

name TEXTEQU <text>
name TEXTEQU macroId | textmacro
name TEXTEQU %constExpr

In the previous lines, text is a sequence of characters enclosed in angle brackets, macroId is a
previously defined macro function, textmacro is a previously defined text macro, and %constExpr is an
expression that evaluates to text.

Here are some examples:

msg TEXTEQU <Some text> ; Text assigned to symbol
string TEXTEQU msg ; Text macro assigned to symbol
msg TEXTEQU <Some other text> ; New text assigned to symbol
value TEXTEQU %(3 + num) ; Text representation of resolved
 ; expression assigned to symbol

The first line assigns text to the symbol msg. The second line equates the text of the msg text macro
with a new text macro called string. The third line assigns new text to msg. Although msg has new
text, string retains its original text value. The fourth line assigns 7 to value if num equals 4. If a
text macro expands to another text macro (or macro function, as discussed on page 248), the
resulting text macro will expand recursively.

Text macros are useful for naming strings of text that do not evaluate to integers. For example, you
might use a text macro to name a floating-point constant or a bracketed expression. Here are some
practical examples:

pi TEXTEQU <3.1416> ; Floating point constant
WPT TEXTEQU <WORD PTR> ; Sequence of key words
arg1 TEXTEQU <[bp+4]> ; Bracketed expression

Macro Procedures

If your program must perform the same task many times, you can avoid repeatedly typing the same
statements each time by writing a macro procedure. Think of macro procedures (commonly called
macros) as text-processing mechanisms that automatically generate repeated text.

This section uses the term “macro procedure” rather than “macro” when necessary to distinguish
between a macro procedure and a macro function. Macro functions are described in “Returning Values
with Macro Functions.”

Conforming to common usage, this chapter occasionally speaks of “calling” a macro, a term that
deserves further scrutiny. It’s natural to think of a program calling a macro procedure in the same way
it calls a normal subroutine procedure, because they seem to perform identically. However, a macro is
simply a representative for real code. Wherever a macro name appears in your program, so in reality
does all the code the macro represents. A macro does not cause the processor to vector off to a new
location as does a normal procedure. Thus, the expression “calling a macro” may imply the effect, but
does not accurately describe what actually occurs.

Macro Procedures
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 177

Creating Macro Procedures

You can define a macro procedure without parameters by placing the desired statements between the
MACRO and ENDM directives:

name MACRO
statements
ENDM

For example, suppose you want a program to beep when it encounters certain errors. You could define
a beep macro as follows:

beep MACRO
 mov ah, 2 ;; Select DOS Print Char function
 mov dl, 7 ;; Select ASCII 7 (bell)
 int 21h ;; Call DOS
ENDM

The double semicolons mark the beginning of macro comments. Macro comments appear in a listing
file only at the macro’s initial definition, not at the point where the macro is referenced and expanded.
Listings are usually easier to read if the comments aren’t repeatedly expanded. However, regular
comments (those with a single semicolon) are listed in macro expansions. See Appendix C for listing
files and examples of how macros are expanded in listings.

Once you define a macro, you can call it anywhere in the program by using the macro’s name as a
statement. The following example calls the beep macro two times if an error flag has been set.

 .IF error ; If error flag is true
 beep ; execute macro two times
 beep
 .ENDIF

During assembly, the instructions in the macro replace the macro reference. The listing file shows:

 .IF error
0017 80 3E 0000 R 00 * cmp error, 000h
001C 74 0C * je @C0001
 beep
001E B4 02 1 mov ah, 2
0020 B2 07 1 mov dl, 7
0022 CD 21 1 int 21h
 beep
0024 B4 02 1 mov ah, 2
0026 B2 07 1 mov dl, 7
0028 CD 21 1 int 21h
 .ENDIF
002A *@C0001:

Contrast this with the results of defining beep as a procedure using the PROC directive and then
calling it with the CALL instruction.

Many such tasks can be handled as either a macro or a procedure. In deciding which method to use,
you must choose between speed and size. For repetitive tasks, a procedure produces smaller code,
because the instructions physically appear only once in the assembled program. However, each call to
the procedure involves the additional overhead of a CALL and RET instruction. Macros do not require a
change in program flow and so execute faster, but generate the same code multiple times rather than
just once.

Creating Macro Procedures
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 178

Passing Arguments to Macros

By defining parameters for macros, you can define a general task and then execute variations of it by
passing different arguments each time you call the macro. The complete syntax for a macro procedure
includes a parameter list:

name MACRO parameterlist
statements
ENDM

The parameterlist can contain any number of parameters. Use commas to separate each parameter in
the list. You cannot use reserved words as parameter names unless you disable the keyword with
OPTION NOKEYWORD. You must also set the compatibility mode with OPTION M510 or the /Zm
command-line option.

To pass arguments to a macro, place the arguments after the macro name when you call the macro:

macroname arglist

The assembler treats as one item all text between matching quotation marks in an arglist.

The beep macro introduced in the previous section used the MS-DOS interrupt to write only the bell
character (ASCII 7). We can rewrite the macro with a parameter that accepts any character:

writechar MACRO char
 mov ah, 2 ;; Select DOS Print Char function
 mov dl, char ;; Select ASCII char
 int 21h ;; Call DOS
ENDM

Whenever it expands the macro, the assembler replaces each instance of char with the given
argument value. The rewritten macro now writes any character to the screen, not just ASCII 7:

 writechar 7 ; Causes computer to beep
 writechar ‘A’ ; Writes A to screen

If you pass more arguments than there are parameters, the additional arguments generate a warning
(unless you use the VARARG keyword; see page 242). If you pass fewer arguments than the macro
procedure expects, the assembler assigns empty strings to the remaining parameters (unless you
have specified default values). This may cause errors. For example, a reference to the writechar
macro with no argument results in the following line:

 mov dl,

The assembler generates an error for the expanded statement but not for the macro definition or the
macro call.

You can make macros more flexible by leaving off arguments or adding additional arguments. The next
section tells some of the ways your macros can handle missing or extra arguments.

Specifying Required and Default Parameters

Macro parameters can have special attributes to make them more flexible and improve error handling.
You can make parameters required, give them default values, or vary their number. Variable
parameters are used almost exclusively with the FOR directive, so are covered in “FOR Loops and
Variable-Length Parameters,” later in this chapter.

Specifying Required and Default Parameters
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 179

The syntax for a required parameter is:

parameter:REQ

For example, you can rewrite the writechar macro to require the char
parameter:

writechar MACRO char:REQ
 mov ah, 2 ;; Select DOS Print Char function
 mov dl, char ;; Select ASCII char
 int 21h ;; Call DOS
ENDM

If the call does not include a matching argument, the assembler reports the error in the line that
contains the macro reference. REQ can thus improve error reporting.

You can also accommodate missing parameters by specifying a default value, like this:

parameter:=textvalue

Suppose that you often use writechar to beep by printing ASCII 7. The following macro definition
uses an equal sign to tell the assembler to assume the parameter char is 7 unless you specify
otherwise:

writechar MACRO char:=<7>
 mov ah, 2 ;; Select DOS Print Char function
 mov dl, char ;; Select ASCII char
 int 21h ;; Call DOS
ENDM

If a reference to this macro does not include the argument char, the assembler fills in the blank with
the default value of 7 and the macro beeps when called.

Enclose the default parameter value in angle brackets so the assembler recognizes the supplied value
as a text value. This is explained in detail in “Text Delimiters and the Literal-Character Operator,” later
in this chapter.

Missing arguments can also be handled with the IFB, IFNB, .ERRB, and .ERRNB directives. They are
described in the section “Conditional Directives” in chapter 1 and in Help. Here is a slightly more
complex macro that uses some of these techniques:

Scroll MACRO distance:REQ, attrib:=<7>, tcol, trow, bcol, brow
 IFNB <tcol> ;; Ignore arguments if blank
 mov cl, tcol
 ENDIF
 IFNB <trow>
 mov ch, trow
 ENDIF
 IFNB <bcol>
 mov dl, bcol
 ENDIF
 IFNB <brow>
 mov dh, brow
 ENDIF
 IFDIFI <attrib>, <bh> ;; Don’t move BH onto itself
 mov bh, attrib
 ENDIF
 IF distance LE 0 ;; Negative scrolls up, positive down
 mov ax, 0600h + (-(distance) AND 0FFh)
 ELSE
 mov ax, 0700h + (distance AND 0FFh)

Specifying Required and Default Parameters
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 180

 int 10h
ENDM

In this macro, the distance parameter is required. The attrib parameter has a default value of 7
(white on black), but the macro also tests to make sure the corresponding argument isn’t BH, since it
would be inefficient (though legal) to load a register onto itself. The IFNB directive is used to test for
blank arguments. These are ignored to allow the user to manipulate rows and columns directly in
registers CX and DX at run time.

The following shows two valid ways to call the macro:

 ; Assume DL and CL already loaded
 dec dh ; Decrement top row
 inc ch ; Increment bottom row
 Scroll -3 ; Scroll white on black dynamic
 ; window up three lines
 Scroll 5, 17h, 2, 2, 14, 12 ; Scroll white on blue constant
 ; window down five lines

This macro can generate completely different code, depending on its arguments. In this sense, it is not
comparable to a procedure, which always has the same code regardless of arguments.

Defining Local Symbols in Macros

You can make a symbol local to a macro by identifying it at the start of the macro with the LOCAL
directive. Any identifier may be declared local.

You can choose whether you want numeric equates and text macros to be local or global. If a symbol
will be used only inside a particular macro, you can declare it local so that the name will be available
for other declarations outside the macro.

You must declare as local any labels within a macro, since a label can occur only once in the source.
The LOCAL directive makes a special instance of the label each time the macro appears. This
prevents redefinition of the label when expanding the macro. It also allows you to reuse the label
elsewhere in your code.

You must declare all local symbols immediately following the MACRO statement (although blank lines
and comments may precede the local symbol). Separate each symbol with a comma. You can attach
comments to the LOCAL statement and list multiple LOCAL statements in the macro. Here is an
example macro that declares local labels:

power MACRO factor:REQ, exponent:REQ
 LOCAL again, gotzero ;; Local symbols
 sub dx, dx ;; Clear top
 mov ax, 1 ;; Multiply by one on first loop
 mov cx, exponent ;; Load count
 jcxz gotzero ;; Done if zero exponent
 mov bx, factor ;; Load factor
again:
 mul bx ;; Multiply factor times exponent
 loop again ;; Result in AX
gotzero:
ENDM

If the labels again and gotzero were not declared local, the macro would work the first time it is
called, but it would generate redefinition errors on subsequent calls. MASM implements local labels by
generating different names for them each time the macro is called. You can see this in listing files. The

Defining Local Symbols in Macros
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 181

power ??0000 ??0001
??0002 and ??0003 on the second.

You should avoid using anonymous labels in macros (see “Anonymous Labels” in Chapter 7). Although
legal, they can produce unwanted results if you expand a macro near another anonymous label. For
example, consider what happens in the following:

Update MACRO arg1
@@: .
 .
 .
 loop @B
ENDM
 .
 .
 .
 jcxz @F
 Update ax
@@:

Expanding Update places another anonymous label between the jump and its target. The line

 jcxz @F

consequently jumps to the start of the loop rather than over the loop — exactly the opposite of what
the programmer intended.

Assembly-Time Variables and Macro Operators

In writing macros, you will often assign and modify values assigned to symbols. Think of these
symbols as assembly-time variables. Like memory variables, they are symbols that represent values.
But since macros are processed at assembly time, any symbol modified in a macro must be resolved
as a constant by the end of assembly.

The three kinds of assembly-time variables are:

• Macro parameters

• Text macros

• Macro functions

When the assembler expands a macro, it processes the symbols in the order shown here. MASM first
replaces macro parameters with the text of their actual arguments, then expands text macros.

Macro parameters are similar to procedure parameters in some ways, but they also have important
differences. In a procedure, a parameter has a type and a memory location. Its value can be modified
within the procedure. In a macro, a parameter is a placeholder for the argument text. The value can
only be assigned to another symbol or used directly; it cannot be modified. The macro may interpret
the argument text it receives either as a numeric value or as a text value.

It is important to understand the difference between text values and numeric values. Numeric values
can be processed with arithmetic operators and assigned to numeric equates. Text values can be
processed with macro functions and assigned to text macros.

Macro operators are often helpful when processing assembly-time variables. Table 9.1 shows the
macro operators that MASM provides.

Table 9.1 MASM Macro Operators

Assembly-Time Variables and Macro Operators
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 182

Symbol Name Description

< > Text Delimiters Opens and closes a literal string.

! Literal-Character Operator Treats the next character as a literal character, even
if it would normally have another meaning.

% Expansion Operator Causes the assembler to expand a constant
expression or text macro.

& Substitution Operator Tells the assembler to replace a macro parameter or
text macro name with its
actual value.

The next sections explain these operators in detail.

Text Delimiters and the Literal-Character Operator

The angle brackets (< >) are text delimiters. A text value is usually delimited when assigning a text
macro. You can do this with TEXTEQU, as previously shown, or with the SUBSTR and CATSTR
directives discussed in “String Directives and Predefined Functions,” later in this chapter.

By delimiting the text of macro arguments, you can pass text that includes spaces, commas,
semicolons, and other special characters. The following example expands a macro called work in two
different ways:

 work <1, 2, 3, 4, 5> ; Passes one argument with 13 chars,
 ; including commas and spaces
 work 1, 2, 3, 4, 5 ; Passes five arguments, each
 ; with 1 character

The literal-character operator (!) lets you include angle brackets as part of a delimited text value, so
the assembler does not interpret them as delimiters. The assembler treats the character following !
literally rather than as a special character, like this:

errstr TEXTEQU <Expression !> 255> ; errstr = “Expression > 255”

Text delimiters also have a special use with the FOR directive, as explained in “FOR Loops and
Variable-Length Parameters,” later in this chapter.

Expansion Operator

The expansion operator (%) expands text macros or converts constant expressions into their text
representations. It performs these tasks differently in different contexts, as discussed in the following.

Converting Numeric Expressions to Text

The expansion operator can convert numbers to text. The operator forces immediate evaluation of a
constant expression and replaces it with a text value consisting of the digits of the result. The digits
are generated in the current radix (default decimal).

This application of the expansion operator is useful when defining a text macro, as the following lines
show. Notice how you can enclose expressions with parentheses to make them more readable:

a TEXTEQU <3 + 4> ; a = “3 + 4”

Expansion Operator
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 183

c TEXTEQU %(3 + 4) ; c = “7”

When assigning text macros, you can use numeric equates in the constant expressions, but not text
macros:

num EQU 4 ; num = 4
numstr TEXTEQU <4> ; numstr = <4>
a TEXTEQU %3 + num ; a = <7>
b TEXTEQU %3 + numstr ; b = <7>

The expansion operator gives you flexibility when passing arguments to macros. It lets you pass a
computed value rather than the literal text of an expression. The following example illustrates by
defining a macro

work MACRO arg
 mov ax, arg * 4
ENDM

which accepts different arguments:

 work 2 + 3 ; Passes “2 + 3”
 ; Code: mov ax, 2 + (3 * 4)
 work %2 + 3 ; Passes 5
 ; Code: mov ax, 5 * 4
 work 2 + num ; Passes “2 + num”
 work %2 + num ; Passes “6”
 work 2 + numstr ; Passes “2 + numstr”
 work %2 + numstr ; Passes “6”

You must consider operator precedence when using the expansion operator. Parentheses inside the
macro can force evaluation in a desired order:

work MACRO arg
 mov ax, (arg) * 4
ENDM

 work 2 + 3 ; Code: mov ax, (2 + 3) * 4
 work %2 + 3 ; Code: mov ax, (5) * 4

Several other uses for the expansion operator are reviewed in “Returning Values with Macro
Functions,” later in this chapter.

Expansion Operator as First Character on a Line

The expansion operator has a different meaning when used as the first character on a line. In this
case, it instructs the assembler to expand any text macros and macro functions it finds on the rest of
the line.

This feature makes it possible to use text macros with directives such as ECHO, TITLE, and
SUBTITLE, which take an argument consisting of a single text value. For instance, ECHO displays its
argument to the standard output device during assembly. Such expansion can be useful for debugging
macros and expressions, but the requirement that its argument be a single text value may have
unexpected results. Consider this example:

ECHO Bytes per element: %(SIZEOF array / LENGTHOF array)

Instead of evaluating the expression, this line echoes it:

Bytes per element: %(SIZEOF array / LENGTHOF array)

However, you can achieve the desired result by assigning the text of the expression to a text macro
and then using the expansion operator at the beginning of the line to force expansion of the text
macro.

Expansion Operator
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 184

temp TEXTEQU %(SIZEOF array / LENGTHOF array)
% ECHO Bytes per element: temp

Note that you cannot get the same results simply by putting the % at the beginning of the first echo
line, because % expands only text macros, not numeric equates or constant expressions.

Here are more examples of the expansion operator at the start of a line:

; Assume memmod, lang, and os specified with /D option
% SUBTITLE Model: memmod Language: lang Operating System: os

; Assume num defined earlier
tnum TEXTEQU %num
% .ERRE num LE 255, <Failed because tnum !> 255>

Substitution Operator

References to a parameter within a macro can sometimes be ambiguous. In such cases, the
assembler may not expand the argument as you intend. The substitution operator (&) lets you identify
unambiguously any parameter within a macro.

As an example, consider the following macro:

errgen MACRO num, msg
 PUBLIC errnum
 errnum BYTE “Error num: msg”
ENDM

This macro is open to several interpretations:

• Is errnum a distinct word or the word err next to the parameter num?

• Should num and msg within the string be treated literally as part of the string or as arguments?

In each case, the assembler chooses the most literal interpretation. That is, it treats errnum as a
distinct word, and num and msg as literal parts of the string.

The substitution operator can force different interpretations. If we rewrite the macro with the & operator,
it looks like this:

errgen MACRO num, msg
 PUBLIC err&num
 err&num BYTE “Error &num: &msg”
ENDM

When called with the following arguments,

errgen 5, <Unreadable disk>

the macro now generates this code:

 PUBLIC err5
err5 BYTE “Error 5: Unreadable disk”

When it encounters the & operator, the assembler interprets subsequent text as a parameter name
until the next & or until the next separator character (such as a space, tab, or comma). Thus, the
assembler correctly parses the expression err&num because num is delimited by & and a space. The
expression could also be written as err&num&, which again unambiguously identifies num as a
parameter.

Substitution Operator
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 185

The rule also works in reverse. You can delimit a parameter reference with & at the end rather than at
the beginning. For example, if num is 5, the expression num&12 resolves to “512.”

The assembler processes substitution operators from left to right. This can have unexpected results
when you are pasting together two macro parameters. For example, if arg1 has the value var and
arg2 has the value 3, you could paste them together with this statement:

&arg1&&arg2& BYTE “Text”

Eliminating extra substitution operators, you might expect the following to be equivalent:

&arg1&arg2 BYTE “Text”

However, this actually produces the symbol vararg2, because in processing from left to right, the
assembler associates both the first and the second & symbols with the first parameter. The assembler
replaces &arg1& by var, producing vararg2. The arg2 is never evaluated. The correct abbreviation
is:

arg1&&arg2 BYTE “Text”

which produces the desired symbol var3. The symbol arg1&&arg2 is replaced by var&arg2,
which is replaced by var3.

The substitution operator is also necessary if you want to substitute a text macro inside quotes. For
example,

arg TEXTEQU <hello>
%echo This is a string “&arg” ; Produces: This is a string “hello”
%echo This is a string “arg” ; Produces: This is a string “arg”

You can also use the substitution operator in lines beginning with the expansion operator (%) symbol,
even outside macros (see page 236). It may be necessary to use the substitution operator to paste
text macro names to adjacent characters or symbol names, as shown here:

text TEXTEQU <var>
value TEXTEQU %5
% ECHO textvalue is text&&value

This echoes the message

textvalue is var5

Macro substitution always occurs before evaluation of the high-level control structures. The assembler
may therefore mistake a bit-test operator (&) in your macro for a substitution operator. You can
guarantee the assembler correctly recognizes a bit-test operator by enclosing its operands in
parentheses, as shown here:

test MACRO x
 .IF ax==&x ; &x substituted with parameter value
 mov ax, 10
 .ELSEIF ax&(x) ; & is bitwise AND
 mov ax, 20
 .ENDIF
ENDM

The rules for using the substitution operator have changed significantly since MASM 5.1, making
macro behavior more consistent and flexible. If you have macros written for MASM 5.1 or earlier, you
can specify the old behavior by using OLDMACROS or M510 with the OPTION directive (see page 24).

Defining Repeat Blocks with Loop Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 186

Defining Repeat Blocks with Loop Directives

A “repeat block” is an unnamed macro defined with a loop directive. The loop directive generates the
statements inside the repeat block a specified number of times or until a given condition becomes true.

MASM provides several loop directives, which let you specify the number of loop iterations in different
ways. Some loop directives can also accept arguments for each iteration. Although the number of
iterations is usually specified in the directive, you can use the EXITM directive to exit the loop early.

Repeat blocks can be used outside macros, but they frequently appear inside macro definitions to
perform some repeated operation in the macro. Since repeat blocks are macros themselves, they end
with the ENDM directive.

This section explains the following four loop directives: REPEAT, WHILE, FOR, and FORC. In versions
of MASM prior to 6.0, REPEAT was called REPT, FOR was called IRP, and FORC was called IRPC.
MASM 6.1 recognizes the old names.

The assembler evaluates repeat blocks on the first pass only. You should therefore avoid using
address spans as loop counters, as in this example:

REPEAT (OFFSET label1 - OFFSET label2) ; Don't do this!

Since the distance between two labels may change on subsequent assembly passes as the
assembler optimizes code, you should not assume that address spans remain constant between
passes.

Note The REPEAT and WHILE directives should not be confused with the REPEAT and WHILE
directives (see “Loop-Generating Directives” in Chapter 7), which generate loop and jump instructions
for run-time program control.

REPEAT Loops

REPEAT is the simplest loop directive. It specifies the number of times to generate the statements
inside the macro. The syntax is:

REPEAT constexpr
statements
ENDM

The constexpr can be a constant or a constant expression, and must contain no forward references.
Since the repeat block expands at assembly time, the number of iterations must be known then.

Here is an example of a repeat block used to generate data. It initializes an array containing sequential
ASCII values for all uppercase letters.

alpha LABEL BYTE ; Name the data generated
letter = ‘A’ ; Initialize counter
REPEAT 26 ;; Repeat for each letter
 BYTE letter ;; Allocate ASCII code for letter
 letter = letter + 1 ;; Increment counter
ENDM

Here is another use of REPEAT, this time inside a macro:

beep MACRO iter:=<3>
 mov ah, 2 ;; Character output function
 mov dl, 7 ;; Bell character

REPEAT Loops
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 187

 int 21h ;; Call DOS
 ENDM
ENDM

WHILE Loops

The WHILE directive is similar to REPEAT, but the loop continues as long as a given condition is true.
The syntax is:

WHILE expression
statements
ENDM

The expression must be a value that can be calculated at assembly time. Normally, the expression
uses relational operators, but it can be any expression that evaluates to zero (false) or nonzero (true).
Usually, the condition changes during the evaluation of the macro so that the loop won’t attempt to
generate an infinite amount of code. However, you can use the EXITM directive to break out of the loop.

The following repeat block uses the WHILE directive to allocate variables initialized to calculated
values. This is a common technique for generating lookup tables. (A lookup table is any list of
precalculated results, such as a table of interest payments or trigonometric values or logarithms.
Programs optimized for speed often use lookup tables, since calculating a value often takes more time
than looking it up in a table.)

cubes LABEL BYTE ;; Name the data generated
root = 1 ;; Initialize root
cube = root * root * root ;; Calculate first cube
WHILE cube LE 32767 ;; Repeat until result too large
 WORD cube ;; Allocate cube
 root = root + 1 ;; Calculate next root and cube
 cube = root * root * root
ENDM

FOR Loops and Variable-Length Parameters

With the FOR directive you can iterate through a list of arguments, working on each of them in turn. It
has the following syntax:

FOR parameter, <argumentlist>
statements
ENDM

The parameter is a placeholder that represents the name of each argument inside the FOR block. The
argument list must contain comma-separated arguments and must always be enclosed in angle
brackets. Here’s an example of a FOR block:

series LABEL BYTE
FOR arg, <1,2,3,4,5,6,7,8,9,10>
 BYTE arg DUP (arg)
ENDM

On the first iteration, the arg parameter is replaced with the first argument, the value 1. On the second
iteration, arg is replaced with 2. The result is an array with the first byte initialized to 1, the next 2
bytes initialized to 2, the next 3 bytes initialized to 3, and so on.

FOR Loops and Variable-Length Parameters
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 188

The argument list is given specifically in this example, but in some cases the list must be generated
as a text macro. The value of the text macro must include the angle brackets.

arglist TEXTEQU <!<3,6,9!>> ; Generate list as text macro
%FOR arg, arglist
 . ; Do something to arg
 .
 .
ENDM

Note the use of the literal character operator (!) to identify angle brackets as characters, not delimiters.
See “Text Delimiters (< >) and the Literal-Character Operator,” earlier in this chapter.

The FOR directive also provides a convenient way to process macros with a variable number of
arguments. To do this, add VARARG to the last parameter to indicate that a single named parameter
will have the actual value of all additional arguments. For example, the following macro definition
includes the three possible parameter attributes — required, default, and variable.

work MACRO rarg:REQ, darg:=<5>, varg:VARARG

The variable argument must always be last. If this macro is called with the statement

 work 4, , 6, 7, a, b

the first argument is received as the value 4, the second is replaced by the default value 5, and the last
four are received as the single argument <6, 7, a, b>. This is the same format expected by the
FOR directive. The FOR directive discards leading spaces but recognizes trailing spaces.

The following macro illustrates variable arguments:

show MACRO chr:VARARG
 mov ah, 02h
 FOR arg, <chr>
 mov dl, arg
 int 21h
 ENDM
ENDM

When called with

 show ‘O’, ‘K’, 13, 10

the macro displays each of the specified characters one at a time.

The parameter in a FOR loop can have the required or default attribute. You can modify the show
macro to make blank arguments generate errors:

show MACRO chr:VARARG
 mov ah, 02h
 FOR arg:REQ, <chr>
 mov dl, arg
 int 21h
 ENDM
ENDM

The macro now generates an error if called with

 show ‘O’,, ‘K’, 13, 10

Another approach would be to use a default argument:

show MACRO chr:VARARG
 mov ah, 02h

FOR Loops and Variable-Length Parameters
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 189

 mov dl, arg
 int 21h
 ENDM
ENDM

Now calling the macro with

 show ‘O’,, ‘K’, 13, 10

inserts the default character, a space, for the blank argument.

FORC Loops

The FORC directive is similar to FOR, but takes a string of text rather than a list of arguments. The
statements are assembled once for each character (including spaces) in the string, substituting a
different character for the parameter each time through.

The syntax looks like this:

FORC parameter, < text>
statements
ENDM

The text must be enclosed in angle brackets. The following example illustrates FORC:

FORC arg, <ABCDEFGHIJKLMNOPQRSTUVWXYZ>
 BYTE ‘&arg’ ;; Allocate uppercase letter
 BYTE ‘&arg’ + 20h ;; Allocate lowercase letter
 BYTE ‘&arg’ - 40h ;; Allocate ordinal of letter
ENDM

Notice that the substitution operator must be used inside the quotation marks to make sure that arg
is expanded to a character rather than treated as a literal string.

With versions of MASM earlier than 6.0, FORC is often used for complex parsing tasks. A long
sentence can be examined character by character. Each character is then either thrown away or
pasted onto a token string, depending on whether it is a separator character. The new predefined
macro functions and string processing directives discussed in the following section are usually more
efficient for these tasks.

String Directives and Predefined Functions

The assembler provides four directives for manipulating text:

Directive Description

SUBSTR Assigns part of string to a new symbol.

INSTR Searches for one string within another.

SIZESTR Determines the size of a string.

CATSTR Concatenates one or more strings to a single string.

These directives assign a processed value to a text macro or numeric equate. For example, the
following lines

String Directives and Predefined Functions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 190

newstr CATSTR <3 + >, %num, < = > , %3 + num ; "3 + 7 = 10"

assign the string "3 + 7 = 10" to newstr. CATSTR and SUBSTR assign text in the same way as
the TEXTEQU directive. SIZESTR and INSTR assign a number in the same way as the = operator.
The four string directives take only text values as arguments. Use the expansion operator (%) when
you need to make sure that constants and numeric equates expand to text, as shown in the preceding
lines.

Each of the string directives has a corresponding predefined macro function version: @SubStr,
@InStr, @SizeStr, and @CatStr. Macro functions are similar to the string directives, but you must
enclose their arguments in parentheses. Macro functions return text values and can appear in any
context where text is expected. The following section, “Returning Values with Macro Functions,” tells
how to write your own macro functions. The following example is equivalent to the previous CATSTR
example:

num = 7
newstr TEXTEQU @CatStr(<3 + >, %num, < = > , %3 + num)

Macro functions are often more convenient than their directive counterparts because you can use a
macro function as an argument to a string directive or to another macro function. Unlike string
directives, predefined macro function names are case sensitive when you use the /Cp command-line
option.

Each string directive and predefined function acts on a string, which can be any textItem. The textItem
can be text enclosed in angle brackets (< >), the name of a text macro, or a constant expression
preceded by % (as in %constExpr). Refer to Appendix B, “BNF Grammar,” for a list of types that
textItem can represent.

The following sections summarize the syntax for each of the string directives and functions. The
explanations focus on the directives, but the functions work the same except where noted.

SUBSTR

name SUBSTR string, start[[, length]]
@SubStr(string, start[[, length]])

The SUBSTR directive assigns a substring from a given string to the symbol name. The start
parameter specifies the position in string, beginning with 1, to start the substring. The length gives the
length of the substring. If you do not specify length, SUBSTR returns the remainder of the string,
including the start character.

INSTR

name INSTR [[start,]] string, substring
@InStr([[start]], string, substring)

The INSTR directive searches a specified string for an occurrence of substring and assigns its position
number to name. The search is case sensitive. The start parameter is the position in string to start the
search for substring. If you do not specify start, it is assumed to be position 1, the start of the string. If
INSTR does not find substring, it assigns position 0 to name.

The INSTR directive assigns the position value name as if it were a numeric equate. In contrast, the
@InStr returns the value as a string of digits in the current radix.

The @InStr function has a slightly different syntax than the INSTR directive. You can omit the first
argument and its associated comma from the directive. You can leave the first argument blank with the
function, but a blank function argument must still have a comma. For example,

pos INSTR <person>, <son>

String Directives and Predefined Functions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 191

is the same as

pos = @InStr(, <person>, <son>)

You can also assign the return value to a text macro, like this:

strpos TEXTEQU @InStr(, <person>, <son>)

SIZESTR

name SIZESTR string
@SizeStr(string)

The SIZESTR directive assigns the number of characters in string to name. An empty string returns a
length of zero. The SIZESTR directive assigns the size value to a name as if it were a numeric equate.
The @SizeStr function returns the value as a string of digits in the current radix.

CATSTR

name CATSTR string[, string]...
@CatStr(string[, string]...)

The CATSTR directive concatenates a list of text values into a single text value and assigns it to
name. TEXTEQU is technically a synonym for CATSTR. TEXTEQU is normally used for single-string
assignments, while CATSTR is used for multistring concatenations.

The following example pushes and pops one set of registers, illustrating several uses of string
directives and functions:

; SaveRegs - Macro to generate a push instruction for each
; register in argument list. Saves each register name in the
; regpushed text macro.
regpushed TEXTEQU <> ;; Initialize empty string

SaveRegs MACRO regs:VARARG
 LOCAL reg
 FOR reg, <regs> ;; Push each register
 push reg ;; and add it to the list
 regpushed CATSTR <reg>, <,>, regpushed
 ENDM ;; Strip off last comma
 regpushed CATSTR <!<>, regpushed ;; Mark start of list with <
 regpushed SUBSTR regpushed, 1, @SizeStr(regpushed)
 regpushed CATSTR regpushed, <!>> ;; Mark end with >
ENDM

; RestoreRegs - Macro to generate a pop instruction for registers
; saved by the SaveRegs macro. Restores one group of registers.

RestoreRegs MACRO
 LOCAL reg
 %FOR reg, regpushed ;; Pop each register
 pop reg
 ENDM
ENDM

Notice how the SaveRegs macro saves its result in the regpushed text macro for later use by the
RestoreRegs macro. In this case, a text macro is used as a global variable. By contrast, the reg
text macro is used only in RestoreRegs. It is declared LOCAL so it won’t take the name reg from
the global name space. The MACROS.INC file provided with MASM 6.1 includes expanded versions of
these same two macros.

String Directives and Predefined Functions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 192

Returning Values with Macro Functions

A macro function is a named group of statements that returns a value. When calling a macro function,
you must enclose its argument list in parentheses, even if the list is empty. The function always
returns text.

MASM 6.1 provides several predefined macro functions for common tasks. The predefined macros
include @Environ (see page 10) and the string functions @SizeStr, @CatStr, @SubStr, and @InStr
(discussed in the preceding section).

You define macro functions in exactly the same way as macro procedures, except that a macro
function always returns a value through the EXITM directive. Here is an example:

DEFINED MACRO symbol:REQ
 IFDEF symbol
 EXITM <-1> ;; True
 ELSE
 EXITM <0> ;; False
 ENDIF
ENDM

This macro works like the defined operator in the C language. You can use it to test the defined state
of several different symbols with a single statement, as shown here:

IF DEFINED(DOS) AND NOT DEFINED(XENIX)
 ;; Do something
ENDIF

Notice that the macro returns integer values as strings of digits, but the IF statement evaluates
numeric values or expressions. There is no conflict because the assembler sees the value returned by
the macro function exactly as if the user had typed the values directly into the program:

IF -1 AND NOT 0

Returning Values with EXITM

The return value must be text, a text equate name, or the result of another macro function. A macro
function must first convert a numeric value — such as a constant, a numeric equate, or the result of a
numeric expression — before returning it. The macro function can use angle brackets or the expansion
operator (%) to convert numbers to text. The DEFINED macro, for instance, could have returned its
value as

 EXITM %-1

Here is another example of a macro function that uses the WHILE directive to calculate factorials:

factorial MACRO num:REQ
 LOCAL i, factor
 factor = num
 i = 1
 WHILE factor GT 1
 i = i * factor
 factor = factor - 1
 ENDM
 EXITM %i
ENDM

Returning Values with EXITM
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 193

The integer result of the calculation is changed to a text string with the expansion operator (%). The
factorial macro can define data, as shown here:

var WORD factorial(4)

This statement initializes var with the number 24 (the factorial of 4).

Using Macro Functions with Variable-Length Parameter Lists

You can use the FOR directive to handle macro parameters with the VARARG attribute. “FOR Loops
and Variable-Length Parameters,” page 242, explains how to do this in simple cases where the
variable parameters are handled sequentially, from first to last. However, you may sometimes need to
process the parameters in reverse order or nonsequentially. Macro functions make these techniques
possible.

For example, the following macro function determines the number of arguments in a VARARG
parameter:

@ArgCount MACRO arglist:VARARG
 LOCAL count
 count = 0
 FOR arg, <arglist>
 count = count + 1 ;; Count the arguments
 ENDM
 EXITM %count
ENDM

You can use @ArgCount inside a macro that has a VARARG parameter, as shown here:

work MACRO args:VARARG
% ECHO Number of arguments is: @ArgCount(args)
ENDM

Another useful task might be to select an item from an argument list using an index to indicate the
item. The following macro simplifies this.

@ArgI MACRO index:REQ, arglist:VARARG
 LOCAL count, retstr
 retstr TEXTEQU <> ;; Initialize count
 count = 0 ;; Initialize return string
 FOR arg, <arglist>
 count = count + 1
 IF count EQ index ;; Item is found
 retstr TEXTEQU <arg> ;; Set return string
 EXITM ;; and exit IF
 ENDIF
 ENDM
 EXITM retstr ;; Exit function
ENDM

You can use @ArgI like this:

work MACRO args:VARARG
% ECHO Third argument is: @ArgI(3, args)
ENDM

Finally, you might need to process arguments in reverse order. The following macro returns a new
argument list in reverse order.

Using Macro Functions with Variable-Length Parameter Lists
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 194

@ArgRev MACRO arglist:REQ
 LOCAL txt, arg
 txt TEXTEQU <>
% FOR arg, <arglist>
 txt CATSTR <arg>, <,>, txt ;; Paste each onto list
 ENDM
 ;; Remove terminating comma
 txt SUBSTR txt, 1, @SizeStr(%txt) - 1
 txt CATSTR <!<>, txt, <!>> ;; Add angle brackets
 EXITM txt
ENDM

Here is an example showing @ArgRev in use:

work MACRO args:VARARG
% FOR arg, @ArgRev(<args>) ;; Process in reverse order
 ECHO arg
 ENDM
ENDM

These three macro functions appear in the MACROS.INC include file, located on one of the MASM
distribution disks.

Expansion Operator in Macro Functions

This list summarizes the behavior of the expansion operator (%) with macro
functions.

• If a macro function is preceded by a %, it will be expanded. However, if it expands to a text macro
or a macro function call, it will not expand further.

• If you use a macro function call as an argument for another macro function call, a % is not needed.

• If a macro function is called inside angle brackets and is preceded by %, it will be expanded.

Advanced Macro Techniques

The concept of replacing macro names with predefined macro text is simple in theory, but it has many
implications and complications. Here is a brief summary of some advanced techniques you can use in
macros.

Defining Macros within Macros

Macros can define other macros, a technique called “nesting macros.” MASM expands macros as it
encounters them, so nested macros are always processed in nesting order. You cannot reference a
nested macro directly in your program, since the assembler begins expansion from the outer macro. In
effect, a nested macro is local to the macro that defines it. Only the amount of available memory limits
the number of macros a program can nest.

The following example demonstrates how one macro can define another. The macro takes as an
argument the name of a shift or rotate instruction, then creates another macro that simplifies the
instruction for 8088/86 processors.

Defining Macros within Macros
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 195

shifts MACRO opname ;; Macro generates macros
 opname&s MACRO operand:REQ, rotates:=<1>
 IF rotates LE 2 ;; One at a time is faster
 REPEAT rotate ;; for 2 or less
 opname operand, 1
 ENDM
 ELSE ;; Using CL is faster for
 mov cl, rotates ;; more than 2
 opname operand, cl
 ENDIF
 ENDM
ENDM

Recall that the 8086 processor allows only 1 or CL as an operand for shift and rotate instructions.
Expanding shifts generates a macro for the shift instruction that uses whichever operand is more
efficient. You create the entire series of macros, one for each shift instruction, like this:

 ; Call macro repeatedly to make new macros
 shifts ror ; Generates rors
 shifts rol ; Generates rols
 shifts shr ; Generates shrs
 shifts shl ; Generates shls
 shifts rcl ; Generates rcls
 shifts rcr ; Generates rcrs
 shifts sal ; Generates sals
 shifts sar ; Generates sars

Then use the new macros as replacements for shift instructions, like this:

 shrs ax, 5
 rols bx, 3

Testing for Argument Type and Environment

Macros can expand conditional blocks of code by testing for argument type with the OPATTR
operator. OPATTR returns a single word constant that indicates the type and scope of an expression,
like this:

OPATTR expression

If expression is not valid or is forward-referenced, OPATTR returns a 0. Otherwise, the return value
incorporates the bit flags shown in the table below.

OPATTR serves as an enhanced version of the .TYPE operator, which returns only the low byte (bits 0
– 7) shown in the table. Bits 11 – 15 of the return value are undefined.

Bit Set If expression

0 References a code label

1 Is a memory variable or has a relocatable data label

2 Is an immediate value

3 Uses direct memory addressing

4 Is a register value

5 References no undefined symbols and is without error

6 Is relative to SS

7 References an external label

Testing for Argument Type and Environment
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 196

8 – 10 Has the following language type:

• 000 — No language type

• 001 — C

• 010 — SYSCALL

• 011 — STDCALL

• 100 — Pascal

• 101 — FORTRAN

• 110 — Basic

A macro can use OPATTR to determine if an argument is a constant, a register, or a memory
operand. With this information, the macro can conditionally generate the most efficient code depending
on argument type.

For example, given a constant argument, a macro can test it for 0. Depending on the argument’s value,
the code can select the most effective method to load the value into a register:

 IF CONST
 mov bx, CONST ; If CONST > 0, move into BX
 ELSE
 sub bx, bx ; More efficient if CONST = 0
 ENDIF

The second method is faster than the first, yet has the same result (with the byproduct of changing the
processor flags).

The following macro illustrates some techniques using OPATTR by loading an address into a specified
offset register:

load MACRO reg:REQ, adr:REQ
 IF (OPATTR (adr)) AND 00010000y ;; Register
 IFDIFI reg, adr ;; Don’t load register
 mov reg, adr ;; onto itself
 ENDIF
 ELSEIF (OPATTR (adr)) AND 00000100y
 mov reg, adr ;; Constant
 ELSEIF (TYPE (adr) EQ BYTE) OR (TYPE (adr) EQ SBYTE)
 mov reg, OFFSET adr ;; Bytes
 ELSEIF (SIZE (TYPE (adr)) EQ 2
 mov reg, adr ;; Near pointer
 ELSEIF (SIZE (TYPE (adr)) EQ 4
 mov reg, WORD PTR adr[0] ;; Far pointer
 mov ds, WORD PTR adr[2]
 ELSE
 .ERR <Illegal argument>
 ENDIF
ENDM

A macro also can generate different code depending on the assembly environment. The predefined text
macro @Cpu returns a flag for processor type. The following example uses the more efficient constant
variation of the PUSH instruction if the processor is an 80186 or higher.

IF @Cpu AND 00000010y
 pushc MACRO op ;; 80186 or higher
 push op
 ENDM
ELSE
 pushc MACRO op ;; 8088/8086
 mov ax, op

Testing for Argument Type and Environment
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 197

 ENDM
ENDIF

Another macro can now use pushc rather than conditionally testing for processor type itself. Although
either case produces the same code, using pushc assembles faster because the environment is
checked only once.

You can test the language and operating system using the @Interface text macro. The memory
model can be tested with the @Model, @DataSize, or @CodeSize text macros.

You can save the contexts inside macros with PUSHCONTEXT and
POPCONTEXT. The options for these keywords are:

Option Description

ASSUMES Saves segment register information

RADIX Saves current default radix

LISTING Saves listing and CREF information

CPU Saves current CPU and processor

ALL All of the above

Using Recursive Macros

Macros can call themselves. In MASM 5.1 and earlier, recursion is an important technique for handling
variable arguments. MASM 6.1 handles variable arguments much more cleanly with the FOR directive
and the VARARG attribute, as described in “FOR Loops and Variable-Length Parameters,” earlier in
this chapter. However, recursion is still available and may be useful for some macros.

Chapter 10 Writing a Dynamic-Link Library For Windows

The Windows operating system relies heavily on service routines and data contained in special
libraries called “dynamic-link libraries,” or DLLs for short. Most of what Windows comprises, from the
collections of screen fonts to the routines that handle the graphical interface, is provided by DLLs.
MASM 6.1 contains tools that you can use to write DLLs in assembly language. This chapter shows
you how.

DLLs do not run under MS-DOS. The information in this chapter applies only to Windows, drawing in
part on the chapter “Writing a Module-Definition File” in Environment and Tools. The acronym API,
which appears throughout this chapter, refers to the application programming interface that Windows
provides for programs. For documentation of API functions, see the Programmer’s Reference, Volume
2 of the Windows Software Development Kit (SDK).

The first section of this chapter gives an overview of DLLs and their similarities to normal libraries. The
next section explores the parts of a DLL and the rules you must follow to create one. The third section
applies this information to an example DLL.

Overview of DLLs

A dynamic-link library is similar to a normal run-time library. Both types of libraries contain a collection

Overview of DLLs
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 198

of compiled procedures, which serve one or more calling modules. To link a normal library, the linker
copies the required functions from the library file (which usually has a .LIB extension) and combines
them with other modules to form an executable program in .EXE format. This process is called static
linking.

In dynamic linking, the library functions are not copied to an .EXE file. Instead, they reside in a
separate file in executable form, ready to serve any calling program, called a “client.” When the first
client requires the library, Windows takes care of loading the functions into memory and establishing
linkage. If subsequent clients also need the library, Windows dynamically links them with the proper
library functions already in memory.

Loading a DLL

How Windows loads a DLL affects the client rather than the DLL itself. Accordingly, this section
focuses on how to set up a client program to use a DLL. Since the client can itself be a DLL, this is
information a DLL programmer should know. However, MASM 6.1 does not provide all the tools
required to create a stand-alone program for Windows. To create such a program, called an
“application,” you must use tools in the Windows SDK.

Windows provides two methods for loading a dynamic-link library into memory:

Method Description

Implicit loading

Windows loads
the DLL along
with the first
client program
and links it
before the client
begins execution.

Explicit loading Windows does not load the DLL until the first client explicitly requests it during
execution.

When you write a DLL, you do not need to know beforehand which of the two methods will be used to
load the library. The loading method is determined by how the client is written, not the DLL.

Implicit Loading

The implicit method of loading a DLL offers the advantage of simplicity. The client requires no extra
programming effort and can call the library functions as if they were normal run-time functions.
However, implicit loading carries two constraints:

• The name of the library file must have a .DLL extension.

• You must either list all DLL functions the client calls in the IMPORTS section of the client’s
module-definition file, or link the client with an import library.

An import library contains no executable code. It consists of only the names and locations of exported
functions in a DLL. The linker uses the locations in the import library to resolve references to DLL
functions in the client and to build an executable header. For example, the file LIBW.LIB provided with
MASM 6.1 is the import library for the DLL files that contain the Windows API functions.

The IMPLIB utility described in Environment and Tools creates an import library. Run IMPLIB from the
MS-DOS command line like this:

Loading a DLL
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 199

IMPLIB implibfile dllfile

where implibfile is the name of the import library you want to create from the DLL file dllfile. Once you
have created an import library from a DLL, link it with a client program that relies on implicit loading,
but does not list imported functions in its module-definition file. Continuing the preceding example,
here’s the link step for a client program that calls library procedures in the DLL dllfile:

LINK client.OBJ, client.EXE, , implibfile, client.DEF

This simplified example creates the client program client.EXE, linking it with the import library
implibfile, which in turn was created from the DLL file dllfile.

To summarize implicit loading, a client program must either

• List DLL functions in the IMPORTS section of its module-definition file, or

• Link with an import library created from the DLL.

Implicit loading is best when a client always requires at least one procedure in the library, since
Windows automatically loads the library with the client. If the client does not always require the library
service, or if the client must choose at run time between several libraries, you should use explicit
loading, discussed next.

Explicit Loading

To explicitly load a DLL, the client does not require linking with an import library, nor must the DLL file
have an extension of .DLL. Explicit loading involves three steps in which the client calls Windows API
functions:

 1. The client calls LoadLibrary to load the DLL.

 2. The client calls GetProcAddress to obtain the address of each DLL function it requires.

 3. When finished with the DLL, the client calls FreeLibrary to unload the DLL from memory.

The following example fragment shows how a client written in assembly language explicitly loads a
DLL called SYSINFO.DLL and calls the DLL function GetSysDate.

 INCLUDE windows.inc
 .DATA
hInstance HINSTANCE 0
szDLL BYTE 'SYSINFO.DLL', 0
szDate BYTE 'GetSysDate', 0
lpProc DWORD 0

 .CODE
 .
 .
 .
 INVOKE LoadLibrary, ADDR szDLL ; Load SYSINFO.DLL
 mov hInstance, ax ; Save instance count
 INVOKE GetProcAddress, ax, ADDR szDate ; Get and save
 mov lpProc, ax ; far address of
 mov lpProc[2], dx ; GetSysDate
 call lpProc ; Call GetSysDate
 .
 .
 .
 INVOKE FreeLibrary, hInstance ; Unload SYSINFO.DLL

For simplicity, the above example contains no error-checking code. An actual program should check
all values returned from the API functions.

The explicit method of loading a DLL requires more programming effort in the client program. However,

Loading a DLL
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 200

the method allows the client to control which (if any) dynamic-link libraries to load at run time.

Searching for a DLL File

To load a DLL, whether implicitly or explicitly, Windows searches for the DLL file in the following
directories in the order shown:

 1. The current directory

 2. The Windows directory, which contains WIN.COM

 3. The Windows system directory, which contains system files such as GDI.EXE

 4. The directory where the client program resides (except Windows 3.0 and earlier)

 5. Directories listed in the PATH environment string

 6. Directories mapped in a network

If Windows does not locate the DLL in any of these directories, it prompts the user with a message
box.

Building a DLL

A DLL has additional programming requirements beyond those for a normal run-time library. This
section describes the requirements pertaining to the library’s code, data, and stack. It also discusses
the effects of the library’s extension name.

DLL Code

The code in a DLL consists of exported and nonexported functions. Exported functions, listed in the
EXPORTS section of the module-definition file, are public routines serving clients. Nonexported
functions provide private, internal support for the exported procedures. They are not visible to a client.

Under Windows, an exported library routine must appear to the caller as a far procedure. Your DLL
routines can use any calling convention you wish, provided the caller assumes the same convention.
You can think of dynamic-link code as code for a normal run-time library with the following additions:

• An entry procedure

• A termination procedure

• Special prologue and epilogue code

Entry Procedure

A DLL, like any Windows-based program, must have an entry procedure. Windows calls the entry
procedure only once when it first loads the DLL, passing the following information in registers:

• DS contains the library’s data segment address.

• DI holds the library’s instance handle.

• CX holds the library’s heap size in bytes.

Note Windows API functions destroy all registers except DI, SI, BP, DS, and the stack pointer. To
preserve the contents of other registers, your program must save the registers before an API call and
restore them afterwards.

DLL Code
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 201

This information corresponds to the data provided to an application. Since a DLL has only one
occurrence in memory, called an “instance,” the value in DI is not usually important. However, a DLL
can use its instance handle to obtain resources from its own executable file.

The entry procedure does not need to record the address of the data segment. Windows automatically
ensures that each exported routine in the DLL has access to the library’s data segment, as explained
in “Prologue and Epilogue Code,” on page 264.

The heap size contained in CX reflects the value provided in the HEAPSIZE statement of the
module-definition file. You need not make an accurate guess in the HEAPSIZE statement about the
library’s heap requirements, provided you specify a moveable data segment. With a moveable
segment, Windows automatically allocates more heap when needed. However, Windows can provide
no more heap in a fixed data segment than the amount specified in the HEAPSIZE statement. In any
case, a library’s total heap cannot exceed 64K, less the amount of static data. Static data and heap
reside in the same segment.

Windows does not automatically deallocate unneeded heap while the DLL is in memory. Therefore,
you should not set an unnecessarily large value in the HEAPSIZE statement, since doing so wastes
memory.

The entry procedure calls the Windows API function LocalInit to allocate the heap. The library must
create a heap before its routines call any heap functions, such as LocalAlloc. The following example
illustrates these steps:

DLLEntry PROC FAR PASCAL PUBLIC ; Entry point for DLL

 jcxz @F ; If no heap, skip
 INVOKE LocalInit, ds, 0, cx ; Else set up the heap
 .IF (ax) ; If successful,
 INVOKE UnlockSegment, -1 ; unlock the data segment
@@: call LibMain ; Call DLL's data init routine
 mov ax, TRUE ; Return AX = 1 if okay,
 .ENDIF ; else if LocalInit error,
 ret ; return AX = 0

DLLEntry ENDP

This example code is taken from the DLLENTRY.ASM module, contained in the LIB subdirectory on
one of the MASM 6.1 distribution disks. After allocating the heap, the procedure calls the library’s
initialization procedure — called LibMain in this case. LibMain initializes the library’s static data (if
required), then returns to DLLEntry, which returns to Windows. If Windows receives a return value of 0
(FALSE) from DLLEntry, it unloads the library and displays an error message.

The process is similar to the way MS-DOS loads a terminate-and-stay-resident program (TSR),
described in the next chapter. Both the DLL and TSR return control immediately to the operating
system, then wait passively in memory to be called.

The following section explains how a DLL gains control when Windows unloads it from memory.

Termination Procedure

Windows maintains a DLL in memory until the last client program terminates or explicitly unloads the
library. When unloading a DLL, Windows first calls the library’s termination procedure. This allows the
DLL to return resources and do any necessary cleanup operations before Windows unloads the library
from memory.

Libraries that have registered window procedures with RegisterClass need not call UnregisterClass to
remove the class registration. Windows does this automatically when it unloads the library.

You must name the library’s termination procedure WEP (for Windows Exit Procedure) and list it in the

DLL Code
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 202

EXPORTS section of the library’s module-definition file. To ensure immediate operation, provide an
ordinal number and use the RESIDENTNAME keyword, as described in the chapter “Creating
Module-Definition Files” in Environment and Tools. This keeps the name “WEP” in the
Windows-resident name table at all times.

Besides its name, the code for WEP should also remain constantly in memory. To ensure this, place
WEP in its own code segment and set the segment’s attributes as PRELOAD FIXED in the
SEGMENTS statement of the module-definition file. Thus, your DLL code should use a memory model
that allows multiple code segments, such as medium model. Since a termination procedure is usually
short, keeping it resident in memory does not burden the operating system.

The termination procedure accepts a single parameter, which can have one of two values. These
values are assigned to the following symbolic constants in the WINDOWS.INC file located in the LIB
subdirectory:

• WEP_SYSTEM_EXIT (value 1) indicates Windows is shutting down.

• WEP_FREE_DLL (value 0) indicates the library’s last client has terminated or has called
FreeLibrary, and Windows is unloading the DLL.

The following fragment provides an outline for a typical termination procedure:

WEP PROC FAR PASCAL EXPORT
 wExitCode:WORD

 Prolog ; Prologue macro,
 .IF wExitCode == WEP_FREE_DLL ; discussed below
 . ; Get ready to
 . ; unload
 .
 ELSEIF wExitCode == WEP_SYSTEM_EXIT
 . ; Windows is
 . ; shutting down
 .
 . ENDIF ; If neither value,
 ; take no action
 mov ax, TRUE ; Always return AX = 1
 Epilog ; Epilogue code,
 ret ; discussed below

WEP ENDP

Usually, the WEP procedure takes the same actions regardless of the parameter value, since in either
case Windows will unload the DLL.

Under Windows 3.0, the WEP procedure receives stack space of about 256 bytes. This allows the
procedure to unhook interrupts, but little else. Any other action, such as calling an API function,
usually results in an unrecoverable application error because of stack overflow. Later versions of
Windows provide at least 4K of stack to the WEP procedure, allowing it to call many API functions.

However, WEP should not send or post a message to a client, because the client may already be
terminated. The WEP procedure should also not attempt file I/O, since only application processes —
not DLLs — can own files. When control reaches WEP, the client may no longer exist and its files are
closed.

Prologue and Epilogue Code

Exported procedures in a Windows-based program require special epilogue and prologue code. (For a
definition of these terms, see “Generating Prologue and Epilogue Code” in Chapter 7.) The SAMPLES
subdirectory on one of the MASM 6.1 distribution disks contains macros you can use for far

DLL Code
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 203

procedures in your Windows-based programs. Here’s a listing of the prologue macro:

Prolog MACRO
 mov ax, ds ; Must be 1st, since Windows overwrites
 nop ; Placeholder for 3rd byte
 inc bp ; Push odd BP. Not required, but
 push bp ; allows CodeView to recognize frame
 mov bp, sp ; Set up stack frame to access params
 push ds ; Save DS
 mov ds, ax ; Point DS to DLL's data segment
 ENDM

The instruction

 inc bp

marks the beginning of the stack frame with an odd number. This allows real-mode Windows to locate
segment addresses on the stack and update the addresses when it moves or discards the
corresponding segments. In protected mode, selector values do not change when segments are
moved, so marking the stack frame is not required. However, certain debugging applications, such as
Microsoft Codeview for Windows and the Microsoft Windows 80386 Debugger (both documented in
Programming Tools of the SDK), search for a marked frame to determine if the frame belongs to a far
procedure. Without the mark, these debuggers give meaningless information when backtracing through
the stack. Therefore, you should include the INC BP instruction for Windows-based programs that may
run in real mode or that require debugging with a Microsoft debugger.

Another characteristic of the prologue macro may seem puzzling at first glance. The macro moves DS
into AX, then AX back into DS. This sequence of instructions lets Windows selectively overwrite the
prologue code in far procedures. When Windows loads a program, it compares the names of far
procedures with the list of exported procedures in the module-definition file. For procedures that do not
appear on the list, Windows leaves their prologue code untouched. However, Windows overwrites the
first 3 bytes of all exported procedures with

 mov ax, DGROUP

where DGROUP represents the selector value for the library’s data segment. This explains why the
prologue macro reserves the third byte with a NOP instruction. The 1-byte instruction serves as
padding to provide a 3-byte area for Windows to overwrite.

The epilogue code returns BP to normal, like this:

Epilog MACRO
 pop ds ; Recover original DS
 pop bp ; and BP+1
 dec bp ; Reset to original BP
 ENDM

DLL Data

A DLL can have its own local data segment up to 64K. Besides static data, the segment contains the
heap from which a procedure can allocate memory through the LocalAlloc API function. You should
minimize static data in a DLL to reserve as much memory as possible for temporary allocations.
Furthermore, all procedures in the DLL draw from the same heap space. If more than one procedure in
the library accesses the heap, a procedure should not hold allocated space unnecessarily at the
expense of the other procedures.

A Windows-based program must reserve a “task header” in the first 16 bytes of its data segment. If

DLL Data
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 204

you link your program with a C run-time function, the C startup code automatically allocates the task
header. Otherwise, you must explicitly reserve and initialize the header with zeros. The sample
program described in “Example of a DLL:SYSINFO,” page 267, shows how to allocate a task header.

DLL Stack

A DLL does not declare a stack segment and does not allocate stack space. A client program calls a
library’s exported procedure through a simple far call, and the stack does not change. The procedure
is, in effect, part of the calling program, and therefore uses the caller’s stack.

This simple arrangement differs from that used in small and medium models, in which many C run-time
functions accept near pointers as arguments. Such functions assume the pointer is relative to the
current data segment. In applications, the call works even if the argument points to a local variable on
the stack, since DS and SS contain the same segment address.

However, in a DLL, DS and SS point to different segments. Under small and medium models, a library
procedure must always pass pointers to static variables located in the data segment, not to local
variables on the stack.

When you write a DLL, include the FARSTACK keyword with the .MODEL directive, like this:

 .MODEL small, pascal, farstack

This informs the assembler that SS points to a segment other than DGROUP. With full segment
definitions, also add the line:

 ASSUME DS:DGROUP, SS:NOTHING

DLL Extension Names

You can name an explicitly-loaded DLL file with any extension. The many files in your Windows
directory with extensions such as .DRV and .FON are almost certainly DLLs. Many DLLs have an
.EXE extension, though they are not true executable files.

A library with an .EXE extension should always include stub code, specified by the STUB statement in
the module-definition file. The stub code activates when run under MS-DOS, usually displaying a
message to inform the user that the program requires Windows. Without the stub code, the system
hangs if a user attempts to run a DLL with an .EXE extension.

Do not name a DLL with a .COM extension, since MS-DOS will give control to the first byte of the
program header. The header does not contain executable instructions, and the system will hang even if
the DLL has stub code.

Summary

Following is a summary of the previous information in this chapter.

• A dynamic-link library has only one instance — that is, it can load only once during a Windows
session.

• A single DLL can service calls from many client programs. Windows takes care of linkage

Summary
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 205

between the DLL and each client.

• Windows loads a DLL either implicitly (along with the first client) or explicitly (when the first client
calls LoadLibrary). It unloads the DLL when the last client either terminates or calls FreeLibrary.

• A client calls a DLL routine as a simple far procedure. The routine can use any calling convention.

• Windows ensures that the first instruction in a DLL procedure moves the address of the library’s
data segment into AX. You must provide the proper prologue code to allow space for this 3-byte
instruction and to copy AX to DS.

• All procedures in a DLL have access to a single common data segment. The segment contains
both static variables and heap space, and cannot exceed 64K.

• A DLL procedure uses the caller’s stack.

• All exported procedures in a DLL must appear in the EXPORTS list in the library’s
module-definition file.

Example of a DLL: SYSINFO

Like any library, a DLL should be as small and fast as possible — a good argument for writing it in
assembly language. This section describes an example library called SYSINFO, written entirely in
assembly language. The following text applies previous information in this chapter to an actual DLL.

SYSINFO contains three callable procedures. The acronym ASCIIZ refers to a string of ASCII
characters terminated with a zero. The callable procedures are:

Procedure Description

GetSysTime Returns a far pointer to a 12-byte ASCIIZ string containing the current time in
hh:mm:ss format.

GetSysDate Returns a far pointer to an ASCIIZ string containing the current date in any of six
languages.

GetSysInfo Returns a far pointer to a structure containing the following system data:

• ASCIIZ string of Windows version

• ASCIIZ string of MS-DOS version

• Current keyboard status

• Current video mode

• Math coprocessor flag

• Processor type

• ASCIIZ string of ROM-BIOS release date

To see SYSINFO in action, follow the steps below. The file SYSDATA.EXE resides in the
SAMPLES\WINDLL subdirectory of MASM if you requested example files when installing MASM.
Otherwise, you must first install the file with the MASM 6.1 SETUP utility.

• Create SYSINFO.DLL as described in the following section and place it in the SAMPLES\WINDLL
subdirectory for MASM 6.1.

• From the Windows File Manager, make the SAMPLES\WINDLL subdirectory the current directory.

• In the Program Manager, choose Run from the File menu and type

SYSDATA

to run the example program SYSDATA.EXE. This program calls the routines in SYSINFO.DLL and
displays the returned data.

Example of a DLL: SYSINFO
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 206

Entry Routine for SYSINFO

SYSINFO links with the DLLENTRY module, which serves as the library’s entry point when Windows
first loads the program. For a listing and description of DLLENTRY.ASM, see the previous section,
“Entry Procedure.”

DLLENTRY replaces the LIBENTRY module provided with the Windows SDK, but unlocks the data
segment after calling the API function InitTask. LIBENTRY does not unlock the segment. DLLENTRY
saves some space over LIBENTRY, because it does not pass any arguments to LibMain.

The LibMain procedure handles the library’s initialization tasks. You can name the procedure
whatever you want, provided you make the same change in

DLLENTRY.ASM and reassemble both modules. You can even combine DLLENTRY with LibMain to
form one procedure, like this:

DLLInit PROC FAR PASCAL PUBLIC ; Entry point for DLL

 jcxz @F ; If no heap, skip
 INVOKE LocalInit, ds, 0, cx ; Else set up the heap
 .IF (ax) ; If successful,
 INVOKE UnlockSegment, -1 ; unlock the data segment
@@: . ; Initialize DLL data. This
 . ; replaces the call to the
 . ; LibMain procedure.
 mov ax, TRUE ; Return AX = 1 if okay,
 .ENDIF ; else if LocalInit error,
 ret ; return AX = 0

DLLInit ENDP
END DLLInit

Whatever you call your combined procedure (DLLInit in the preceding example), place the name on
the END statement as shown. This identifies the procedure as the one that first executes when
Windows loads the DLL.

SYSINFO accommodates several international languages. Currently, SYSINFO recognizes English,
French, Spanish, German, Italian, and Swedish, but you can easily extend the code to include other
languages. LibMain calls GetProfileString to determine the current language, then initializes the
variable indx accordingly. The variable indirectly points to an array of strings containing days and
months in different languages. The GetSysDate procedure uses these strings to create a full date in
the correct language.

Static Data

SYSINFO stores the strings in its static data segment. This data remains in memory along with the
library’s code. All procedures have equal access to the data segment.

Because the library does not call any C run-time functions, it explicitly allocates the low paragraph of
the data segment with the variable TaskHead. This 16-byte area serves as the required Windows task
header, described in “DLL Data,” earlier in this chapter.

Module-Definition File

The library’s module-definition file, named SYSINFO.DEF, looks like this:

Entry Routine for SYSINFO
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 207

DESCRIPTION 'Sample assembly-language DLL'
EXETYPE WINDOWS
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE SINGLE
SEGMENTS CODE2 PRELOAD FIXED
EXPORTS WEP @1 RESIDENTNAME
 GetSysTime @2
 GetSysDate @3
 GetSysInfo @4

Note the following points about the module-definition file:

• The LIBRARY statement identifies SYSINFO as a dynamic-link library.

• SYSINFO places its termination procedure WEP in a separate code segment, called CODE2,
which the SEGMENTS statement declares as FIXED. This keeps the WEP routine fixed in
memory, while all other code remains moveable.

• The EXPORTS section lists all procedures the library exports, including WEP.

• None of the library’s procedures require heap space, so SYSINFO.DEF includes no HEAPSIZE
statement.

Assembling and Linking SYSINFO

The following listing shows the description file for SYSINFO:

sysinfo.obj: sysinfo.asm dll.inc
 ML /c /W3 sysinfo.asm
dllentry.obj: dllentry.asm dll.inc.
 ML /c /W3 dllentry.asm
sysinfo.dll: dllentry.obj sysinfo.obj
 LINK dllentry sysinfo, sysinfo.dll,, libw.lib mnocrtdw.lib, sysinfo.def

To create SYSINFO.DLL, run the NMAKE utility described in Chapter 16 of Environments and Tools.
Or assemble and link SYSINFO with the three command lines shown in the preceding listing. This
does not require running NMAKE.

SYSINFO links with the library modules MNOCRTDW.LIB and LIBW.LIB. The first supplies the
required Windows startup code for a medium-model DLL that does not use any C run-time functions.
LIBW.LIB is the Windows import library, which contains no executable code. The import library
provides linkage information for the Windows API functions referenced in the DLL. Windows
establishes the final links when it loads the program.

Expanding SYSINFO

SYSINFO is an example of how to write an assembly-language DLL without overwhelming detail. It has
plenty of room for expansion and improvements. The following list may give you some ideas:

• To create a heap area for the library, add the line

HEAPSIZE value

to the module-definition file, where value is an approximate guess for the amount of heap required
in bytes. The DLLEntry procedure automatically allocates the indicated amount of heap. Keep
the data segment moveable, because Windows then provides more heap space if required by the
DLL procedures.

• If you want to add a procedure that calls C run-time functions, you must replace MNOCRTDW.LIB

Expanding SYSINFO
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 208

with MDLLCW.LIB, which is supplied with the Windows SDK. The MDLLCW.LIB library contains
the run-time functions for medium-model DLLs.

• Each time the GetSysInfo procedure is called, it retrieves the version number of MS-DOS and
Windows, gets the processor type, checks for a coprocessor, and reads the ROM-BIOS release
date. Since this information does not change throughout a Windows session, it would be handled
more efficiently in the LibMain procedure, which executes only once. The code is currently placed
in GetSysInfo for the sake of clarity at the expense of efficiency.

• SYSINFO is not a true international program. You can easily add more languages, extending the
days and months arrays accordingly. Moreover, for the sake of simplicity, the GetSysDate
procedure arranges the date with an American bias. For example, in many parts of the world, the
date numeral appears before the month rather than after. If you use SYSINFO in your own
applications, you should include code in LibMain to determine the correct date format with
additional calls to GetProfileString. You can find more information on how to do this in Chapter
18 of the Microsoft Windows Programmer’s Reference, Volume 1, supplied with the Windows SDK.

Chapter 11 Writing Memory-Resident Software

Through its memory-management system, MS-DOS allows a program to remain resident in memory
after terminating. The resident program can later regain control of the processor to perform tasks such
as background printing or “popping up” a calculator on the screen. Such a program is commonly called
a TSR, from the terminate-and-stay-resident function it uses to return to MS-DOS.

This chapter explains the techniques of writing memory-resident software. The first two sections
present introductory material. Following sections describe important MS-DOS and BIOS interrupts and
focus on how to write safe, compatible, memory-resident software. Two example programs illustrate
the techniques described in the chapter. The MASM 6.1 disks contain complete source code for the
two example TSR programs.

Terminate-and-Stay-Resident Programs

MS-DOS maintains a pointer to the beginning of unused memory. Programs load into memory at this
position and terminate execution by returning control to MS-DOS. Normally, the pointer remains
unchanged, allowing MS-DOS to reuse the same memory when loading other programs.

A terminating program can, however, prevent other programs from loading on top of it. These programs
exit to MS-DOS through the terminate-and-stay-resident function, which resets the free-memory
pointer to a higher position. This leaves the program resident in a protected block of memory, even
though it is no longer running.

The terminate-and-stay-resident function (Function 31h) is one of the MS-DOS services invoked
through Interrupt 21h. The following fragment shows how a TSR program terminates through Function
31h and remains resident in a 1000h-byte block of memory:

 mov ah, 31h ; Request DOS Function 31h
 mov al, err ; Set return code
 mov dx, 100h ; Reserve 100h paragraphs
 ; (1000h bytes)
 int 21h ; Terminate-and-stay-resident

Note In current versions of MS-DOS, Interrupt 27h also provides a terminate-and-stay-resident

Terminate-and-Stay-Resident Programs
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 209

service. However, Microsoft cannot guarantee future support for Interrupt 27h and does not recommend
its use.

Structure of a TSR

TSRs consist of two distinct parts that execute at different times. The first part is the installation
section, which executes only once, when MS-DOS loads the program. The installation code performs
any initialization tasks required by the TSR and then exits through the terminate-and-stay-resident
function.

The second part of the TSR, called the resident section, consists of code and data left in memory after
termination. Though often identified with the TSR itself, the resident section makes up only part of the
entire program.

The TSR’s resident code must be able to regain control of the processor and execute after the program
has terminated. Methods of executing a TSR are classified as either passive or active.

Passive TSRs

The simplest way to execute a TSR is to transfer control to it explicitly from another program. Because
the TSR in this case does not solicit processor control, it is said to be passive. If the calling program
can determine the TSR’s memory address, it can grant control via a far jump or call. More commonly,
a program activates a passive TSR through a software interrupt. The installation section of the TSR
writes the address of its resident code to the proper position in the interrupt vector table (see “MS-DOS
Interrupts” in Chapter 7). Any subsequent program can then execute the TSR by calling the interrupt.

Passive TSRs often replace existing software interrupts. For example, a passive TSR might replace
Interrupt 10h, the BIOS video service. By intercepting calls that read or write to the screen, the TSR
can access the video buffer directly, increasing display speed.

Passive TSRs allow limited access since they can be invoked only from another program. They have
the advantage of executing within the context of the calling program, and thus run no risk of interfering
with another process. Such a risk does exist with active TSRs.

Active TSRs

The second method of executing a TSR involves signaling it through some hardware event, such as a
predetermined sequence of keystrokes. This type of TSR is “active” because it must continually
search for its startup signal. The advantage of active TSRs lies in their accessibility. They can take
control from any running application, execute, and return, all on demand.

An active TSR, however, must not seize processor control blindly. It must contain additional code that
determines the proper moment at which to execute. The extra code consists of one or more routines
called “interrupt handlers,” described in the following section.

Interrupt Handlers in Active TSRs

Interrupt Handlers in Active TSRs
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 210

The memory-resident portion of an active TSR consists of two parts. One part contains the body of the
TSR — the code and data that perform the program’s main tasks. The other part contains the TSR’s
interrupt handlers.

An interrupt handler is a routine that takes control when a specific interrupt occurs. Although
sometimes called an “interrupt service routine,” a TSR’s handler usually does not service the interrupt.
Instead, it passes control to the original interrupt routine, which does the actual interrupt servicing.
(See the section “Replacing an Interrupt Routine” in Chapter 7 for information on how to write an
interrupt handler.)

Collectively, interrupt handlers ensure that a TSR operates compatibly with the rest of the system.
Individually, each handler fulfills one or more of the following functions:

• Auditing hardware events that may signal a request for the TSR

• Monitoring system status

• Determining whether a request for the TSR should be honored, based on current system status

Auditing Hardware Events for TSR Requests

Active TSRs commonly use a special keystroke sequence or the timer as a request signal. A TSR
invoked through one of these channels must be equipped with handlers that audit keyboard or timer
events.

A keyboard handler receives control at every keystroke. It examines each key, searching for the proper
signal or “hot key.” Generally, a keyboard handler should not attempt to call the TSR directly when it
detects the hot key. If the TSR cannot safely interrupt the current process at that moment, the
keyboard handler is forced to exit to allow the process to continue. Since the handler cannot regain
control until the next keystroke, the user has to press the hot key repeatedly until the handler can
comply with the request.

Instead, the handler should merely set a request flag when it detects a hot-key signal and then exit
normally. Examples in the following paragraphs illustrate this technique.

For computers other than MCA (IBM PS/2 and compatible), an active TSR audits keystrokes through a
handler for Interrupt 09, the keyboard interrupt:

Keybrd PROC FAR
 sti ; Interrupts are okay
 push ax ; Save AX register
 in al, 60h ; AL = key scan code
 call CheckHotKey ; Check for hot key
 .IF carry? ; If hot key pressed,
 mov cs:TsrRequestFlag, TRUE ; raise flag and
 . ; set up for exit
 .
 .

A TSR running on a PS/2 computer cannot reliably read key scan codes using this method. Instead,
the TSR must search for its hot key through a handler for Interrupt 15h (Miscellaneous System
Services). The handler determines the current keypress from the AL register when AH equals 4Fh, as
shown here:

MiscServ PROC FAR
 sti ; Interrupts okay
 .IF ah == 4Fh ; If Keyboard Intercept Service:

Auditing Hardware Events for TSR Requests
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 211

 .IF carry? ; If hot key pressed,
 mov cs:TsrRequestFlag, TRUE ; raise flag and
 . ; set up for exit
 .
 .

The example program on page 293 shows how a TSR tests for a PS/2 machine and then sets up a
handler for either Interrupt 09 or Interrupt 15h to audit keystrokes.

Setting a request flag in the keyboard handler allows other code, such as the timer handler (Interrupt
08), to recognize a request for the TSR. The timer handler gains control at every timer interrupt, which
occurs an average of 18.2 times per second.

The following fragment shows how a timer handler tests the request flag and continually polls until it
can safely execute the TSR.

NewTimer PROC FAR
 .
 .
 .
 cmp TsrRequestFlag, FALSE ; Has TSR been requested?
 .IF !zero? ; If so, can system be
 call CheckSystem ; interrupted safely?
 .IF carry? ; If so,
 call ActivateTsr ; activate TSR
 .
 .
 .

Monitoring System Status

A TSR that uses a hardware device such as the video or disk must not interrupt while the device is
active. A TSR monitors a device by handling the device’s interrupt. Each interrupt handler simply sets
a flag to indicate the device is in use, and then clears the flag when the interrupt finishes.

The following shows a typical monitor handler:

NewHandler PROC FAR
 mov cs:ActiveFlag, TRUE ; Set active flag
 pushf ; Simulate interrupt by
 ; pushing flags, then
 call OldHandler ; far-calling original routine
 mov cs:ActiveFlag, FALSE ; Clear active flag
 iret ; Return from interrupt
NewHandler ENDP

Only hardware used by the TSR requires monitoring. For example, a TSR that performs disk
input/output (I/O) must monitor disk use through Interrupt 13h. The disk handler sets an active flag that
prevents the TSR from executing during a read or write operation. Otherwise, the TSR’s own I/O would
move the disk head. This would cause the suspended disk operation to continue with the head
incorrectly positioned when the TSR returned control to the interrupted program.

In the same way, an active TSR that displays to the screen must monitor calls to Interrupt 10h. The
Interrupt 10h BIOS routine does not protect critical sections of code that program the video controller.
The TSR must therefore ensure it does not interrupt such nonreentrant operations.

The activities of the operating system also affect the system status. With few exceptions, MS-DOS
functions are not reentrant and must not be interrupted. However, monitoring MS-DOS is somewhat

Monitoring System Status
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 212

more complicated than monitoring hardware. This subject is discussed in “Using MS-DOS in Active
TSRs,” later in this chapter.

Figure 11.1 illustrates the process described so far. It shows a time line for a typical TSR signaled
from the keyboard. When the keyboard handler detects the proper hot key, it sets a request flag called
TsrRequestFlag. Thereafter, the timer handler continually checks the system status until it can
safely call the TSR.

Figure 11.1 Time Line of Interactions Between Interrupt Handlers for a Typical TSR

The following comments describe the chain of events depicted in Figure 11.1. Each comment refers to
one of the numbered pointers in the figure.

 1. At time = t, the timer handler activates. It finds the flag TsrRequestFlag clear, indicating the
user has not requested the TSR. The handler terminates without taking further action. Notice that
Interrupt 13h is currently processing a disk I/O operation.

 2. Before the next timer interrupt, the keyboard handler detects the hot key, signaling a request for
the TSR. The keyboard handler sets TsrRequestFlag and returns.

 3. At time = t + 1/18 second, the timer handler again activates and finds TsrRequestFlag set. The
handler checks other active flags to determine if the TSR can safely execute. Since Interrupt 13h
has not yet completed its disk operation, the timer handler finds DiskActiveFlag set. The
handler therefore terminates without activating the TSR.

 4. At time = t + 2/18 second, the timer handler again finds TsrRequestFlag set and repeats its
scan of the active flags. DiskActiveFlag is now clear, but in the interim, Interrupt 10h has
activated as indicated by the flag VideoActiveFlag. The timer handler accordingly terminates
without activating the TSR.

 5. At time = t + 3/18 second, the timer handler repeats the process. This time it finds all active flags
clear, indicating the TSR can safely execute. The timer handler calls the TSR, which sets its own
active flag to ensure it will not interrupt itself if requested again.

Monitoring System Status
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 213

 6. The timer and other interrupts continue to function normally while the TSR executes.

The timer itself can serve as the startup signal if the TSR executes periodically. Screen clocks that
continuously show seconds and minutes are examples of TSRs that use the timer this way.
ALARM.ASM, a program described in the next section, shows another example of a timer-driven TSR.

Determining Whether to Invoke the TSR

Once a handler receives a request signal for the TSR, it checks the various active flags maintained by
the handlers that monitor system status. If any of the flags are set, the handler ignores the request
and exits. If the flags are clear, the handler invokes the TSR, usually through a near or far call. Figure
11.1 illustrates how a timer handler detects a request and then periodically scans various active flags
until all the flags are clear.

A TSR that changes stacks must not interrupt itself. Otherwise, the second execution would overwrite
the stack data belonging to the first. A TSR prevents this by setting its own active flag before
executing, as shown in Figure 11.1. A handler must check this flag along with the other active flags
when determining whether the TSR can safely execute.

Example of a Simple TSR: ALARM

This section presents a simple alarm clock TSR that demonstrates some of the material covered so
far. The program accepts an argument from the command line that specifies the alarm setting in
military form, such as 1635 for 4:35 P.M. For simplicity, the argument must consist of four digits,
including leading zeros. To set the alarm at 7:45 A.M., for example, enter the command:

ALARM 0745

The installation section of the program begins with the Install procedure. Install computes the
number of five-second intervals that must elapse before the alarm sounds and stores this number in
the word CountDown. The procedure then obtains the vector for Interrupt 08 (timer) through MS-DOS
Function 35h and stores it in the far pointer OldTimer. Function 25h replaces the vector with the far
address of the new timer handler NewTimer. Once installed, the new timer handler executes at every
timer interrupt. These interrupts occur 18.2 times per second or 91 times every five seconds.

Each time it executes, NewTimer subtracts one from a secondary counter called Tick91. By
counting 91 timer ticks, Tick91 accurately measures a period of five seconds. When Tick91
reaches zero, it’s reset to 91 and CountDown is decremented by one. When CountDown reaches
zero, the alarm sounds.

;* ALARM.ASM - A simple memory-resident program that beeps the speaker
;* at a prearranged time. Can be loaded more than once for multiple
;* alarm settings. During installation, ALARM establishes a handler
;* for the timer interrupt (Interrupt 08). It then terminates through
;* the terminate-and-stay-resident function (Function 31h). After the
;* alarm sounds, the resident portion of the program retires by setting
;* a flag that prevents further processing in the handler.

 .MODEL tiny ; Create ALARM.COM
 .STACK
 .CODE

Example of a Simple TSR: ALARM
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 214

CountDown LABEL WORD ; converted to number of 5-second
 ; intervals to elapse
 .STARTUP
 jmp Install ; Jump over data and resident code

; Data must be in code segment so it won’t be thrown away with Install code.
OldTimer DWORD ? ; Address of original timer routine
tick_91 BYTE 91 ; Counts 91 clock ticks (5 seconds)
TimerActiveFlag BYTE 0 ; Active flag for timer handler

;* NewTimer - Handler routine for timer interrupt (Interrupt 08).
;* Decrements CountDown every 5 seconds. No other action is taken
;* until CountDown reaches 0, at which time the speaker sounds.

NewTimer PROC FAR
 .IF cs:TimerActiveFlag != 0 ; If timer busy or retired,
 jmp cs:OldTimer ; jump to original timer routine
 .ENDIF
 inc cs:TimerActiveFlag ; Set active flag
 pushf ; Simulate interrupt by pushing flags,
 call cs:OldTimer ; then far-calling original routine
 sti ; Enable interrupts
 push ds ; Preserve DS register
 push cs ; Point DS to current segment for
 pop ds ; further memory access
 dec tick_91 ; Count down for 91 ticks
 .IF zero? ; If 91 ticks have elapsed,
 mov tick_91, 91 ; reset secondary counter and
 dec CountDown ; subtract one 5-second interval
 .IF zero? ; If CountDown drained,
 call Sound ; sound speaker
 inc TimerActiveFlag ; Alarm has sounded--inc flag
 .ENDIF ; again so it remains set
 .ENDIF

 dec TimerActiveFlag ; Decrement active flag
 pop ds ; Recover DS
 iret ; Return from interrupt handler
NewTimer ENDP

;* Sound - Sounds speaker with the following tone and duration:

BEEP_TONE EQU 440 ; Beep tone in hertz
BEEP_DURATION EQU 6 ; Number of clocks during beep,
 ; where 18 clocks = approx 1 second

Sound PROC USES ax bx cx dx es ; Save registers used in this routine
 mov al, 0B6h ; Initialize channel 2 of
 out 43h, al ; timer chip
 mov dx, 12h ; Divide 1,193,180 hertz
 mov ax, 34DCh ; (clock frequency) by
 mov bx, BEEP_TONE ; desired frequency
 div bx ; Result is timer clock count
 out 42h, al ; Low byte of count to timer
 mov al, ah
 out 42h, al ; High byte of count to timer
 in al, 61h ; Read value from port 61h
 or al, 3 ; Set first two bits
 out 61h, al ; Turn speaker on
; Pause for specified number of clock ticks

Example of a Simple TSR: ALARM
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 215

 mov dx, BEEP_DURATION ; Beep duration in clock ticks
 sub cx, cx ; CX:DX = tick count for pause
 mov es, cx ; Point ES to low memory data
 add dx, es:[46Ch] ; Add current tick count to CX:DX
 adc cx, es:[46Eh] ; Result is target count in CX:DX
 .REPEAT
 mov bx, es:[46Ch] ; Now repeatedly poll clock
 mov ax, es:[46Eh] ; count until the target
 sub bx, dx ; time is reached
 sbb ax, cx
 .UNTIL !carry?

 in al, 61h ; When time elapses, get port value
 xor al, 3 ; Kill bits 0-1 to turn
 out 61h, al ; speaker off
 ret
Sound ENDP

;* Install - Converts ASCII argument to valid binary number, replaces
;* NewTimer as the interrupt handler for the timer, then makes program
;* memory-resident by exiting through Function 31h.
;*
;* This procedure marks the end of the TSR's resident section and the
;* beginning of the installation section. When ALARM terminates through
;* Function 31h, the above code and data remain resident in memory. The
;* memory occupied by the following code is returned to DOS.

Install PROC

; Time argument is in hhmm military format. Converts ASCII digits to
; number of minutes since midnight, then converts current time to number
; of minutes since midnight. Difference is number of minutes to elapse
; until alarm sounds. Converts to seconds-to-elapse, divides by 5 seconds,
; and stores result in word CountDown.
DEFAULT_TIME EQU 3600 ; Default alarm setting = 1 hour
 ; (in seconds) from present time
 mov ax, DEFAULT_TIME
 cwd ; DX:AX = default time in seconds
 .IF BYTE PTR CountDown != ' ' ; If not blank argument,
 xor CountDown[0], '00' ; convert 4 bytes of ASCII
 xor CountDown[2], '00' ; argument to binary

 mov al, 10 ; Multiply 1st hour digit by 10
 mul BYTE PTR CountDown[0] ; and add to 2nd hour digit
 add al, BYTE PTR CountDown[1]
 mov bh, al ; BH = hour for alarm to go off
 mov al, 10 ; Repeat procedure for minutes
 mul BYTE PTR CountDown[2] ; Multiply 1st minute digit by 10
 add al, BYTE PTR CountDown[3] ; and add to 2nd minute digit
 mov bl, al ; BL = minute for alarm to go off
 mov ah, 2Ch ; Request Function 2Ch
 int 21h ; Get Time (CX = current hour/min)
 mov dl, dh
 sub dh, dh
 push dx ; Save DX = current seconds
 mov al, 60 ; Multiply current hour by 60
 mul ch ; to convert to minutes
 sub ch, ch
 add cx, ax ; Add current minutes to result

Example of a Simple TSR: ALARM
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 216

 mov al, 60 ; Multiply alarm hour by 60
 mul bh ; to convert to minutes
 sub bh, bh
 add ax, bx ; AX = number of minutes since
 ; midnight for alarm setting
 sub ax, cx ; AX = time in minutes to elapse
 ; before alarm sounds
 .IF carry? ; If alarm time is tomorrow,
 add ax, 24 * 60 ; add minutes in a day
 .ENDIF

 mov bx, 60
 mul bx ; DX:AX = minutes-to-elapse-times-60
 pop bx ; Recover current seconds
 sub ax, bx ; DX:AX = seconds to elapse before
 sbb dx, 0 ; alarm activates
 .IF carry? ; If negative,
 mov ax, 5 ; assume 5 seconds
 cwd
 .ENDIF
 .ENDIF
 mov bx, 5 ; Divide result by 5 seconds
 div bx ; AX = number of 5-second intervals
 mov CountDown, ax ; to elapse before alarm sounds

 mov ax, 3508h ; Request Function 35h
 int 21h ; Get Vector for timer (Interrupt 08)
 mov WORD PTR OldTimer[0], bx ; Store address of original
 mov WORD PTR OldTimer[2], es ; timer interrupt
 mov ax, 2508h ; Request Function 25h
 mov dx, OFFSET NewTimer ; DS:DX points to new timer handler
 int 21h ; Set Vector with address of NewTimer

 mov dx, OFFSET Install ; DX = bytes in resident section
 mov cl, 4
 shr dx, cl ; Convert to number of paragraphs
 inc dx ; plus one
 mov ax, 3100h ; Request Function 31h, error code=0
 int 21h ; Terminate-and-stay-resident
Install ENDP
 END

Note the following points about ALARM:

• The constant BEEP_TONE specifies the alarm tone. Practical values for the tone range from
approximately 100 to 4,000 hertz.

• The Install procedure marks the beginning of the installation section of the program. Execution
begins here when ALARM.COM is loaded. A TSR generally places its installation code after the
resident section. This allows the terminating TSR to include the installation code with the rest of
the memory it returns to MS-DOS. Since the installation section executes only once, the TSR can
discard it after becoming resident.

• You can install ALARM any number of times in quick succession, each time with a new alarm
setting. The timer handler does not restore the original vector for Interrupt 08 after the alarm
sounds. In effect, the multiple installations remain daisy-chained in memory. The address in
OldTimer for one installation is the address of NewTimer in the preceding installation.

• Until a system reboot, NewTimer remains in place as the Interrupt 08 handler, even after the
alarm sounds. To save unnecessary activity, the byte TimerActiveFlag remains set after the
alarm sounds. This forces an immediate jump to the original handler for all subsequent executions

Example of a Simple TSR: ALARM
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 217

of NewTimer.

• NewTimer and Sound alter registers DS, AX, BX, CX, DX, and ES. To preserve the original
values in these registers, the procedures first push them onto the stack and then restore the
original values before exiting. This ensures that the process interrupted by NewTimer continues
with valid registers after NewTimer returns.

• ALARM requires little stack space. It assumes the current stack is adequate and makes no
attempt to set up a new one. More sophisticated TSRs, however, should as a matter of course
provide their own stacks to ensure adequate stack depth. The example program presented in
“Example of an Advanced TSR: SNAP,” later in this chapter, demonstrates this safety measure.

Using MS-DOS in Active TSRs

This section explains how to write active TSRs that can safely call MS-DOS functions. The material
explores the problems imposed by the nonreentrant nature of MS-DOS and explains how a TSR can
resolve those problems. The solution consists of four parts:

• Understanding how MS-DOS uses stacks

• Determining when MS-DOS is active

• Determining whether a TSR can safely interrupt an active MS-DOS function

• Monitoring the Critical Error flag

Understanding MS-DOS Stacks

MS-DOS functions set up their own stacks, which makes them nonreentrant. If a TSR interrupts an
MS-DOS function and then executes another function that sets up the same stack, the second
function will overwrite everything placed on the stack by the first function. The problem occurs when
the second function returns and the first is left with unusable stack data. A TSR that calls an MS-DOS
function must not interrupt any function that uses the same stack.

MS-DOS versions 2.0 and later use three internal stacks: an I/O stack, a disk stack, and an auxiliary
stack. The current stack depends on the MS-DOS function. Functions 01 through 0Ch set up the I/O
stack. Functions higher than 0Ch (with few exceptions) use the disk stack, as do Interrupts 25h and
26h. MS-DOS normally uses the auxiliary stack only when it executes Interrupt 24h (Critical Error
Handler).

Determining MS-DOS Activity

A TSR’s handlers can determine when MS-DOS is active by consulting a 1-byte flag called the InDos
flag. Every MS-DOS function sets this flag upon entry and clears it upon termination. During
installation, a TSR locates the flag through Function 34h (Get Address of InDos Flag), which returns
the address as ES:BX. The installation portion then stores the address so the handlers can later find
the flag without again calling Function 34h.

Theoretically, a TSR can wait to execute until the InDos flag is clear, thus sidestepping the entire
issue of interrupting MS-DOS. However, several low-order functions — such as Function 0Ah (Get
Buffered Keyboard Input) — wait idly for an expected keystroke before they terminate. If a TSR were

Determining MS-DOS Activity
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 218

allowed to execute only after MS-DOS returned, it too would have to wait for the terminating event.

The solution lies in determining when the low-order functions 01 through 0Ch are active. MS-DOS
provides another service for this purpose: Interrupt 28h, the Idle Interrupt.

Interrupting MS-DOS Functions

MS-DOS continually calls Interrupt 28h from the low-order polling functions as they wait for keyboard
input. This signal says that MS-DOS is idle and that a TSR may interrupt provided it does not overwrite
the I/O stack. Put another way, a TSR can safely interrupt MS-DOS Functions 01 through 0Ch
provided it does not call them.

An active TSR that calls MS-DOS must monitor Interrupt 28h with a handler. When the handler gains
control, it checks the TSR request flag. If the flag indicates the TSR has been requested and if system
hardware is inactive, the handler executes the TSR. Since control must eventually return to the idle
MS-DOS function which has stored data on the I/O stack, the TSR in this case must not call any
MS-DOS function that also uses the I/O stack. Table 11.1 shows which functions set up the I/O stack
for various versions of MS-DOS.

Table 11.1 MS-DOS Internal Stacks

Function
Critical Error flag MS-DOS

2.x
MS-DOS
3.0

MS-DOS
3.1+

01–0Ch Clear
Set

I/O*
Aux*

I/O
Aux

I/O
Aux

33h Clear
Set

Disk*
Disk

Disk
Disk

Caller*
Caller

50h–51h Clear
Set

I/O
Aux

Caller
Caller

Caller
Caller

59h Clear
Set

n/a*
n/a

I/O
Aux

Disk
Disk

5D0Ah Clear
Set

n/a
n/a

n/a
n/a

Disk
Disk

62h Clear
Set

n/a
n/a

Caller
Caller

Caller
Caller

All others Clear
Set

Disk
Disk

Disk
Disk

Disk
Disk

* I/O=I/O stack, Aux = auxiliary stack, Disk = disk stack, Caller = caller’s stack, n/a = function not available.

TSRs that perform tasks of long or indefinite duration should themselves call Interrupt 28h. For
example, a TSR that polls for keyboard input should include an INT 28h instruction in the polling loop,
as shown here:

poll: int 28h ; Signal idle state
 mov ah, 1
 int 16h ; Key waiting?
 jnz poll ; If not, repeat polling loop
 sub ah, ah
 int 16h ; Otherwise, get key

This courtesy gives other TSRs a chance to execute if the InDos flag happens to be set.

Interrupting MS-DOS Functions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 219

Monitoring the Critical Error Flag

MS-DOS sets the Critical Error flag to a nonzero value when it detects a critical error. It then invokes
Interrupt 24h (Critical Error Handler) and clears the flag when Interrupt 24h returns. MS-DOS functions
higher than 0Ch are illegal during critical error processing. Therefore, a TSR that calls MS-DOS must
not execute while the Critical Error flag is set.

MS-DOS versions 3.1 and later locate the Critical Error flag in the byte preceding the InDos flag. A
single call to Function 34h (Get Address of InDos Flag) thus effectively returns the addresses of both
flags. For earlier versions of MS-DOS or for the compatibility version of MS-DOS in OS/2 1.x, a TSR
must call Function 34h and then scan the segment returned in the ES register for one of the two
following sequences of instructions:

; Sequence of instructions in DOS Versions 2.0 - 3.0
 cmp ss:[CriticalErrorFlag], 0
 jne @F
 int 28h

; Sequence of instructions in DOS compatibility version for OS/2 1.x
 test [CriticalErrorFlag], 0FFh
 jnz @F
 push ss:[?]
 int 28h

The question mark inside brackets in the preceding PUSH statement indicates that the operand for the
PUSH instruction can be any legal operand.

In either version of MS-DOS, the operand field in the first instruction gives the flag’s offset. The value in
ES determines the segment address. “Example of an Advanced TSR: SNAP,” later in the chapter,
presents a program that shows how to locate the Critical Error flag with this technique.

Preventing Interference

This section describes how an active TSR can avoid interfering with the process it interrupts.
Interference occurs when a TSR commits an error or performs an action that affects the interrupted
process after the TSR returns. Examples of interference range from relatively harmless, such as
moving the cursor, to serious, such as overrunning a stack.

Although a TSR can interfere with another process in many different ways, protection against
interference involves only three steps:

 1. Recording a current configuration

 2. Changing the configuration so it applies to the TSR

 3. Restoring the original configuration before terminating

The example program described on page 293 demonstrates all the noninterference safeguards
described in this section. These safeguards by no means exhaust the subject of noninterference. More
sophisticated TSRs may require more sophisticated methods. However, noninterference methods
generally fall into one of the following categories:

• Trapping errors

• Preserving an existing condition

Preventing Interference
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 220

• Preserving existing data

Trapping Errors

A TSR committing an error that triggers an interrupt must handle the interrupt to trap the error.
Otherwise, the existing interrupt routine, which belongs to the underlying process, would attempt to
service an error the underlying process did not commit.

For example, a TSR that accepts keyboard input should include handlers for Interrupts 23h and 1Bh to
trap keyboard break signals. When MS-DOS detects CTRL+C from the keyboard or input stream, it
transfers control to Interrupt 23h (CTRL+C Handler). Similarly, the BIOS keyboard routine calls
Interrupt 1Bh (CTRL+BREAK Handler) when it detects a CTRL+BREAK key combination. Both
routines normally terminate the current process.

A TSR that calls MS-DOS should also trap critical errors through Interrupt 24h (Critical Error Handler).
MS-DOS functions call Interrupt 24h when they encounter certain hardware errors. The TSR must not
allow the existing interrupt routine to service the error, since the routine might allow the user to abort
service and return control to MS-DOS. This would terminate both the TSR and the underlying process.
By handling Interrupt 24h, the TSR retains control if a critical error occurs.

An error-trapping handler differs in two ways from a TSR’s other handlers:

 1. It is temporary, in service only while the TSR executes. At startup, the TSR copies the handler’s
address to the interrupt vector table; it then restores the original vector before returning.

 2. It provides complete service for the interrupt; it does not pass control on to the original routine.

Error-trapping handlers often set a flag to let the TSR know the error has occurred. For example, a
handler for Interrupt 1Bh might set a flag when the user presses CTRL+BREAK. The TSR can check
the flag as it polls for keyboard input, as shown here:

BrkHandler PROC FAR ; Handler for Interrupt 1Bh
 .
 .
 .
 mov cs:BreakFlag, TRUE ; Raise break flag
 iret ; Terminate interrupt

BrkHandler ENDP
 .
 .
 .
 mov BreakFlag, FALSE ; Initialize break flag
poll: .
 .
 .
 cmp BreakFlag, TRUE ; Keyboard break pressed?
 je exit ; If so, break polling loop
 mov ah, 1
 int 16h ; Key waiting?
 jnz poll ; If not, repeat polling loop

Preserving an Existing Condition

A TSR and its interrupt handlers must preserve register values so that all registers are returned intact

Preserving an Existing Condition
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 221

to the interrupted process. This is usually done by pushing the registers onto the stack before
changing them, then popping the original values before returning.

Setting up a new stack is another important safeguard against interference. A TSR should usually
provide its own stack to avoid the possibility of overrunning the current stack. Exceptions to this rule
are simple TSRs such as the sample program ALARM that make minimal stack demands.

A TSR that alters the video configuration should return the configuration to its original state upon
return. Video configuration includes cursor position, cursor shape, and video mode. The services
provided through Interrupt 10h enable a TSR to determine the existing configuration and alter it if
necessary.

However, some applications set video parameters by directly programming the video controller. When
this happens, BIOS remains unaware of the new configuration and consequently returns inaccurate
information to the TSR. Unfortunately, there is no solution to this problem if the controller’s data
registers provide write-only access and thus cannot be queried directly. For more information on video
controllers, refer to Richard Wilton, Programmer’s Guide to the PC & PS/2 Video Systems. (See
“Books for Further Reading” in the Introduction.)

Preserving Existing Data

A TSR requires its own disk transfer area (DTA) if it calls MS-DOS functions that access the DTA.
These include file control block functions and Functions 11h, 12h, 4Eh, and 4Fh. The TSR must switch
to a new DTA to avoid overwriting the one belonging to the interrupted process. On becoming active,
the TSR calls Function 2Fh to obtain the address of the current DTA. The TSR stores the address and
then calls Function 1Ah to establish a new DTA. Before returning, the TSR again calls Function 1Ah to
restore the address of the original DTA.

MS-DOS versions 3.1 and later allow a TSR to preserve extended error information. This prevents the
TSR from destroying the original information if it commits an MS-DOS error. The TSR retrieves the
current extended error data by calling MS-DOS Function 59h. It then copies registers AX, BX, CX, DX,
SI, DI, DS, and ES to an 11-word data structure in the order given. MS-DOS reserves the last three
words of the structure, which should each be set to zero. Before returning, the TSR calls Function 5Dh
with AL = 0Ah and DS:DX pointing to the data structure. This call restores the extended error data to
their original state.

Communicating Through the Multiplex Interrupt

The Multiplex interrupt (Interrupt 2Fh) provides the Microsoft-approved way for a program to verify the
presence of an installed TSR and to exchange information with it. MS-DOS version 2.x uses Interrupt
2Fh only as an interface for the resident print spooler utility PRINT.COM. Later MS-DOS versions
standardize calling conventions so that multiple TSRs can share the interrupt.

A TSR chains to the Multiplex interrupt by setting up a handler. The TSR’s installation code records
the Interrupt 2Fh vector and then replaces it with the address of the new multiplex handler.

The Multiplex Handler

A program communicates with a multiplex handler by calling Interrupt 2Fh with an identity number in

The Multiplex Handler
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 222

the AH register. As each handler in the chain gains control, it compares the value in AH with its own
identity number. If the handler finds that it is not the intended recipient of the call, it passes control to
the previous handler. The process continues until control reaches the target handler. When the target
handler finishes its tasks, it returns via an IRET instruction to terminate the interrupt.

The target handler determines its tasks from the function number in AL. Convention reserves Function
0 as a request for installation status. A multiplex handler must respond to Function 0 by setting AL to
0FFh, to inform the caller of the handler’s presence in memory. The handler should also return other
information to provide a completely reliable identification. For example, it might return in ES:BX a far
pointer to the TSR’s copyright notice. This assures the caller it has located the intended TSR and not
another TSR that has already claimed the identity number in AH.

Identity numbers range from 192 to 255, since MS-DOS reserves lesser values for its own use. During
installation, a TSR must verify the uniqueness of its number. It must not set up a multiplex handler
identified by a number already in use. A TSR usually obtains its identity number through one of the
following methods:

• The programmer assigns the number in the program.

• The user chooses the number by entering it as an argument in the command line, placing it into
an environment variable, or by altering the contents of an initialization file.

• The TSR selects its own number through a process of trial and error.

The last method offers the most flexibility. It finds an identity number not currently in use among the
installed multiplex handlers and does not require intervention from the user.

To use this method, a TSR calls Interrupt 2Fh during installation with AH = 192 and AL = 0. If the call
returns AL = 0FFh, the program tests other registers to determine if it has found a prior installation of
itself. If the test fails, the program resets AL to zero, increments AH to 193, and again calls Interrupt
2Fh. The process repeats with incrementing values in AH until the TSR locates a prior installation of
itself — in which case it should abort with an appropriate message to the user — or until AL returns as
zero. The TSR can then use the value in AH as its identity number and proceed with installation.

The SNAP.ASM program in this chapter demonstrates how a TSR can use this trial-and-error method
to select a unique identity number. During installation, the program calls Interrupt 2Fh to verify that
SNAP is not already installed. When deinstalling, the program again calls Interrupt 2Fh to locate the
resident TSR in memory. SNAP’s multiplex handler services the call and returns the address of the
resident code’s program-segment prefix. The calling program can then locate the resident code and
deinstall it, as explained in “Deinstalling a TSR,” following.

Using the Multiplex Interrupt Under MS-DOS Version 2.x

A TSR can use the Multiplex interrupt under MS-DOS version 2.x, with certain limitations. Under
version 2.x, only MS-DOS’s print spooler PRINT, itself a TSR program, provides an Interrupt 2Fh
service. The Interrupt 2Fh vector remains null until PRINT or another TSR is installed that sets up a
multiplex handler.

Therefore, a TSR running under version 2.x must first check the existing Interrupt 2Fh vector before
installing a multiplex handler. The TSR locates the current Interrupt 2Fh handler through Function 35h
(Get Interrupt Vector). If the function returns a null vector, the TSR’s handler will be last in the chain of
Interrupt 2Fh handlers. The handler must terminate with an IRET instruction rather than pass control to
a nonexistent routine.

PRINT in MS-DOS version 2.x does not pass control to the previous handler. If you intend to run PRINT
under version 2.x, the program must be installed before other TSRs that also handle Interrupt 2Fh. This
places PRINT’s multiplex handler last in the chain of handlers.

Using the Multiplex Interrupt Under MS-DOS Version 2.x
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 223

Deinstalling a TSR

A TSR should provide a means for the user to remove or “deinstall” it from memory. Deinstallation
returns occupied memory to the system, offering these benefits:

• The freed memory becomes available to subsequent programs that may require additional memory
space.

• Deinstallation restores the system to a normal state. Thus, sensitive programs that may be
incompatible with TSRs can execute without the presence of installed routines.

A deinstallation program must first locate the TSR in memory, usually by requesting an address from
the TSR’s multiplex handler. When it has located the TSR, the deinstallation program should then
compare addresses in the vector table with the addresses of the TSR’s handlers. A mismatch
indicates that another TSR has chained a handler to the interrupt routine. In this case, the
deinstallation program should deny the request to deinstall. If the addresses of the TSR’s handlers
match those in the vector table, deinstallation can safely continue.

You can deinstall the TSR with these three steps:

 1. Restore to the vector table the original interrupt vectors replaced by the handler addresses.

 2. Read the segment address stored at offset 2Ch of the resident TSR’s program segment prefix
(PSP). This address points to the TSR’s “environment block,” a list of environment variables that
MS-DOS copies into memory when it loads a program. Place the block’s address in the ES
register and call MS-DOS Function 49h (Release Memory Block) to return the block’s memory to
the operating system.

 3. Place the resident PSP segment address in ES and again call Function 49h. This call releases
the block of memory occupied by the TSR’s code and data.

The example program in the next section demonstrates how to locate a resident TSR through its
multiplex handler, and deinstall it from memory.

Example of an Advanced TSR: SNAP

This section presents SNAP, a memory-resident program that demonstrates most of the techniques
discussed in this chapter. SNAP takes a snapshot of the current screen and copies the text to a
specified file. SNAP accommodates screens with various column and line counts, such as CGA’s
40-column mode or VGA’s 50-line mode. The program ignores graphics screens.

Once installed, SNAP occupies approximately 7.5K of memory. When it detects the ALT+LEFT
SHIFT+S key combination, SNAP displays a prompt for a file specification. The user can type a new
filename, accept the previous filename by pressing ENTER, or cancel the request by pressing ESC.

SNAP reads text directly from the video buffer and copies it to the specified file. The program sets the
file pointer to the end of the file so that text is appended without overwriting previous data. SNAP
copies each line only to the last character, ignoring trailing spaces. The program adds a carriage
return–linefeed sequence (0D0Ah) to the end of each line. This makes the file accessible to any text
editor that can read ASCII files.

To demonstrate how a program accesses resident data through the Multiplex interrupt, SNAP can
reset the display attribute of its prompt box. After installing SNAP, run the main program with the /C
option to change box colors:

Example of an Advanced TSR: SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 224

SNAP /Cxx

The argument xx specifies the desired attribute as a two-digit hexadecimal number — for example, 7C
for red on white, or 0F for monochrome high intensity. For a list of color and monochrome display
attributes, refer to the “Tables” section of the Reference.

SNAP can deinstall itself, provided another TSR has not been loaded after it. Deinstall SNAP by
executing the main program with the /D option:

SNAP /D

If SNAP successfully deinstalls, it displays the following message:

TSR deinstalled

Building SNAP.EXE

SNAP combines four modules: SNAP.ASM, COMMON.ASM, HANDLERS.ASM, and INSTALL.ASM.
Source files are located on one of your distribution disks. Each module stores temporary code and
data in the segments INSTALLCODE and INSTALLDATA. These segments apply only to SNAP’s
installation phase; MS-DOS recovers the memory they occupy when the program exits through the
terminate-and-stay-resident function. The following briefly describes each module:

• SNAP.ASM contains the TSR’s main code and data.

• COMMON.ASM contains procedures used by other example programs.

• HANDLERS.ASM contains interrupt handler routines for Interrupts 08, 09, 10h, 13h, 15h, 28h, and
2Fh. It also provides simple error-trapping handlers for Interrupts 1Bh, 23h, and 24h. Additional
routines set up and deinstall the handlers.

• INSTALL.ASM contains an exit routine that calls the terminate-and-stay-
resident function and a deinstallation routine that removes the program from memory. The module
includes error-checking services and a command-line parser.

This building-block approach allows you to create other TSRs by replacing SNAP.ASM and linking
with the HANDLERS and INSTALL object modules. The library of routines accommodates both
keyboard-activated and time-
activated TSRs. A time-activated TSR is a program that activates at a predetermined time of day,
similar to the example program ALARM introduced earlier in this chapter. The header comments for
the Install procedure in HANDLERS.ASM explain how to install a time-activated TSR.

You can write new TSRs in assembly language or any high-level language that conforms to the
Microsoft conventions for ordering segments. Regardless of the language, the new code must not
invoke an MS-DOS function that sets up the I/O stack (see “Interrupting MS-DOS Functions,” earlier in
this chapter). Code in Microsoft C, for example, must not call getche or kbhit, since these functions
in turn call MS-DOS Functions 01 and 0Bh.

Code written in a high-level language must not check for stack overflows.
Compiler-generated stack probes do not recognize the new stack setup when the TSR executes, and
therefore must be disabled. The example program BELL.C, included on disk with the TSR library
routines, demonstrates how to disable stack checking in Microsoft C using the check_stack pragma.

Outline of SNAP

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 225

The following sections outline in detail how SNAP works. Each part of the outline covers a specific
portion of SNAP’s code. Headings refer to earlier sections of this chapter, providing cross-references to
SNAP’s key procedures. For example, the part of the outline that describes how SNAP searches for
its startup signal refers to the section “Auditing Hardware Events for TSR Requests,” earlier in this
chapter.

Figures 11.2 through 11.4 are flowcharts of the SNAP program. Each chart illustrates a separate
phase of SNAP’s operation, from installation through memory-residency to deinstallation.

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 226

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 227

Figure 11.2 Flowchart for SNAP.EXE: Installation Phase

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 228

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 229

Figure 11.3 Flowchart for SNAP.EXE: Resident Phase

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 230

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 231

Figure 11.4 Flowchart for SNAP.EXE: Deinstallation Phase

Refer to the flowcharts as you read the following outline. They will help you maintain perspective while
exploring the details of SNAP’s operation. Text in the outline cross-references the charts.

Note that information in both the outline and the flowcharts is generic. Except for references to the
SNAP procedure, all descriptions in the outline and the flowcharts apply to any TSR created with the
HANDLERS and INSTALL modules.

Auditing Hardware Events for TSR Requests

To search for its startup signal, SNAP audits the keyboard with an interrupt handler for either Interrupt
09 (keyboard) or Interrupt 15h (Miscellaneous System Services). The Install procedure determines
which of the two interrupts to handle based on the following code:

 .IF HotScan == 0 ; If valid scan code given:
 mov ah, HotShift ; AH = hour to activate
 mov al, HotMask ; AL = minute to activate
 call GetTimeToElapse ; Get number of 5-second intervals
 mov CountDown, ax ; to elapse before activation

 .ELSE ; Force use of KeybrdMonitor as
 ; keyboard handler
 cmp Version, 031Eh ; DOS Version 3.3 or higher?
 jb setup ; No? Skip next step

; Test for IBM PS/2 series. If not PS/2, use Keybrd and
; SkipMiscServ as handlers for Interrupts 09 and 15h
; respectively. If PS/2 system, set up KeybrdMonitor as the
; Interrupt 09 handler. Audit keystrokes with MiscServ
; handler, which searches for the hot key by handling calls
; to Interrupt 15h (Miscellaneous System Services). Refer to
; Section 11.2.1 for more information about keyboard handlers.

 mov ax, 0C00h ; Function 0Ch (Get System
 int 15h ; Configuration Parameters)
 sti ; Compaq ROM may leave disabled

 jc setup ; If carry set,
 or ah, ah ; or if AH not 0,
 jnz setup ; services are not supported

; Test bit 4 to see if Intercept is implemented
 test BYTE PTR es:[bx+5], 00010000y
 jz setup

; If so, set up MiscServ as Interrupt 15h handler
 mov ax, OFFSET MiscServ
 mov WORD PTR intMisc.NewHand, ax
 .ENDIF

; Set up KeybrdMonitor as Interrupt 09 handler
 mov ax, OFFSET KeybrdMonitor
 mov WORD PTR intKeybrd.NewHand, ax

The following describes the code’s logic:

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 232

• If the program is running under MS-DOS version 3.3 or higher and if Interrupt 15h supports
Function 4Fh, set up handler MiscServ to search for the hot key. Handle Interrupt 09 with
KeybrdMonitor only to maintain the keyboard active flag.

• Otherwise, set up a handler for Interrupt 09 to search for the hot key. Handle calls to Interrupt 15h
with the routine SkipMiscServ, which contains this single instruction:

jmp cs:intMisc.OldHand

The jump immediately passes control to the original Interrupt 15h routine; thus, SkipMiscServ
has no effect. It serves only to simplify coding in other parts of the program.

At each keystroke, the keyboard interrupt handler (either Keybrd or
MiscServ) calls the procedure CheckHotKey with the scan code of the current key. CheckHotKey
compares the scan code and shift status with the bytes HotScan and HotShift. If the current key
matches, CheckHotKey returns the carry flag clear to indicate that the user has pressed the hot key.

If the keyboard handler finds the carry flag clear, it sets the flag
TsrRequestFlag and exits. Otherwise, the handler transfers control to the original interrupt routine
to service the interrupt.

The timer handler Clock reads the request flag at every occurrence of the timer interrupt. Clock
takes no action if it finds a zero value in TsrRequestFlag. Figures 11.1 and 11.3 depict the
relationship between the keyboard and timer handlers.

Monitoring System Status

Because SNAP produces output to both video and disk, it avoids interrupting either video or disk
operations. The program uses interrupt handlers Video and DiskIO to monitor Interrupts 10h (video)
and 13h (disk). SNAP also avoids interrupting keyboard use. The instructions at the far label
KeybrdMonitor serve as the monitor handler for Interrupt 09 (keyboard).

The three handlers perform similar functions. Each sets an active flag and then calls the original
routine to service the interrupt. When the service routine returns, the handler clears the active flag to
indicate that the device is no longer in use.

The BIOS Interrupt 13h routine clears or sets the carry flag to indicate the operation’s success or
failure. DiskIO therefore preserves the flags register when returning, as shown here:

DiskIO PROC FAR
 mov cs:intDiskIO.Flag, TRUE ; Set active flag
; Simulate interrupt by pushing flags and far-calling old
; Int 13h routine
 pushf
 call cs:intDiskIO.OldHand
; Clear active flag without disturbing flags register
 mov cs:intDiskIO.Flag, FALSE
 sti ; Enable interrupts
; Simulate IRET without popping flags (since services use
; carry flag)
 ret 2
DiskIO ENDP

The terminating RET 2 instruction discards the original flags from the stack when the handler returns.

Determining Whether to Invoke the TSR

The procedure CheckRequest determines whether the TSR:

• Has been requested.

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 233

• Can safely interrupt the system.

Each time it executes, the timer handler Clock calls CheckRequest to read the flag
TsrRequestFlag. If CheckRequest finds the flag set, it scans other flags maintained by the TSR’s
interrupt handlers and by MS-DOS. These flags indicate the current system status. As the flowchart in
Figure 11.3 shows, CheckRequest calls CheckDos (described following) to determine the status of
the operating system. CheckRequest then calls CheckHardware to check hardware status.

CheckHardware queries the interrupt controller to determine if any device is currently being serviced.
It also reads the active flags maintained by the
KeybrdMonitor, Video, and DiskIO handlers. If the controller, keyboard, video, and disk are all
inactive, CheckHardware clears the carry flag and returns.

CheckRequest indicates system status with the carry flag. If the procedure returns the carry flag set,
the caller exits without invoking the TSR. A clear carry signals that the caller can safely execute the
TSR.

Determining MS-DOS Activity

As Figure 11.2 shows, the procedure GetDosFlags locates the InDos flag during SNAP’s installation
phase. GetDosFlags calls Function 34h (Get Address of InDos Flag) and then stores the flag’s
address in the far pointer InDosAddr.

When called from the CheckRequest procedure, CheckDos reads InDos to determine whether the
operating system is active. Note that CheckDos reads the flag directly from the address in
InDosAddr. It does not call Function 34h to locate the flag, since it has not yet established whether
MS-DOS is active. This follows from the general rule that interrupt handlers must not call any MS-DOS
function.

The next two sections more fully describe the procedure CheckDos.

Interrupting MS-DOS Functions

Figure 11.3 shows that the call to CheckDos can initiate either from Clock (timer handler) or Idle
(Interrupt 28h handler). If CheckDos finds the InDos flag set, it reacts in different ways, depending on
the caller:

• If called from Clock, CheckDos cannot know which MS-DOS function is active. In this case, it
returns the carry flag set, indicating that Clock must deny the request for the TSR.

• If called from Idle, CheckDos assumes that one of the low-order polling functions is active. It
therefore clears the carry flag to let the caller know the TSR can safely interrupt the function.

For more information on this topic, see the section “Interrupting MS-DOS Functions,” earlier in this
chapter.

Monitoring the Critical Error Flag

The procedure GetDosFlags (Figure 11.2) determines the address of the Critical Error flag. The
procedure stores the flag’s address in the far pointer CritErrAddr.

When called from either the Clock or Idle handlers, CheckDos reads the Critical Error flag. A
nonzero value in the flag indicates that the Critical Error Handler (Interrupt 24h) is processing a critical
error and the TSR must not interrupt. In this case, CheckDos sets the carry flag and returns, causing
the caller to exit without executing the TSR.

Trapping Errors

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 234

Clock Idle Activate
calling the main body of the TSR, Activate sets up the following handlers:

Handler Name For Interrupt Receives Control When

CtrlBreak 1Bh (CTRL+BREAK Handler) CTRL+BREAK sequence entered at keyboard

CtrlC 23h (CTRL+C Handler) MS-DOS detects a CTRL+C sequence from
the keyboard or input stream

CritError 24h (Critical Error Handler) MS-DOS encounters a critical error

These handlers trap keyboard break signals and critical errors that would otherwise trigger the original
handler routines. The CtrlBreak and CtrlC handlers contain a single IRET instruction, thus
rendering a keyboard break ineffective. The CritError handler contains the following instructions:

CritError PROC FAR
 sti
 sub al, al ; Assume DOS 2.x
 ; Set AL = 0 for ignore error
 .IF cs:major != 2 ; If DOS 3.x, set AL = 3
 mov al, 3 ; DOS call fails
 .ENDIF
 iret
CritError ENDP

The return code in AL stops MS-DOS from taking further action when it encounters a critical error.

As an added precaution, Activate also calls Function 33h (Get or Set CTRL+BREAK Flag) to
determine the current setting of the checking flag.
Activate stores the setting, then calls Function 33h again to turn off break checking.

When the TSR’s main procedure finishes its work, it returns to Activate, which restores the original
setting for the checking flag. It also replaces the original vectors for Interrupts 1Bh, 23h, and 24h.

SNAP’s error-trapping safeguards enable the TSR to retain control in the event of an error. Pressing
CTRL+BREAK or CTRL+C at SNAP’s prompt has no effect. If the user specifies a nonexistent drive —
a critical error — SNAP merely beeps the speaker and returns normally.

Preserving an Existing Condition

Activate records the stack pointer SS:SP in the doubleword OldStackAddr. The procedure then
resets the pointer to the address of a new stack before calling the TSR. Switching stacks ensures that
SNAP has adequate stack depth while it executes.

The label NewStack points to the top of the new stack buffer, located in the code segment of the
HANDLERS.ASM module. The equate constant STACK_SIZ determines the size of the stack. The
include file TSR.INC contains the declaration for STACK_SIZ.

Activate preserves the values in all registers by pushing them onto the new stack. It does not push
DS, since that register is already preserved in the Clock or Idle handler.

SNAP does not alter the application’s video configuration other than by moving the cursor. Figure 11.3
shows that Activate calls the procedure Snap, which executes Interrupt 10h to determine the
current cursor position. Snap stores the row and column in the word OldPos. The procedure restores
the cursor to its original location before returning to Activate.

Preserving Existing Data

Because SNAP does not call an MS-DOS function that writes to the DTA, it does not need to preserve
the DTA belonging to the interrupted process. However, the code for switching and restoring the DTA is

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 235

included within IFDEF blocks in the procedure Activate. The equate constant DTA_SIZ, declared in
the TSR.INC file, governs the assembly of the blocks as well as the size of the new DTA.

It is possible for SNAP to overwrite existing extended error information by committing a file error. The
program does not attempt to preserve the original information by calling Functions 59h and 5Dh. In
certain rare instances, this may confuse the interrupted process after SNAP returns.

Communicating Through the Multiplex Interrupt

The program uses the Multiplex interrupt (Interrupt 2Fh) to

• Verify that SNAP is installed.

• Select a unique multiplex identity number.

• Locate resident data.

For more information about Interrupt 2Fh, see the section “Communicating through the Multiplex
Interrupt,” earlier in this chapter.

SNAP accesses Interrupt 2Fh through the procedure CallMultiplex, as shown in Figures 11.2 and
11.4. By searching for a prior installation, CallMultiplex ensures that SNAP is not installed more
than once. During deinstallation, CallMultiplex locates data required to deinstall the resident TSR.

The procedure Multiplex serves as SNAP’s multiplex handler. When it recognizes its identity
number in AH, Multiplex determines its tasks from the function number in the AL register. The
handler responds to Function 0 by returning AL equalling 0FFh and ES:DI pointing to an identifier
string unique to SNAP.

CallMultiplex searches for the handler by invoking Interrupt 2Fh in a loop, beginning with a trial
identity number of 192 in AH. At the start of each iteration of the loop, the procedure sets AL to zero to
request presence verification from the multiplex handler. If the handler returns 0FFh in AL,
CallMultiplex compares its copy of SNAP’s identifier string with the text at memory location
ES:DI. A failed match indicates that the multiplex handler servicing the call is not SNAP’s handler. In
this case, CallMultiplex increments AH and cycles back to the beginning of the loop.

The process repeats until the call to Interrupt 2Fh returns a matching identifier string at ES:DI, or until
AL returns as zero. A matching string verifies that SNAP is installed, since its multiplex handler has
serviced the call. A return value of zero indicates that SNAP is not installed and that no multiplex
handler claims the trial identity number in AH. In this case, SNAP assigns the number to its own
handler.

Deinstalling a TSR

During deinstallation, CallMultiplex locates SNAP’s multiplex handler as described previously.
The handler Multiplex receives the verification request and returns in ES the code segment of the
resident program.

Deinstall reads the addresses of the following interrupt handlers from the data structure in the
resident code segment:

Handler Name Description

Clock Timer handler

Keybrd Keyboard handler (non-PS/2)

KeybrdMonitor Keyboard monitor handler (PS/2)

Video Video monitor handler

DiskIO Disk monitor handler

SkipMiscServ Miscellaneous Systems Services handler (non-PS/2)

Outline of SNAP
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 236

MiscServ Miscellaneous Systems Services handler (PS/2)

Idle MS-DOS Idle handler

Multiplex Multiplex handler

Deinstall calls MS-DOS Function 35h (Get Interrupt Vector) to retrieve the current vectors for each
of the listed interrupts. By comparing each handler address with the corresponding vector,
Deinstall ensures that SNAP can be safely deinstalled. Failure in any of the comparisons indicates
that another TSR has been installed after SNAP and has set up a handler for the same interrupt. In
this case, Deinstall returns an error code, stopping the program with the following message:

Can’t deinstall TSR

If all addresses match, Deinstall calls Interrupt 2Fh with SNAP’s identity number in AH and AL set
to 1. The handler Multiplex responds by returning in ES the address of the resident code’s PSP.
Deinstall then calls MS-DOS Function 25h (Set Interrupt Vector) to restore the vectors for the
original service routines. This is called “unhooking” or “unchaining” the interrupt handlers.

After unhooking all of SNAP’s interrupt handlers, Deinstall returns with AX pointing to the resident
code’s PSP. The procedure FreeTsr then calls MS-DOS Function 49h (Release Memory) to return
SNAP’s memory to the operating system. The program ends with the message

TSR deinstalled

to indicate a successful deinstallation.

Deinstalling SNAP does not guarantee more available memory space for the next program. If another
TSR loads after SNAP but handles interrupts other than 08, 09, 10h, 13h, 15h, 28h, or 2Fh, SNAP still
deinstalls properly. The result is a harmless gap of deallocated memory formerly occupied by SNAP.
MS-DOS can use the free memory to store the next program’s environment block. However, MS-DOS
loads the program itself above the still-resident TSR.

Chapter 12 Mixed-Language Programming

Mixed-language programming allows you to combine the unique strengths of Microsoft Basic, C, C++,
and FORTRAN with your assembly-language routines. Any one of these languages can call MASM
routines, and you can call any of these languages from within your assembly-language programs. This
makes virtually all the routines from high-level–language libraries available to a mixed-language
program.

MASM 6.1 provides mixed-language features similar to those in high-level languages. For example,
you can use the INVOKE directive to call high-level-language procedures, and the assembler handles
the argument-passing details for you. You can also use H2INC to translate C header files to MASM
include files, as explained in Chapter 20 of Environment and Tools.

The mixed-language features of MASM 6.1 do not make older methods of defining mixed-language
interfaces obsolete. In most cases, mixed-language programs written with earlier versions of MASM
will assemble and link correctly under MASM 6.1. (For more information, see Appendix A.)

This chapter explains how to write assembly routines that can be called from high-level–language
modules and how to call high-level language routines from MASM. You should already understand the
languages you want to combine and should know how to write, compile, and link multiple-module
programs with these languages.

This chapter covers only assembly-language interface with C, C++, Basic, and FORTRAN; it does not
cover mixed-language programming between high-level languages. The focus here is the Microsoft

Chapter 12 Mixed-Language Programming
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 237

versions of C, C++, Basic, and FORTRAN, but the same principles apply to other languages and
compilers. Many of the techniques used in this chapter are explained in the material in Chapter 7 on
writing procedures in assembly language, and in Chapter 8 on multiple-module programming.

The first section of this chapter discusses naming and calling conventions. The next section, “Writing
an Assembly Procedure for a Mixed-Language Program,” provides a template for writing an
assembly-language procedure that can be called from another module written in a high-level language.
This represents the essence of mixed-language programming. Assembly language is often used for
creating fast secondary routines in a large program written in a high-level language.

The third section describes specific conventions for linking assembly-language procedures with
modules in C, C++, Basic, and FORTRAN. These language-specific sections also provide details on
how the language manages various data structures so that your MASM programs are compatible with
the data from the high-level language.

Naming and Calling Conventions

Each language has its own set of conventions, which fall into two categories:

• The “naming convention” specifies how or if the compiler or assembler alters the name of an
identifier before placing it into an object file.

• The “calling convention” determines how a language implements a call to a procedure and how the
procedure returns to the caller.

MASM supports several different conventions. The assembler uses C convention when you specify a
language type (langtype) of C, and Pascal convention for language types PASCAL, BASIC, or
FORTRAN. To the assembler, the keywords BASIC, PASCAL, and FORTRAN are synonymous.
MASM also supports the SYSCALL and STDCALL conventions, which mix elements of the C and
Pascal conventions.

MASM gives you several ways to set the naming and calling conventions in your assembly-language
program. Using .MODEL with a langtype sets the default for the module. This can also be done with
the OPTION directive. This is equivalent to the /Gc or /Gd option from the command line. Procedure
prototypes and declarations can specify a langtype to override the default.

When you write mixed-language routines, the easiest way to ensure convention compatibility is to
adopt the conventions of the called procedure’s language. However, Microsoft languages can change
the naming and calling conventions for different procedures. If your program must call a procedure that
uses an argument-passing method different from that of the default language, prototype the procedure
first with the desired language type. This tells the assembler to override the conventions of the default
language and assume the proper conventions for the prototyped procedure. “The
MASM/High-Level–Language Interface” section in this chapter explains how to change the default
conventions. The following sections provide more detail on the information summarized in Table 12.1.

Table 12.1 Naming and Calling Conventions

ConventionC SYSCALL STDCALL BASIC FORTRAN PASCAL

Leading
underscore

X X

Capitalize
all

X X X

Arguments
pushed
left to right

X X X

Naming and Calling Conventions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 238

Arguments
pushed
right to left

X X X

Caller
stack
cleanup

X X *

:VARARG
allowed

X X X

 * The STDCALL language type uses caller stack cleanup if the :VARARG parameter is used. Otherwise, the called routine
must clean up the stack.

Naming Conventions

“Naming convention” refers to the way a compiler or assembler stores the names of identifiers. The first
two rows of Table 12.1 show how each language type affects symbol names. SYSCALL leaves symbol
names as they appear in the source code, but C and STDCALL add an underscore prefix. PASCAL,
BASIC, and FORTRAN change symbols to all uppercase.

The following list describes how these naming conventions affect a variable called Big Time in your
source code:

Langtype Specified Characteristics

SYSCALL Leaves the name unmodified. The linker sees the variable as Big
Time.

C, STDCALL The assembler (or compiler) adds a leading underscore to the name,
but does not change case. The linker sees the variable as _Big Time.

PASCAL, FORTRAN,
BASIC

Converts all names to uppercase. The linker sees the variable as Big
Time.

The C Calling Convention

Specify the C language type for assembly-language procedures called from programs that assume the
C calling convention. Note that such programs are not necessarily written in C, since other languages
can mimic C conventions.

Argument Passing

With the C calling convention, the caller pushes arguments from right to left as they appear in the
caller’s argument list. The called procedure returns without removing the arguments from the stack. It
is the caller’s responsibility to clean the stack after the call, either by popping the arguments or by
adding an appropriate value to the stack pointer SP.

Register Preservation

The called routine must return with the original values in BP, SI, DI, DS, and SS. It must also preserve
the direction flag.

The C Calling Convention
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 239

Varying Number of Arguments

The additional overhead of cleaning the stack after each call has compensations. It frees the caller
from having to pass a set number of arguments to the called procedure each time. Because the first
argument in the list is always the last one pushed, it is always on the top of the stack. Thus, it has the
same address relative to the frame pointer, regardless of how many arguments were actually passed.

For example, consider the C library function printf, which accepts different numbers of arguments. A C
program calls the function like this:

printf("Numbers: %f %f %.2f\n", n1, n2, n3);
printf("Also: %f", n4);

The first line passes four arguments (including the string in quotes) and the second line passes only
two arguments. Notice that printf has no reliable way of determining how many arguments the caller
has pushed. Therefore, the function returns without adjusting the stack. The C calling convention
requires the caller to take responsibility for removing the arguments from the stack, since only the
caller knows how many arguments it passed.

Use INVOKE to call a C-callable function from your assembly-language program, since INVOKE
automatically generates the necessary stack-cleaning code after the call. You must also prototype the
function with the VARARG keyword if appropriate, as explained in “Procedures,” Chapter 7. Similarly,
when you write a C-callable procedure that accepts a varying number of arguments, include VARARG
in the procedure’s PROC statement.

The Pascal Calling Convention

By default, the langtype for FORTRAN, BASIC, and PASCAL selects the Pascal calling convention.
This convention pushes arguments left to right so that the last argument is lowest on the stack, and it
requires that the called routine remove arguments from the stack.

Argument Passing

Arguments are placed on the stack in the same order in which they appear in the source code. The
first argument is highest in memory (because it is also the first argument to be placed on the stack),
and the stack grows downward.

Register Preservation

A routine that uses the Pascal calling convention must preserve SI, DI, BP, DS, and SS. For 32-bit
code, the EBX, ES, FS, and GS registers must be preserved as well as EBP, ESI, and EDI. The
direction flag is also cleared upon entry and must be preserved.

Varying Number of Arguments

Passing a variable number of arguments is not possible with the Pascal calling convention.

The STDCALL and SYSCALL Calling Conventions

A STDCALL procedure adopts the C name and calling conventions when prototyped with the
VARARG keyword. Refer to the section “Declaring Parameters with the PROC Directive” in Chapter 7.
Without VARARG, the procedure uses the C naming and Pascal calling conventions. STDCALL

The STDCALL and SYSCALL Calling Conventions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 240

provides compatibility with 32-bit versions of Microsoft compilers.

As Table 12.1 shows, SYSCALL is identical to the C calling convention, but does not add an
underscore prefix to symbols.

Argument Passing

Argument passing order for both STDCALL and SYSCALL is the same as the C calling convention.
The caller pushes the arguments from right to left and must remove the parameters from the stack
after the call. However, STDCALL requires the called procedure to clean the stack if the procedure
does not accept a variable number of arguments.

Register Preservation

Both conventions require the called procedure to preserve the registers BP, SI, DI, DS, and SS. Under
STDCALL, the direction flag is clear on entry and must be returned clear.

Varying Number of Arguments

SYSCALL allows a variable number of arguments in the same way as the C calling convention.
STDCALL also mimics the C convention when VARARG appears in the called procedure’s declaration
or definition. It allows a varying number of arguments and requires the caller to clean the stack. If not
declared or defined with VARARG, the called procedure does not accept a variable argument list and
must clean the stack before it returns.

Writing an Assembly Procedure For a Mixed-Language Program

MASM 6.1 simplifies the coding required for linking MASM routines to high-level– language routines.
You can use the PROTO directive to write procedure prototypes, and the INVOKE directive to call
external routines. MASM simplifies procedure-related tasks in the following ways:

• The PROTO directive improves error checking on argument types.

• INVOKE pushes arguments onto the stack and converts argument types to types expected
when possible. These arguments can be referenced by their parameter label, rather than as offsets
of the stack pointer.

• The LOCAL directive following the PROC statement saves places on the stack for local variables.
These variables can also be referenced by name, rather than as offsets of the stack pointer.

• PROC sets up the appropriate stack frame according to the processor mode.

• The USES keyword preserves registers given as arguments.

• The C calling conventions specified in the PROC syntax allow for a variable number of arguments
to be passed to the procedure.

• The RET keyword adjusts the stack upward by the number of bytes in the argument list, removes
local variables from the stack, and pops saved registers.

• The PROC statement lists parameter names and types. The parameters can be referenced by
name inside the procedure.

The complete syntax and parameter descriptions for these procedure directives are explained in
“Procedures” in Chapter 7. This section provides a template that you can use for writing a MASM
routine to be called from a high-level language.

The template looks like this:

Label PROC [[distance langtype visibility <prologueargs> USES reglist parmlist]]

Writing an Assembly Procedure For a Mixed-Language Program
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 241

LOCAL varlist
.
.
.
RET

Label ENDP

Replace the italicized words with appropriate keywords, registers, or variables as defined by the
syntax in “Declaring Parameters with the PROC Directive” in Chapter 7.

The distance (NEAR or FAR) and visibility (PUBLIC, PRIVATE, or EXPORT) that you give in the
procedure declaration override the current defaults. In some languages, the model can also be
specified with command-line options.

The langtype determines the calling convention for accessing arguments and restoring the stack. For
information on calling conventions, see “Naming and Calling Conventions” earlier in this chapter.

The types for the parameters listed in the parmlist must be given. Also, if any of the parameters are
pointers, the assembler does not generate code to get the value of the pointer references. You must
write this code yourself. An example of how to write such code is provided in “Declaring Parameters
with the PROC Directive” in Chapter 7.

If you need to code your own stack-frame setup manually, or if you do not want the assembler to
generate the standard stack setup and cleanup, see “Passing Arguments on the Stack” and
“User-Defined Prologue and Epilogue Code” in Chapter 7.

The MASM/High-Level-Language Interface

Since high-level–language programs require initialization, you must write the main routine of a
mixed-language program in the high-level language, or link with the startup code supplied by the
high-level–language compiler. This gives the assembly code access to high-level routines or library
functions. The next section explains how to link an assembly-language program with C-language
startup code.

For procedures with prototypes, INVOKE makes calls from MASM to high-level–
language programs, much like procedure or function calls in the high-level language. INVOKE calls
procedures and generates the code to push arguments in the order specified by the procedure’s calling
convention, and to remove arguments from the stack at the end of the procedure.

INVOKE can also do type checking and data conversion for the argument types so that the procedure
receives compatible data. For explanations of how to write procedure prototypes and several examples
of procedure declarations and the corresponding prototypes, see “Declaring Procedure Prototypes” in
Chapter 7.

For programs that mix assembly language and C, the H2INC utility makes it easy to write prototypes
and data declarations for the C procedures you want to call from MASM. H2INC translates the C
prototypes and declarations into the corresponding MASM prototypes and declarations, which
INVOKE can use to call the procedure. The use of H2INC is explained in Chapter 20 in Environment
and Tools.

Mixed-language programming also allows the main program or a routine to use external data — data
defined in the other module. External data is the data that is stored in a set place in memory (unlike
dynamic and local data, which is allocated on the stack and heap) and is visible to other modules.

External data is shared by all routines. One of the modules must define the static data, which causes
the compiler to allocate storage for the data. The other modules that access the data must declare the

The MASM/High-Level-Language Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 242

data as external.

Argument Passing

Each language has its own convention for how an argument is actually passed. If the
argument-passing conventions of your routines do not agree, then a called routine receives bad data.
Microsoft languages support three different methods for passing an argument:

• Near reference. Passes a variable’s near (offset) address, expressed as an offset from the default
data segment. This method gives the called routine direct access to the variable itself. Any change
the routine makes to the parameter is reflected in the calling routine.

• Far reference. Passes a variable’s far (segmented) address. Though slower than passing a near
reference, this method is necessary for passing data that lies outside the default data segment.
(This is not an issue in Basic unless you have specifically requested far memory.)

• Value. Passes only a copy of the variable, not its address. With this method, the called routine
gets a copy of the argument on the stack, but has no access to the original variable. The copy is
discarded when the routine returns, and the variable retains its original value.

When you pass arguments between routines written in different languages, you must ensure that the
caller and the called routine use the same conventions for passing and receiving arguments. In most
cases, you should check the argument-passing defaults used by each language and make any
necessary adjustments. Most languages have features that allow you to change argument-passing
methods.

Register Preservation

A procedure called from any high-level language should preserve the direction flag and the values of
BP, SI, DI, SS, and DS. Routines called from MASM must not alter SI, DI, SS, DS, or BP.

Pushing Addresses

Microsoft high-level languages push segment addresses before offsets. This lets the called routine use
the LES and LDS instructions to read far addresses from the stack. Furthermore, each word of an
argument is placed on the stack in order of significance. Thus, the high word of a long integer is
pushed first, followed by the low word.

Array Storage

Most high-level-language compilers store arrays in row-major order. This means that all elements of a
row are stored consecutively. The first five elements of an array with four rows and three columns are
stored in row-major order as

A[1, 1], A[1, 2], A[1, 3], A[2, 1], A[2, 2]

In column-major order, the column elements are stored consecutively. For example, this same array
would be stored in column-major order as

A[1, 1], A[2, 1], A[3, 1], A[4, 1], A[1, 2], A[2, 2]

The C/MASM Interface

This section summarizes the characteristics of the interface between MASM and Microsoft C and
QuickC compilers. With the default naming and calling convention, the assembler (or compiler) pushes
arguments right to left and adds a leading underscore to routine names.

The C/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 243

Compatible Data Types

This list shows the 16-bit C data types and equivalent data types in MASM 6.1. For 32-bit C
compilers, int and unsigned int are equivalent to the MASM types SDWORD and DWORD,
respectively.

C Type Equivalent MASM Type

unsigned char BYTE

char SBYTE

unsigned short, unsigned int WORD

int, short SWORD

unsigned long DWORD

long SDWORD

float REAL4

double REAL8

long double REAL10

Naming Restrictions

C is case-sensitive and does not convert names to uppercase. Since C normally links with the /NOI
command-line option, you should assemble MASM modules with the /Cx or /Cp option to prevent the
assembler from converting names to uppercase.

Argument-Passing Defaults

C always passes arrays by reference and all other variables (including structures) by value. C
programs in tiny, small, and medium model pass near addresses for arrays, unless another distance
is specified. Compact-, large-, and huge-model programs pass far addresses by default. To pass by
reference a variable type other than array, use the C-language address-of operator (&).

If you need to pass an array by value, declare the array as a structure member and pass a copy of the
entire structure. However, this practice is rarely necessary and usually impractical except for very
small arrays, since it can make substantial demands on stack space. If your program must maintain
an array through a procedure call, create a temporary copy of the array in heap and provide the copy to
the procedure by reference.

Changing the Calling Convention

Put _pascal or _fortran in the C function declaration to specify the Pascal calling convention.

Array Storage

Array declarations give the number of elements. A1[a][b] declares a two-dimensional array in C with
a rows and b columns. By default, the array’s lower bound is zero. Arrays are stored by the compiler
in row-major order. By default, passing arrays from C passes a pointer to the first element of the array.

String Format

C stores strings as arrays of bytes and uses a null character as the end-of-string delimiter. For
example, consider the string declared as follows:

char msg[] = "string of text"

The string occupies 15 bytes of memory as:

The C/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 244

Figure 12.1 C String Format

Since msg is an array of characters, it is passed by reference.

External Data

In C, the extern keyword tells the compiler that the data or function is external. You can define a
static data object in a C module by defining a data object outside all functions and subroutines. Do not
use the static keyword in C with a data object that you want to be public.

Structure Alignment

By default, C uses word alignment (unpacked storage) for all data objects longer than 1 byte. This
storage method specifies that occasional bytes may be added as padding, so that word and
doubleword objects start on an even boundary. In addition, all nested structures and records start on a
word boundary. MASM aligns on byte boundaries by default.

When converting .H files with H2INC, you can use the /Zp command-line option to specify structure
alignment. If you do not specify the /Zp option, H2INC uses word-alignment. Without H2INC, set the
alignment to 2 when declaring the MASM structure, compile the C module with /Zp1, or assemble the
MASM module with /Zp2.

Compiling and Linking

Use the same memory model for both C and MASM.

Returning Values

The assembler returns simple data types in registers. Table 12.2 shows the register conventions for
returning simple data types to a C program.

Table 12.2 Register Conventions for Simple Return Values

Data Type Registers

char AL

short, near, int (16-bit) AX

short, near, int (32-bit) EAX

long, far (16-bit) High-order portion (or segment address) in DX;
low-order portion (or offset address) in AX

long, far (32-bit) High-order portion (or segment address) in EDX;
low-order portion (or offset address) in EAX

Procedures using the C calling convention and returning type float or type double store their return
values into static variables. In multi-threaded programs, this could mean that the return value may be
overwritten. You can avoid this by using the Pascal calling convention for multi-threaded programs so
float or double values are passed on the stack.

Structures less than 4 bytes long are returned in DX:AX. To return a longer structure from a procedure
that uses the C calling convention, you must copy the structure to a global variable and then return a
pointer to that variable in the AX register (DX:AX, if you compiled in compact, large, or huge model or if
the variable is declared as a far pointer).

The C/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 245

Structures, Records, and User-Defined Data Types

You can pass structures, records, and user-defined types as arguments by value or by reference.

Writing Procedure Prototypes

The H2INC utility simplifies the task of writing prototypes for the C functions you want to call from
MASM. The C prototype converted by H2INC into a MASM prototype allows INVOKE to correctly call
the C function. Here are some examples of C functions and the MASM prototypes created with H2INC.

/* Function Prototype Declarations to Convert with H2INC */

long checktypes (
 char *name,
 unsigned char a,
 int b,
 float d,
 unsigned int *num);

my_func (float fNum, unsigned int x);

extern my_func1 (char *argv[]);

struct videoconfig _far * _far pascal my_func2 (int, scri);

For these C prototypes, H2INC generates this code:

@proto_0 TYPEDEF PROTO C :PTR SBYTE, :BYTE,
 :SWORD, :REAL4, :PTR WORD
checktypes PROTO @proto_0

@proto_1 TYPEDEF PROTO C :REAL4, :WORD
my_func PROTO @proto_1

@proto_2 TYPEDEF PROTO C :PTR PTR SBYTE
my_func1 PROTO @proto_2

@proto_3 TYPEDEF PROTO FAR PASCAL :SWORD, :scri
my_func2 PROTO @proto_3

Example

As shown in the following short example, the main module (written in C) calls an assembly routine,
Power2.

#include <stdio.h>

extern int Power2(int factor, int power);

void main()
{
 printf("3 times 2 to the power of 5 is %d\n", Power2(3, 5));
}

Figure 12.2 shows how functions that observe the C calling convention use the stack frame.

The C/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 246

The C/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 247

Figure 12.2 C Stack Frame

The MASM module that contains the Power2 routine looks like this:

.MODEL small, c

Power2 PROTO C factor:SWORD, power:SWORD
 .CODE

Power2 PROC C factor:SWORD, power:SWORD
 mov ax, factor ; Load Arg1 into AX
 mov cx, power ; Load Arg2 into CX
 shl ax, cl ; AX = AX * (2 to power of CX)
 ; Leave return value in AX
 ret
Power2 ENDP
 END

The MASM procedure declaration for the Power2 routine specifies the C
langtype and the parameters expected by the procedure. The langtype specifies the calling and naming
conventions for the interface between MASM and C. The routine is public by default. When the C
module calls Power2, it passes two arguments, 3 and 5 by value.

Using the C Startup Code

This section explains how to write an assembly-language program that can call C library functions. It
links with the C startup module, which performs the necessary initialization required by the library
functions.

You must follow these steps when writing such a program:

 1. Specify the C convention in the .MODEL statement.

 2. Include the following (optional) statement to note linkage with the C startup module:

EXTERN _acrtused:abs

 1. Prototype or declare as external all C functions the program references.

 2. Include a public procedure called main in your assembly-language module. The C startup code
calls _main (which is why all C programs begin with a main function). This procedure serves as
the effective entry point for your program.

 3. Omit an entry point in the program’s END directive. The C startup code serves as the true entry
point when the program runs.

 4. Assemble with ML’s /Cx switch to preserve the case of nonlocal names.

The following example serves as a template for these steps. The program calls the C run-time function
printf to display two variables.

.MODEL small, c ; Step 1: declare C conventions
EXTERN _acrtused:abs ; Step 2: bring in C startup
 .
 .
 .
printf PROTO NEAR, ; Step 3: prototype
 pstring:NEAR PTR BYTE, ; external C
 num1:WORD, num2:VARARG ; routines

The C/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 248

format BYTE '%i %i', 13, 0

 .CODE

main PROC PUBLIC ; Step 4: C startup calls here
 .
 .
 .
 INVOKE printf, OFFSET format, ax, bx
 .
 .
 .
 END ; Step 5: no label on END

The C++/MASM Interface

C++ can apply a protocol called a “linkage specification” to mixed-language procedures. This lets you
link C++ code in the same way as C code. All information in the preceding section applies when
linking assembly-language and C++ routines through the C linkage specification.

The C linkage specification forces the C++ compiler to adopt C conventions — which are not the same
as C++ conventions — for listed routines. Since MASM does not specifically support C++
conventions, set the C linkage specification in your C++ code for all mixed-language routines, as
shown here:

extern “C” declaration

where declaration is the prototype of an exported C++ function or an imported assembly-language
procedure. You can bracket a list of declarations:

extern "C"
{
 int WriteLine(short attr, char *string);
 void GoExit(int err);
}

or apply the specification to individual prototypes:

extern "C" int WriteLine(short attr, char *string);
extern "C" void GoExit(int err);

Note the syntax remains the same whether WriteLine and GoExit are exported C++ functions or
imported assembly-language routines. The linkage specification applies only to called routines, not to
external variables. Use the extern keyword (without the “C”) as you normally would when identifying
objects external to the C++ module.

The FORTRAN/MASM Interface

This section summarizes the specific details important to calling FORTRAN procedures or receiving
arguments from FORTRAN routines that call MASM routines. It includes a sample MASM and
FORTRAN module.

A FORTRAN procedure follows the Pascal calling convention by default. This convention passes
arguments in the order listed, and the calling procedure removes the arguments from the stack. The
naming convention converts all exported names to uppercase.

The FORTRAN/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 249

Compatible Data Types

This list shows the FORTRAN data types that are equivalent to the MASM 6.1 data types.

FORTRAN Type Equivalent MASM Type

CHARACTER*1 BYTE

INTEGER*1 SBYTE

INTEGER*2 SWORD

REAL*4 REAL4

INTEGER*4 SDWORD

REAL*8, DOUBLE PRECISION REAL8

Naming Restrictions

FORTRAN allows 31 characters for identifier names. A digit or an underscore cannot be the first
character in an identifier name.

Argument-Passing Defaults

By default, FORTRAN passes arguments by reference as far addresses if the FORTRAN module is
compiled in large or huge memory model. It passes them as near addresses if the FORTRAN module
is compiled in medium model. Versions of FORTRAN prior to Version 4.0 always require large model.

The FORTRAN compiler passes an argument by value when declared with the VALUE attribute. This
declaration can occur either in a FORTRAN INTERFACE block (which determines how to pass an
argument) or in a function or subroutine declaration (which determines how to receive an argument).

In FORTRAN you can apply the NEAR (or FAR) attribute to reference parameters. These keywords
override the default. They have no effect when they specify the same method as the default.

Changing the Calling Convention

A call to a FORTRAN function or subroutine declared with the PASCAL or C attribute passes all
arguments by value in the parameter list (except for parameters declared with the REFERENCE
attribute). This change in default passing method applies to function and subroutine definitions as well
as to the functions and subroutines described by INTERFACE blocks.

Array Storage

When you declare FORTRAN arrays, you can specify any integer for the lower bound (the default is 1).
The FORTRAN compiler stores all arrays in column-major order — that is, the leftmost subscript
increments most rapidly. For example, the first seven elements of an array defined as A[3,4] are
stored as

A[1,1], A[2,1], A[3,1], A[1,2], A[2,2], A[3,2], A[1,3]

String Format

FORTRAN stores strings as a series of bytes at a fixed location in memory, with no delimiter at the
end of the string. When passing a variable-length FORTRAN string to another language, you need to
devise a method by which the target routine can find the end of the string.

Consider the string declared as

The FORTRAN/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 250

MSG = 'String of text'

The string is stored in 14 bytes of memory like this:

Figure 12.3 FORTRAN String Format

Strings are passed by reference. Although FORTRAN has a method for passing length, the
variable-length FORTRAN strings cannot be used in a mixed-
language interface because other languages cannot access the temporary variable that FORTRAN
uses to communicate string length. However, fixed-length strings can be passed if the FORTRAN
INTERFACE statement declares the length of the string in advance.

External Data

FORTRAN routines can directly access external data. In FORTRAN you can declare data to be
external by adding the EXTERN attribute to the data declaration. You can also access a FORTRAN
variable from MASM if it is declared in a COMMON block.

A FORTRAN program can call an external assembly procedure with the use of the INTERFACE
statement. However, the INTERFACE statement is not strictly necessary unless you intend to change
one of the FORTRAN defaults.

Structure Alignment

By default, FORTRAN uses word alignment (unpacked storage) for all data objects larger than 1 byte.
This storage method specifies that occasional bytes may be added as padding, so that word and
doubleword objects start on an even boundary. In addition, all nested structures and records start on a
word boundary. The MASM default is byte-alignment, so you should specify an alignment of 2 for
MASM structures or use the /Zp1 option when compiling in FORTRAN.

Compiling and Linking

Use the same memory model for the MASM and FORTRAN modules.

Returning Values

You must use a special convention to return floating-point values, records, user-defined types, arrays,
and values larger than 4 bytes to a FORTRAN module from an assembly procedure. The FORTRAN
module creates space in the stack segment to hold the actual return value. When the call to the
assembly procedure is made, an extra parameter is passed. This parameter is the last one pushed.
The segment address of the return value is contained in SS.

In the assembly procedure, put the data for the return value at the location pointed to by the return
value offset. Then copy the return-value offset (located at BP + 6) to AX, and copy SS to DX. This is
necessary because the calling module expects DX:AX to point to the return value.

Structures, Records, and User-Defined Data Types

The FORTRAN structure variable, defined with the STRUCTURE keyword and declared with the
RECORD statement, is equivalent to the Pascal RECORD and the C struct. You can pass structures
as arguments by value or by reference (the default).

The FORTRAN types COMPLEX*8 and COMPLEX*16 are not directly implemented in MASM.
However, you can write structures that are equivalent. The type COMPLEX*8 has two fields, both of
which are 4-byte floating-point

The FORTRAN/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 251

numbers; the first contains the real component, and the second contains the imaginary component.
The type COMPLEX is equivalent to the type COMPLEX*8.

The type COMPLEX*16 is similar to COMPLEX*8. The only difference is that each field of the former
contains an 8-byte floating-point number.

A FORTRAN LOGICAL*2 is stored as a 1-byte indicator value (1=true, 0=false) followed by an unused
byte. A FORTRAN LOGICAL*4 is stored as a 1-byte indicator value followed by three unused bytes.
The type LOGICAL is equivalent to LOGICAL*4, unless $STORAGE:2 is in effect.

To pass or receive a FORTRAN LOGICAL type, declare a MASM structure with the appropriate fields.

Varying Number of Arguments

In FORTRAN, you can call routines with a variable number of arguments by including the VARYING
attribute in your interface to the routine, along with the C attribute. You must use the C attribute
because a variable number of arguments is possible only with the C calling convention. The VARYING
attribute prevents FORTRAN from enforcing a matching number of parameters.

Pointers and Addresses

FORTRAN programs can determine near and far addresses with the LOCNEAR and LOCFAR
functions. Store the result as INTEGER*2 (with the LOCNEAR function) or as INTEGER*4 (with the
LOCFAR function). If you pass the result of LOCNEAR or LOCFAR to another language, be sure to
pass by value.

Example

In the following example, the FORTRAN module calls an assembly procedure that calculates A*2^B,
where A and B are the first and second parameters, respectively. This is done by shifting the bits in A
to the left B times.

 INTERFACE TO INTEGER*2 FUNCTION POWER2(A, B)
 INTEGER*2 A, B
 END

 PROGRAM MAIN
 INTEGER*2 POWER2
 INTEGER*2 A, B
 A = 3
 B = 5
 WRITE (*, *) '3 TIMES 2 TO THE B OR 5 IS ',POWER2(A, B)
 END

To understand the assembly procedure, consider how the parameters are placed on the stack, as
illustrated in Figure 12.4.

The FORTRAN/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 252

Figure 12.4 FORTRAN Stack Frame

Figure 12.4 assumes that the FORTRAN module is compiled in large model. If you compile the
FORTRAN module in medium model, then each argument is passed as a 2-byte, not 4-byte, address.
The return address is 4 bytes long because procedures called from FORTRAN must always be FAR.

The assembler code looks like this:

 .MODEL LARGE, FORTRAN

Power2 PROTO FORTRAN, pFactor:FAR PTR SWORD, pPower:FAR PTR SWORD

 .CODE

Power2 PROC FORTRAN, pFactor:FAR PTR SWORD, pPower:FAR PTR SWORD

 les bx, pFactor ; ES:BX points to factor
 mov ax, es:[bx] ; AX = value of factor
 les bx, pPower ; ES:BX points to power
 mov cx, es:[bx] ; CX = value of power
 shl ax, cl ; Multiply by 2^power
 ret ; Return result in AX
Power2 ENDP
 END

The Basic/MASM Interface

This section explains how to call MASM procedures or functions from Basic and how to receive Basic
arguments for the MASM procedure. Pascal is the default naming and calling convention, so all
lowercase letters are converted to uppercase. Routines defined with the FUNCTION keyword return
values, but routines defined with SUB do not. Basic DEF FN functions and GOSUB routines cannot be
called from another language.

The information provided pertains to Microsoft’s Basic and QuickBasic compilers. Differences between

The Basic/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 253

the two compilers are noted when necessary.

Compatible Data Types

The following list shows the Basic data types that are equivalent to the MASM 6.1 data types.

Basic Type Equivalent MASM Type

STRING*1 WORD

INTEGER (X%) SWORD

SINGLE (X!) REAL4

LONG (X&),
CURRENCY

SDWORD

DOUBLE (X#) REAL8

Naming Conventions

Basic recognizes up to 40 characters of a name. In the object code, Basic also drops any of its
reserved characters: %, &, !, #, @, &.

Argument-Passing Defaults

Basic can pass data in several ways and can receive it by value or by near reference. By default,
Basic arguments are passed by near reference as 2-byte addresses. To pass a near address, pass
only the offset; if you need to pass a far address, pass the segment and offset separately as integer
arguments. Pass the segment address first, unless you have specified C compatibility with the CDECL
keyword.

Basic passes each argument in a call by far reference when CALLS is used to invoke a routine. You
can also use SEG to modify a parameter in a preceding
DECLARE statement so that Basic passes that argument by far reference. To pass any other variable
type by value, apply the BYVAL keyword to the argument in the DECLARE statement. You cannot
pass arrays and user-defined types by value.

DECLARE SUB Test(BYVAL a%, b%, SEG c%)

CALL Test(x%, y%, z%)
CALLS Test(x%, y%, z%)

This CALL statement passes the first argument (a%) by value, the second argument (b%) by near
reference, and the third argument (c%) by far reference. The statement

CALLS Test2(x%, y%, z%)

passes each argument by far reference.

Changing the Calling Convention

Including the CDECL keyword in the Basic DECLARE statement enables the C calling and naming
conventions. This also allows a call to a MASM procedure with a varying number of arguments.

Array Storage

The DIM statement sets the number of dimensions for a Basic array and also sets the array’s
maximum subscript value. In the array declaration DIM x(a,b), the upper bounds (the maximum
number of values possible) of the array are a and b. The default lower bound is 0. The default upper
bound for an array subscript is 10.

The Basic/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 254

The default for column storage in Basic is column-major order, as in FORTRAN. For an array defined
as DIM Arr%(3,3), reference the last element as Arr%(3,3). The first five elements of Arr
(3,3) are

Arr(0,0), Arr(1,0), Arr(2,0), Arr(0,1), Arr(1,1)

When you pass an array from Basic to a language that stores arrays in row-major order, use the
command-line option /R when compiling the Basic module.

Most Microsoft languages permit you to reference arrays directly. Basic uses an array descriptor,
however, which is similar in some respects to a Basic string descriptor. The array descriptor is
necessary because Basic handles memory allocation for arrays dynamically, and thus may shift the
location of the array in memory.

A reference to an array in Basic is really a near reference to an array descriptor. Array descriptors are
always in DGROUP, even though the data may be in far memory. Array descriptors contain information
about type, dimensions, and memory locations of data. You can safely pass arrays to MASM routines
only if you follow three rules:

• Pass the array’s address by applying the VARPTR function to the first element of the Basic array
and passing the result by value. To pass the far address of the array, apply both the VARPTR and
VARSEG functions and pass each result by value. The receiving language gets the address of the
first element and considers it to be the address of the entire array. It can then access the array
with its normal array-indexing syntax.

• The MASM routine that receives the array should not call back to one of the calling program’s
routines before it has finished processing the array. Changing data within the caller’s heap — even
data unrelated to the array — may change the array’s location in the heap. This would invalidate
any further work the called routine performs, since the routine would be operating on the array’s
old location.

• Basic can pass any member of an array by value. When passing individual array elements, these
restrictions do not apply.

You can apply LBOUND and UBOUND to a Basic array to determine lower and upper bounds, and
then pass the results to another routine. This way, the size of the array does not need to be
determined in advance.

String Format

Basic maintains a 4-byte string descriptor for each string, as shown in the following. The first field of
the string descriptor contains a 2-byte integer indicating the length of the actual string text. The
second field contains the offset address of this text within the caller’s data segment.

Figure 12.5 Basic String Descriptor Format

An assembly-language procedure can store a Basic string descriptor as a simple structure, like this:

DESC STRUCT
 len WORD ? ; Length of string
 off WORD ? ; Offset of string
DESC ENDS

string BYTE "This text referenced by a string descriptor"
sdesc DESC (LENGTHOF string, string)

Version 7.0 or later of the Microsoft Basic Compiler provides new functions that access string

The Basic/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 255

descriptors. These functions simplify the process of sharing Basic string data with routines written in
other languages.

Earlier versions of Basic offer the LEN (Length) and SADD (String Address) functions, which together
obtain the information stored in a string descriptor. LEN returns the length of a string in bytes. SADD
returns the offset address of a string in the data segment. The caller must provide both pieces of
information so the called procedure can locate and read the entire string. The address returned by
SADD is declared as type INTEGER but is actually equivalent to a C near pointer.

If you need to pass the far address of a string, use the SSEGADD (String Segment Address) function
of Microsoft Basic version 7.0 or later. You can also determine the segment address of the first
element with VARSEG.

External Data

Declaring global data in Basic follows the same two-step process as in other languages:

 1. Declare shareable data in Basic with the COMMON statement.

 2. Identify the shared variables in your assembly-language procedures with the EXTERN keyword.
Place the EXTERN statement outside of a code or data segment when declaring far data.

Structure Alignment

Basic packs user-defined types. For MASM structures to be compatible, select byte-alignment.

Compiling and Linking

Always use medium model in assembly-language procedures linked with Basic modules. If you are
listing other libraries on the LINK command line, specify Basic libraries first. (There are differences
between the QBX and command-line compilation. See your Basic documentation.)

Returning Values

Basic follows the usual convention of returning values in AX or DX:AX. If the value is not floating point,
an array, or a structured type, or if it is less than 4 bytes long, then the 2-byte integers should be
returned from the MASM procedure in AX and 4-byte integers should be returned in DX:AX. For all
other types, return the near offset in AX.

User-Defined Data Types

The Basic TYPE statement defines structures composed of individual fields. These types are
equivalent to the C struct, FORTRAN record (declared with the STRUCTURE keyword), and Pascal
Record types.

You can use any of the Basic data types except variable-length strings or dynamic arrays in a
user-defined type. Once defined, Basic types can be passed only by reference.

Varying Number of Arguments

You can vary the number of arguments in Basic when you change the calling convention with CDECL.
To call a function with a varying number of arguments, you also need to suppress the type checking
that normally forces a call to be made with a fixed number of arguments. In Basic, you can remove this
type checking by omitting a parameter list from the DECLARE statement.

Pointers and Addresses

VARSEG returns a variable’s segment address, and VARPTR returns a variable’s offset address.
These intrinsic Basic functions enable your program to pass near or far addresses.

The Basic/MASM Interface
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 256

Example

This example calls the Power2 procedure in the MASM 6.1 module.

DEFINT A-Z

DECLARE FUNCTION Power2 (A AS INTEGER, B AS INTEGER)
PRINT "3 times 2 to the power of 5 is ";
PRINT Power2(3, 5)

END

The first argument, A, is higher in memory than B because Basic pushes arguments in the same order
in which they appear.

Figure 12.6 shows how the arguments are placed on the stack.

Figure 12.6 Basic Stack Frame

The assembly procedure can be written as follows:

 .MODEL medium

Power2 PROTO PASCAL, factor:PTR WORD, power:PTR WORD
 .CODE
Power2 PROC PASCAL, factor:PTR WORD, power:PTR WORD

 mov bx, WORD PTR factor ; BX points to factor
 mov ax, [bx] ; Load factor into AX
 mov bx, WORD PTR power ; BX points to power
 mov cx, [bx] ; Load power into CX
 shl ax, cl ; AX = AX * (2 to power of CX)
 ret
Power2 ENDP
 END

Note that each parameter must be loaded in a two-step process because the address of each is
passed rather than the value. The return address is 4 bytes long because procedures called from
Basic must be FAR.

Chapter 13 Writing 32-Bit Applications
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 257

Chapter 13 Writing 32-Bit Applications

This chapter is an introduction to 32-bit programming for the 80386. The guidelines in this chapter also
apply to the 80486 processor, which is basically a faster 80386 with the equivalent of a 80387
floating-point processor. Since you are already familiar with 16-bit real-mode programming, this chapter
covers the differences between 16-bit programming and 32-bit protected-mode programming.

The 80386 processor (and its successors such as the 80486) can run in real mode, virtual-86 mode,
and in protected mode. In real and virtual-86 modes, the 80386 can run 8086/8088 programs. In
protected mode, it can run 80286 programs. The 386 also extends the features of protected mode to
include 32-bit operations and segments larger than 64K.

The MS-DOS operating system directly supports 8086/8088 programs, which it runs either in real
mode or virtual-86 mode. Native 32-bit 80386 programs can be run by using a “DOS extender,” by
using the WINMEM32.DLL facility of Microsoft Windows 3.x, or by running a native 32-bit operating
system, such as Microsoft Windows NT. You can use MASM to generate object code (OMF or COFF)
for 32-bit programs. To do this, you will need a software development kit such as the Windows SDK for
the target environment. Such kits include the linker and other components specific to your chosen
operating environment.

32-Bit Memory Addressing

The 80386 has six segment registers. Four of these are familiar to 8086/8088 programmers: CS (Code
Segment), SS (Stack Segment), DS (Data Segment), and ES (Extra Segment). The two additional
registers, FS and GS, are used as data segment registers.

Memory addresses on 80x86 machines consist of two parts — a segment and an offset. In real-mode
programs, the segment is a 16-bit number and the offset is a 16-bit number. Effective addresses are
calculated by multiplying the segment by 16 and adding the offset to it. In protected mode, the
segment value is not used directly as a number, but instead is an index to a table of “selectors.” Each
selector describes a block of memory, including attributes such as the size and location of the block,
and the access rights the program has to it (read, write, execute). The effective address is calculated
by adding the offset to the base address of the memory block described by the selector.

All segment registers are 16 bits wide. The offset in a 32-bit protected-mode program is itself 32 bits
wide, which means that a single segment can address up to 4 gigabytes of memory. Because of this
large range, there is little need to use segment registers to extend the range of addresses in 32-bit
programs. If all six segment registers are initially set to the same value, then the rest of the program
can ignore them and treat the processor as if it used a 32-bit linear address space. This is called 0:32,
or flat, addressing. (The full segmented 32-bit addressing mode, in which the segment registers can
contain different values, is called 16:32 addressing.) Flat addressing is used by the Windows NT
operating system.

32-Bit Memory Addressing
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 258

Figure 13.1 32-Bit Register Set

MASM Directives for 32-Bit Programming

If you use the simplified segment directives, a 32-bit program is surprisingly similar to a program for
MS-DOS. Here are the differences:

• Supply the .386 directive, which enables the 32-bit programming features of the 386 and its
successors. The .386 directive must precede the .MODEL directive.

• For flat-model programming, use the directive

• .MODEL flat, stdcall

• which tells the assembler to assume flat model (0:32) and to use the Windows NT standard
calling convention for subroutine calls.

• Precede your data declarations with the .DATA directive.

• Precede your instruction codes with the .CODE directive.

• At the end of the source file, place an END directive.

Sample Program

The following sample is a 32-bit assembly language subroutine, such as might be called from a 32-bit
C program written for the Windows NT operating system. The program illustrates the use of a variety of
directives to make assembly language easier to read and maintain. Note that with 32-bit flat model
programming, there is no longer any need to refer to segment registers, since these are artifacts of

Sample Program
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 259

segmented addressing.

;* szSearch - An example of 32-bit assembly programming using MASM 6.1
;*
;* Purpose: Search a buffer (rgbSearch) of length cbSearch for the
;* first occurrence of szTok (null terminated string).
;*
;* Method: A variation of the Boyer-Moore method
;* 1. Determine length of szTok (n)
;* 2. Set array of flags (rgfInTok) to TRUE for each character
;* in szTok
;* 3. Set current position of search to rgbSearch (pbCur)
;* 4. Compare current position to szTok by searching backwards
;* from the nth position. When a comparison fails at
;* position (m), check to see if the current character
;* in rgbSearch is in szTok by using rgfInTok. If not,
;* set pbCur to pbCur+(m)+1 and restart compare. If
;* pbCur reached, increment pbCur and restart compare.
;* 5. Reset rgfInTok to all 0 for next instantiation of the
;* routine.

 .386
 .MODEL flat, stdcall

FALSE EQU 0
TRUE EQU NOT FALSE

 .DATA
; Flags buffer - data initialized to FALSE. We will
; set the appropriate flags to TRUE during initialization
; of szSearch and reset them to FALSE before exit.
rgfInTok BYTE 256 DUP (FALSE);

 .CODE

PBYTE TYPEDEF PTR BYTE

szSearch PROC PUBLIC USES esi edi,
 rgbSearch:PBYTE,
 cbSearch:DWORD,
 szTok:PBYTE

; Initialize flags buffer. This tells us if a character is in
; the search token - Note how we use EAX as an index
; register. This can be done with all extended registers.
 mov esi, szTok
 xor eax, eax
 .REPEAT
 lodsb
 mov BYTE PTR rgfInTok[eax], TRUE
 .UNTIL (!AL)

; Save count of szTok bytes in EDX
 mov edx, esi
 sub edx, szTok
 dec edx

; ESI will always point to beginning of szTok
 mov esi, szTok

Sample Program
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 260

; and will also contain the return value
 mov edi, rgbSearch

; Store pointer to end of rgbSearch in EBX
 mov ebx, edi
 add ebx, cbSearch
 sub ebx, edx

; Initialize ECX with length of szTok
 mov ecx, edx
 .WHILE (ecx != 0)
 dec ecx ; Move index to current
 mov al, [edi+ecx] ; characters to compare

; If the current byte in the buffer doesn't exist in the
; search token, increment buffer pointer to current position
; +1 and start over. This can skip up to 'EDX'
; bytes and reduce search time.
 .IF !(rgfInTok[eax])
 add edi, ecx
 inc edi ; Initialize ECX with
 mov ecx, edx ; length of szTok
; Otherwise, if the characters match, continue on as if
; we have a matching token
 .ELSEIF (al == [esi+ecx])
 .CONTINUE
; Finally, if we have searched all szTok characters,
; and land here, we have a mismatch and we increment
; our pointer into rgbSearch by one and start over.
 .ELSEIF (!ecx)
 inc edi
 mov ecx, edx
 .ENDIF

; Verify that we haven't searched beyond the buffer.
 .IF (edi > ebx)
 mov edi, 0 ; Error value
 .BREAK
 .ENDIF
 .ENDW

; Restore flags in rgfInTok to 0 (for next time).
 mov esi, szTok
 xor eax, eax
 .REPEAT
 lodsb
 mov BYTE PTR rgfInTok[eax], FALSE
 .UNTIL !AL

; Put return value in eax
 mov eax, edi
 ret
szSearch ENDP

end

Appendix A Differences Between MASM 6.1 and 5.1

Appendix A Differences Between MASM 6.1 and 5.1
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 261

For the many users who come to version 6.1 of the Microsoft Macro Assembler directly from the
popular MASM 5.1, this appendix describes the differences between the two versions. Version 6.1
contains significant changes, including:

• An integrated development environment called Programmer’s WorkBench (PWB) from which you
can write, edit, debug, and execute code.

• Expanded functionality for structures, unions, and type definitions.

• New directives for generating loops and decision statements, and for declaring and calling
procedures.

• Simplified methods for applying public attributes to variables and routines in multiple-module
programs.

• Enhancements for writing and using macros.

• Flat-model support for Windows NT and new instructions for the 80486 processor.

The OPTION M510 directive (or the /Zm command-line switch) assures nearly complete compatibility
between MASM 6.1 and MASM 5.1. However, to take full advantage of the enhancements in MASM
6.1, you will need to rewrite some code written for MASM 5.1.

The first section of this appendix describes the new or enhanced features in MASM 6.1. The second
section, “Compatibility Between MASM 5.1 and 6.1,” explains how to:

• Minimize the number of required changes with the OPTION directive.

• Rewrite your existing assembly code, if necessary, to take advantage of the assembler’s
enhancements.

New Features of Version 6.1

This section gives an overview of the new features of MASM 6.1 and provides references to more
detailed information elsewhere in the documentation. For full explanations and coding examples, see
the documentation listed in the cross-references.

The Assembler, Environment, and Utilities

Most of the executable files provided with MASM 6.1 are new or revised. For a complete list of these
files, read the PACKING.TXT file on the distribution disk. The book Getting Started also provides
information about setting up the environment, assembler, and Help system.

The Assembler

The macro assembler, named ML.EXE, can assemble and link in one step. Its new 32-bit operation
gives ML.EXE the ability to handle much larger source files than MASM 5.1. The command-line
options are new. For example, the /Fl and /Sc options generate instruction timings in the listing file.
Command-line options are case-sensitive and must be separated by spaces.

For backward compatibility with MASM 5.1 makefiles, MASM 6.1 includes the MASM.EXE utility.
MASM.EXE translates MASM 5.1 command-line options to the new MASM 6.1 command-line options
and calls ML.EXE. See the Reference book for details.

H2INC

The Assembler, Environment, and Utilities
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 262

H2INC converts C include files to MASM include files. It translates data structures and declarations
but does not translate executable code. For more information, see Chapter 20 of Environment and
Tools.

NMAKE

NMAKE replaces the MAKE utility. NMAKE provides new functions for evaluating target files and more
flexibility with macros and command-line options. For more information, see Environment and Tools.

Integrated Environment

PWB is an integrated development environment for writing, developing, and debugging programs. For
information on PWB and the CodeView debugging application, see Environment and Tools.

Online Help

MASM 6.1 incorporates the Microsoft Advisor Help system. Help provides a vast database of online
help about all aspects of MASM, including the syntax and timings for processor and coprocessor
instructions, directives, command-line options, and support programs such as LINK and PWB.

For information on how to set up the help system, see Getting Started. You can invoke the help
system from within PWB or from the QuickHelp program (QH).

HELPMAKE

You can use the HELPMAKE utility to create additional help files from ASCII text files, allowing you to
customize the online help system. For more information, see Environment and Tools.

Other Programs

MASM 6.1 contains the most recent versions of LINK, LIB, BIND, CodeView, and the mouse driver.
The CREF program is not included in MASM 6.1. The Source Browser provides the information that
CREF provided under MASM 5.1. For more information on the Source Browser, see Chapter 5 of
Environment and Tools or Help.

Segment Management

This section lists the changes and additions to memory-model support and directives that relate to
memory model.

Predefined Symbols

The following predefined symbols (also called predefined equates) provide information about simplified
segments:

Predefined Symbol Value

@stack DGROUP for near stacks, STACK for far stacks

@Interface Information about language parameters

@Model Information about the current memory model

@Line The source line in the current file

@Date The current date

@FileCur The current file

Segment Management
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 263

@Time The current time

@Environ The current environment variables

For more information about predefined symbols, see “Predefined Symbols” in Chapter 1.

Enhancements to the ASSUME Directive

MASM automatically generates ASSUME values for the code segment register (CS). It is no longer
necessary to include lines such as

ASSUME CS:MyCodeSegment

in your programs. In addition, the ASSUME directive can include ERROR, FLAT, or register:type.
MASM 6.1 issues a warning when you specify ASSUME values for CS other than the current segment
or group.

For more information, see “Setting the ASSUME Directive for Segment Registers” in Chapter 2 and
“Defining Register Types with ASSUME” in Chapter 3.

Relocatable Offsets

For compatibility with applications for Windows, the LROFFSET operator can calculate a relocatable
offset, which is resolved by the loader at run time. See Help for details.

Flat Model

MASM 6.1 supports the flat-memory model of Windows NT, which allows segments as large as 4
gigabytes. All other memory models limit segment size to 64K for MS-DOS and Windows. For more
information about memory models, see “Defining Basic Attributes with .MODEL” in Chapter 2.

Data Types

MASM 6.1 supports an improved data typing. This section summarizes the improved forms of data
declarations in MASM 6.1.

Defining Typed Variables

You can now use the type names as directives to define variables. Initializers are unsigned by default.
The following example lines are equivalent:

var1 DB 25
var1 BYTE 25

Signed Types

You can use the SBYTE, SWORD, and SDWORD directives to declare signed data. For more
information about these directives, see “Allocating Memory for Integer Variables” in Chapter 4.

Floating-Point Types

MASM 6.1 provides the REAL4, REAL8, and REAL10 directives for declaring floating-point variables.
For information on these type directives, see “Declaring Floating-Point Variables and Constants” in
Chapter 6 .

Qualified Types

Data Types
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 264

Type definitions can now include distance and language type attributes. Procedures, procedure
prototypes, and external declarations let you specify the type as a qualified type. A complete
description of qualified types is provided in the section “Data Types” in Chapter 1.

Structures

Changes to structures since MASM 5.1 include:

• Structures can be nested.

• The names of structure fields need not be unique. As a result, you must qualify references to field
names.

• Initialization of structure variables can continue over multiple lines provided the last character in the
line before the comment field is a comma.

• Curly braces and angle brackets are equivalent.

For example, this code works in MASM 6.1:

SCORE STRUCT
 team1 BYTE 10 DUP (?)
 score1 BYTE ?
 team2 BYTE 10 DUP (?)
 score2 BYTE ?
 SCORE ENDS

 first SCORE {"BEARS", 20, ; This comment is allowed.
 "CUBS", 10 }

 mov al, [bx].score.team1 ; Field name must be qualified
 ; with structure name.

You can use OPTION OLDSTRUCTS or OPTION M510 to enable MASM 5.1 behavior for structures.
See “Compatibility between MASM 5.1 and 6.1,” later in this appendix. For more information on
structures and unions, see “Structures and Unions” in Chapter 5.

Unions

MASM 6.1 allows the definition of unions with the UNION directive. Unions differ from structures in that
all fields within a union occupy the same data space. For more information, see “Structures and
Unions” in Chapter 5.

Types Defined with TYPEDEF

The TYPEDEF directive defines a type for use later in the program. It is most useful for defining pointer
types. For more information on defining types, see “Data Types” in Chapter 1, and “Defining Pointer
Types with TYPEDEF” in Chapter 3.

Names of Identifiers

MASM 6.1 accepts identifier names up to 247 characters long. All characters are significant, whereas
under MASM 5.1, names are significant to 31 characters only. For more information on identifiers, see
“Identifiers” in Chapter 1.

Multiple-Line Initializers

In MASM 6.1, a comma at the end of a line (except in the comment field) implies that the line
continues. For example, the following code is legal in MASM 6.1:

longstring BYTE "This string ",

Data Types
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 265

bitmasks BYTE 80h, 40h, 20h, 10h,
 08h, 04h, 02h, 01h

For more information, see “Statements” in Chapter 1.

Comments in Extended Lines

MASM 5.1 allows a backslash (\) as the line-continuation character if it is the last nonspace
character in the line. MASM 6.1 permits a comment to follow the backslash.

Determining Size and Length of Data Labels

The LENGTHOF operator returns the number of data items allocated for a data label. MASM 6.1 also
provides the SIZEOF operator. When applied to a type, SIZEOF returns the size attribute of the type
expression. When applied to a data label, SIZEOF returns the number of bytes used by the initializer
in the label’s definition. In this case, SIZEOF for a variable equals the number of bytes in the type
multiplied by LENGTHOF for the variable.

MASM 6.1 recognizes the LENGTH and SIZE operators for backward compatibility. For a description
of the behavior of SIZE under OPTION M510, see “Length and Size of Labels with OPTION M510,”
later in this appendix. For obsolete behavior with the LENGTH operator, see also “LENGTH Operator
Applied to Record Types,” page 356.

For information on LENGTHOF and SIZEOF, see the following sections in
chapter 5: “Declaring and Referencing Arrays,” “Declaring and Initializing Strings,” “Declaring Structure
and Union Variables,” and “Defining Record Variables.”

HIGHWORD and LOWWORD Operators

These operators return the high and low words for a given 32-bit operand. They are similar to the HIGH
and LOW operators of MASM 5.1 except that HIGHWORD and LOWWORD can take only constants
as operands, not relocatables (labels).

PTR and CodeView

Under MASM 5.1, applying the PTR operator to a data initializer determines the size of the data
displayed by CodeView. You can still use PTR in this manner in MASM 6.1, but it does not affect
CodeView typing. Defining pointers with the TYPEDEF directive allows CodeView to generate correct
information. See “Defining Pointer Types with TYPEDEF” in Chapter 3.

Procedures, Loops, and Jumps

With its significant improvements for procedure and jump handling, MASM 6.1 closely resembles
high-level – language implementations of procedure calls. MASM 6.1 generates the code to correctly
handle argument passing, check type compatibility between parameters and arguments, and process
a variable number of arguments. MASM 6.1 can also automatically recast jump instructions to correct
for insufficient jump distance.

Function Prototypes and Calls

The PROTO directive lets you prototype procedures in the same way as high-level languages. PROTO
enables type-checking and type conversion of arguments when calling the procedure with INVOKE.
For more information, see “Declaring Procedure Prototypes” in Chapter 7.

The INVOKE directive sets up code to call a procedure and correctly pass arguments according to the

Procedures, Loops, and Jumps
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 266

prototype. MASM 6.1 also provides the VARARG keyword to pass a variable number of arguments to
a procedure with INVOKE. For more information about INVOKE and VARARG, see “Calling
Procedures with INVOKE” and “Declaring Parameters with the PROC Directive” in
Chapter 7.

The ADDR keyword is new since MASM 5.1. When used with INVOKE, it provides the address of a
variable, in the same way as the address-of operator (&) in C. This lets you conveniently pass an
argument by reference rather than value. See “Calling Procedures with INVOKE” in Chapter 7.

High-Level Flow-Control Constructions

MASM 6.1 contains several directives that generate code for loops and decisions depending on the
status of a conditional statement. The conditions are tested at run time rather than at assembly time.

Directives new since MASM 5.1 include .IF, .ELSE, .ELSEIF, .REPEAT, .UNTIL, .UNTILCXZ,
.WHILE, and .ENDW. MASM 6.1 also provides the associated .BREAK and .CONTINUE directives for
loops and IF statements.
For more information, see “Loops” in Chapter 7 and “Decision Directives” on
page 171.

Automatic Optimization for Unconditional Jumps

MASM 6.1 automatically determines the smallest encoding for direct unconditional jumps. See
“Unconditional Jumps” in Chapter 7.

Automatic Lengthening for Conditional Jumps

If a conditional jump cannot reach its target destination, MASM automatically recasts the code to use
an unconditional jump to the target. See “Jump Extending,” page 169.

User-Defined Stack Frame Setup and Cleanup

The prologue code generated immediately after a PROC statement sets up the stack for parameters
and local variables. The epilogue code handles stack cleanup. MASM 6.1 allows user-defined
prologues and epilogues, as described in “Generating Prologue and Epilogue Code” in Chapter 7.

Simplifying Multiple-Module Projects

MASM 6.1 simplifies the sharing of code and data among modules and makes the use of include files
more efficient.

EXTERNDEF in Include Files

MASM 5.1 requires that you declare public and external all data and routines used in more than one
module. With MASM 6.1, a single EXTERNDEF directive accomplishes the same task. EXTERNDEF
lets you put global data declarations within an include file, making the data visible to all source files
that include the file. For more information, see “Using EXTERNDEF” in Chapter 8.

Search Order for Include Files

MASM 6.1 searches for include files in the directory of the main source file rather than in the current
directory. Similarly, it searches for nested include files in the directory of the include file. You can
specify additional paths to search with the /I command-line option. For more information on include
files, see “Organizing Modules” in Chapter 8.

Simplifying Multiple-Module Projects
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 267

Enforcing Case Sensitivity

In MASM 5.1, sensitivity to case is influenced only by command-line options such as /MX, not the
language type given with the .MODEL directive. In MASM 6.1, the language type takes precedence
over the command-line options in specifying case sensitivity.

Alternate Names for Externals

The syntax for EXTERN allows you to specify an alternate symbol name, which the linker can use to
resolve an external reference to an unused symbol. This prevents linkage with unneeded library code,
as explained in “Using EXTERN with Library Routines,” Chapter 8.

Expanded State Control

Several directives in MASM 6.1 enable or disable various aspects of the assembler control. These
include 80486 coprocessor instructions and use of compatibility options.

The OPTION Directive

The new OPTION directive allows you to selectively define the assembler’s behavior, including its
compatibility with MASM 5.1. See “Using the OPTION Directive” in Chapter 1 and “Compatibility
between MASM 5.1 and 6.1,” later in this appendix.

The .NO87 Directive

The .NO87 directive disables all coprocessor instructions. For more information, see Help.

The .486 and .486P Directives

MASM 6.1 can assemble instructions specific to the 80486, enabled with the .486 directive. The .486P
directive enables 80486 instructions at the highest privilege level (recommended for systems-level
programs only). For more information, see Help.

The PUSHCONTEXT and POPCONTEXT Directives

The directive PUSHCONTEXT saves the assembly environment, and POPCONTEXT restores it. The
environment includes the segment register assumes, the radix, the listing and CREF flags, and the
current processor and coprocessor. Note that .NOCREF (the MASM 6.1 equivalent to .XCREF) still
determines whether information for a given symbol will be added to Browser information and to the
symbol table in the listing file. For more information on listing files, see Appendix C or Help.

New Processor Instructions

MASM 6.1 supports these instructions for the 80486 processor:

80486 Instruction Description

BSWAP Byte swap

CMPXCHG Compare and exchange

INVD Invalidate data cache

INVLPG Invalidate Translation Lookaside Buffer entry

New Processor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 268

WBINVD Write back and invalidate data cache

XADD Exchange and add

For full descriptions of these instructions, see the Reference or Help.

Renamed Directives

Although MASM 6.1 still supports the old names in MASM 5.1, the following directives have been
renamed for language consistency:

MASM 6.1 MASM 5.1

.DOSSEG DOSSEG

.LISTIF .LFCOND

.LIS™ACRO .XALL

.LIS™ACROALL .LALL

.NOCREF .XCREF

.NOLIST .XLIST

.NOLISTIF .SFCOND

.NOLIS™ACRO .SALL

ECHO %OUT

EXTERN EXTRN

FOR IRP

FORC IRPC

REPEAT REPT

STRUCT STRUC

SUBTITLE SUBTTL

Specifying 16-Bit and 32-Bit Instructions

MASM 6.1 supports all instructions that work with the extended 32-bit registers of the 80386/486. For
certain instructions, you can override the default operand size with the W (word) and the D
(doubleword) suffixes. For details, see the Reference or Help.

Macro Enhancements

There are significant enhancements to macro functions in MASM 6.1. Directives provide for a variable
number of arguments, loop constructions, definitions of text equates, and macro functions.

Variable Arguments

MASM 5.1 ignores extra arguments passed to macros. In MASM 6.1, you can pass a variable number
of arguments to a macro by appending the VARARG keyword to the last macro parameter in the
macro definition. The macro can then reference additional arguments relative to the last declared
parameter. This procedure is explained in “Returning Values with Macro Functions” in Chapter 9.

Required and Default Macro Arguments

Macro Enhancements
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 269

With MASM 6.1, you can use REQ or the := operator to specify required or default arguments. See
“Specifying Required and Default Parameters” in
Chapter 9.

New Directives for Macro Loops

Within a macro definition, WHILE repeats assembly as long as a condition remains true. Other macro
loop directives, IRP, IRPC, and REPT, have been renamed FOR, FORC, and REPEAT. For more
information, see “Defining Repeat Blocks with Loop Directives” in Chapter 9.

Text Macros

The EQU directive retains its old functionality, but MASM 6.1 also incorporates a TEXTEQU directive
for defining text macros. TEXTEQU allows greater flexibility than EQU. For example, TEXTEQU can
assign to a label the value calculated by a macro function. For more information, see “Text Macros” in
Chapter 9.

The GOTO Directive for Macros

Within a macro definition, GOTO transfers assembly to a line labeled with a leading colon(:). For more
information on GOTO, see Help.

Macro Functions

At assembly time, macro functions can determine and return a text value using EXITM. Predefined
macro string functions concatenate strings, return the size of a string, and return the position of a
substring within a string. For information on writing your own macro functions, see “Returning Values
with Macro Functions” in Chapter 9.

Predefined Macro Functions

MASM 6.1 provides the following predefined text macro functions:

Symbol Value Returned

@CatStr A concatenated string

@InStr The position of one string within another

@SizeStr The size of a string

@SubStr A substring

For more information on predefined macros, see “String Directives and Predefined Functions” in
Chapter 9.

MASM 6.1 Programming Practices

MASM 6.1 provides many features that make it easier for you to write assembly code. If you are
familiar with MASM 5.1 programming, you may find it helpful to adopt the following list of new
programming practices for programming with MASM 6.1. The list summarizes many of the changes
covered in the following section, “Compatibility Between MASM 5.1 and 6.1.”

• Select identifier names that do not begin with the dot operator (.).

• Use the dot operator (.) only to reference structure fields, and the plus operator (+) when not
referencing structures.

• Different structures can have the same field names. However, the assembler does not allow

MASM 6.1 Programming Practices
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 270

ambiguous references. You must include the structure type when referring to field names common
to two or more structures.

• Separate macro arguments with commas, not spaces.

• Avoid adding extra ampersands in macros. For a list of the new rules about using ampersands in
macros, see “Substitution Operator” in Chapter 9 and “OPTION OLDMACROS,” page 372.

• By default, code labels defined with a colon are local. Place two colons after code labels if you
want to reference the label outside the procedure.

Compatibility Between MASM 5.1 and 6.1

MASM 6.1 provides a “compatibility mode,” making it easy for you to transfer existing MASM 5.1 code
to the new version. You invoke the compatibility mode through the OPTION M510 directive or the /Zm
command-line switch. This section explains the changes you may need to make to get your MASM
5.1 code to run under MASM 6.1 in compatibility mode.

Rewriting Code for Compatibility

In some cases, MASM 6.1 with OPTION M510 does not support MASM 5.1 behavior. In several
cases, this is because bugs in MASM 5.1 were corrected. To update your code to MASM 6.1, use the
instructions in this section. This usually requires only minor changes.

Many of the topics listed here will not apply to your code. This section discusses topics in order of
likelihood, beginning with the most common. In addition, you may have conflicts between identifier
names and new reserved words. OPTION NOKEYWORD resolves errors generated from the use of
reserved words as identifiers. See “OPTION NOKEYWORD,” page 376, for more information.

Bug Fixes Since MASM 5.1

This section lists the differences between MASM 5.1 and MASM 6.1 due to bug corrections since
MASM 5.1.

Invalid Use of LOCK, REPNE, and REPNZ

Except in compatibility mode, MASM 6.1 flags illegal uses of the instruction prefixes LOCK, REPNE,
and REPNZ. The error generated for invalid uses of the LOCK, REPNE, and REPNZ prefixes is error
A2068:

instruction prefix not allowed

Table A.1 summarizes the correct use of the instruction prefixes. It lists each string instruction with
the type of repeat prefix it uses, and indicates whether the instruction works on a source, a
destination, or both.

Table A.1 Requirements for String Instructions

Instruction Repeat Prefix Source/Destination Register Pair

MOVS REP Both DS:SI, ES:DI

SCAS REPE/REPNE Destination ES:DI

CMPS REPE/REPNE Both DS:SI, ES:DI

LODS -- Source DS:SI

Rewriting Code for Compatibility
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 271

STOS REP Destination ES:DI

INS REP Destination ES:DI

OUTS REP Source DS:SI

No Closing Quotation Marks in Macro Arguments

In MASM 5.1, you can use both single and double quotation marks (' and ") to begin strings in macro
arguments. The assembler does not generate an error or warning if the string does not end with
quotation marks on a macro call. Instead, MASM 5.1 considers the remainder of the line to be part of
the macro argument containing the opening quote, as if there were a closing quotation mark at the end
of the line.

By default, MASM 6.1 now generates error A2046:

missing single or double quotation mark in string

so all single and double quotation marks in macro arguments must be matched.

To correct such errors in MASM 6.1, either end the string with a closing quotation mark as shown in
the following example, or use the macro escape character (!) to treat the quotation mark literally.

; MASM 5.1 code
MyMacro "all this in one argument

; Default MASM 6.1 code
MyMacro "all this in one argument"

Making a Scoped Label Public

MASM 5.1 considers code labels defined with a single colon inside a procedure to be local to that
procedure if the module contains a .MODEL directive with a language type. Although the label is local,
MASM 5.1 does not generate an error if it is also declared PUBLIC. MASM 6.1 generates error A2203:

cannot declare scoped code label as PUBLIC

If you want to make a label PUBLIC, it must not be local. You can use the double colon operator to
define a non-scoped label, as shown in this example:

 PUBLIC publicLabel
publicLabel:: ; Non-scoped label MASM 6.1

Byte Form of BT, BTS, BTC, and BTR Instructions

MASM 5.1 allows a byte argument for the 80386 bit-test instructions, but encodes it as a word
argument. The byte form is not supported by the processor.

MASM 6.1 does not support this behavior and generates error A2024:

invalid operand size for instruction

Rewrite your code to use a word-sized argument.

Default Values for Record Fields

In MASM 5.1, default values for record fields can range down to –2n, where n is the number of bits in
the field. This results in the loss of the sign bit.

MASM 6.1 allows a range of –2n–1 to 2n–1 for default values. Illegal initializers generate error A2071:

initializer too large for specified size

Rewriting Code for Compatibility
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 272

Design Change Issues

MASM 6.1 includes design changes that make the language more consistent. These changes are not
affected by the OPTION directive, discussed later in this appendix. Therefore, the changes require
revisions in your code. In most cases, the necessary revisions are minor and the circumstances
requiring changes are rare.

Operands of Different Size

MASM 5.1 does not require operands to agree in size, as the following code illustrates:

 .DATA?
 var1 DB ?
 var2 DB ?
 .CODE
 .
 .
 .
 mov var1, ax ; Copy AX to word at var1

The operands for the MOV instruction do not match in size, yet the instruction assembles correctly. It
places the contents of AL into var1 and AH into var2, moving a word of data in one step. If the code
defined var1 as a word value, the instruction

 mov var1, al

would also assemble correctly, copying AL into the low byte of var1 while leaving the high byte
unaffected. Except at warning level 0, MASM 5.1 issues a warning to inform you of the size mismatch,
but both scenarios are legal.

MASM 6.1 does not accept instructions with operands that do not agree in size. You must specifically
“coerce” the size of the memory operand, like this:

 mov BYTE PTR var1, al

Conflicting Structure Declarations

MASM 5.1 allows you to declare two or more structures with the same name. Each declaration
replaces the previous declaration. However, the field names from previous declarations still remain in
the assembler’s list of declared values.

MASM 6.1 does not allow conflicting declarations of a structure. It generates errors A2160 through
A2165 for each conflicting declaration. The errors note a specific conflict, such as conflicting number of
fields, conflicting names of fields, or conflicting initializers.

Forward References to Text Macros Outside of Expressions

MASM 5.1 allows forward references to text macros in specialized cases. MASM 6.1 with OPTION
M510 also permits forward references, but only when the text macro is referenced in an expression. To
revise your code, place all macro definitions at the beginning of the file.

HIGH and LOW Applied to Relocatable Operands

In some cases, MASM 5.1 accepts HIGH and LOW applied to relocatable memory expressions. For
example, MASM 5.1 allows this code sequence:

; MASM 5.1 code
EXTRN var1:WORD
var2 DW 0

Rewriting Code for Compatibility
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 273

 mov ah, HIGH var1 ; same as mov ax, OFFSET var1

However, the instruction

 mov ax, LOW var2

is not legal. MASM 6.1 generates error A2105:

HIGH and LOW require immediate operands

The OFFSET operator is required on these operands in MASM 6.1, as shown in the following. Rewrite
your code if necessary.

; MASM 6.1 code
 mov al, LOW OFFSET var1
 mov ah, HIGH OFFSET var2

OFFSET Applied to Group Names and Indirect Memory Operands

In MASM 6.1, you cannot apply OFFSET to a group name, indirect argument, or procedure argument.
Doing so generates error A2098:

invalid operand for OFFSET

LENGTH Operator Applied to Record Types

In MASM 5.1, the LENGTH operator, when applied to a record type, returns the total number of bits in
a record definition.

In MASM 6.1, the statement LENGTH recordName returns error A2143:

expected data label

Rewrite your code if necessary. The new SIZEOF operator returns information about records in MASM
6.1. For more information, see “Defining Record Variables” in Chapter 5.

Signed Comparison of Hexadecimal Values Using GT, GE, LE, or LT

The rules for two’s-complement comparisons have changed. In MASM 5.1, the expression

0FFFFh GT -1

is false because the two’s-complement values are equal. However, because hexadecimal numbers are
now treated as unsigned, the expression is true in MASM 6.1. To update, rewrite the affected code.

RET Used with a Constant in Procedures with Epilogues

RETCode Labels at Top of Procedures with Prologues

By default in MASM 5.1, a code label defined on the same line as the first procedure instruction refers
to the first byte of the prologue.

In MASM 6.1, a code label defined at the beginning of a procedure refers to the first byte of the
procedure after the prologue. If you need to label the start of the prologue code, place the label before
the PROC statement. For more information, see “Generating Prologue and Epilogue Code” in Chapter
7.

Use of % as an Identifier Character

MASM 5.1 allows % as an identifier character. This behavior leads to ambiguities when % is used as
the expansion operator in macros. Since % is not allowed as a character in MASM 6.1 identifiers, you
must change the names of any identifiers containing the % character. For a list of legal identifier

Rewriting Code for Compatibility
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 274

characters, see “Identifiers” in Chapter 1.

ASSUME CS Set to Wrong Value

With MASM 6.1 you do not need to use the ASSUME statement for the CS register. Instead, MASM
6.1 generates an automatic ASSUME statement for the code segment register to the current segment
or group, as explained in “Setting the ASSUME Directive for Segment Registers” in Chapter 2.
Additionally, MASM 6.1 does not allow explicit ASSUME statements for CS that contradict the
automatically set ASSUME statement.

MASM 5.1 allows CS to be assumed to the current segment, even if that segment is a member of a
group. With MASM 6.1, this results in warning A4004:

cannot ASSUME CS

ASSUMECode Requiring Two-Pass Assembly

Unlike version 5.1, MASM 6.1 does most of its work on its first pass, then performs as many
subsequent passes as necessary. In contrast, MASM 5.1 always assembles in two source passes.
As a result, you may need to revise or delete some pass-dependent constructs under MASM 6.1.

Two-Pass Directives

To assure compatibility, MASM 6.1 supports 5.1 directives referring to two passes. These include
.ERR1, .ERR2, IF1, IF2, ELSEIF1, and ELSEIF2. For second-pass constructs, you must specify
OPTION SETIF2, as discussed in “OPTION SETIF2,” page 377. Without OPTION SETIF2, the IF2
and .ERR2 directives cause error A2061:

[[ELSE]]IF2/.ERR2 not allowed : single-pass assembler

MASM 6.1 handles first-pass constructs differently. It treats the .ERR1 directive as .ERR, and the IF1
directive as IF.

The following examples show you how you can rewrite typical pass-sensitive code for MASM 6.1:

• Declare var external only if not defined in current module:

; MASM 5.1:
 IF2
 IFNDEF var
 EXTRN var:far
 ENDIF
 ENDIF

; MASM 6.1:
 EXTERNDEF var:far

• Include a file of definitions only once to speed assembly:

; MASM 5.1:
 IF1
 INCLUDE file1.inc
 ENDIF

; MASM 6.1:
 INCLUDE FILE1.INC

• Generate a %OUT or .ERR message only once:

; MASM 5.1:

Rewriting Code for Compatibility
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 275

 %OUT This is my message
 ENDIF

 IF2
 .ERRNZ A NE B
 ENDIF

; MASM 6.1:
 ECHO This is my message

 .ERRNZ A NE B <ASSERTION FAILURE: A NE B>

• Generate an error if a symbol is not defined but may be forward referenced:

; MASM 5.1:
 IF2
 .ERRNDEF var
 ENDIF

; MASM 6.1:
 .ERRNDEF var

For information on conditional directives, see “Conditional Directives,” Chapter 1.

IFDEF and IFNDEF with Forward-Referenced Identifiers

If you use a symbol name that has not yet been defined in an IFDEF or IFNDEF expression, MASM
6.1 returns FALSE for the IFDEF expression and TRUE for the IFNDEF expression. When OPTION
M510 is enabled, the assembler generates warning A6005:

expression condition may be pass-dependent

To resolve the warning, place the symbol definition before the conditional test.

Address Spans as Constants

The value of offsets calculated on the first assembly pass may not be the same as those calculated on
later passes. Therefore, you should avoid comparisons with an address span, as in the following
examples:

IF (OFFSET var1 - OFFSET var2) EQ 10
WHILE dx LT (OFFSET var1 - OFFSET var2)
REPEAT OFFSET var1 - OFFSET var2

However, the DUP operator allows such an expression as its count value. The assembler evaluates the
DUP count on every pass, so even expressions involving forward references assemble correctly.

You can also use expressions containing span distances with the .ERR directives, since the
assembler evaluates these directives after calculating all offsets:

.ERRE OFFSET var1 - OFFSET var2 - 10,

.TYPE with Forward References

MASM 5.1 evaluates .TYPE on both assembly passes. This means it yields zero on the first pass and
nonzero on the second pass, if applied to an expression that forward-references a symbol.

MASM 6.1 evaluates .TYPE only on the first assembly pass. As a result, if the operand references a
symbol that has not yet been defined, .TYPE yields a value of zero. This means that .TYPE, if used in
a conditional-assembly construction, may yield different results in MASM 6.1 than in MASM 5.1.

Obsolete Features No Longer Supported

Rewriting Code for Compatibility
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 276

The following two features are no longer supported by MASM 6.1. Because both are obscure features
provided by early versions of the assembler, they probably do not affect your MASM 5.1 code.

The ESC Instruction

MASM 6.1 no longer supports the ESC instruction, which was used to send hand-coded commands to
the coprocessor. Because MASM 6.1 recognizes and assembles the full set of coprocessor
mnemonics, the ESC instruction is not necessary. Using the ESC instruction generates error A2205:

ESC instruction is obsolete: ignored

To update MASM 5.1 code, use the coprocessor instructions instead of ESC.

The MSFLOAT Binary Format

MASM 6.1 does not support the .MSFLOAT directive, which provided the Microsoft Binary Format
(MSB) for floating-point numbers in variable initializers. Using the .MSFLOAT directive generates error
A2204:

.MSFLOAT directive is obsolete: ignored

Use IEEE format or, if MSB format is necessary, initialize variables with hexadecimal values. See
“Storing Numbers in Floating-Point Format” in Chapter 6.

Using the OPTION Directive

The OPTION directive lets you control compatibility with MASM 5.1 code. This section explains the
differences in MASM 5.1 and MASM 6.1 behavior that the OPTION directive can influence.

The OPTION M510 directive (or /Zm command-line option) initiates all aspects of 5.1 compatibility
mode. You can select from among specific characteristics of MASM 5.1 behavior with the OPTION
arguments discussed in following sections. Each section also explains how to revise your code if you
want to remove OPTION directives from your MASM 5.1 code.

Note If your code includes both .MODEL and OPTION M510, the OPTION M510 statement must
appear first. Wherever this appendix suggests using OPTION M510 in your code, you can set the /Zm
command-line option instead.

OPTION M510

This section discusses the M510 argument to the OPTION directive, which selects the MASM 5.1
compatibility mode. In this mode, MASM 6.1 implements MASM 5.1 behavior relating to macros,
offsets, scope of code labels, structures, identifier names, identifier case, and other behaviors.

The OPTION M510 directive automatically sets the following:

OPTION OLDSTRUCTS ; MASM 5.1 structures
OPTION OLDMACROS ; MASM 5.1 macros
OPTION DOTNAME ; Identifiers may begin with a dot (.)
OPTION SETIF2:TRUE ; Two-pass code activates on every pass

If you do not have a .386, 386P .486, or 486P directive in your module, then OPTION M510 adds:

OPTION EXPR16 ; 16-bit expression precision
 ; See "OPTION EXPR16," following

If you do not have a .MODEL directive in your module, OPTION M510 adds:

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 277

OPTION OFFSET:SEGMENT ; OFFSET operator defaults to
 ; segment-relative
 ; See "OPTION OFFSET," following

If you do not have a .MODEL directive with a language specifier in your module, OPTION M510 also
adds:

OPTION NOSCOPED ; Code labels are not local inside
 ; procedures
 ; See "OPTION NOSCOPED," following
OPTION PROC:PRIVATE ; Labels defined with PROC are not
 ; public by default
 ; See "OPTION PROC," following

If you want to remove OPTION M510 from your code (or /Zm from the command line), add the OPTION
directive arguments to your module according to the conditions stated earlier.

There may be compatibility issues affecting your code that are supported under OPTION M510, but
are not covered by the other OPTION directive arguments. Once you have modified your source code
so it no longer requires behavior supported by OPTION M510, you can replace OPTION M510 with
other OPTION directive arguments. These compatibility issues are discussed in following sections.

Once you have replaced OPTION M510 with other forms of the OPTION directive and your code works
correctly, try removing the OPTION directives, one at a time. Make appropriate source modifications
as necessary, until your code uses only MASM 6.1 defaults.

Reserved Keywords Dependent on CPU Mode with OPTION M510

With OPTION M510, keywords and instructions not available in the current CPU mode (such as
ENTER under .8086) are not treated as keywords. This also means the USE32, FLAT, FAR32, and
NEAR32 segment types and the 80386/486 registers are not keywords with a processor selection less
than .386.

If you remove OPTION M510, any reserved word used as an identifier generates a syntax error. You
can either rename the identifiers or use OPTION NOKEYWORD. For more information on OPTION
NOKEYWORD, see “OPTION NOKEYWORD,” later in this appendix.

Invalid Use of Instruction Prefixes with OPTION M510

Code without OPTION M510 generates errors for all invalid uses of the instruction prefixes. OPTION
M510 suppresses some of these errors to match MASM 5.1 behavior. MASM 5.1 does not check for
illegal usage of the instruction prefixes LOCK, REP, REPE, REPZ, REPNE, and REPNZ.

Illegal usage of these prefixes results in error A2068:

instruction prefix not allowed

For more information on these instruction prefixes, see “Overview of String Instructions” in Chapter 5.
See also “Bug Fixes from MASM 5.1,” earlier in this appendix.

Size of Constant Operands with OPTION M510

In MASM 5.1, a large constant value that can fit only in the processor’s default word (4 bytes for .386
and .486, 2 bytes otherwise) is assigned a size attribute of the default word size. The value of the
constant affects the number of bytes changed by the instruction. For example,

; Legal only with OPTION M510
 mov [bx], 0100h

is legal in OPTION M510 mode. Since 0100h cannot fit in a byte, the assembler interprets the value
as a word.

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 278

Without OPTION M510, the assembler never assigns a size automatically. You must state it explicitly
with the PTR operator, as shown in the following example:

; Without OPTION M510
 mov [bx], WORD PTR 0100h

Code Labels when Defining Data with OPTION M510

MASM 5.1 allows a code label definition in a data definition statement if that statement does not also
define a data label. MASM 6.1 also allows such definitions if OPTION M510 is enabled; otherwise it is
illegal.

; Legal only with OPTION M510
MyCodeLabel: DW 0

SEG Operator with OPTION M510

In MASM 5.1, the SEG operator returns a label’s segment address unless the frame is explicitly
specified, in which case it returns the segment address of the frame. A statement such as SEG
DGROUP:var always returns DGROUP, whereas SEG var always returns the segment address of
var. OPTION M510 forces this same behavior in MASM 6.1.

If you do not use OPTION M510, the behavior of the SEG operator is determined by the OPTION
OFFSET directive, as described in “OPTION OFFSET,” later in this appendix.

In MASM 6.1, the value returned by the SEG operator applied to a nonexternal variable depends on
compatibility mode:

• Without OPTION M510, SEG returns the address of the frame (the segment, group, or the value
assumed to the segment register) if one has been explicitly set.

• With OPTION M510, SEG returns the group if one has been specified. In the absence of a defined
group, SEG returns the segment where the variable is defined.

Expression Evaluation with OPTION M510

By default, MASM 6.1 changes the way expressions are evaluated. In MASM 5.1,

var-2[bx]

is parsed as

(var-2)[bx]

Without OPTION M510, you must rewrite the statement, since the assembler parses it as

var-(2[bx])

which generates an error.

Length and Size of Labels with OPTION M510

With OPTION M510, you can apply the LENGTH and SIZE operators to any label. For a code label,
SIZE returns a value of 0FFFFh for NEAR and 0FFFEh for FAR. LENGTH always returns a value of 1.
For strings, SIZE and LENGTH both return 1.

Without OPTION M510, SIZE returns values of 0FF01h, 0FF02h, 0FF04h, 0FF05h, and 0FF06h for
SHORT, NEAR16, NEAR32, FAR16, and FAR32 labels, respectively. LENGTH returns 1 except when
used with DUP, in which case it returns the outermost count. For arrays initialized with DUP, SIZE
returns the length multiplied by the size of the type.

The LENGTHOF and SIZEOF operators in MASM 6.1 handle arrays much more consistently. These

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 279

operators return the number of data items and the number of bytes in an initializer. For a description of
SIZEOF and LENGTHOF, see the following sections in Chapter 5: “Declaring and Referencing Arrays,”
“Declaring and Initializing Strings,” “Defining Structure and Union Variables,” and “Defining Record
Variables.”

Comparing Types Using EQ and NE with OPTION M510

With OPTION M510, the assembler converts types to a constant value before comparisons with EQ
and NE. Code types are converted to values of 0FFFFh (near) or 0FFFEh (far). If OPTION M510 is not
enabled, the assembler converts types to constants only when comparing them with constants. Thus,
MASM 6.1 recognizes only equivalent qualified types as equal expressions.

For existing MASM 5.1 code, these distinctions affect only the use of the TYPE operator in
conjunction with EQ and NE. The following example illustrates how the assembler compares types
with and without compatibility mode:

MYSTRUCT STRUC
 f1 DB 0
 f2 DB 0
MYSTRUCT ENDS

; With OPTION M510

val = (TYPE MYSTRUCT) EQ WORD ; True: 2 EQ 2
val = 2 EQ WORD ; True: 2 EQ 2
val = WORD EQ WORD ; True: 2 EQ 2
val = SWORD EQ WORD ; True: 2 EQ 2

; Without OPTION M510

val = (TYPE MYSTRUCT) EQ WORD ; False: MyStruct NE WORD
val = 2 EQ WORD ; True: 2 EQ 2
val = WORD EQ WORD ; True: WORD EQ WORD
val = SWORD EQ WORD ; False: SWORD NE WORD

Use of Constant and PTR as a Type with OPTION M510

You can use a constant as the left operand to PTR in compatibility mode. Otherwise, you must use a
type expression. With OPTION M510, a constant must have a value of 1 (BYTE), 2 (WORD), 4
(DWORD), 6 (FWORD), 8 (QWORD) or 10 (TBYTE). The assembler treats the constant as the
parenthesized type. Note that the TYPE operator yields a type expression, but the SIZE operator
yields a constant.

; With OPTION M510

MyData DW 0

 mov WORD PTR [bx], 10 ; Legal
 mov (TYPE MyData) PTR [bx], 10 ; Legal
 mov (SIZE MyData) PTR [bx], 10 ; Legal
 mov 2 ptr [bx], 10 ; Legal

; Without OPTION M510

MyData WORD 0

 mov WORD PTR [bx], 10 ; Legal
 mov (TYPE MyData) PTR [bx], 10 ; Legal
; mov (SIZE MyData) PTR [bx], 10 ; Illegal
; mov 2 PTR [bx], 10 ; Illegal

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 280

Structure Type Cast on Expressions with OPTION M510

In compatibility mode, use the PTR operator to type-cast a constant to a structure type. This is most
often done in data initializers to affect the CodeView information of the data label. Without OPTION
M510, the assembler generates an error.

MYSTRC STRUC
 f1 DB 0
MYSTRC ENDS

MyPtr DW MYSTRC PTR 0 ; Illegal without OPTION M510

In MASM 6.1, the initializer type does not influence CodeView’s type information.

Hidden Coercion of OFFSET Expression Size with OPTION M510

When programming for the 80386 or 80486, the size of an OFFSET expression can be 2 bytes for a
symbol in a USE16 segment, or 4 bytes for a symbol in a USE32 or FLAT segment. With OPTION
M510, you can use a 32-bit OFFSET expression in a 16-bit context. Without OPTION M510, you
must use the LOWWORD operator to convert the offset size.

.386

; With OPTION M510

seg32 SEGMENT USE32
MyLabel WORD 0
seg32 ENDS

seg16 SEGMENT USE16 'code' ; With OPTION M510:
 mov ax, OFFSET MyLabel ; Legal
 mov ax, LOWWORD OFFSET MyLabel ; Legal
 mov eax, OFFSET MyLabel ; Legal
seg16 ENDS

; Without OPTION M510

seg32 SEGMENT USE32
MyLabel WORD 0
seg32 ENDS

seg16 SEGMENT USE16 'code' ; Without OPTION M510:
; mov ax, OFFSET MyLabel ; Illegal
 mov ax, LOWWORD offset MyLabel ; Legal
 mov eax, OFFSET MyLabel ; Legal
seg16 ENDS

Specifying Radixes with OPTION M510

If the current radix in your code is greater than 10 decimal, MASM 6.1 allows the radix specifiers B
(binary) and D (decimal) only in compatibility mode. You must change B to Y for binary, and D to T for
decimal, since both B and D are legitimate hexadecimal values, making numbers such as 12D
ambiguous. If you want to keep B and D as radix specifiers when the current radix is greater than 10,
you must specify OPTION M510. For more information about radixes, see “Integer Constants and
Constant Expressions” in Chapter 1.

Naming Conventions with OPTION M510

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 281

By default, MASM 5.1 does not write the names of public variables in uppercase to the object file, even
when a language type of PASCAL, FORTRAN, or BASIC is specified.

Unless you use OPTION M510, these language types in MASM 6.1 write identifier names in
uppercase, even with the /Cp or /Cx command-line options. When you link with /NOI, case must
match in the object files to resolve externals.

Length Significance of Symbol Names with OPTION M510

With MASM 5.1, only the first 31 characters of a symbol name are considered significant, and only the
first 31 characters of a public or external symbol name are placed in the object file.

Without OPTION M510, the entire name is considered significant. The maximum number of characters
placed in the object file is controlled with the /Hnumber command-line option, with a default of 247 (the
maximum length of an identifier in MASM 6.1).

String Defaults in Structure Variables with OPTION M510

In compatibility mode, a constant initializer can override a structure field initialized with a string value.
Without OPTION M510, only another string or a list can override a string initializer. To update your
code, surround the constant override value with angle brackets or curly braces to indicate a list with
one element.

MTSTRUCT STRUCT
MyString BYTE "This is a string"
MTSTRUCT ENDS

; With OPTION M510

MyInst MTSTRUCT <0>

; Without OPTION M510, either of these statements is correct

MyInst MTSTRUCT <<0>>
MyInst MTSTRUCT {<0>}

Effects of the ? Initializer in Data Definitions with OPTION M510

As described in “Declaring and Initializing Strings” in Chapter 5, the assembler treats the ? initializer
as either zero or as an unspecified value. In compatibility mode, however, the assembler always treats
the ? initializer as zero unless it is used with the DUP operator. In this case, the assembler allocates
space, but does not initialize it with any value.

Current Address Operator with OPTION M510

In compatibility mode, the current address operator ($) applied to a structure returns the offset of the
first byte of the structure. When OPTION M510 is not enabled, $ returns the offset of the current field
in the structure.

Segment Association for FAR Externals with OPTION M510

In MASM 5.1, you must place an EXTRN directive for a variable in the same segment that holds the
variable. For far data, this often entails opening and closing a segment just to place the EXTRN
statement.

MASM 6.1 offers much greater flexibility in where EXTERN and EXTERNDEF statements can appear,
as described in “Positioning External Declarations” in Chapter 8. However, in compatibility mode,
MASM 6.1 emulates the behavior of MASM 5.1.

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 282

Defining Aliases Using EQU with OPTION M510

In MASM 5.1, you can equate one symbol with another. These equates are called “aliases.”

Unless you specify OPTION M510, MASM 6.1 does not allow aliases defined with EQU. An
immediate expression or text must appear as the right operand of an EQU directive. Change aliases to
use the TEXTEQU directive, described in “Text Macros” in Chapter 9. This change may cause an
expression to evaluate differently.

The following examples illustrate the differences between MASM 5.1 code, MASM 6.1 code with
OPTION M510, and MASM 6.1 code without OPTION M510:

; MASM 5.1 code
var1 EQU 3
var2 EQU var1 ; var2 taken as an alias
 ; var2 references var1 anywhere var2 is
 ; used as a symbol

; MASM 6.1 with OPTION M510
var1 EQU 3
var2 EQU var1 ; var2 taken as a var2 EQU <var1>
 ; var2 substituted for var1 whenever
 ; text macros substituted

; MASM 6.1 without OPTION M510
var1 EQU 3
var2 EQU var1 ; Treated as var2 EQU 3

Difference in Text Macro Expansions with OPTION M510

MASM 6.1 recursively expands text macros used as values, whereas MASM 5.1 simply replaces the
text macro with its value. The following example illustrates the difference:

; With OPTION M510

tm1 EQU <contains tm2>
tm2 EQU <value>

tm3 CATSTR tm1 ; == <contains tm2>

; Without OPTION M510

tm3 CATSTR tm1 ; == <contains value>

Conditional Directives and Missing Operands with OPTION M510

MASM 5.1 considers a missing argument to be a zero. MASM 6.1 requires an argument unless
OPTION M510 is enabled.

OPTION OLDSTRUCTS

This section describes changes in MASM 6.1 that apply to structures. With OPTION OLDSTRUCTS
or OPTION M510:

• You can use plus operator (+) in structure field references.

• Labels and structure field names cannot have the same name with OPTION OLDSTRUCTS.

Plus Operator Not Allowed with Structures

By default, each reference to structure member names must use the dot operator (.) to separate the

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 283

structure variable name from the field name. You cannot use the dot operator as the plus operator (+)
or vice versa.

To convert your code so that it does not need OPTION OLDSTRUCTS:

• Qualify all structure field references.

• Change all uses of the dot operator (.) that occur outside of structure references to use the plus
operator (+).

If you remove OPTION OLDSTRUCTS from your code, the assembler generates errors for all lines
requiring change. Using the dot operator in any context other than for a structure field results in error
A2166:

structure field expected

Unqualified structure references result in error A2006:

undefined symbol : identifier

The following example illustrates how to change MASM 5.1 code from the old structure references to
the new type in MASM 6.1:

; OPTION OLDSTRUCTS (simulates MASM 5.1)
structname STRUC
a BYTE ?
b WORD ?
structname ENDS

structinstance structname <>

 mov ax, [bx].b ; This code assembles
 mov al, structinstance.a ; correctly only with
 mov ax, [bx].4 ; OPTION OLDSTRUCTS
 ; or OPTION M510

; OPTION NOOLDSTRUCTS (the MASM 6.1 default)
structname STRUCT
a BYTE ?
b WORD ?
structname ENDS

structinstance structname <>

 mov ax, [bx].structname.b ; Add qualifying type
 mov al, structinstance.a ; No change needed
 mov ax, [bx]+4 ; Change dot to plus

; Alternative methods in MASM 6.1
; Either this:
 ASSUME bx:PTR structname
 mov ax, [bx]
; or this:
 mov ax, (structname PTR[bx]).b

Duplicate Structure Field Names

With the default, OPTION NOOLDSTRUCTS, label and structure field names may have the same
name. With OPTION OLDSTRUCTS (the MASM 5.1 default), labels and structure fields cannot have
the same name. For more information, see “Structures and Unions” in Chapter 5.

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 284

OPTION OLDMACROS

This section describes how MASM 5.1 and 6.1 differ in their handling of macros. Without OPTION
OLDMACROS or OPTION M510, MASM 6.1 changes the behavior of macros in several ways. If you
want the MASM 5.1 macro behavior, add OPTION OLDMACROS or OPTION M510 to your MASM 5.1
code.

Separating Macro Arguments with Commas

MASM 5.1 allows white spaces or commas to separate arguments to macros. MASM 6.1 with
OPTION NOOLDMACROS (the default) requires commas between arguments. For example, in the
macro call

 MyMacro var1 var2 var3, var4

OPTION OLDMACROS causes the assembler to treat all four items as separate arguments. With
OPTION NOOLDMACROS, the assembler treats

 var1 var2 var3

as one argument, since the items are not separated with commas. To convert your macro code,
replace spaces between macro arguments with a single comma.

New Behavior with Ampersands in Macros

The default OPTION NOOLDMACROS causes the assembler to interpret ampersands (&) within a
macro differently than does MASM 5.1. MASM 5.1 requires one ampersand for each level of macro
nesting. OPTION OLDMACROS emulates this behavior.

Without OPTION OLDMACROS, MASM 6.1 removes ampersands only once no matter how deeply
nested the macro. To update your MASM 5.1 macros, follow this simple rule: replace every sequence
of ampersands with a single ampersand. The only exception is when macro parameters immediately
precede and follow the ampersand, and both require substitution. In this case, use two ampersands.
For a description of the new rules, see “Substitution Operator” in Chapter 9.

This example shows how to update a MASM 5.1 macro:

; OPTION OLDMACROS (emulates MASM 5.1 behavior)

createNames macro arg
 irp tail, <Next, Last>
 irp num, <1, 2>
 ; Define more names of the form: abcNext1?
arg&&tail&&&num&&&? label BYTE
 ENDM
 ENDM
ENDM

; OPTION NOOLDMACROS (the MASM 6.1 default)

createNames macro arg
 for tail, <Next, Last> ; FOR is the MASM 6.1
 for num, <1, 2> ; synonym for irp
 ; Define more names of the form: abcNext1?
arg&&tail&&num&? label BYTE
 ENDM
 ENDM
ENDM

OPTION DOTNAME

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 285

MASM 5.1 allows names of identifiers to begin with a period. The MASM 6.1 default is OPTION
NODOTNAME. Adding OPTION DOTNAME to your code enables the MASM 5.1 behavior.

If you don’t want to use this directive in your source code, rename the identifiers whose names begin
with a period.

OPTION EXPR16

MASM 5.1 treats expressions as 16-bit words if you do not specify .386 or .386P directives. MASM
6.1 by default treats expressions as 32-bit words, regardless of the CPU type. You can force MASM
6.1 to use the smaller expression size with the OPTION EXPR16 statement.

Unless your MASM 5.1 code specifies .386 or .386P, OPTION M510 also sets 16-bit expression size.
You can selectively disable this by following OPTION M510 with the OPTION EXPR32 directive, which
sets the size back to 32 bits. You cannot have both OPTION EXPR32 and OPTION EXPR16 in your
program.

It may not be easy to determine the effect of changing from 16-bit internal expression size to 32-bit
size. In most cases, the 32-bit word size does not affect the MASM 5.1 code. However, problems may
arise because of differences in intermediate values during evaluation of expressions. You can compare
the files for differences by generating listing files with the /Fl and /Sa command-line options with and
without OPTION EXPR16.

OPTION OFFSET

The information in this section is relevant only if your MASM 5.1 code does not use the .MODEL
directive. With no .MODEL, MASM 5.1 computes offsets from the start of the segment, whereas
MASM 6.1 computes offsets from the start of the group. (With .MODEL, MASM 5.1 also computes
offsets from the start of the group.)

To force MASM 6.1 to emulate 5.1 behavior, specify either OFFSET:SEGMENT or OPTION M510.
Both directives cause the assembler to compute offsets relative to the segment if you do not include
.MODEL.

To selectively enable MASM 6.1 behavior, place the directive OPTION OFFSET:GROUP after OPTION
M510. In this case, you should ensure each OFFSET statement has a segment override where
appropriate. The following example shows how OPTION OFFSET:SEGMENT affects code written for
MASM 5.1:

OPTION OFFSET:SEGMENT
MyGroup GROUP MySeg

MySeg SEGMENT 'data'
MyLabel LABEL BYTE
 DW OFFSET MyLabel ; Relative to MySeg
 DW OFFSET MyGroup:MyLabel ; Relative to MyGroup
 DW OFFSET MySeg:MyLabel ; Relative to MySeg
MySeg ENDS

In the preceding example, the first OFFSET statement computes the offset of MyLabel relative to
MySeg. Without OFFSET:SEGMENT, MASM 6.1 returns the offset relative to MyGroup. To maintain
the correct behavior with OFFSET:GROUP, specify a segment override, as shown in the following. The
other two OFFSET statements already include overrides, and so do not require modification.

OPTION OFFSET:GROUP
MyGroup GROUP MySeg

MySeg SEGMENT 'data'

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 286

 DW OFFSET MySeg:MyLabel ; Relative to MySeg
 DW OFFSET MyGroup:MyLabel ; Relative to MyGroup
 DW OFFSET MySeg:MyLabel ; Relative to MySeg
MySeg ENDS

When not in compatibility mode, the OPTION OFFSET directive determines whether the SEG operator
returns a value relative to the group or segment. With OPTION M510, SEG is always segment-relative
by default, regardless of the current value of OPTION OFFSET.

OPTION NOSCOPED

The information in this section applies only if the .MODEL directive in your MASM 5.1 code does not
specify a language type. Without a language type, MASM 5.1 assumes code labels in procedures
have no “scope” — that is, the labels are not local to the procedure. When not in compatibility mode,
MASM 6.1 always gives scope to code labels, even without a language type.

To force MASM 5.1 behavior, specify either OPTION M510 or OPTION NOSCOPED in your code. To
selectively enable MASM 6.1 behavior, place the directive OPTION SCOPED after OPTION M510.

To determine which labels require change, assemble the module without the OPTION NOSCOPED
directive. For each reference to a label that is not local, the assembler generates error A2006:

undefined symbol : identifier

OPTION PROC

The information in this section applies only if the .MODEL directive in your MASM 5.1 code does not
specify a language type. Without a language type, MASM 5.1 makes procedures private to the
module. By default, MASM 6.1 makes procedures public. You can explicitly change the default
visibility to private with either OPTION M510, OPTION PROC:PRIVATE, or OPTION PROC:EXPORT.

To selectively enable MASM 6.1 behavior, place the directive OPTION PROC:PUBLIC after OPTION
M510. You can override the default by adding the PUBLIC or PRIVATE keyword to selected
procedures. The following example shows how to change MASM 5.1 code to keep a procedure private:

; MASM 5.1 (OPTION PROC:PRIVATE)
MyProc PROC NEAR

; MASM 6.1 (OPTION PROC:PUBLIC)
MyProc PROC NEAR PRIVATE

This is necessary only to avoid naming conflicts between public names in multiple modules or
libraries. The symbol table in a listing file shows the visibility (public, private, or export) of each
procedure.

OPTION NOKEYWORD

MASM 6.1 has several new keywords that MASM 5.1 does not recognize as reserved. To resolve any
conflicts, you can:

• Rename any offending symbols in your code.

• Selectively disable keywords with the OPTION NOKEYWORD directive.

The second option lets you retain the offending symbol names in your code by forcing MASM 6.1 to
not recognize them as keywords. For example,

OPTION NOKEYWORD:<INVOKE STRUCT>

removes the keywords INVOKE and STRUCT from the assembler’s list of reserved words. However,
you cannot then use the keywords in their intended function, since the assembler no longer

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 287

recognizes them.

The following list shows MASM 6.1 reserved words new since MASM 5.1:

.BREAK

.CONTINUE

.DOSSEG

.ELSE

.ELSEIF

.ENDIF

.ENDW

.EXIT

.IF

.LISTALL

.LISTIF

.LISTMACRO

.LISTMACROALL

.NO87

.NOCREF

.NOLIST

.NOLISTIF

.NOLISTMACRO

.REPEAT

.STARTUP

.UNTIL

.UNTILCXZ

.WHILE

ADDR

ALIAS

BSWAP

CARRY?

CMPXCHG

ECHO

EXTERN

EXTERNDEF

FAR16

FAR32

FLAT

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 288

FLDENVD

FLDENVW

FNSAVED

FNSAVEW

FNSTENVD

FNSTENVW

FOR

FORC

FRSTORD

FRSTORW

FSAVED

FSAVEW

FSTENVD

FSTENVW

GOTO

HIGHWORD

INVD

INVLPG

INVOKE

IRETDF

IRETF

LENGTHOF

LOOPD

LOOPED

LOOPEW

LOOPNED

LOOPNEW

LOOPNZD

LOOPNZW

LOOPW

LOOPZW

LOWWORD

LROFFSET

NEAR16

NEAR32

OPATTR

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 289

OPTION

OVERFLOW?

PARITY?

POPAW

POPCONTEXT

PROTO

PUSHAW

PUSHCONTEXT

PUSHD

PUSHW

REAL10

REAL4

REAL8

REPEAT

SBYTE

SDWORD

SIGN?

SIZEOF

STDCALL

STRUCT

SUBTITLE

SWORD

SYSCALL

TEXTEQU

TR3

TR4

TR5

TYPEDEF

UNION

VARARG

WBINVD

WHILE

XADD

ZERO?

OPTION SETIF2

Using the OPTION Directive
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 290

By default, MASM 6.1 does not recognize pass-dependent constructs. Both the OPTION M510 and
OPTION SETIF2 statements force MASM 6.1 to handle MASM 5.1 constructs that activate on the
second assembly pass, such as .ERR2, IF2, and ELSEIF2.

Invoke the option like this:

OPTION SETIF2: {TRUE | FALSE}

When set to TRUE, OPTION SETIF2 forces all second-pass constructs to activate on every assembly
pass. When set to FALSE, second-pass constructs do not activate on any pass. OPTION M510
implies OPTION SETIF2:TRUE.

Changes to Instruction Encodings

MASM 6.1 contains changes to the encodings for several instructions. In some cases, the changes
help optimize code size.

Coprocessor Instructions

For the 8087 coprocessor, MASM 5.1 adds an extra NOP before the no-wait versions of coprocessor
instructions. MASM 6.1 does not. In the rare case that the missing NOP affects timing, insert NOP.

For the 80287 coprocessor or better, MASM 5.1 inserts FWAIT before certain instructions. MASM 6.1
does not prefix any 80287, 80387, or 80486 coprocessor instruction with FWAIT, except for wait forms
of instructions that have a no-wait form.

RET Instruction

MASM 5.1 generates a 3-byte encoding for RET, RETN, or RETF instructions with an operand value of
zero, unless the operand is an external absolute. In this case, MASM 5.1 ignores the parameter and
generates a 1-byte encoding.

MASM 6.1 does the opposite. It ignores a zero operand for the return instructions and generates a
1-byte encoding, unless the operand is an external absolute. In this case, MASM 6.1 generates a
3-byte encoding.

Thus, you can suppress epilogue code in a procedure but still specify the default size for RET by
coding the return as

 ret 0

Arithmetic Instructions

Versions 5.1 and 6.1 differ in the way they encode the arithmetic instructions ADC, ADD, AND, CMP,
OR, SUB, SBB, and XOR, under the following conditions:

• The first operand is either AX or EAX.

• The second operand is a constant value between 0 and 127.

For the AX register, there is no size or speed difference between the two encodings. For the EAX
register, the encoding in MASM 6.1 is 2 bytes smaller. The OPTION NOSIGNEXTEND directive forces
the MASM 5.1 behavior for AND, OR,
and XOR.\sgml}5

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 291

Appendix B BNF Grammar

This appendix provides a complete description of symbols, operators, and directives for MASM 6.1. It
uses the Backus-Naur Form (BNF) for grammar notation. You can use BNF grammar to determine the
exact syntax for any language component and find all available options for any MASM command.

BNF definitions consist of “nonterminals” and “terminals.” Nonterminals are placeholders within a BNF
definition, defined elsewhere in the BNF grammar. Terminals are endpoints in a BNF definition,
consisting of MASM 6.1 keywords. In this Appendix, all nonterminals appear in italics type and all
terminals appear in bold type.

BNF Conventions

The conventions use different font attributes for different items in the BNF. The symbols and formats
are as follows:

Attribute Description

nonterminal Italic type indicates nonterminals.

RESERVED Terminals in boldface type are literal reserved words and symbols that
must be entered as shown. Characters in this context are always case
insensitive.

[[]] Objects enclosed in double brackets ([[]]) are optional. The brackets
do not actually appear in the source code.

| A vertical bar indicates a choice between the items on each side of the
bar.

.8086 Underlined items indicate the default option if one is given.

default typeface Characters in the set described or listed can be used as terminals in
MASM statements.

How to Use the BNF Grammar

To illustrate the use of the BNF, Figure B.1 diagrams the definition of the TYPEDEF directive, starting
with the nonterminal typedefDir.

The entries under each horizontal brace in Figure B.1 are terminals (such as NEAR16, NEAR32,
FAR16, and FAR32) or nonterminals (such as qualifier, qualifiedType, distance, and protoSpec) that
can be further defined. Each italicized nonterminal in the typedefDir definition is also an entry in the
BNF. Three vertical dots indicate a branching definition for a nonterminal that, for the sake of
simplicity, this figure does not illustrate.

The BNF grammar allows recursive definitions. For example, the grammar uses qualifiedType as a
possible definition for qualifiedType, which is also a component of the definition for qualifier.

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 292

Figure B.1 BNF Definition of the TYPEDEF Directive

Nonterminal Definition

;; endOfLine
| comment

=Dir id = immExpr ;;

addOp + | -

aExpr term
| aExpr && term

Nonterminal Definition

altId id

arbitraryText charList

asmInstruction mnemonic [[exprList]]

assumeDir ASSUME assumeList ;;
| ASSUME NOTHING ;;

assumeList assumeRegister
| assumeList , assumeRegister

assumeReg register : assumeVal

assumeRegister assumeSegReg
| assumeReg

assumeSegReg segmentRegister : assumeSegVal

assumeSegVal frameExpr
| NOTHING | ERROR

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 293

assumeVal qualifiedType
| NOTHING | ERROR

bcdConst [[sign]] decNumber

binaryOp == | != | >= | <= | > | < | &

bitDef bitFieldId : bitFieldSize [[= constExpr]]

bitDefList bitDef
| bitDefList , [[;;]] bitDef

bitFieldId id

bitFieldSize constExpr

blockStatements directiveList
| .CONTINUE [[.IF cExpr]]
| .BREAK [[.IF cExpr]]

bool TRUE | FALSE

byteRegister AL | AH | BL | BH | CL | CH | DL | DH

cExpr aExpr
| cExpr || aExpr

character Any character with ordinal in the range 0–255
except linefeed (10)

charList character
| charList character

className string

commDecl [[nearfar]] [[langType]] id : commType
[[: constExpr]]

commDir COMM commList ;;

comment ; text ;;

Nonterminal Definition

commentDir COMMENT delimiter
text
text delimiter text ;;

commList commDecl
| commList , commDecl

commType type
| constExpr

constant digits [[radixOverride]]

constExpr expr

contextDir PUSHCONTEXT contextItemList ;;
| POPCONTEXT contextItemList ;;

contextItem ASSUMES | RADIX | LISTING | CPU | ALL

contextItemList contextItem
| contextItemList , contextItem

controlBlock whileBlock
| repeatBlock

controlDir controlIf
| controlBlock

controlElseif .ELSEIF cExpr ;;
directiveList

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 294

[[controlElseif]]

controlIf .IF cExpr ;;
directiveList
[[controlElseif]]
[[.ELSE ;;
directiveList]]
.ENDIF ;;

coprocessor .8087 | .287 | .387 | .NO87

crefDir crefOption ;;

crefOption .CREF
| .XCREF [[idList]]
| .NOCREF [[idList]]

cxzExpr expr
| ! expr
| expr == expr
| expr != expr

dataDecl DB | DW | DD | DF | DQ | DT | dataType | typeId

dataDir [[id]] dataItem ;;

Nonterminal Definition

dataItem dataDecl scalarInstList
| structTag structInstList
| typeId structInstList
| unionTag structInstList
| recordTag recordInstList

dataType BYTE | SBYTE | WORD | SWORD | DWORD
| SDWORD | FWORD | QWORD | TBYTE
| REAL4 | REAL8 | REAL10

decdigit 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

decNumber decdigit
| decNumber decdigit

delimiter Any character except whiteSpaceCharacter

digits decdigit
| digits decdigit
| digits hexdigit

directive generalDir
| segmentDef

directiveList directive
| directiveList directive

distance nearfar
| NEAR16 | NEAR32 | FAR16 | FAR32

e01 e01 orOp e02
| e02

e02 e02 AND e03
| e03

e03 NOT e04
| e04

e04 e04 relOp e05
| e05

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 295

e05 e05 addOp e06
| e06

e06 e06 mulOp e07
| e06 shiftOp e07
| e07

e07 e07 addOp e08
| e08

e08 HIGH e09
| LOW e09
| HIGHWORD e09
| LOWWORD e09
| e09

Nonterminal Definition

e09 OFFSET e10
| SEG e10
| LROFFSET e10
| TYPE e10
| THIS e10
| e09 PTR e10
| e09 : e10
| e10

e10 e10 . e11
| e10 [[expr]]
| e11

e11 (expr)
| [[expr]]
| WIDTH id
| MASK id
| SIZE sizeArg
| SIZEOF sizeArg
| LENGTH id
| LENGTHOF id
| recordConst
| string
| constant
| type
| id
| $
| segmentRegister
| register
| ST
| ST (expr)

echoDir ECHO arbitraryText ;;
%OUT arbitraryText ;;

elseifBlock elseifStatement ;;
directiveList
[[elseifBlock]]

elseifStatement ELSEIF constExpr
| ELSEIFE constExpr
| ELSEIFB textItem

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 296

| ELSEIFNB textItem
| ELSEIFDEF id
| ELSEIFNDEF id
| ELSEIFDIF textItem , textItem
| ELSEIFDIFI textItem , textItem
| ELSEIFIDN textItem , textItem
| ELSEIFIDNI textItem , textItem
| ELSEIF1
| ELSEIF2

Nonterminal Definition

endDir END [[immExpr]] ;;

endpDir procId ENDP ;;

endsDir id ENDS ;;

equDir textMacroId EQU equType ;;

equType immExpr
| textLiteral

errorDir errorOpt ;;

errorOpt .ERR [[textItem]]
| .ERRE constExpr [[optText]]
| .ERRNZ constExpr [[optText]]
| .ERRB textItem [[optText]]
| .ERRNB textItem [[optText]]
| .ERRDEF id [[optText]]
| .ERRNDEF id [[optText]]
| .ERRDIF textItem , textItem [[optText]]
| .ERRDIFI textItem , textItem [[optText]]
| .ERRIDN textItem , textItem [[optText]]
| .ERRIDNI textItem , textItem [[optText]]
| .ERR1 [[textItem]]
| .ERR2 [[textItem]]

exitDir .EXIT [[expr]] ;;

exitmDir: EXI™
| EXI™ textItem

exponent E [[sign]] decNumber

expr SHORT e05
| .TYPE e01
| OPATTR e01
| e01

exprList expr
| exprList , expr

externDef [[langType]] id [[(altId)]] : externType

externDir externKey externList ;;

externKey EXTRN | EXTERN | EXTERNDEF

externList externDef
| externList , [[;;]] externDef

externType ABS
| qualifiedType

fieldAlign constExpr

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 297

fieldInit [[initValue]]
| structInstance

Nonterminal Definition

fieldInitList fieldInit
| fieldInitList , [[;;]] fieldInit

fileChar delimiter

fileCharList fileChar
| fileCharList fileChar

fileSpec fileCharList
| textLiteral

flagName ZERO? | CARRY? | OVERFLOW?
| SIGN? | PARITY?

floatNumber [[sign]] decNumber . [[decNumber]] [[exponent]]
| digits R
| digits r

forcDir FORC | IRPC

forDir FOR | IRP

forParm id [[: forParmType]]

forParmType REQ
| = textLiteral

frameExpr SEG id
| DGROUP : id
| segmentRegister : id
| id

generalDir modelDir | segOrderDir | nameDir
| includeLibDir | commentDir
| groupDir | assumeDir
| structDir | recordDir | typedefDir
| externDir | publicDir | commDir | protoTypeDir
| equDir | =Dir | textDir
| contextDir | optionDir | processorDir
| radixDir
| titleDir | pageDir | listDir
| crefDir | echoDir
| ifDir | errorDir | includeDir
| macroDir | macroCall | macroRepeat | purgeDir
| macroWhile | macroFor | macroForc
| aliasDir

gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
| BP | EBP | SP | ESP | DI | EDI | SI | ESI

groupDir groupId GROUP segIdList

groupId id

hexdigit a | b | c | d | e | f
| A | B | C | D | E | F

Nonterminal Definition

id alpha
| id alpha
| id decdigit

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 298

idList id
| idList , id

ifDir ifStatement ;;
directiveList
[[elseifBlock]]
[[ELSE ;;
directiveList]]
ENDIF ;;

ifStatement IF constExpr
| IFE constExpr
| IFB textItem
| IFNB textItem
| IFDEF id
| IFNDEF id
| IFDIF textItem , textItem
| IFDIFI textItem , textItem
| IFIDN textItem , textItem
| IFIDNI textItem , textItem
| IF1
| IF2

immExpr expr

includeDir INCLUDE fileSpec ;;

includeLibDir INCLUDELIB fileSpec ;;

initValue immExpr
| string
| ?
| constExpr DUP (scalarInstList)
| floatNumber
| bcdConst

inSegDir [[labelDef]] inSegmentDir

inSegDirList inSegDir
| inSegDirList inSegDir

Nonterminal Definition

inSegmentDir instruction
| dataDir
| controlDir
| startupDir
| exitDir
| offsetDir
| labelDir
| procDir [[localDirList]] [[inSegDirList]] endpDir
| invokeDir
| generalDir

instrPrefix REP | REPE | REPZ | REPNE | REPNZ | LOCK

instruction [[instrPrefix]] asmInstruction

invokeArg register :: register
| expr
| ADDR expr

invokeDir INVOKE expr [[, [[;;]] invokeList]] ;;

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 299

invokeList invokeArg
| invokeList , [[;;]] invokeArg

keyword Any reserved word

keywordList keyword
| keyword keywordList

labelDef id :
| id ::
| @@:

labelDir id LABEL qualifiedType ;;

langType C | PASCAL | FORTRAN | BASIC
| SYSCALL | STDCALL

listDir listOption ;;

listOption .LIST
| .NOLIST | .XLIST
| .LISTALL
| .LISTIF | .LFCOND
| .NOLISTIF | .SFCOND
| .TFCOND
| .LIS™ACROALL | .LALL
| .NOLIS™ACRO | .SALL
| .LIS™ACRO | .XALL

localDef LOCAL idList ;;

localDir LOCAL parmList ;;

localDirList localDir
| localDirList localDir

Nonterminal Definition

localList localDef
| localList localDef

macroArg % constExpr
| % textMacroId
| % macroFuncId (macroArgList)
| string
| arbitraryText
| < arbitraryText >

macroArgList macroArg
| macroArgList , macroArg

macroBody [[localList]]
macroStmtList

macroCall id macroArgList ;;
| id (macroArgList)

macroDir id MACRO [[macroParmList]] ;;
macroBody
ENDM ;;

macroFor forDir forParm , < macroArgList > ;;
macroBody
ENDM ;;

macroForc forcDir id , textLiteral ;;
macroBody

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 300

ENDM ;;

macroFuncId id

macroId macroProcId
| macroFuncId

macroIdList macroId
| macroIdList , macroId

macroLabel id

macroParm id [[: parmType]]

macroParmList macroParm
| macroParmList , [[;;]] macroParm

macroProcId id

macroRepeat repeatDir constExpr ;;
macroBody
ENDM ;;

macroStmt directive
| exitmDir
| : macroLabel
| GOTO macroLabel

Nonterminal Definition

macroStmtList macroStmt ;;
| macroStmtList macroStmt ;;

macroWhile WHILE constExpr ;;
macroBody
ENDM ;;

mapType ALL | NONE | NOTPUBLIC

memOption TINY | SMALL | MEDIUM | COMPACT
| LARGE | HUGE | FLAT

mnemonic Instruction name

modelDir .MODEL memOption [[, modelOptlist]] ;;

modelOpt langType
| stackOption

modelOptlist modelOpt
| modelOptlist , modelOpt

module [[directiveList]] endDir

mulOp * | / | MOD

nameDir NAME id ;;

nearfar NEAR | FAR

nestedStruct structHdr [[id]] ;;
structBody
ENDS ;;

offsetDir offsetDirType ;;

offsetDirType EVEN
| ORG immExpr
| ALIGN [[constExpr]]

offsetType GROUP | SEGMENT | FLAT

oldRecordFieldList [[constExpr]]

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 301

| oldRecordFieldList , [[constExpr]]

optionDir OPTION optionList ;;

Nonterminal Definition

optionItem CASEMAP : mapType
| DOTNAME | NODOTNAME
| EMULATOR | NOEMULATOR
| EPILOGUE : macroId
| EXPR16 | EXPR32
| LANGUAGE : langType
| LJMP | NOLJMP
| M510 | NOM510
| NOKEYWORD : < keywordList >
| NOSIGNEXTEND
| OFFSET : offsetType
| OLDMACROS | NOOLDMACROS
| OLDSTRUCTS | NOOLDSTRUCTS
| PROC : oVisibility
| PROLOGUE : macroId
| READONLY | NOREADONLY
| SCOPED | NOSCOPED
| SEGMENT : segSize
| SETIF2 : bool

optionList optionItem
| optionList , [[;;]] optionItem

optText , textItem

orOp OR | XOR

oVisibility PUBLIC | PRIVATE | EXPORT

pageDir PAGE [[pageExpr]] ;;

pageExpr +
| [[pageLength]] [[, pageWidth]]

pageLength constExpr

pageWidth constExpr

parm parmId [[: qualifiedType]]
| parmId [[constExpr]] [[: qualifiedType]]

parmId id

parmList parm
| parmList , [[;;]] parm

parmType REQ
| = textLiteral
| VARARG

pOptions [[distance]] [[langType]] [[oVisibility]]

primary expr binaryOp expr
| flagName
| expr

Nonterminal Definition

procDir procId PROC [[pOptions]] [[< macroArgList >]]
[[usesRegs]] [[procParmList]]

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 302

processor .8086
| .186
| .286 | .286C | .286P
| .386 | .386C | .386P
| .486 | .486P

processorDir processor ;;
| coprocessor ;;

procId id

procParmList [[, [[;;]] parmList]]
[[, [[;;]] parmId :VARARG]]

protoArg [[id]] : qualifiedType

protoArgList [[, [[;;]] protoList]]
[[, [[;;]] [[id]] :VARARG]]

protoList protoArg
| protoList , [[;;]] protoArg

protoSpec [[distance]] [[langType]] [[protoArgList]]
| typeId

protoTypeDir id PROTO protoSpec

pubDef [[langType]] id

publicDir PUBLIC pubList ;;

pubList pubDef
| pubList , [[;;]] pubDef

purgeDir PURGE macroIdList

qualifiedType type
| [[distance]] PTR [[qualifiedType]]

qualifier qualifiedType
| PROTO protoSpec

quote “
| ‘

radixDir .RADIX constExpr ;;

radixOverride h | o | q | t | y
| H | O | Q | T | Y

recordConst recordTag { oldRecordFieldList }
| recordTag < oldRecordFieldList >

recordDir recordTag RECORD bitDefList ;;

recordFieldList [[constExpr]]
| recordFieldList , [[;;]] [[constExpr]]

Nonterminal Definition

recordInstance { [[;;]] recordFieldList [[;;]] }
| < oldRecordFieldList >
| constExpr DUP (recordInstance)

recordInstList recordInstance
| recordInstList , [[;;]] recordInstance

recordTag id

register specialRegister
| gpRegister
| byteRegister

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 303

regList register
| regList register

relOp EQ | NE | LT | LE | GT | GE

repeatBlock .REPEAT ;;
blockStatements ;;
untilDir ;;

repeatDir REPEAT | REPT

scalarInstList initValue
| scalarInstList , [[;;]] initValue

segAlign BYTE | WORD | DWORD | PARA | PAGE

segAttrib PUBLIC
| STACK
| COMMON
| MEMORY
| AT constExpr
| PRIVATE

segDir .CODE [[segId]]
| .DATA
| .DATA?
| .CONST
| .FARDATA [[segId]]
| .FARDATA? [[segId]]
| .STACK [[constExpr]]

segId id

segIdList segId
| segIdList , segId

segmentDef segmentDir [[inSegDirList]] endsDir
| simpleSegDir [[inSegDirList]] [[endsDir]]

segmentDir segId SEGMENT [[segOptionList]] ;;

segmentRegister CS | DS | ES | FS | GS | SS

Nonterminal Definition

segOption segAlign
| segRO
| segAttrib
| segSize
| className

segOptionList segOption
| segOptionList segOption

segOrderDir .ALPHA | .SEQ | .DOSSEG | DOSSEG

segRO READONLY

segSize USE16 | USE32 | FLAT

shiftOp SHR | SHL

sign - | +

simpleExpr (cExpr)
| primary

simpleSegDir segDir ;;

sizeArg id

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 304

| type
| e10

specialChars : | . | [[|]] | (|) | < | > | { | }
| + | - | / | * | & | % | !
| ’ | \ | = | ; | , | “
| whiteSpaceCharacter
| endOfLine

specialRegister CR0 | CR2 | CR3
| DR0 | DR1 | DR2 | DR3 | DR6 | DR7
| TR3 | TR4 | TR5 | TR6 | TR7

stackOption NEARSTACK | FARSTACK

startupDir .STARTUP ;;

stext stringChar
| stext stringChar

string quote [[stext]] quote

stringChar quote quote
| Any character except quote

structBody structItem ;;
| structBody structItem ;;

structDir structTag structHdr [[fieldAlign]]
[[, NONUNIQUE]] ;;
structBody
structTag ENDS ;;

structHdr STRUC | STRUCT | UNION

Nonterminal Definition

structInstance < [[fieldInitList]] >
| { [[;;]] [[fieldInitList]] [[;;]] }
| constExpr DUP (structInstList)

structInstList structInstance
| structInstList , [[;;]] structInstance

structItem dataDir
| generalDir
| offsetDir
| nestedStruct

structTag id

term simpleExpr
| ! simpleExpr

text textLiteral
| text character
| ! character text
| character
| ! character

textDir id textMacroDir ;;

textItem textLiteral
| textMacroId
| % constExpr

textLen constExpr

textList textItem

Appendix B BNF Grammar
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 305

| textList , [[;;]] textItem

textLiteral < text >;;

textMacroDir CATSTR [[textList]]
| TEXTEQU [[textList]]
| SIZESTR textItem
| SUBSTR textItem , textStart [[, textLen]]
| INSTR [[textStart ,]] textItem , textItem

textMacroId id

textStart constExpr

titleDir titleType arbitraryText ;;

titleType TITLE | SUBTITLE | SUBTTL

type structTag
| unionTag
| recordTag
| distance
| dataType
| typeId

typedefDir typeId TYPEDEF qualifier

Nonterminal Definition

typeId id

unionTag id

untilDir .UNTIL cExpr ;;
.UNTILCXZ [[cxzExpr]] ;;

usesRegs USES regList

whileBlock .WHILE cExpr ;;
blockStatements ;;
.ENDW

whiteSpaceCharacter ASCII 8, 9, 11–13, 26, 32

Appendix C Generating and Reading Assembly Listings

A listing file shows precisely how the assembler translates your source file into machine code. The
listing documents the assembler’s assumptions, memory allocations, and optimizations.

MASM creates an assembly listing of your source file whenever you do one of the following:

• Select the appropriate option in PWB.

• Use one of the related source code directives.

• Specify the /Fl option on the MASM command line.

The assembly listing contains both the statements in the source file and the binary code (if any)
generated for each statement. The listing also shows the names and values of all labels, variables, and
symbols in your file.

The assembler creates tables for macros, structures, unions, records, segments, groups, and other
symbols, and places the tables at the end of the assembly listing. Only the types of symbols
encountered in the program are included. For example, if your program has no macros, the symbol
table does not have a macros section.

Appendix C Generating and Reading Assembly Listings
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 306

Generating Listing Files

To generate a listing file from within PWB, follow these steps:

 1. From the Options menu, choose MASM Options.

 2. In the MASM Options dialog box, choose Set Debug or Release Options.

The dialog box for Set Debug or Release Options lists the choices summarized in Table C.1. This
table also shows the equivalent source code directives and command-line options.

Table C.1 Options for Generating or Modifying Listing Files

To generate this
information: In PWB1, select:

In source
code, enter:

From command
line, enter:

Default listing —
includes all assembled
lines

Generate Listing File .LIST (default) /Fl

Turn off all source
listings (overrides all
listing directives)

Generate Listing File
(turn off)

.NOLIST
(synonym = .SFCOND)

—

List all source lines,
including false
conditionals and
generated code

Include All Source Lines .LISTALL /Fl /Sa

Show instruction
timings

List Instruction
Timings

— /Fl /Sc

Show
assembler-generated
code

List Generated
Instructions

— /Fl /Sg

Include false
conditionals2

List False
Conditionals

.LISTIF
(synonym = .LFCOND)

/Fl /Sx

Suppress listing of any
subsequent
conditional blocks
whose condition is
false

List False Conditionals
(turn off)

.NOLISTIF
(synonym = .SFCOND)

—

Toggle between
.LISTIF and
.NOLISTIF

— .TFCOND —

Suppress symbol
table generation

Generate Symbol Table
(turn off the default)

— /Fl /Sn

List all processed
macro statements

— .LISTMACROALL
(synonym = .LALL)

—

List only instructions,
data, and segment
directives in macros

— .LISTMACRO
(default)
(synonym = .XALL)

—

Turn off all listing
during macro
expansion

— .NOLISTMACRO
(synonym = .SALL)

—

Specify title for each — TITLE name /St name

Generating Listing Files
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 307

page (use only once
per file)

Specify subtitle for
page

— SUBTITLE name /Ss name

Designate page length
and line width,
increment section
number, or generate
page breaks

— PAGE [[length,width]][[+]] /Sp length
/Sl width

Generate first-pass
listing

— — /Ep

1 Select MASM Options from the Options menu, then choose Set Dialog Options from the
MASM Options dialog box.
2 See “Conditional Directives” in Chapter 1

Precedence of Command-Line Options and Listing Directives

Since command-line options and source code directives can specify opposite behavior for the same
listing file option, the assembler interprets the commands according to the following precedence levels.
Selecting PWB options is equivalent to specifying /Fl /Sx on the command line:

• /Sa overrides any source code directives that suppress listing.

• Source code directives override all command-line options except /Sa.

• .NOLIST overrides other listing directives such as .NOLISTIF and
.LISTMACROALL.

• The /Sx, /Ss, /Sp, and /Sl options set initial values for their respective features. Directives in the
source file can override these command-line options.

Reading the Listing File

The first half of the listing shows macros from the include file DOS.MAC, structure declarations, and
data. After the .DATA directive, the columns on the left show offsets and initialized byte values within
the data segment.

Instructions begin after the .CODE directive. The three columns on the left show offsets, instruction
timings, and binary code generated by the assembler. The columns on the right list the source
statements exactly as they appear in the source file or as expanded by a macro. Various symbols and
abbreviations in the middle column provide information about the code, as explained in the following
section. The subsequent section, “Symbols and Abbreviations,” explains the meanings of listing
symbols.

Generated Code

The assembler lists the code generated from the statements of a source file. With the /Sc
command-line switch, which generates instruction timings, each line has this syntax:

Generated Code
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 308

offset [[timing]] [[code]]

The offset is the offset from the beginning of the current code segment. The timing shows the number
of cycles the processor needs to execute the instruction. The value of timing reflects the CPU type; for
example, specifying the .386 directive produces instruction timings for the 80386 processor. If the
statement generates code or data, code shows the numeric value in hexadecimal notation if the value
is known at assembly time. If the value is calculated at run time, the assembler indicates what action
is necessary to compute the value.

When assembling under the default .8086 directive, timing includes an effective address value if the
instruction accesses memory. The 80186/486 processors do not use effective address values. For
more information on effective address timing, see the “Processor” section in the Reference book.

Error Messages

If any errors occur during assembly, each error message and error number appears directly below the
statement where the error occurred. An example of an error line and message is:

mov ax, [dx][di]
listtst.asm(77): error A2031: must be index or base register

Symbols and Abbreviations

The assembler uses the symbols and abbreviations shown in Table C.2 to indicate addresses that
need to be resolved by the linker or values that were generated in a special way. The example in this
section illustrates many of these symbols.

The example listing was produced using “List Generated Instructions” and “List Instruction Timings” in
PWB. These options correspond to the ML command-line switches /Fl /Sg /Sc.

Table C.2 Symbols and Abbreviations in Listings

Character Meaning

C Line from include file

= EQU or equal-sign (=) directive

nn[xx] DUP expression: nn copies of the value xx

---- Segment/group address (linker must resolve)

R Relocatable address (linker must resolve)

* Assembler-generated code

E External address (linker must resolve)

n Macro-expansion nesting level (+ if more than 9)

| Operator size override

& Address size override

nn: Segment override in statement

nn/ REP or LOCK prefix instruction

Table C.3 explains the five symbols that may follow timing values in your listing. The Reference book
will help you determine correct timings for those values marked with a symbol.

Table C.3 Symbols in Timing Column

Symbols and Abbreviations
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 309

Symbol Meaning

m Add cycles depending on next executed instruction.

n Add cycles depending on number of iterations or size of data.

p Different timing value in protected mode.

+ Add cycles depending on operands or combination of the preceding.

, Separates two values for “jump taken” and “jump not taken.”

Microsoft (R) Macro Assembler Version 6.10 09/20/00 12:00:00
listtst.asm Page 1 - 1

 .MODEL small, c
 .386
 .DOSSEG
 .STACK 256
 INCLUDE dos.mac
 C StrDef MACRO name1, text
 C name1 BYTE &text
 C BYTE 13d, 10d, '$'
 C l&name1 EQU LENGTHOF name1
 C ENDM
 C
 C Display MACRO string
 C mov ah, 09h
 C mov dx, OFFSET string
 C int 21h
 C ENDM
 = 0020 num EQU 20h
 COLOR RECORD b:1, r:3=1, i:1=1, f:3=7
 = 35 value TEXTEQU %3 + num
 = 32 tnum TEXTEQU %num
 = 04 strpos TEXTEQU @InStr(, <person>, <son>)

 PutStr PROTO pMsg:PTR BYTE

 0004 DATE STRUCT
 0000 01 month BYTE 1
 0001 01 day BYTE 1
 0002 0000 year WORD ?
 DATE ENDS

 0002 U1 UNION
 0000 0028 fsize WORD 40
 bsize BYTE 60
 U1 ENDS

 0000 .DATA

 0000 00000000 ddData DWORD ?
 0004 1F text COLOR <>
 0005 01 14 07C9 today DATE <01, 20, 1993>
 0009 00 flag BYTE 0
 000A 001E [buffer WORD 30 DUP (0)
 0000
]

 StrDef ending, "Finished."

Symbols and Abbreviations
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 310

 65 64 2E
 004F 0D 0A 24 1 BYTE 13d, 10d, '$'
 = 0009 1 lending EQU LENGTHOF ending
 0052 54 68 69 73 20 69 Msg BYTE "This is a string","0"
 73 20 61 20
 73 74 72 69
 6E 67 30

 float TYPEDEF REAL4
 FPBYTE TYPEDEF FAR PTR BYTE
 0063 ---- 0052 R FPMSG FPBYTE Msg
 PBYTE TYPEDEF PTR BYTE
 NPWORD TYPEDEF NEAR PTR WORD
 PVOID TYPEDEF PTR
 PPBYTE TYPEDEF PTR PBYTE

 0000 .CODE
 .STARTUP
 0000 *@Startup:
 0000 2 B8 ---- R * mov ax, DGROUP
 0003 2p 8E D8 * mov ds, ax
 0005 2 8C D3 * mov bx, ss
 0007 2 2B D8 * sub bx, ax
 0009 3 C1 E3 04 * shl bx, 004h
 000C 2p 8E D0 * mov ss, ax
 000E 2 03 E3 * add sp, bx

 EXTERNDEF work:NEAR
 0010 7m E8 0000 E call work

 INVOKE PutStr, ADDR msg
 0013 2 68 0052 R * push OFFSET Msg
 0016 7m E8 0029 * call PutStr
 0019 2 83 C4 02 * add sp, 00002h

 001C 2 B8 ---- R mov ax, @data
 001F 2p 8E C0 mov es, ax
 0021 2 B0 63 mov al, 'c'
 0023 4 26: 8B 0E mov cx, es:num
 0020
 0028 2 BF 0052 mov di, 82
 002B 7n F2/ AE repne scasb
 002D 4 66| A1 0000 R mov eax, ddData
 0031 6 67& FE 03 inc BYTE PTR [ebx]

 EXTERNDEF morework:NEAR
 0034 7m E8 0000 E call morework

 Display ending
 0037 2 B4 09 1 mov ah, 09h
 0039 2 BA 0046 R 1 mov dx, OFFSET ending
 003C 37 CD 21 1 int 21h

 .EXIT
 003E 2 B4 4C * mov ah, 04Ch
 0040 37 CD 21 * int 021h

 0042 PutStr PROC pMsg:PTR BYTE

Symbols and Abbreviations
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 311

 0042 2 55 * push bp
 0043 4 8B EC * mov bp, sp
 0045 2 B4 02 mov ah, 02H
 0047 4 8B 7E 04 mov di, pMsg
 004A 4 8A 15 mov dl, [di]
 mov ax, [dx][di]
listtst.asm(77): error A2031: must be index or base register

 .WHILE (dl)
 004C 7m EB 10 * jmp @C0001
 0059 *@C0002:
 0059 37 CD 21 int 21h
 005B 2 47 inc di
 005C 4 8A 15 mov dl, [di]
 .ENDW
 005E *@C0001:
 005E 2 0A D2 * or dl, dl
 0060 7m,3 75 F7 * jne @C0002
 ret
 0062 4 5D * pop bp
 0063 10m C3 * ret 00000h
 0064 PutStr ENDP

 END

Reading Tables in a Listing File

The tables at the end of a listing file list the macros, structures, unions, records, segments, groups,
and symbols that appear in a source file. These tables are not printed in the previous sample listing,
but are summarized as follows.

Macro Table

Lists all macros in the main file or the include files. Differentiates between macro functions and macro
procedures.

Structures and Unions Table

Provides the size in bytes of the structure or union and the offset of each field. The type of each field is
also given.

Record Table

“Width” gives the number of bits of the entire record. “Shift” provides the offset in bits from the low-order
bit of the record to the low-order bit of the field. “Width” for fields gives the number of bits in the field.
“Mask” gives the maximum value of the field, expressed in hexadecimal notation. “Initial” gives the
initial value supplied for the field.

Type Table

The “Size” column in this table gives the size of the TYPEDEF type in bytes, and the “Attr” column
gives the base type for the TYPEDEF definition.

Segment and Group Table

“Size” specifies whether the segment is 16 bit or 32 bit. “Length” gives the size of the segment in

Reading Tables in a Listing File
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 312

bytes. “Align” gives the segment alignment (WORD, PARA, and so on). “Combine” gives the combine
type (PUBLIC, STACK, and so on). “Class” gives the segment’s class (CODE, DATA, STACK, or
CONST).

Procedures, Parameters, and Locals

Gives the types and offsets from BP of all parameters and locals defined in each procedure, as well as
the size and memory location of each procedure.

Symbol Table

All symbols (except names for macros, structures, unions, records, and segments) are listed in a
symbol table at the end of the listing. The “Name” column lists the names in alphabetical order. The
“Type” column lists each symbol’s type.

The length of a multiple-element variable, such as an array or string, is the length of a single element,
not the length of the entire variable.

If the symbol represents an absolute value defined with an EQU or equal sign (=) directive, the “Value”
column shows the symbol’s value. The value may be another symbol, a string, or a constant numeric
value (in hexadecimal), depending on the type. If the symbol represents a variable or label, the “Value”
column shows the symbol’s hexadecimal offset from the beginning of the segment in which it is
defined.

The “Attr” column shows the attributes of the symbol. The attributes include the name of the segment
(if any) in which the symbol is defined, the scope of the symbol, and the code length. A symbol’s
scope is given only if the symbol is defined using the EXTERN and PUBLIC directives. The scope can
be external, global, or communal. The “Attr” column is blank if the symbol has no attribute.

Appendix D MASM Reserved Words

This appendix lists the reserved words recognized by MASM. They are divided primarily by their use in
the language. The primary categories are:

• Operands and symbols

• Registers

• Operators and directives

• Processor instructions

• Coprocessor instructions

Reserved words in MASM 6.1 are reserved under all CPU modes. Words enabled in .8086 mode, the
default, can be used in all higher CPU modes. To use words from subcategories such as “Special
Operands for the 80386” (later in this appendix) requires .386 mode or higher.

You can disable the recognition of any reserved word specified in this appendix by setting the
NOKEYWORD option for the OPTION directive. Once disabled, the word can be used in any way as a
user-defined symbol (provided the word is a valid identifier). If you want to remove the STR instruction,
the MASK operator, and the NAME directive, for instance, from the set of words MASM recognizes as
reserved, add this statement to your program:

OPTION NOKEYWORD:<STR MASK NAME>

Words in this appendix identified with an asterisk (*) are new since MASM 5.1.

Appendix D MASM Reserved Words
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 313

Operands and Symbols

The words on the two lists in this section are the operands to certain directives. They have special
meaning to the assembler. The words on the first list are not reserved words. They can be used in
every way as normal identifiers, without affecting their use as operands to directives. The assembler
interprets their use from context.

Even though the words on the first list are not reserved, they should not be defined to be text macros
or text macro functions. If they are, they will not be recognized in their special contexts. The
assembler does not give a warning if such a redefinition occurs.

ABS

ALL

ASSUMES

AT

CASEMAP*

COMMON

COMPACT

CPU*

DOTNAME*

EMULATOR*

EPILOGUE*

ERROR*

EXPORT*

EXPR16*

EXPR32*

FARSTACK*

FLAT

FORCEFRAME

HUGE

LANGUAGE*

LARGE

LISTING*

LJMP*

LOADDS*

M510*

MEDIUM

MEMORY

NEARSTACK*

Operands and Symbols
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 314

NODOTNAME*

NOEMULATOR*

NOKEYWORD*

NOLJMP*

NOM510*

NONE

NONUNIQUE*

NOOLDMACROS*

NOOLDSTRUCTS*

NOREADONLY*

NOSCOPED*

NOSIGNEXTEND*

NOTHING

NOTPUBLIC*

OLDMACROS*

OLDSTRUCTS*

OS_DOS*

PARA

PRIVATE*

PROLOGUE*

RADIX*

READONLY*

REQ*

SCOPED*

SETIF2*

SMALL

STACK

TINY

USE16

USE32

USES

These operands are reserved words. Reserved words are not case sensitive.

$

?

@B

@F

Operands and Symbols
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 315

ADDR*

BASIC

BYTE

C

CARRY?*

DWORD

FAR

FAR16*

FORTRAN

FWORD

NEAR

NEAR16*

OVERFLOW?*

PARITY?*

PASCAL

QWORD

REAL4*

REAL8*

REAL10*

SBYTE*

SDWORD*

SIGN?*

STDCALL*

SWORD*

SYSCALL*

TBYTE

VARARG*

WORD

ZERO?*

Special Operands for the 80386/486

FLAT*

NEAR32*

FAR32*

Special Operands for the 80386/486
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 316

Predefined Symbols

Unlike most MASM reserved words, predefined symbols are case sensitive.

@CatStr*

@code

@CodeSize

@Cpu

@CurSeg

@data

@DataSize

@Date*

@Environ*

@fardata

@fardata?

@FileCur*

@FileName

@InStr*

@Interface*

@Line*

@Model*

@SizeStr*

@stack*

@SubStr*

@Time*

@Version

@WordSize

Registers

AH

AL

AX

BH

BL

BP

Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 317

BX

CH

CL

CR0

CR2

CR3

CS

CX

DH

DI

DL

DR0

DR1

DR2

DR3

DR6

DR7

DS

DX

EAX

EBP

EBX

ECX

EDI

EDX

ES

ESI

ESP

FS

GS

SI

SP

SS

ST

TR3*

TR4*

Registers
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 318

TR5*

TR6

TR7

Operators and Directives

.186

.286

.286C

.286P

.287

.386

.386C

.386P

.387

.486*

.486P*

.8086

.8087

.ALPHA

.BREAK*

.CODE

.CONST

.CONTINUE*

.CREF

.DATA

.DATA?

.DOSSEG*

.ELSE*

.ELSEIF*

.ENDIF*

.ENDW*

.ERR

.ERR1

.ERR2

.ERRB

Operators and Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 319

.ERRDEF

.ERRDIF

.ERRDIFI

.ERRE

.ERRIDN

.ERRIDNI

.ERRNB

.ERRNDEF

.ERRNZ

.EXIT*

.FARDATA

.FARDATA?

.IF*

.LALL

.LFCOND

.LIST

.LISTALL*

.LISTIF*

.LISTMACRO*

.LISTMACROALL*

.MODEL

.NO87*

.NOCREF*

.NOLIST*

.NOLISTIF*

.NOLISTMACRO*

.RADIX

.REPEAT*

.SALL

.SEQ

.SFCOND

.STACK

.STARTUP*

.TFCOND

.TYPE

.UNTIL*

Operators and Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 320

.UNTILCXZ*

.WHILE*

.XALL

.XCREF

.XLIST

ALIAS*

ALIGN

ASSUME

CATSTR

COMM

COMMENT

DB

DD

DF

DOSSEG

DQ

DT

DUP

DW

ECHO*

ELSE

ELSEIF

ELSEIF1

ELSEIF2

ELSEIFB

ELSEIFDEF

ELSEIFDIF

ELSEIFDIFI

ELSEIFE

ELSEIFIDN

ELSEIFIDNI

ELSEIFNB

ELSEIFNDEF

END

ENDIF

ENDM

Operators and Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 321

ENDP

ENDS

EQ

EQU

EVEN

EXITM

EXTERN*

EXTERNDEF*

EXTRN

FOR*

FORC*

GE

GOTO*

GROUP

GT

HIGH

HIGHWORD*

IF

IF1

IF2

IFB

IFDEF

IFDIF

IFDIFI

IFE

IFIDN

IFIDNI

IFNB

IFNDEF

INCLUDE

INCLUDELIB

INSTR

INVOKE*

IRP

IRPC

LABEL

Operators and Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 322

LE

LENGTH

LENGTHOF*

LOCAL

LOW

LOWWORD*

LROFFSET*

LT

MACRO

MASK

MOD

.MSFLOAT

NAME

NE

OFFSET

OPATTR*

OPTION*

ORG

%OUT

PAGE

POPCONTEXT*

PROC

PROTO*

PTR

PUBLIC

PURGE

PUSHCONTEXT*

RECORD

REPEAT*

REPT

SEG

SEGMENT

SHORT

SIZE

SIZEOF*

SIZESTR

Operators and Directives
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 323

STRUC

STRUCT*

SUBSTR

SUBTITLE*

SUBTTL

TEXTEQU*

THIS

TITLE

TYPE

TYPEDEF*

UNION*

WHILE*

WIDTH

Processor Instructions

Processor instructions are not case sensitive.

8086/8088 Processor Instructions

AAA

AAD

AAM

AAS

ADC

ADD

AND

CALL

CBW

CLC

CLD

CLI

CMC

CMP

CMPS

8086/8088 Processor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 324

CMPSB

CMPSW

CWD

DAA

DAS

DEC

DIV

ESC

HLT

IDIV

IMUL

IN

INC

INT

INTO

IRET

JA

JAE

JB

JBE

JC

JCXZ

JE

JG

JGE

JL

JLE

JMP

JNA

JNAE

JNB

JNBE

JNC

JNE

JNG

JNGE

8086/8088 Processor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 325

JNL

JNLE

JNO

JNP

JNS

JNZ

JO

JP

JPE

JPO

JS

JZ

LAHF

LDS

LEA

LES

LODS

LODSB

LODSW

LOOP

LOOPE

LOOPEW*

LOOPNE

LOOPNEW*

LOOPNZ

LOOPNZW*

LOOPW*

LOOPZ

LOOPZW*

MOV

MOVS

MOVSB

MOVSW

MUL

NEG

NOP

8086/8088 Processor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 326

NOT

OR

OUT

POP

POPF

PUSH

PUSHF

RCL

RCR

RET

RETF

RETN

ROL

ROR

SAHF

SAL

SAR

SBB

SCAS

SCASB

SCASW

SHL

SHR

STC

STD

STI

STOS

STOSB

STOSW

SUB

TEST

WAIT

XCHG

XLAT

XLATB

XOR

8086/8088 Processor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 327

80186 Processor Instructions

BOUND

ENTER

INS

INSB

INSW

LEAVE

OUTS

OUTSB

OUTSW

POPA

PUSHA

PUSHW*

80286 Processor Instructions

ARPL

LAR

LSL

SGDT

SIDT

SLDT

SMSW

STR

VERR

VERW

80286 and 80386 Privileged-Mode Instructions

CLTS

LGDT

LIDT

LLDT

80286 and 80386 Privileged-Mode Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 328

LMSW

LTR

80386 Processor Instructions

BSF

BSR

BT

BTC

BTR

BTS

CDQ

CMPSD

CWDE

INSD

IRETD

IRETDF*

IRETF*

JECXZ

LFS

LGS

LODSD

LOOPD*

LOOPED*

LOOPNED*

LOOPNZD*

LOOPZD*

LSS

MOVSD

MOVSX

MOVZX

OUTSD

POPAD

POPFD

PUSHAD

PUSHD*

80386 Processor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 329

PUSHFD

SCASD

SETA

SETAE

SETB

SETBE

SETC

SETE

SETG

SETGE

SETL

SETLE

SETNA

SETNAE

SETNB

SETNBE

SETNC

SETNE

SETNG

SETNGE

SETNL

SETNLE

SETNO

SETNP

SETNS

SETNZ

SETO

SETP

SETPE

SETPO

SETS

SETZ

SHLD

SHRD

STOSD

80386 Processor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 330

80486 Processor Instructions

BSWAP*

CMPXCHG*

INVD*

INVLPG*

WBINVD*

XADD*

Instruction Prefixes

LOCK

REP

REPE

REPNE

REPNZ

REPZ

Coprocessor Instructions

Coprocessor instructions are not case sensitive.

8087 Coprocessor Instructions

F2XM1

FABS

FADD

FADDP

FBLD

FBSTP

FCHS

FCLEX

FCOM

FCOMP

8087 Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 331

FCOMPP

FDECSTP

FDISI

FDIV

FDIVP

FDIVR

FDIVRP

FENI

FFREE

FIADD

FICOM

FICOMP

FIDIV

FIDIVR

FILD

FIMUL

FINCSTP

FINIT

FIST

FISTP

FISUB

FISUBR

FLD

FLD1

FLDCW

FLDENV

FLDENVW*

FLDL2E

FLDL2T

FLDLG2

FLDLN2

FLDPI

FLDZ

FMUL

FMULP

FNCLEX

8087 Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 332

FNDISI

FNENI

FNINIT

FNOP

FNSAVE

FNSAVEW*

FNSTCW

FNSTENV

FNSTENVW*

FNSTSW

FPATAN

FPREM

FPTAN

FRNDINT

FRSTOR

FRSTORW*

FSAVE

FSAVEW*

FSCALE

FSQRT

FST

FSTCW

FSTENV

FSTENVW*

FSTP

FSTSW

FSUB

FSUBP

FSUBR

FSUBRP

FTST

FWAIT

FXAM

FXCH

FXTRACT

FYL2X

8087 Coprocessor Instructions
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 333

FYL2XP1

80287 Privileged-Mode Instruction

FSETPM

80387 Instructions

FCOS

FLDENVD*

FNSAVED*

FNSTENVD*

FPREM1

FRSTORD*

FSAVED*

FSIN

FSINCOS

FSTENVD*

FUCOM

FUCOMP

FUCOMPP

Appendix E Default Segment Names

If you use simplified segment directives by themselves, you do not need to know the names assigned
for each segment. However, it is possible to mix full segment definitions with simplified segment
directives, in which case you need to know the segment names.

Table E.1 shows the default segment names created by each directive.

If you use .MODEL, a _TEXT segment is always defined, even if all .CODE directives specify a name.
The default segment name used as part of far-code segment names is the filename of the module. The
default name associated with the .CODE directive can be overridden, as can the default names for
.FARDATA and .FARDATA?.

The segment and group table at the end of listings always shows the actual segment names. However,
the GROUP and ASSUME statements generated by the .MODEL directive are not shown in listing
files. For a program that uses all possible segments, group statements equivalent to the following
would be generated:

DGROUP GROUP _DATA, CONST, _BSS, STACK

Appendix E Default Segment Names
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 334

For the tiny model, these ASSUME statements would be generated:

ASSUME cs:DGROUP, ds:DGROUP, ss:DGROUP

For small and compact models with NEARSTACK, these ASSUME statements would be generated:

ASSUME cs: _TEXT, ds:DGROUP, ss:DGROUP

For medium, large, and huge models with NEARSTACK, these ASSUME statements would be
generated:

ASSUME cs:name_TEXT, ds:DGROUP, ss:DGROUP

Table E.1 Default Segments and Types for Standard Memory Models

Model Directive Name Align Combine Class Group

Tiny .CODE _TEXT WORD PUBLIC 'CODE' DGROUP

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA'

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

Small .CODE _TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA'

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP*

Medium .CODE name_TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA'

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP*

Compact .CODE _TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA'

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP*

Model Directive Name Align Combine Class Group

Large or
huge

.CODE name_TEXT WORD PUBLIC 'CODE'

Appendix E Default Segment Names
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 335

.FARDATA FAR_DATA PARA PRIVATE 'FAR_DATA'

.FARDATA? FAR_BSS PARA PRIVATE 'FAR_BSS'

.DATA _DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? _BSS WORD PUBLIC 'BSS' DGROUP

.STACK STACK PARA STACK 'STACK' DGROUP*

Flat .CODE _TEXT DWORD PUBLIC 'CODE'

.FARDATA _DATA DWORD PUBLIC 'DATA'

.FARDATA? _BSS DWORD PUBLIC 'BSS'

.DATA _DATA DWORD PUBLIC 'DATA'

.CONST CONST DWORD PUBLIC 'CONST'

.DATA? _BSS DWORD PUBLIC 'BSS'

.STACK STACK DWORD PUBLIC 'STACK'

Table E.1 (continued)
* unless the stack type is FARSTACK

Glossary

8087, 80287, or 80387 coprocessor Intel chips that perform high-speed floating-point and binary
coded decimal number processing. Also called math coprocessors. Floating-point instructions are
supported directly by the 80486 processor.

A

address

The memory location of a data item or procedure. The expression can represent just the offset (in
which case the default segment is assumed), or it can be in segment:offset format.

address constant

In an assembly-language instruction, an immediate operand derived by applying the SEG or OFFSET
operator to an identifier.

address range

A range of memory bounded by two addresses.

addressing modes

The various ways a memory address or device I/O address can be generated. See “far address,” “near
address.”

aggregate types

A
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 336

Data types containing more than one element, such as arrays, structures, and unions.

animate

A debugging feature in which each line in a running program is highlighted as it executes. The Animate
command from the CodeView debugger Run menu turns on animation.

API (application programming interface) A set of system-level routines that can be used in an
application program for tasks such as basic input/output and file management. In a graphics-oriented
operating environment like Microsoft Windows, high-level support for video graphics output is part of the
Windows graphical API.

arg

In PWB, a function modifier that introduces an argument or an editing function. The argument may be
of any type and is passed to the next function as input. For example, the PWB command Arg
textarg Copy passes the text argument textarg to the function Copy.

argument

A value passed to a procedure or function. See “parameter.”

array

An ordered set of continuous elements of the same type.

ASCII (American Standard Code for Information Interchange) A widely used coding scheme
where 1-byte numeric values represent letters, numbers, symbols, and special characters. There are
256 possible codes. The first 128 codes are standardized; the remaining 128 are special characters
defined by the computer manufacturer.

assembler

A program that converts a text file containing mnemonically coded microprocessor instructions into the
corresponding binary machine code. MASM is an assembler. See “compiler.”

assembly language

A programming language in which each line of source code corresponds to a specific microprocessor
instruction. Assembly language gives the programmer full access to the computer’s hardware and
produces the most compact, fastest executing code. See “high-level language.”

assembly mode

The mode in which the CodeView debugger displays the assembly-language equivalent of the
high-level code being executed. CodeView obtains the assembly-language code by disassembling the
executable file. See “source mode.”

B

base address

The starting address of a stack frame. Base addresses are usually stored in the BP register.

B
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 337

base name

The portion of the filename that precedes the extension. For example, SAMPLE is the base name of
the file SAMPLE.ASM.

BCD (binary coded decimal) A way of representing decimal digits where 4 bits of 1 byte are a
decimal digit, coded as the equivalent binary number.

binary Referring to the base-2 counting system, whose digits are 0 and 1.

binary expression A Boolean expression consisting of two operands joined by a binary operator and
resolving to a binary number.

binary file A file that contains numbers in binary form (as opposed to ASCII characters representing
the same numbers). For example, a program file is a binary file.

binary operator A Boolean operator that takes two arguments. The AND and OR operators in
assembly language are examples of binary operators.

BIOS (Basic Input/Output System) The software in a computer’s ROM which forms a
hardware-independent interface between the CPU and its peripherals (for example, keyboard, disk
drives, video display, I/O ports).

bit Short for binary digit. The basic unit of binary counting. Logically equivalent to decimal digits,
except that bits can have a value of 0 or 1, whereas decimal digits can range from 0 through 9.

breakpoint A user-defined condition that pauses program execution while debugging. CodeView can
set breakpoints at a specific line of code, for a specific value of a variable, or for a combination of these
two conditions.

buffer A reserved section of memory that holds data temporarily, most often during input/output
operations.

byte The smallest unit of measure for computer memory and data storage. One byte consists of 8
bits and can store one 8-bit character (a letter, number, punctuation mark, or other symbol). It can
represent unsigned values from 0 to 255 or signed values between –128 and +127.

C

C calling convention The convention that follows the C standard for calling a procedure—that is,
pushing arguments onto the stack from right to left (in reverse order from the way they appear in the
argument list). The C calling convention permits a variable number of arguments to be passed.

chaining (to an interrupt)

Installing an interrupt handler that shares control of an interrupt with other handlers. Control passes
from one handler to the next until a handler breaks the chain by terminating through an IRET
instruction. See “interrupt handler,” “hooking (an interrupt).”

character string See “string.”

clipboard In PWB, a section of memory that holds text deleted with the Copy, Ldelete, or Sdelete
functions. Any text attached to the clipboard deletes text already there. The Paste function inserts text
from the clipboard at the current cursor position.

.COM The filename extension for executable files that have a single segment containing both code
and data. Tiny model produces .COM files.

combine type The segment-declaration specifier (AT, COMMON, MEMORY, PUBLIC, or STACK)

C
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 338

which tells the linker to combine all segments of the same type. Segments without a combine type are
private and are placed in separate physical segments.

compact A memory model with multiple data segments but only one code segment.

compiler A program that translates source code into machine language. Usually applied only to
high-level languages such as Basic, FORTRAN, or C. See “assembler.”

constant A value that does not change during program execution. A variable, on the other hand, is a
value that can—and usually does—change. See “symbolic constant.”

constant expression Any expression that evaluates to a constant. It may include integer constants,
character constants, floating-point constants, or other constant expressions.

D

debugger A utility program that allows the programmer to execute a program one line at a time and
view the contents of registers and memory in order to help locate the source of bugs or other
problems. Examples are CodeView and Symdeb.

declaration A construct that associates the name and the attributes of a variable, function, or type.
See “variable declaration.”

default A setting or value that is assumed unless specified otherwise.

definition A construct that initializes and allocates storage for a variable, or that specifies either code
labels or the name, formal parameters, body, and return type of a procedure. See “type definition.”

description file

A text file used as input for the NMAKE utility.

device driver A program that transforms I/O requests into the operations necessary to make a
specific piece of hardware fulfill that request.

Dialog Command window The window at the bottom of the CodeView screen where dialog
commands can be entered, and previously entered dialog commands can be reviewed.

direct memory operand In an assembly-language instruction, a memory operand that refers to the
contents of an explicitly specified memory location.

directive An instruction that controls the assembler’s state.

displacement In an assembly-language instruction, a constant value added to an effective address.
This value often specifies the starting address of a variable, such as an array or multidimensional table.

DLL See “dynamic-link library.”

double-click To rapidly press and release a mouse button twice while pointing the mouse cursor at
an object on the screen.

double precision A real (floating-point) value that occupies 8 bytes of memory (MASM type REAL8).
Double-precision values are accurate to 15 or 16 digits.

doubleword A 4-byte word (MASM type DWORD).

drag To move the mouse while pointing at an object and holding down one of the mouse buttons.

dump To display or print the contents of memory in a specified memory range.

dynamic linking The resolution of external references at load time or run time (rather than link time).

D
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 339

Dynamic linking allows the called subroutines to be packaged, distributed, and maintained
independently of their callers. Windows extends the dynamic-link mechanism to serve as the primary
method by which all system and nonsystem services are obtained. See “linking.”

dynamic-link library (DLL) A library file that contains the executable code for a group of dynamically
linked routines.

dynamic-link routine A routine in a dynamic-link library that can be linked at load time or run time.

E

element A single member variable of an array of like variables.

environment block The section of memory containing the MS-DOS environment variables.

errorlevel code See “exit code.”

.EXE The filename extension for a program that can be loaded and executed by the computer. The
small, compact, medium, large, huge, and flat models generate .EXE files. See “.COM,” “tiny.”

exit code A code returned by a program to the operating system. This usually indicates whether the
program ran successfully.

expanded memory Increased memory available after adding an EMS (Expanded Memory
Specification) board to an 8086 or 80286 machine. Expanded memory can be simulated in software.
The EMS board can increase memory from 1 megabyte to 8 megabytes by swapping segments of
high-end memory into lower memory. Applications must be written to the EMS standard in order to
make use of expanded memory. See “extended memory.”

expression Any valid combination of mathematical or logical variables, constants, strings, and
operators that yields a single value.

extended memory Physical memory above 1 megabyte that can be addressed by 80286–80486
machines in protected mode. Adding a memory card adds extended memory. On 80386-based
machines, extended memory can be made to simulate expanded memory by using a
memory-management program.

extension The part of a filename (of up to three characters) that follows the period (.). An extension is
not required but is usually added to differentiate similar files. For example, the source-code file
MYPROG.ASM is assembled into the object file MYPROG.OBJ, which is linked to produce the
executable file MYPROG.EXE.

external variable A variable declared in one module and referenced in another module.

F

far address A memory location specified with a segment value plus an offset from the start of that
segment. Far addresses require 4 bytes—two for the segment and two for the offset. See “near
address.”

field One of the components of a structure, union, or record variable.

fixup The linking process that supplies addresses for procedure calls and variable references.

flags register A register containing information about the status of the CPU and the results of the last
arithmetic operation performed by the CPU.

F
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 340

flat A nonsegmented linear address space. Selectors in flat model can address the entire 4 gigabytes
of addressable memory space. See “segment,” “selector.”

formal parameters The variables that receive values passed to a function when the function is called.

forward declaration A function declaration that establishes the attributes of a symbol so that it can
be referenced before it is defined, or called from a different source file.

frame The segment, group, or segment register that specifies the segment portion of an address.

G

General-Protection (GP) fault An error that occurs in protected mode when a program accesses
invalid memory locations or accesses valid locations in an invalid way (such as writing into ROM
areas).

gigabyte 1,024 megabytes, or 1,073,741,824 bytes.

global See “visibility.”

global constant A constant available throughout a module. Symbolic constants defined in the
module-level code are global constants.

global data segment A data segment that is shared among all instances of a dynamic-link routine;
in other words, a single segment that is accessible to all processes that call a particular dynamic-link
routine.

global variable A variable that is available (visible) across multiple modules.

granularity The degree to which library procedures can be linked as individual blocks of code. In
Microsoft libraries, granularity is at the object-file level. If a single object file containing three
procedures is added to a library, all three procedures will be linked with the main program even if only
one of them is actually called.

group A collection of individually defined segments that have the same segment base address.

H

handle An arbitrary value that an operating system supplies to a program (or vice versa) so that the
program can access system resources, files, peripherals, and so forth, in a controlled fashion.

handler See “interrupt handler.”

hexadecimal The base-16 numbering system whose digits are 0 through F (the letters A through F
represent the decimal numbers 10 through 15). This is often used in computer programming because it
is easily converted to and from the binary (base-2) numbering system the computer itself uses.

high-level language A programming language that expresses operations as mathematical or logical
relationships, which the language’s compiler then converts into machine code. This contrasts with
assembly language, in which the program is written directly as a sequence of explicit microprocessor
instructions. Basic, C, COBOL, and FORTRAN are examples of high-level languages. See “assembly
language,” “compiler.”

hooking (an interrupt) Replacing an address in the interrupt vector table with the address of another
interrupt handler. See “interrupt handler,” “interrupt vector table,” “unhooking (an interrupt).”

H
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 341

huge A memory model (similar to large model) with more than one code segment and more than one
data segment. However, individual data items can be larger than 64K, spanning more than one
segment. See “large.”

I

identifier A name that identifies a register or memory location.

IEEE format A standard created by the Institute of Electrical and Electronics Engineers for
representing floating-point numbers, performing math with them, and handling underflow/overflow
conditions. The 8087 family of coprocessors and the emulator package implement this format.

immediate expression An expression that evaluates to a number that can be either a component of
an address or the entire address.

immediate operand In an assembly-language instruction, a constant operand that is specified at
assembly time and stored in the program file as part of the instruction opcode.

import library

A pseudo library that contains addresses rather than executable code. The linker reads the addresses
from an import library to resolve references to external dynamic-link library routines.

include file A text file with the .INC extension whose contents are inserted into the source-code file
and immediately assembled.

indirect memory operand In an assembly-language instruction, a memory operand whose value is
treated as an address that points to the location of the desired data. See “pointer.”

instruction The unit of binary information that a CPU decodes and executes. In assembly language,
instruction refers to the mnemonic (such as LDS or SHL) that the assembler converts into machine
code.

instruction prefix See “prefix.”

interrupt A signal to the processor to halt its current operation and immediately transfer control to an
interrupt handler. Interrupts are triggered either by hardware, as when the keyboard detects a
keypress, or by software, as when a program executes the INT instruction. See “interrupt handler.”

interrupt handler A routine that receives processor control when a specific interrupt occurs.

interrupt service routine See “interrupt handler.”

interrupt vector An address that points to an interrupt handler.

interrupt vector table

A table maintained by the operating system. It contains addresses (vectors) of current interrupt
handlers. When an interrupt occurs, the CPU branches to the address in the table that corresponds to
the interrupt’s number. See “interrupt handler.”

K

keyword A word with a special, predefined meaning for the assembler. Keywords cannot be used as
identifiers.

K
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 342

kilobyte (K) 1,024 bytes.

L

label A symbol (identifier) representing the address of a code label or data objects.

language type The specifier that establishes the naming and calling conventions for a procedure.
These are BASIC, C, FORTRAN, PASCAL, STDCALL, and SYSCALL.

large A memory model with more than one code segment and more than one data segment, but with
no individual data item larger than 64K (a single segment). See “huge.”

library A file that contains modules of compiled code. MS-DOS programs use normal run-time
libraries, from which the linker extracts modules and combines them with other object modules to
create executable program files. Windows-based programs can use dynamic-link libraries (see), which
the operating system loads and links to calling programs. See also “import library.”

linked list A data structure in which each entry includes a pointer to the location of the adjoining
entries.

linking In normal static linking, the process in which the linker resolves all external references by
searching run-time and user libraries, and then computes absolute offset addresses for these
references. Static linking results in a single executable file. In dynamic linking (see), the operating
system, rather than the linker, provides the addresses after loading the modules into separate parts of
memory.

local constant A constant whose scope is limited to a procedure or a module.

local variable A variable whose scope is confined to a particular unit of code, such as module-level
code, or a procedure. See “module-level code.”

logical device A symbolic name for a device that can be mapped to a physical (actual) device.

logical line A complete program statement in source code, including the initial line of code and any
extension lines.

logical segment A memory area in which a program stores code, data, or stack information. See
“physical segment.”

low-level input and output routines Run-time library routines that perform unbuffered, unformatted
input/output operations.

LSB (least-significant bit) The bit lowest in memory in a binary number.

M

machine code The binary numbers that a microprocessor interprets as program instructions. See
“instruction.”

macro A block of text or instructions that has been assigned an identifier. When the assembler sees
this identifier in the source code, it substitutes the related text or instructions and assembles them.

main module The module containing the point where program execution begins (the program’s entry
point). See “module.”

math coprocessor See “8087, 80287, or 80387 coprocessor.”

M
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 343

medium A memory model with multiple code segments but only one data segment.

megabyte 1,024 kilobytes or 1,048,576 bytes.

member One of the elements of a structure or union; also called a field.

memory address A number through which a program can reference a location in memory.

memory map A representation of where in memory the computer expects to find certain types of
information.

memory model A convention for specifying the number and types of code and data segments in a
module. See “tiny,” “small,” “medium,” “compact,” “large,” “huge,” and “flat.”

memory operand An operand that specifies a memory location.

meta A prefix that modifies the subsequent PWB function.

mnemonic A word, abbreviation, or acronym that replaces something too complex to remember or
type easily. For example, ADC is the mnemonic for the 8086’s add-with-carry instruction. The
assembler converts it into machine (binary) code, so it is not necessary to remember or calculate the
binary form.

module A discrete group of statements. Every program has at least one module (the main module).
In most cases, a module is the same as a source file.

module-definition file

A text file containing information that the linker uses to create a Windows-based program.

module-level code Program statements within any module that are outside procedure definitions.

MSB (most-significant bit) The bit farthest to the left in a binary number. It represents 2(n-1), where n
is the number of bits in the number.

multitasking operating system An operating system in which two or more programs, processes, or
threads can execute simultaneously.

N

naming convention The way the compiler or assembler alters the name of a routine before placing it
into an object file.

NAN Acronym for “not a number.” Math coprocessors generate NANs when the result of an operation
cannot be represented in IEEE format. For example, if two numbers being multiplied have a product
larger than the maximum value permitted, the coprocessor returns a NAN instead of the product.

near address A memory location specified by the offset from the start of the value in a segment
register. A near address requires only 2 bytes. See “far address.”

nonreentrant See “reentrant procedure.”

null character The ASCII character encoded as the value 0.

null pointer A pointer to nothing, expressed as the value 0.

O

O
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 344

.OBJ

Default filename extension for an object file.

object file

A file (normally with the extension .OBJ) produced by assembling source code. It contains relocatable
machine code. The linker combines object files with run-time and library code to create an executable
file.

offset

The number of bytes from the beginning of a segment to a particular byte within that segment.

opcode

The binary number that represents a specific microprocessor instruction.

operand

A constant or variable value that is manipulated in an expression or instruction.

operator

One or more symbols that specify how the operand or operands of an expression are manipulated.

option

A variable that modifies the way a program performs. Options can appear on the command line, or
they can be part of an initialization file (such as TOOLS.INI). An option is sometimes called a switch.

output screen

The CodeView screen that displays program output. Choosing the Output command from the View
menu or pressing F4 switches to this screen.

overflow

An error that occurs when the value assigned to a numeric variable is larger than the allowable limit for
that variable’s type.

overlay

A program component loaded into memory from disk only when needed. This technique reduces the
amount of free RAM needed to run the program.

P

parameter

The name given in a procedure definition to a variable that is passed to the procedure. See “argument.”

passing by reference

P
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 345

Transferring the address of an argument to a procedure. This allows the procedure to modify the
argument’s value.

passing by value

Transferring the value (rather than the address) of an argument to a procedure. This prevents the
procedure from changing the argument’s original value.

physical segment

The true memory address of a segment, referenced through a segment register.

pointer

A variable containing the address of another variable. See “indirect memory operand.”

precedence

The relative position of an operator in the hierarchy that determines the order in which expression
elements are evaluated.

preemptive

Having the power to take precedence over another event.

prefix

A keyword (LOCK, REP, REPE, REPNE, REPNZ, or REPZ) that modifies the behavior of an
instruction. MASM 6.1 ensures the prefix is compatible with the instruction.

private

Data items and routines local to the module in which they are defined. They cannot be accessed
outside that module. See “public.”

privilege level

A hardware-supported feature of the 80286–80486 processors that allows the programmer to specify
the exclusivity of a program or process. Programs running at low-numbered privilege levels can access
data or resources at higher-numbered privilege levels, but the reverse is not true. This feature reduces
the possibility that malfunctioning code will corrupt data or crash the operating system.

privileged mode

The term applied to privilege level 0. This privilege level should be used only by a protected-mode
operating system. Special privileged instructions are enabled by .286P, .386P, and .486P. Privileged
mode should not be confused with protected mode.

procedure call

An expression that invokes a procedure and passes actual arguments (if any) to the procedure.

procedure definition

A definition that specifies a procedure’s name, its formal parameters, the declarations and statements
that define what it does, and (optionally) its return type and storage class.

procedure prototype

P
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 346

A procedure declaration that includes a list of the names and types of formal parameters following the
procedure name.

process

Generally, any executing program or code unit. This term implies that the program or unit is one of a
group of processes executing independently.

Program Segment Prefix (PSP)

A 256-byte data structure at the base of the memory block allocated to a transient program. It
contains data and addresses supplied by MS-DOS that a program can read during execution.

protected mode

The 80286–80486 operating mode that permits multiple processes to run and not interfere with each
other. This feature should not be confused with privileged mode.

public

Data items and procedures that can be accessed outside the module in which they are defined. See
“private.”

Q

qualifiedtype

A user-defined type consisting of an existing MASM type (intrinsic, structure, union, or record), or a
previously defined TYPEDEF type, together with its language or distance attributes.

R

radix

The base of a number system. The default radix for MASM and CodeView is 10.

RAM (random-access memory)

Computer memory that can be both written to and read from. RAM data is volatile; it is usually lost
when the computer is turned off. Programs are loaded into and executed from RAM. See “ROM.”

real mode

The normal operating mode of the 8086 family of processors. Addresses correspond to physical (not
mapped) memory locations, and there is no mechanism to keep one application from accessing or
modifying the code or data of another. See “protected mode.”

record

A MASM variable that consists of a sequence of bit values.

R
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 347

reentrant procedure

A procedure that can be safely interrupted during execution and restarted from its beginning in
response to a call from a preemptive process. After servicing the preemptive call, the procedure
continues execution at the point at which it was interrupted.

register operand

In an assembly-language instruction, an operand that is stored in the register specified by the
instruction.

register window

The optional CodeView window in which the CPU registers and the flag register bits are displayed.

registers

Memory locations in the processor that temporarily store data, addresses, and processor flags.

regular expression

A text expression that specifies a pattern of text to be matched (as opposed to matching specific
characters).

relocatable

Not having an absolute address. The assembler does not know where the label, data, or code will be
located in memory, so it generates a fixup record. The linker provides the address.

return value

The value returned by a function.

ROM (read-only memory)

Computer memory that can only be read from and cannot be modified. ROM data is permanent; it is
not lost when the machine is turned off. A computer’s ROM often contains BIOS routines and parts of
the operating system. See “RAM.”

routine

A generic term for a procedure or function.

run-time dynamic linking

The act of establishing a link when a process is running. See “dynamic linking.”

run-time error

A math or logic error that can be detected only when the program runs. Examples of run-time errors
are dividing by a variable whose value is zero or calling a DLL function that doesn’t exist.

S

S
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 348

scope

The range of statements over which a variable or constant can be referenced by name. See “global
constant,” “global variable,” “local constant,” “local variable.”

screen swapping

A screen-exchange method that uses buffers to store the debugging and output screens. When you
request the other screen, the two buffers are exchanged. This method is slower than flipping (the other
screen-exchange method), but it works with most adapters and most types of programs.

scroll bars

The bars that appear at the right side and bottom of a window and some list boxes. Dragging the
mouse on the scroll bars allows scrolling through the contents of a window or text box.

segment

A section of memory, limited to 64K with 16-bit segments or 4 gigabytes with 32-bit segments,
containing code or data. Also refers to the starting address of that memory area.

sequential mode

The mode in CodeView in which no windows are available. Input and output scroll down the screen,
and the old output scrolls off the top of the screen when the screen is full. You cannot examine
previous commands after they scroll off the top. This mode is required with computers that are not IBM
compatible.

selector

A value that indirectly references a segment address. A protected-mode operating system, such as
Windows, assigns selector values to programs, which use them as segment addresses. If a program
attempts to use an unassigned selector, it triggers a General-Protection fault (see).

shared memory

A memory segment that can be accessed simultaneously by more than one process.

shell escape

A method of gaining access to the operating system without leaving CodeView or losing the current
debugging context. It is possible to execute MS-DOS commands, then return to the debugger.

sign extended

The process of widening an integer (for example, going from a byte to a word, or a word to a
doubleword) while retaining its correct value and sign.

signed integer

An integer value that uses the most-significant bit to represent the value’s sign. If the bit is one, the
number is negative; if zero, the number is positive. See “two’s complement,” “unsigned integer,” “MSB.”

single precision

A real (floating-point) value that occupies 4 bytes of memory. Single-precision values are accurate to
six or seven decimal places.

S
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 349

single-tasking environment

An environment in which only one program runs at a time. MS-DOS is a single-tasking environment.

small

A memory model with only one code segment and only one data segment.

source file

A text file containing symbols that define the program.

source mode

The mode in which CodeView displays the assembly-language source code that

represents the machine code currently being executed.

stack

An area of memory in which data items are consecutively stored and removed on a last-in, first-out
basis. A stack can be used to pass parameters to procedures.

stack frame

The portion of a stack containing a particular procedure’s local variables and parameters.

stack probe

A short routine called on entry to a function to verify that there is enough room in the program stack to
allocate local variables required by the function.

stack switching

Changing the stack pointers to point to another stack area.

stack trace

A symbolic representation of the functions that are being executed to reach the current instruction
address. As a function is executed, the function address and any function arguments are pushed on
the stack. Therefore, tracing the stack shows the active functions and their arguments.

standard error

The device to which a program can send error messages. The display is normally standard error.

standard input

The device from which a program reads its input. The keyboard is normally standard input.

standard output

The device to which a program can send its output. The display is normally standard output.

statement

A combination of labels, data declarations, directives, or instructions that the assembler can convert
into machine code.

S
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 350

status bar

See “linking.”

static linking

The line at the bottom of the PWB or CodeView screen. The status bar displays text position,
keyboard status, current context of execution, and other program information.

STDCALL

A calling convention that uses caller stack cleanup if the VARARG keyword is specified. Otherwise
the called routine must clean up the stack.

string

A contiguous sequence of characters identified with a symbolic name.

string literal

A string of characters and escape sequences delimited by single quotation marks
(' ') or double quotation marks (" ").

structure

A set of variables that may be of different types, grouped under a single name.

structure member

One of the elements of a structure. Also called a field.

switch

See “option.”

symbol

A name that identifies a memory location (usually for data).

symbolic constant

A constant represented by a symbol rather than the constant itself. Symbolic constants are defined
with EQU statements. They make a program easier to read and modify.

SYSCALL

A language type for a procedure. Its conventions are identical to C’s, except no underscore is prefixed
to the name.

T

tag

The name assigned to a structure, union, or enumeration type.

T
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 351

task

See “process.”

text

Ordinary, readable characters, including the uppercase and lowercase letters of the alphabet, the
numerals 0 through 9, and punctuation marks.

text box

In PWB, a box where you type information needed to carry out a command. A text box appears within
a dialog box. The text box may be blank or contain a default entry.

tiny

Memory model with a single segment for both code and data. This limits the total program size to 64K.
Tiny programs have the filename extension .COM.

toggle

A function key or menu selection that turns a feature off if it is on, or on if it is off. Used as a verb,
“toggle” means to reverse the status of a feature.

TOOLS.INI

A file containing initialization information for many of the Microsoft utilities, including PWB.

two’s complement

A form of base-2 notation in which negative numbers are formed by inverting the bit values of the
equivalent positive number and adding 1 to the result.

type

A description of a set of values and a valid set of operations on items of that type. For example, a
variable of type BYTE can have any of a set of integer values within the range specified for the type on
a particular machine.

type checking

An operation in which the assembler verifies that the operands of an operator are valid or that the
actual arguments in a function call are of the same types as the function definition’s parameters.

type definition

The storage format and attributes for a data unit.

U

unary expression

An expression consisting of a single operand preceded or followed by a unary operator.

unary operator

U
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 352

An operator that acts on a single operand, such as NOT.

underflow

An error condition that occurs when a calculation produces a result too small for the computer to
represent.

unhooking (an interrupt)

The act of removing your interrupt handler and restoring the original vector. See “hooking (an interrupt).”

union

A set of values (in fields) of different types that occupy the same storage space.

unresolved external

See “unresolved reference.”

unresolved reference

A reference to a global or external variable or function that cannot be found, either in the modules being
linked or in the libraries linked with those modules. An unresolved reference causes a fatal link error.

unsigned integer

An integer in which the most-significant bit serves as part of the number, rather than as an indication of
sign. For example, an unsigned byte integer can have a value from 0 to 255. A signed byte integer,
which reserves its eighth bit for the sign, can range from -127 to +128. See “signed integer,” “MSB.”

user-defined type

A data type defined by the user. It is usually a structure, union, record, or pointer.

V

variable declaration

A statement that initializes and allocates storage for a variable of a given type.

virtual disk

A portion of the computer’s random access memory reserved for use as a simulated disk drive. Also
called an electronic disk or RAM disk. Unless saved to a physical disk, the contents of a virtual disk
are lost when the computer is turned off.

virtual memory

Memory space allocated on a disk, rather than in RAM. Virtual memory allows large data structures
that would not fit in conventional memory, at the expense of slow access.

visibility

The characteristic of a variable or function that describes the parts of the program in which it can be

V
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 353

accessed. An item has global visibility if it can be referenced in every source file constituting the
program. Otherwise, it has local visibility.

W

watch window

The window in CodeView that displays watch statements and their values. A variable or expression is
watchable only while execution is occurring in the section of the program (context) in which the item is
defined.

window

A discrete area of the screen in PWB or CodeView used to display part of a file or to enter statements.

window commands

Commands that work only in CodeView’s window mode. Window commands consist of function keys,
mouse selections, CTRL and ALT key combinations, and selections from pop-up menus.

window mode

The mode in which CodeView displays separate windows, which can change independently. CodeView
has mouse support and a wide variety of window commands in window mode.

word

A data unit containing 16 bits (2 bytes). It can store values from 0 to 65,535 (or -32,768 to +32,767).

Reference

Microsoft® MASM

Assembly-Language Development System

Version 6.1

For MS-DOS® and Windows™ Operating System

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names,
and data used in examples herein are fictitious unless otherwise noted. No part of this
document may be reproduced or transmitted in any form or by any means, electronic

Reference
(C) 1992-1996 Microsoft Corporation. All rights reserved.

Macro Assembler 6.1 (16-bit) - MSDN Archive Edition Page 354

