

Preliminary

Ver 0.30

TFT LCD Specification

Model NO.: TD028STEB1

Customer Signature						
Date						

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Table of Contents

NO.	Item	Page
	Cover Sheet	1
	Table of Contents	2
	Record of Reversion	3
1	Features	4
2	General Specification	4
3	Input / Output Terminals	5
4	Absolute Maximum Ratings	8
5	Electrical Characteristics	9
6	Block Diagram	11
7	Timing Chart	14
8	Power On/Off Sequence	17
9	Optical Characteristics	19
10	Reliability	22
11	Handling Cautions	24
12	Mechanical Drawing	27
13	Packing Drawing	28

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Record of Reversion

Rev	Issued Date	Description
0.00	Sep, 1, 2004	New
0.10	Nov, 10, 2004	1.Modify 2.Weight: from TBD to 35(Max).
		2.Modify 3-1.Gate Off Voltage from -5.2V ~ -5.8V to -5.5~-4.5V,
		Typ. from -5.5 to -5V
		3.Modify 3-1 Digital Supply Power from 2.7V ~ 3.0V to 2.5~3.0V,
		Typ. from 2.85V to 2.8V
		4.Modify 5-1 Logic Supply Voltage: VDD1 & VDD2 MAX from 3.5V to 3V.
		5.Modify 5-4 Driving touch panel:
		Resistor between terminals (XR-XL):
		MIN from 300 to 250 , MAX from 1000 to 950
		6. Add IC using statement in Page12:
		(1) If choice DC-DC disable> need to add a schottky diode between
		VDD2 (Analog power supply) & VGH in customer's system-board.
		(2) If choice DC-DC enable> don't need to add component in customer's
		system-board.
		7.In Mechanical Drawing:
		Define Module label & Backlight label position & dimension
0.20	Dec, 13, 2004	1. 5.1 Driving TFT LCD Panel:
		Define VDD1, VDD2 & AVDD & VGH & VVEE Supply Current
		2. 5.2 DC/DC Spec:
		Define VDD2 & AVDD & VGH & VVEE Input Current &Input ripple (Max)
		3. Add Surface hardness value: MIN 3H in 5.4 Driving touch panel
		4. Add application circuit diagram & Delete IC using statement in Page 12
		5. Modify 8 Power ON/OFF sequence
		6. Delete 9.1(1): NTSC
		7. Modify 9.1(2): Chromaticity (TYP) & Remark of Chromaticity from Note 9-3
		to 99 & Add Note 99 White chromaticity as back light on (Measure
		System B)
		8. Modify 9.2(4): Testing Facility:
		Environmental illumination from =10Lux to = 1Lux
0.30	Feb, 15, 2005	
		2. Update 7.1 Display timing & 7.3 Setup / Hold timing
		3. Add Note2: Maximum rising time of VDD1/VDD2 is 2ms in power on
		sequence of page18.
		4. Update 9 Optical Characteristics
		5. Update Mechanical Drawing: Update position of Module & Backlight label

1. FEATURES

The 2.8 inch (real 2.83 inch) LCD module is the Transflective active matrix color TFT LCD module. LTPS (Low Temperature Poly Silicon) TFT technology is used and COG design are built on the panel. Highly integrated LCD module includes touch panel, backlight and TFT LCD panel with minimal external circuits and components required.

2. GENERAL SPECIFICATION

Item		Description	Unit
Display Size (Diagon	al)	2.8 inch (real 2.83 inch)	-
Display Type		Transflective	-
Active Area (HxV)		43.2 X 57.6	mm
Number of Dots (HxV	')	240 x RGB x 320	dot
Dot Pitch (HxV)		0.06 X 0.180	mm
Color Arrangement		RGB Stripe	-
Color Numbers		262,144 (18 bits)	-
Outline Dimension (H	lxVxT)	52.9X 71.7 X 4.2 (FPC excluded)	mm
Weight		35 (Max)	g
LCD Panel +		23 (Тур)	
Power consumption	System		mW
	Backlight	288 (Typ, I _F = 20mA)	

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

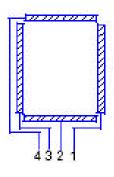
3. INPUT/OUTPUT TERMINALS

3.1 TFT LCD module

Recommend connector: FH23-61S-0.3SHW, HIROSE

Pin	Symbol	I/O	Description	Remark
1	DE	IN	Data Enable Signal	
2	MCLK	IN	LCM Pixel Clock	
3	ENABLE	IN	IC Reset Signal	
4	TSP1	OUT	TSP Interface Signal Y2	
5	DVSS	IN	Digital Ground	
6	VCOM_I	IN		
7	VCOM_I		VCOM Input	
8	AVSS	IN	Analog Ground	
9	VVEE	IN	Gate Off Voltage, -5.5~-4.5V, Typ5V	
10	VVEE			
11	VGH	IN	Gate On Voltage, 9.5V ~ 10.5V, Typ. 10V	
12	VGH	IIN		
13	DVSS	IN	Digital Ground	
14	TSP2	OUT	TSP Interface Signal X2	
15	VCOM_H	OUT	Positive Power Output for VCOM	
16	VCOM_O	OUT	VCOM Output	
17	VCOM_O			
18	VCOM_L	OUT	Negative Power Output for VCOM	
19	AVSS	IN	Analog Ground	
20	DVDD	IN	Digital Supply Power, 2.5V~3.0V, Typ. 2.8V	
21	DVDD	IIN		
22	AVDD	IN	Analog Supply Power, 4.8V ~ 5.6V, Typ. 5.0V	
23	AVDD			
24	TSP3	OUT	TSP Interface Signal Y1	
25	DVSS	IN	Digital Ground	
26	IV6P	OUT	Negative Voltage Output Pad	
27	TSP4	OUT	TSP Interface Signal X1	
28	DVDD	IN	Digital Supply Power, 2.5~3.0V, Typ. 2.8V	
29	PD17	IN	R5 (Red MSB)	
30	PD16		R4	
31	PD15		R3	
32	PD14		R2	

33	PD13		R1
34	PD12	IN	R0 (Red LSB)
35	PD11		G5 (Green MSB)
36	PD10		G4
37	PD9	IN	G3
38	PD8	IIN	G2
39	PD7		G1
40	PD6		G0 (Green LSB)
41	PD5		B5 (Blue MSB)
42	PD4		B4
43	PD3	IN	B3
44	PD2		B2
45	PD1		B1
46	PD0	IN	B0 (Blue LSB)
47	ISC	OUT	Capacitor Connection Pad
48	DVSS(SCL)	IN	Digital Ground(Serial interface clock input)
49	DVSS(SDA)	IN/OUT	Digital Ground(Serial interface data input/output)
50	DVSS(CS)	IN	Digital Ground(Serial interface chip select input)
51	DVSS	IN	Digital Ground
52	HSYNC	IN	Horizontal SYNC Input
53	DVSS	IN	Digital Ground(Display mode select)
54	DVSS(CM)		Digital Glound(Display mode select)
55	VS	OUT	Positive Power Output for Source Driver
56	VSYNC	IN	Vertical SYNC Input
57	MAIN_LED+	IN	LED Power (Anode)
58	MAIN_LED+		
59	MAIN_LED-	OUT	LED Power (Cathode)
60	MAIN_LED-		
61	DVSS	IN	Digital Ground

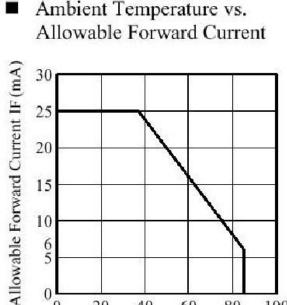

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

3.2 Touch panel Pin

Touch Panel	Module	Symbol	Description	Remark
Pin	Pin			
1	27	X1	Touch Panel Right Side	
2	24	Y1	Touch Panel Lower Side	
3	14	X2	Touch Panel Left Side	
4	4	Y2	Touch Panel Upper Side	

Pin Assignment for Touch panel

Touch Panel Pin/Name							
Pin No	Assignment	Note					
18 3	X0	Glass					
2	YI	Film					
3	xc	Glass					
4	Y2	Film					


The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

4.ABSOLUTE MAXIMUM RATINGS

					GND=0V
ltem	Symbol	MIN	MAX	Unit	Remark
Logio Supply Voltage	VDD1, VDD2	-0.3	3.6	V	
Logic Supply Voltage	AVDD	-0.3	6.0	V	
Dower Supply for HA/ Driver	VGH	-0.3	19	V	
Power Supply for H/V Driver	VVEE	-0.3	19	V	
Touch Panel Operation Voltage	V_{Touch}	-	5	V	
Backlight LED forward Voltage	V _F	-	14.4	V	
Backlight LED reverse Voltage	V _R	-	20	V	
Backlight LED forward current (Ta=25)	I _F	-	25	mA	Note
Operating Temperature	Topr	-20	+60		
Storage Temperature	Tstg	-30	+70		

Note: Relation between maximum LED forward current and ambient temperature is showed as bellow.

40

60

Ambient Temperature Ta (°C)

80

100

0

20

Ambient Temperature vs.

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

Ta=25

5.ELECTRICAL CHARACTERISTICS

5.1 Driving TFT LCD Panel

5.1 Driving 11 1 Lot							18-25
ltem		Symbol	MIN	TYP	MAX	Unit	Remark
Logic Supply Voltage		VDD1	1.6	2.8	3.3	V	
		VDD2	2.5	2.8	3.3	V	
		AVDD	4.8	5.0	5.6	V	
Davies Overski fan 144 / Driver		VGH	9.5	10	10.5	V	
Fower Supply for H	Power Supply for H/V Driver		-5.5	-5.0	-4.5	V	
	High	VIH	0.8VDD1	-	VDD1		R[5:0], G[5:0],
Data Input Voltage	Low	VIL	GND	-	0.2VDD1	V	B[5:0], CLK DE
VDD1, VDD2 Supp	ly Current			0.7	1.7	mA	Note 1
AVDD Supply Current		I _{AVDD}		1.85	4.0	mA	Note 2
VGH Supply Current		I _{VDD}		0.07	0.3	mA	
VVEE Supply Curre	ent	I_{VEE}		0.05	0.5	mA	

Note 1: The typical supply current specification is measured at the line inversion test pattern (black and white interlacing horizontal lines as the diagram shown below)

Note 2: Gamma correction voltage is set to achieve the optimun at VCC5=5.0V. Use the voltage at level as close to 5.0V as possible.

5.2 DC/DC Spec

Ta=25 Remark Item Input voltage Input Current Input ripple (Max) MIN TYP MAX VDD2 2.5 2.8 3.0 0.05 --AVDD 4.8 5.0 5.6 1.85 50mV Note 1 VGH 10.0 10.5 0.07 150mV 9.5 VVEE -5.5 -5.0 -4.5 0.05 --

Note 1: VCC5 is analog voltage supply therefore use as less ripple as possible.

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

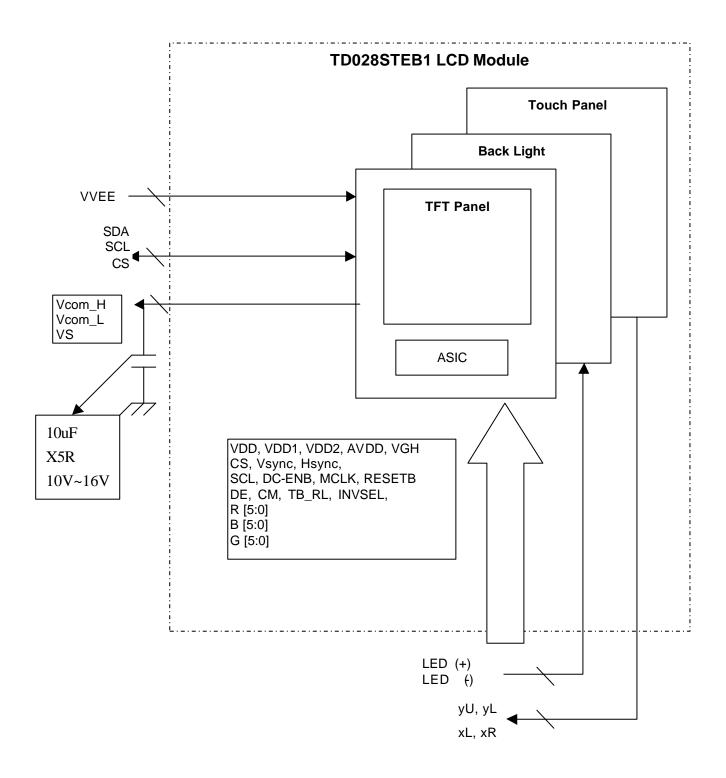
TD028STEB1

Ta=25

5.3 Driving backlight						Ta=25
Item	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	I _F	-	20	25	mA	LED/Part
LED Life Time	-	-	10000		Hr	l _⊧ : 20mA
Forward Current Voltage	$V_{\rm F}$	-	14.4	16	V	I _F : 20mA ,LED/Part

Note: Backtlight driving circuit is recommend as the fix current circuit.

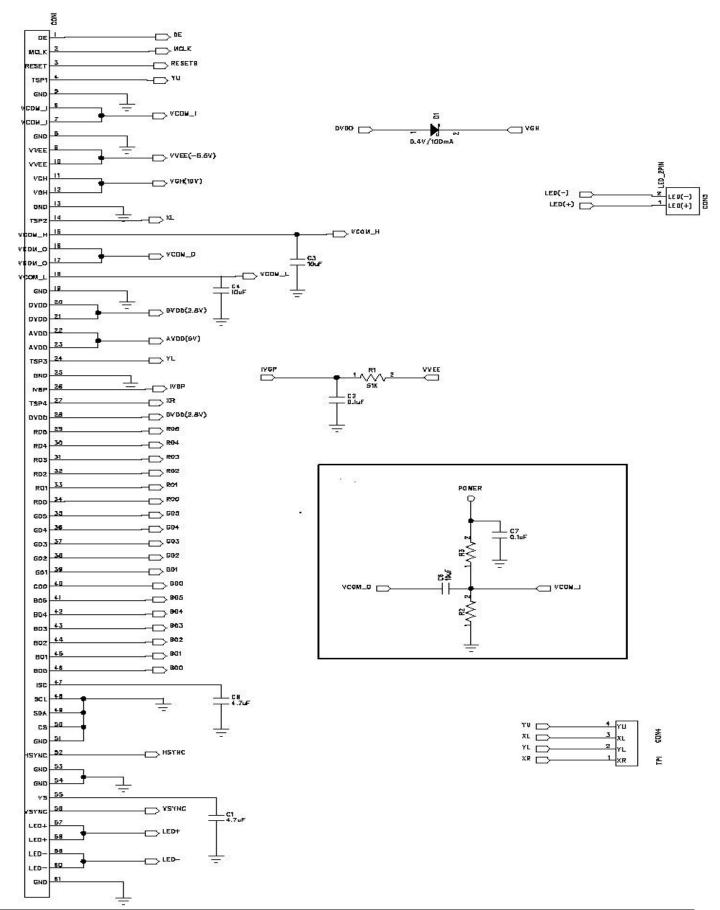
5.4 Driving touch panel (Analog resistance type)


TYP MAX Remark Item Symbol MIN Unit Resistor between terminals (XR-XL) Rx 250 950 650 Resistor between terminals (YU-YL) Ry 250 600 950 **Operation Voltage** V_{Touch} 5 V DC --Line Linearity (X direction) 1.5 % -_ -Note 1 Line Linearity (Y direction) _ 1.5 % -_ 10 Chattering --ms Surface Hardness 3 н **JIS K 5600** ---Minimum tension for detecting 80 _ -g Μ Ri 20 At DC 25V Insulation Resistance --

Note 1. The minimum test force is 80 g.

6. BLOCK DIAGRAM

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.



The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.


Application Circuit Diagram

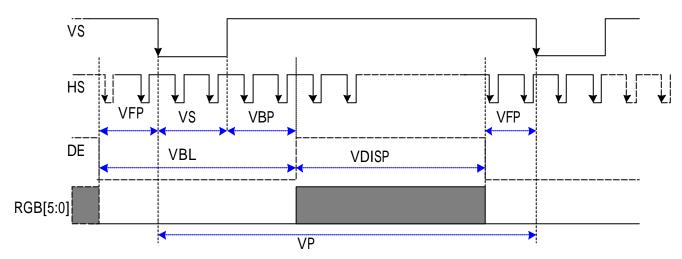
Image sticking circuit:

DC/DC disable model (DC_ENB=High)

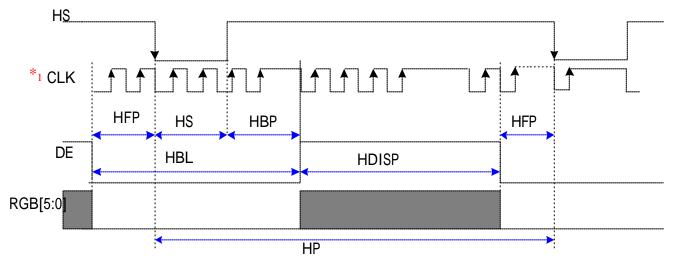
The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

7. TIMING CHART

7.1 Display timing

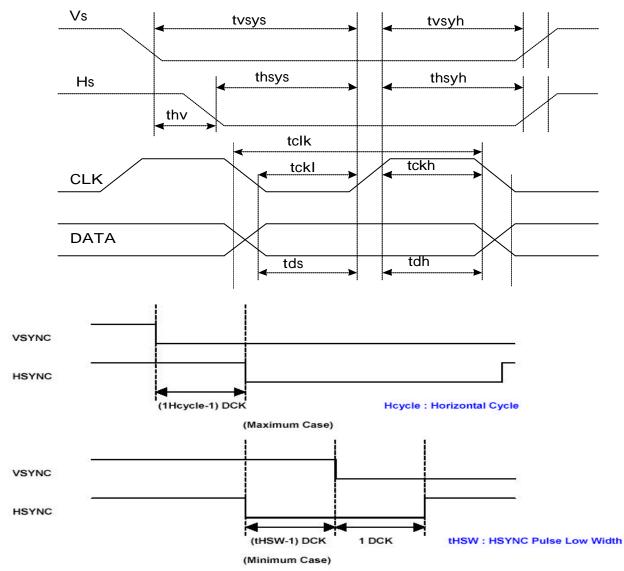

Display	Parameter	Symbol	Conditions	I	Unit		
Mode		Cymbol	Conditions	MIN	TYP	МАХ	
	Vertical cycle	VP	-	323	326	340	Line
	Vertical data start	VDS	VS+VBP	-	4	-	Line
	Vertical front porch	VFP	-	-	2	-	Line
	Vertical back portch	VBP		-	2	-	Line
Normal	Vertical active area	VDISP	-	-	320	-	Line
	Horizontal cycle	HP	-	260	280	300	dot
	Horizontal front porch	HFP	-	-	10	-	dot
	Horizontal Sync Pulse width	HS	-	-	10	-	dot
	Horizontal Back porch	HBP		-	20	-	dot
	Horizontal Data start	HDS	HS+HBP	-	30	-	dot
	Horizontal active area	HDISP	-	-	240	-	dot
		tclk		5.02	5.48	5.93	MHz
	Clock frequency	fclk	-	199	183	169	nS

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.



7.2 Input timing chart

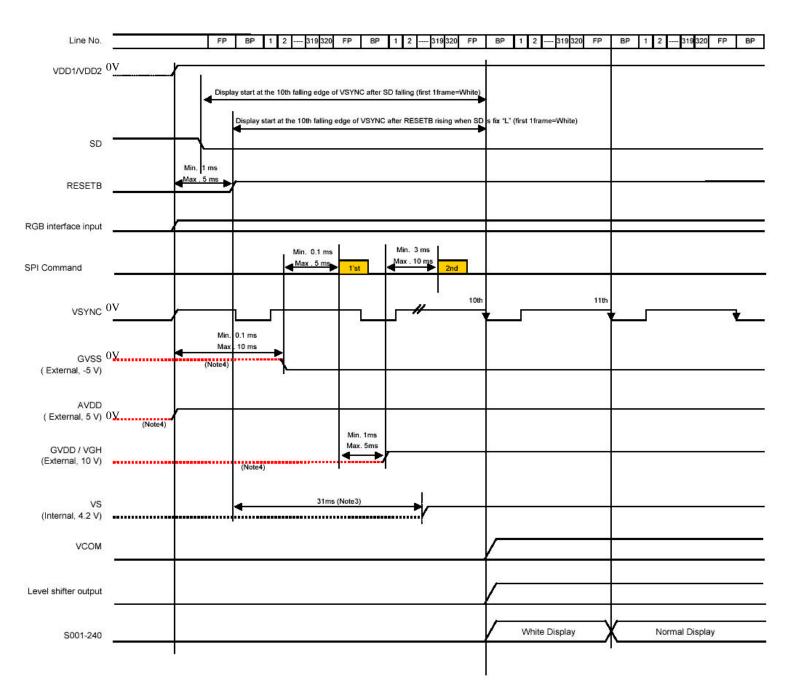
< Vertical Timing chart >



*1 The frequency of CLK should keep in the range as input timing chart determined whether in display or blanking region to ensure IC operating normally.

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

7.3 Setup / Hold Timing chart


Parameter	Symbol	Conditions		Unit		
i arameter	Symbol		MIN	TYP	MAX	Unit
Vertical Sync. Setup time	tvsys		20	-	-	ns
Vertical Sync. Hold time	tvsyh		20	-	-	ns
Horizontal Sync. Setup time	thsys		20	-	-	ns
Horizontal Sync. Hold time	thsyh		20	-	-	ns
Phase difference of Sync.	thv	240x320	-(tVSW-1)	-	1Hcycle-1	clk
Signal Falling edge(Note1)	uiv					
Clock "L" Period	tckl		75	-	-	%
Clock "H" Period	tckh		75	-	-	%
Data setup time	tds		20	-		ns
Data Hold time	tdh		20	-	-	ns

Note1: Thv range if it can't met our spec, just give up first Hsync. It can't impact any side effect.

8. Power On/Off Sequence

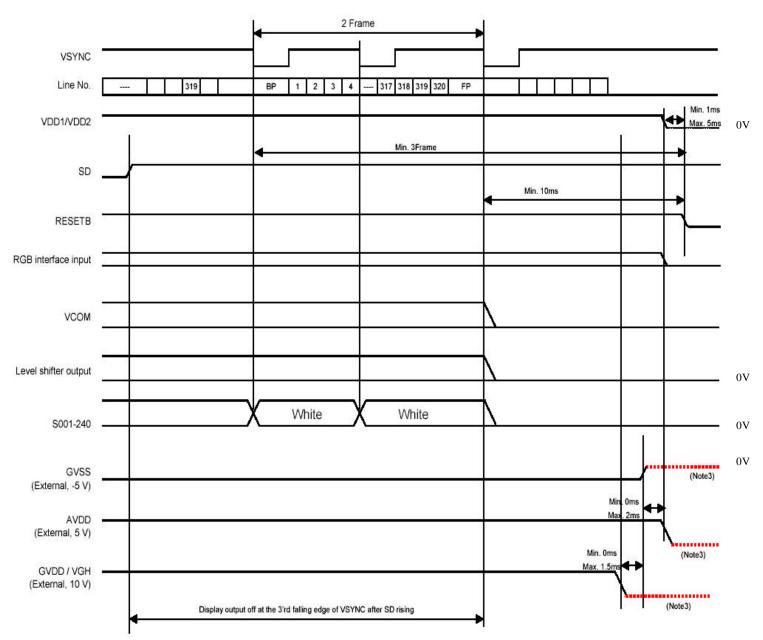
1. Power On Sequence (with DC/DC supply outward & SD fixed at low) Power on sequence is controlled by SD or RESETB signal (fVSYNC=60Hz)

(Note1) RGB interface input - VSYNC/HSYNC/DCK/R5-0/G5-0/B5-0/DE/CM

(Note2) Level shifter output – CKH1/CKH2/CKH3/STV1/STV2/CKV1/CKV2/ENBV/CSV)

(Note3) Marked time is typical value (Typical values depend on the frequency of VSYNC)

(Note4) GVSS, AVDD and GVDD/VGH should be open before external power on


(Note5) In order to prevent high current due to the latch-up in external power on sequence, shot-key diode should be connected between VGH and VDD2 as shown **External Component Application2** in page5. (Recommended spec of the shot-key diode: VF < 0.4V/100mA, VR > 15V)

Note1: In some application, SD signal fixed at "low" level during power on. ASIC should produce white pattern when receiving10th S. And internal power regulator should function normally.

Note2: Maximum rising time of VDD1/VDD2 is 2ms.

 Power Off Sequence (with DC/DC supply outward & SD fixed at low) Power off sequence is controlled by SD signal

(Note1) RGB interface input - VSYNC/HSYNC/DCK/R5-0/G5-0/B5-0/DE/CM

(Note2) Level shifter output - CKH1/CKH2/CKH3/STV1/STV2/CKV1/CKV2/ENBV/CSV)

(Note3) GVSS, AVDD and GVDD/VGH should be open after external power off

(Note5) In order to prevent high current due to the latch-up in external power on sequence, shot-key diode should be connected between VGH and VDD2 as shown **External Component Application2** in page5. (Recommended spec of the shot-key diode: VF < 0.4V/100mA, VR > 15V)

Note: In some application, SD signal fixed at "low" level during power on. ASIC should produce white

pattern when receiving10th S. And internal power regulator should function normally.

Ta=25

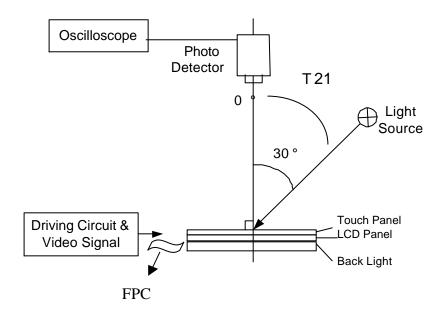
9. Optical Characteristics

- 9.1 Optical Specification
 - (1) Back light Off / w Touch panel

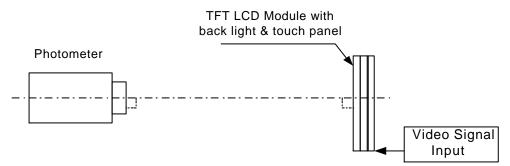
ltem	Symbol		Condition	MIN	TYP	MAX	Unit	Remarks
Viewing Angles	T 11(R)		CR = 2	35	45	-	Degree	Note 9-1
	T 12(L) T21(U)			25	35	-		
				35	45	-		
	T22(D)		35	45	-		
Chromaticity	White	X/bito X	=0°	0.275	0.310	0.345	-	Note 9-3
	vvnite	у		0.290	0.330	0.370	-	
Contrast Ratio	CR		=0°	5:1	10:1	-	-	Note 9-2
Reflectivity	R		=0°	5	10	_	%	Note 9-4

(2) Back Light On /w Touch panel

Ta=25 Condition TYP MAX Symbol MIN Unit Remarks Item 40 T 11(R) 45 T 12(L) 35 40 -Degree Viewing Angles CR = 10Note 9-1 T21(U) 55 60 _ 30 35 T22(D) -Tr+Tf =0° Note 9-5 Response Time 35 50 ms =0° Contrast Ratio CR 90:1 150:1 Note 9-6 _ _ =0° cd/m² Note 9-7 Luminance L 125 150 _ I_F =20mA NTSC _ 40 45 % Note 9-7 -_ 75 % Uniformity --80 -Note 9-8 0.533 0.568 0.603 Х Red 0.305 0.345 0.385 y 0.265 0.300 0.335 Х Green 0.529 0.569 0.609 у =0° Note 9-9 Chromaticity 0.111 0.146 0.181 Х Blue 0.093 0.133 0.173 у 0.260 0.295 0.330 Х White 0.283 0.323 0.363 ٧

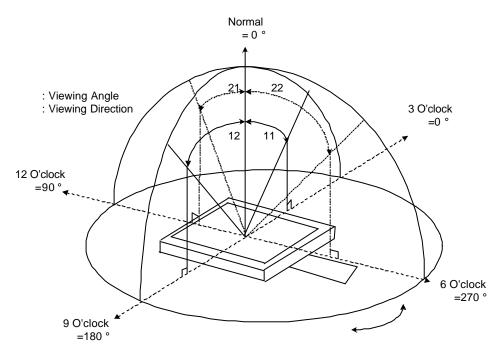


9.2 Basic measure condition


- (1) Driving voltage
 - VDD= 12.0V, VEE=-6.5V
- (2) Ambient temperature: Ta=25
- (3) Testing point: measure in the display center point and the test angle $=0^{\circ}$
- (4) Testing Facility

Environmental illumination: = 1 Lux

a. System A


b. System B

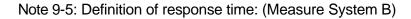
The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

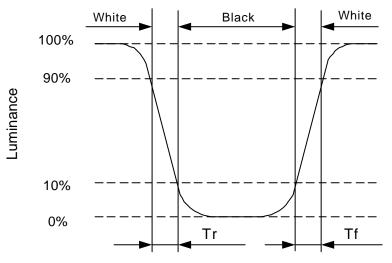
Note 9-2: Contrast ratio in back light off (Measure System A)

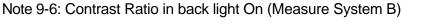
Contrast Ration is measured in optimum common electrode voltage.

CR = Luminance with white image Luminance with black image

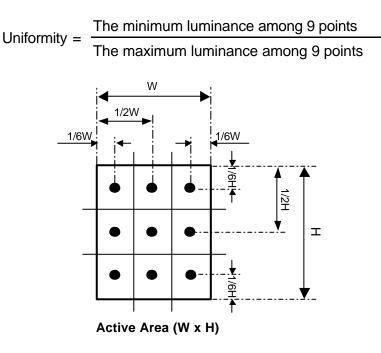
Note 9-3: White chromaticity as back light off: (Measure System A)


Note 9-4: Reflectivity (R) (Measure System A)


In the measuring system B. calculate the reflectance by the following formula.


 $Reflectivity(R) = \frac{Output from the white display panel}{Output from the reflectance standard} X Reflectance factor of reflectance standard$

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.



Contrast Ration is measured in optimum common electrode voltage.

Note 9-7: Luminance: (Measure System B) Test Point: Display Center

Note 9-8: Uniformity (Measure System B)

The luminance of 9 points as the black dot in the figure shown below are measured and the uniformity is defined as the formula:

Note 9-9: White chromaticity as back light on(Measure System B)

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

10. Reliability

No	Test Item	Condition			
1	High Temperature Operation	Ta=+60 , 240hrs			
2	High Temperature & High Humidity Operation	Ta=+40 , 95% RH, 240hrs			
3	Low Temperature Operation	Ta= -20 , 240hrs			
4	High Temperature Storage (non-operation)	Ta=+70 , 240hrs			
5	Low Temperature Storage (non-operation)	Ta= -30 , 240hrs			
6	Thermal Shock (non-operation)	-30 $\leftarrow \rightarrow$ 70 , 50 cycles 30 min 30 min			
	Resistance to Static Electricity Discharge	C=200pF, R=0 ;			
7		Discharge: ±150V			
	(non-operation)	3 times / Terminal			
	Surface Discharge (non-operation) (LCD surface)	C=150pF, R=330 ;			
8		Discharge: Air: ±15kV; Contact: ±8kV			
		5 times / Point; 5 Points / Panel			
	Vibration (non-operation)	Frequency: 10~55Hz; Amplitude: 1.5mm			
9		Sweep Time: 11min			
		Test Time: 2 hrs for each direction of X, Y, Z			
10	Shock (non-operation)	Acceleration: 100G; Period: 6ms			
10		Directions: $\pm X$, $\pm Y$, $\pm Z$; Cycles: Three times			
	Pin Activation Test (Touch Panel)	Hit 1,000,000 times with a silicon rubber of R8			
11		HS 60.			
		Hitting Force: 250g			
		Hitting Speed: 3 time/sec			
12	Writing Friction Resistance Test (Touch	Pen: 0.8R Polyacetal stylus			
		Load: 250g			
		Speed: 3 Strokes/sec			
		Stroke: 35mm			
		100000 times			

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

11. Handling Cautions

11.1 ESD (Electrical Static Discharge) strategy

ESD will cause serious damage of the panel, ESD strategy is very important in handling. Following items are the recommended ESD strategy

- (1) In handling LCD panel, please wear gloves with non-charged material. Using the conduction ring connects wrist to the earth and the conducting shoes to the earth necessary is.
- (2) The machine and working table for the panel should have ESD protection strategy.
- (3) In handling the panel, ionized airflow decreases the charge in the environment is necessary.
- (4) In the process of assemble the module, shield case should connect to the ground.

11.2 Environment

- (1) Working environment of the panel should be in the clean room.
- (2) Because touch panel has protective film on the surface, please remove the protection film slowly with ionized air to prevent the electrostatic discharge.

11.3 Touch panel

- (1) The front touch panel is vulnerable to heavy weight, so any input must be done by special stylus or by a finger. Do not put any heavy stuff on it.
- (2) When any dust or stain is observed on a film surface, clean it using a glass lens cleaner for something similar.

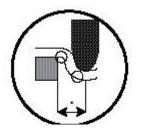
11.4 Others

- (1) Turn off the power supply before connecting and disconnecting signal input cable.
- (2) Because the connection area of FPC and panel is not so strong, do not handle panel only by FPC or bend FPC.
- (3) Water drop on the surface or condensation as panel power on will corrode panel electrode.
- (4) As the packing bag open, watch out the environment of the panel storage. High temperature and high humidity environment is prohibited.
- (5) In the case the TFT LCD module is broken, please watch out whether liquid crystal leaks out or not. If your hand touches liquid crystal, wash your hands cleanly with water and soap as soon as possible

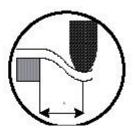
11.5 Design notes on touch panel

- (1) Explanation of each boundary of touch panel
 - ۲. Boundary of Double-sided adhesive
 - a. Electrically detectable within this zone.
 - When holding the touch panel by housing, it needs to be held at outside of this zone.
 - b. Film is supported by double-sided adhesive tape.
 - ۲٤.Viewing area
 - a. Cosmetic inspection to be done for this area.

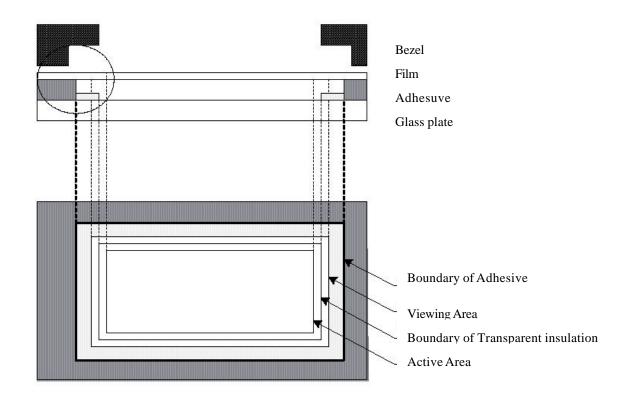
The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.



This area is set as inside of boundary of double-sided adhesive with tolerance.

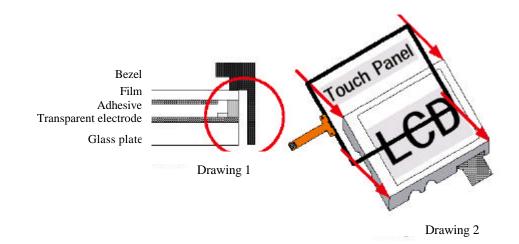

۲۵.Boundary of transparent insulation

- a. Purpose is to "Help" to secure insulation.
- b. Electrical insulation on this area is not guaranteed.
- c. We do recommend not to hold this area by something like housing or gasket.
- ۲۶.Active area
 - a. This area is where the performance is guaranteed.


This area set as 2.3mm inside from the boundary area of double-sided adhesive tape since its neighboring area is less durable to writing friction.

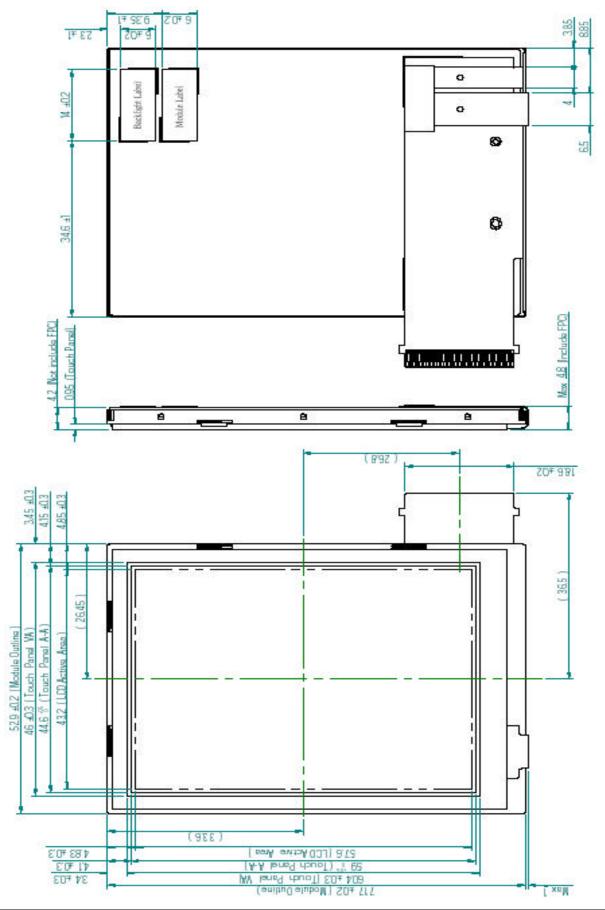
There is some possibility to damage ITO

No Damage to ITO

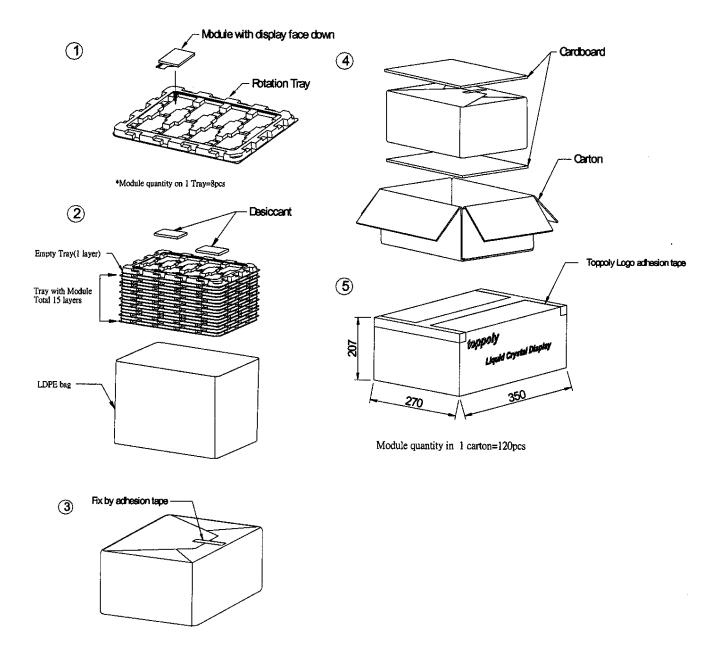


The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

(2) Housing and touch panel


- a. Please have clearance between the side of touch panel and any conductive material such as metal frame (Drawing.1). Transparent electrode exists on glass of touch panel from end to end.
- b. It is recommended to fix a touch panel on the LCD module chassis rather than the touch panel housing. Clinging at conductive material and side of touch panel might cause the malfunction.

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.


12. Mechanical Drawing

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.

13. Packing Drawing

TD028STEB1 Module Delivery Packing Instruction:

- (1) Module packed into tray cavity with panel face down.
- (2) Tray stacking with 15 layers and with 1 empty tray above the stacking tray unit. Then put 2pcs desiccant above the empty tray.
- (3) Stacking tray unit put into the LDPE bag and fix by adhesive tape.
- (4) Put 1pcs cardboard inside the carton bottom, and pack the finished package into the carton. Then put 1pcs cardboard above the packing finished good.
- (5) Carton sealing with adhesive tape.

The information contained herein is the exclusive property of toppoly Optoelectronics corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of toppoly Optoelectronics corporation.