

MT6252 GSM/GPRS Baseband **Processor Data Sheet**

1.0 Juse date: 2011-01-25

© 2010 - 2011 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Specifications are subject to change without notice.

MT6252

GSM/GPRS Baseband Processor Data Sheet v1.0 Confidential A

Revision History

Revis	sion His	tory	n polease for
Revision	Date	Comments	
1.0	Jan 21, 2011	Initial Version	CHOULING

Mediatek Control Cenon MCX

MediaTek Confidential Release for Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 2 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet v1.0 Confidential A

TABLE OF CONTENTS

T/	ABLE OF CONTENTS vision History eface System Overview	
Re	vision History	2
Dr	oface	1
11,	trace	
1	System Overview	5
	1.1 I lautotiii i Catures	0
	1.2 Modem Features	
	1.3 Multimedia Features	
1	1.4 General Description	
2	Product Description	13
2	2.1 Pin Description	13
	2.2 Electrical Characteristics	
	2.3 System Configurations	43
	2.4 Power-on Sequence	
	2.5 Analog Baseband	
	2.7 GSM/GPRS RF	
	2.8 Package Information	
	2.9 Ordering Information	
•	-	
3	Micro-Controller Unit Subsystem	83
	3.1 Direct Memory Access	
-	3.2 Interrupt Controller	
4	Microcontroller Peripherals	
	4.1 Pulse-Width Modulation Outputs	
	4.2 SIM Interface	
	4.3 Keypad Scanner	
	4.4 General Purpose Inputs/Outputs	
	4.5 General Purpose Timer	211 217
	4.7 Real Time Clock	217 242
	4.8 Auxiliary ADC Unit	
	4.9 I2C / SCCB Controller	262
4	4.10 USB Device Controller	
4	4.11 SD/MMC Memory Card Controller	292
5	Multi-Media Subsystem	321
	5.1 LCD Interface	
	5.2 Camera Interface	
1		
6	Analog Front-end & Analog Blocks	394
	6.1 General Description	394
	6.2 ABB Register Definitions	406
	6.3 PMU Registers Definition	440
,	0.7 1 Togramming Guide	470

MediaTek Confidential

ential Release for

Preface

Acronym for Register Type

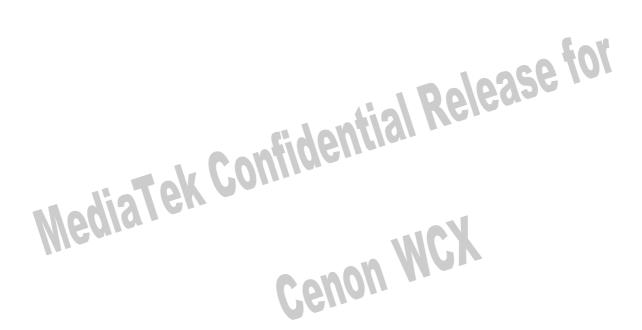
R/W Capable of both read and write access

RO Read only

RC Read only. After reading the register bank, each bit which is HIGH(1) will be cleared to LOW(0)

automatically.

WO Write only


W1S Write only. When writing data bits to register bank, each bit which is HIGH(1) will cause the

corresponding bit to be set to 1. Data bits which are LOW(0) have no effect on the corresponding bit.

W1C Write only. When writing data bits to register bank, each bit which is HIGH(1) will cause the

corresponding bit to be cleared to 0. Data bits which are LOW(0) have no effect on the corresponding

bit.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 4 of 508

System Overview

Release for MT6252 is a GSM/GPRS handset chip solution which integrates RF, analog baseband, digital baseband as well as Power Management Unit (PMU) and can greatly reduce the component count and make a smaller PCB size. Besides, MT6252 is capable of Single Antenna Interference Cancellation (SAIC) and AMR speech. Based on a 32-bit ARM7EJ-STM RISC processor, MT6252 provides an unprecedented platform with high quality modem performance. The typical application diagram is shown as in Figure 1.

Platform

MT6252 has the ARM7EJ-STM RISC processor running at up to 104 MHz, which provides best trade-off between system performance and power consumption.

For large amount of data transfer, high performance Direct Memory Access (DMA) is implemented, which greatly enhances the data movement speed while reducing MCU processing load.

Memory

MT6252 supports serial Flash interface with various operating frequencies.

Multimedia

MT6252 multimedia system contains many hardware accelerators to enrich user experience, including the camera interface, display controller/resizer/rotator, etc.

MT6252 utilizes high resolution audio DAC, digital audio, and audio synthesis technology to provide superior audio features; e.g. MP3 ring tones.

MT6252 supports UART as well as a Bluetooth interface. Also, it is embedded with necessary peripheral blocks: keypad scanner with the capability to detect the multiple key presses, multiple-SIM controller, real time clock, PWM, LCD controller, USB 1.1 FS/LS, MMC/SD and general purpose programmable I/Os.

MT6252 supports USB download with battery.

<u>Audio</u>

Using a highly integrated mixed-signal Audio Front-End architecture, MT6252 allows easy audio interfacing with direct connection to the audio transducers. The audio interface integrates D/A and A/D converters for the voice band, as well as high resolution stereo D/A converters for the audio band. In addition, MT6252 provides stereo input and analog mux, and supports the AMR codec to optimize speech and audio quality.

The 700 mW class-AB amplifier is also embedded to save the BOM cost without having to adopt an external amplifier.

Connectivity and Storage

Radio

MediaTek Confidential

© 2011 MediaTek Inc.

Page 5 of 508

MT6252 integrates a mixed-signal baseband front-end in order to provide a radio interface with flexibility for efficient customization. It builds in gain /offset calibration mechanisms and filters with programmable coefficients for comprehensive compatibility control on RF modules. MT6252 achieves great MODEM performance by utilizing a high resolution A/D converter in the RF downlink path.

MT6252 RF is a low current transceiver to support a true quad-band GSM/GPRS cellular system. highly integrated RF system implements the high sensitivity and channel selection receiver, high precision transmission modulator, low phase noise frequency synthesizer, and the digitally controlled crystal oscillator. The external components required for a GPRS radio design include the Rx SAWs, PA, switchplexer, X'TAL, and a few passives.

Debug Function

The JTAG interface enables in-circuit debugging of software program with the ARM7EJ-STM core. With tidential Release for this standardized debugging interface, MT6252 provides developers with a wide set of options in choosing ARM development kits from different third party vendors.

Low Power Features

MediaTek Confidential

MT6252 offers various low power features to reduce system power consumption. Features include Pause Mode of 32 kHz clocking at Standby State, Power Down Mode for individual peripherals, and Processor Sleep Mode. In addition, MT6252 is also fabricated

using the advanced low leakage CMOS process, in order to provide an ultra low leakage solution.

Power Management

MT6252 integrates all regulators that a voice-centric phone needs, including thirteen LDOs optimized for specific GSM/GPRS baseband sub-systems. In addition to Li-Ion battery charge function, MT6252 are equipped with a SIM-level shifter interface, one open-drain output switch controlling the KPLED and one LDO specifically driving the vibrator motor. MT6252's power management schemes also cover thermal overload protection, Under-voltage Lock-out protection (UVLO), over-voltage protection, and the power-on reset/start-up timer, etc.

Package

The MT6252 device is offered in an 11.6 mm×12.1 mm, 305-ball, 0.5 mm staggered pin pitch TFBGA package.

© 2011 MediaTek Inc.

ion MCX

Page 6 of 508

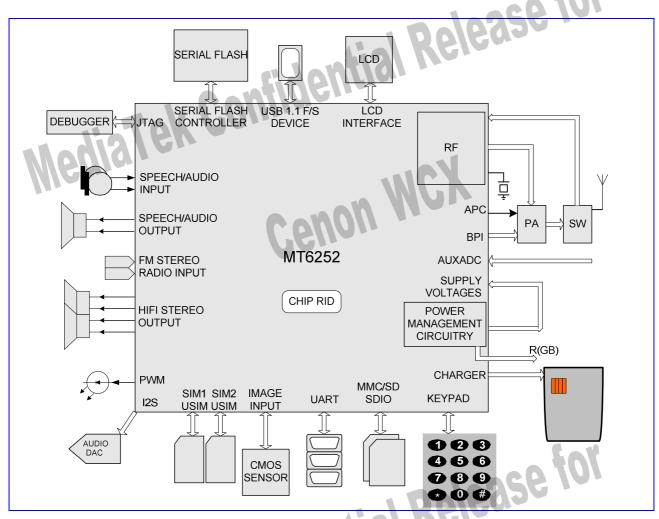


Figure 1 Key applications of MT6252

MediaTek Confidential vou MCX MediaTek Confidential © 2011 MediaTek Inc.

Page 7 of 508

ease fo

1.1 Platform Features

General

- Integrated voice-band, audio-band and baseband analog front ends
- 11.6 mm×12.1 mm, 305-ball, 0.5 mm pitch
 TFBGA package

MCU Subsystem

- ARM7EJ-S 32-bit RISC processor
- High performance multi-layer AMBA bus
- Java hardware acceleration for fast Java-based games and applets
- Operating frequency: 104 MHz
- On-chip boot ROM for factory Flash programming
- Watchdog timer for system crash recovery
- 4 sets of General Purpose Timers
- Circuit switch data coprocessor
- Division coprocessor
- Frame check sequence coprocessor

Serial Flash Interfaces

 Supports various operating frequency combinations for Serial Flash Supports QPI and SPI Serial Flash

User Interfaces

- 8-row × 8-column keypad controller with a hardware scanner
- Supports multiple key presses for gaming
- SIM/USIM controller with hardware T=0/T=1 protocol control
- Real Time Clock (RTC) operating with a separate power supply
- General Purpose I/Os (GPIOs)
- 1 set of Pulse Width Modulation (PWM) output
- Maximum 7 external interrupt lines

Security

• Supports the security key and chip random ID

Connectivity

- Three sets of UARTs with hardware flow control and speed of up to 921600 bps
- FS/LS USB 1.1 device controller
- Multimedia Card/Secure Digital Memory Card
- DAI/PCM and I2S interface for audio applications

MediaTek Confidential

© 2011 MediaTek Inc.

Page 8 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

MEDIATEK

Low Power Schemes

- Power Down Mode for analog and digital circuits
- Processor Sleep Mode
- Pause Mode of 32 kHz clocking at Standby State
- 2-channel auxiliary 10-bit A/D converter for application usage other than battery monitoring

Power and Supply Management

- Charger Input up to 8 V
- Thirteen sets of LDOs optimized for specific GSM sub-systems
- Built-in LDO for RF transceiver
- High operation efficiency and low standby current
- Li-Ion battery charge function
- Multi- SIM Card Interface
- Four open-drain output current regulators to supply/control the LED
- LDO-type vibrator
- One NMOS switch to control R(GB) LED
- Thermal Overload Protection
- Under-voltage Lock-out Protection
- Over-voltage Protection

- Test and Debug
- Built-in digital and analog loop back modes for both audio and baseband front-ends
- DAI port complying with GSM Rec.11.10

1.2 Modem Features

Integrated RF Receiver

- Quad-band differential input LNAs
- Quadrature RF mixers
- Fully integrated channel filter

Integrated RF Transmitter

- Precise transmission modulator
- Low noise SAWLESS transmitter

Integrated RF Frequency Synthesizer

- Programmable fractional-N synthesizer
- Integrated VCO
- Integrated loop filter
- Fast settling time suitable for multi-slot GPRS applications

Integrated Digitally controlled Crystal Oscillator (DCXO)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 9 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

- 26 MHz crystal oscillator
- On-chip programmable capacitor array for coarse tuning
- On-chip programmable capacitor array for fine-tuning

Radio Interface and Baseband Front Ends

- High resolution A/D converter for downlink baseband I and Q signals
- Calibration mechanism of offset and gain mismatch from analog baseband
- 10-bit D/A Converter for automatic power control
- Programmable radio Rx filter with adaptive bandwidth control
- Dedicated Rx filter for FB acquisition
- Baseband Parallel Interface (BPI) with programmable driving strength
- Multi-band support

Voice and Modem Codec

- Dial tone generation
- Voice memo
- Noise reduction
- Echo suppression

- Advanced Sidetone Oscillation Reduction
- Digital sidetone generator with programmable gain
- Two programmable acoustic compensation filters
- GSM/GPRS quad vocoders for adaptive multirate (AMR), enhanced full rate (EFR), full rate (FR) and half rate (HR)
- GSM channel coding, equalization and A5/1, A5/2 and A5/3 ciphering
- GPRS GEA1, GEA2 and GEA3 ciphering
- Programmable GSM/GPRS modem
- GSM Circuit Switch Data
- GPRS Class 12

Voice Interface and Voice Front End

- Two microphone inputs sharing one low noise amplifier with programmable gain and automatic gain control (AGC) mechanism
- Voice power amplifier with programmable gain
- A/D Converter for voice uplink path
- D/A Converter for voice downlink path
- Supports half-duplex hands-free operation
- Compliant with GSM 03.50

MediaTek Confidential

© 2011 MediaTek Inc.

Page 10 of 508

This document contains information that is proprietary to MediaTek Inc.

r Confide

Multimedia Features 1.3

LCD Interface

- Supports an 8-/9-bit parallel interface
- Supports a serial interface

LCD Controller

- Supports LCD module with a maximum resolution up to 240x320 at 16 bpp
- Capable of combining display memories with up to 4 blending layers
- Supports hardware dithering function
- Supports hardware display rotation on each layer

Camera Interface

Supports YUV422/RGB565 sensor interface

Multimedia Data Path

- dential Release for Supports hardware source accumulation scaling function
- Supports hardware rotation function

Audio Codec

Wavetable synthesis with up to 64 tones

- Advanced wavetable synthesizer capable of generating simulated stereo
- Wavetable including GM full set of 128 instruments and 47 sets of percussions
- PCM Playback and Record
- Digital Audio Playback

Audio Interface and Audio Front End

- Supports the I2S interface
- High resolution D/A converters for stereo audio playback
- Stereo analog input for stereo audio source
- Analog multiplexer for stereo audio
- FM radio recording
- Stereo-to-Mono conversion

MediaTek Confidential

© 2011 MediaTek Inc.

ion MCX

Page 11 of 508

Confidential A

General Description

ease fo Based on a dual-processor architecture, MT6252 integrates both an ARM7EJ-S core and digital signal processor cores. ARM7EJ-S is the main processor running the 2G and 2.5G protocol software. Digital signal processors are used to implement the MODEM algorithms as well as advanced audio functions. Except for some mixed-signal circuitries, the other building blocks in MT6252 are connected to either the microcontroller or one of the digital signal processors.

MT6252 consists of the following subsystems:

- Highly integrated RF transceiver for multi-band GSM and GPRS cellular systems
- Microcontroller Unit (MCU) Subsystem, including an ARM7EJ-S RISC processor and the accompanying memory management and interrupt handling logics
- Digital Signal Processor (DSP) Subsystem, including DSP cores and the accompanying memory, memory controller, and interrupt controller
- MCU/DSP Interface, where the MCU and the DSPs exchange hardware and software information
- Microcontroller Peripherals, including all user interface modules and RF control interface modules
- Microcontroller Coprocessors: Running computing-intensive processes in place of a microcontroller
- DSP Peripherals: Hardware accelerators for GSM/GPRS channel codec
- Multimedia Subsystem, including camera interface, display controller/resizer/rotator, etc.
- Voice Front End: The data path for converting analog speech from and to digital speech
- Audio Front End: The data path for converting stereo audio from stereo audio source
- Baseband Front End: The data path for converting digital signals of RF modules to analog signals or vice versa
- Timing Generator: Generating the control signals related to the TDMA frame timing
- Power, Reset and Clock subsystem: Managing the power, reset, and clock distribution inside MT6252
- LDOs, power-on sequences, switches and SIM-level shifters

Details of the individual subsystems and blocks are described in the following chapters.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 12 of 508

fidential Release for **Product Description**

Pin Description 2.1

Ball Diagram 2.1.1

MT6252 is designed using 11.6 mm x 12.1 mm, 305-ball, 0.5 mm pitch TFBGA package. Pin-outs and the top view are illustrated in Figure 2 for this package. Outline and dimensions of the package are illustrated in Figure 19, while the definition of the package is shown in Table 33.

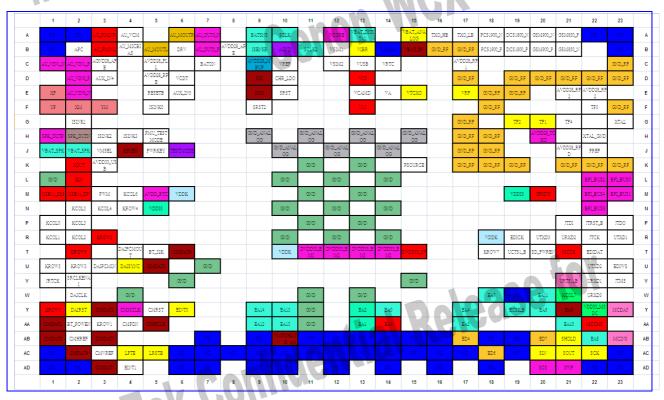


Figure 2 Top view of MT6252 11.6 x 12.1 mm 0.5 mm pitch TFBGA package

Pin Coordination

The pin coordination is shown as in **Table 1**.

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 13 of 508

	Pin Name		Pin Name	00	Pin Name
B10	AGND	N12	GND	AB7	NC
C3	AGND28_AFE	N14	GND	AC7	NC
B2	APC	P11	GND	AD7	NC
В3	AU_FMINL	P13	GND	A2	NC
A3	AU_FMINR	R10	GND	A1	NC
B4	AU_MICBIAS	R12	GND	B1	NC
В5	AU_MOUTL	R14	GND	AC1	NC
A6	AU_MOUTR	U7	GND	AD1	NC
A7	AU_OUT0_N	V6	GND	AD2	NC
В7	AU_OUT0_P	V15	GND	W19	NC
A4	AU_VCM	W4	GND	AC8	NC
E2	AU_VIN0_N	W11	GND	AB9	NC
D2	AU_VIN0_P	W13	GND	AC9	NC
C1	AU_VIN1_N	Y11	GND	AD9	NC
C2	AU_VIN1_P	Н9	GND_ANALOG	AC10	NC
D3	AUX_IN4	H11	GND_ANALOG	AD10	NC
E6	AUX_IN5	H13	GND_ANALOG	AB11	NC C
M5	AVDD_RTC	H15	GND_ANALOG	AC11	NC CO
В8	AVDD28_AFE	J10	GND_ANALOG	AB12	NC
С9	AVDD28_MBUF	J12	GND_ANALOG	AC12	NC
C5	AVDD28_PLL	J14	GND_ANALOG	AD12	NC
C17	AVDD28_RF1	B16	GND_RF	AB13	NC
E21	AVDD28_RF2	B17	GND_RF	AC13	NC
E22	AVDD28_RF2	C23	GND_RF	AB14	NC
J21	AVDD28_RFD	D17	GND_RF	AC14	NC
D5	AVDD28_RFE	D19	GND_RF	AD14	NC

© 2011 MediaTek Inc.

Page 14 of 508

H20	AVDD28_TCXO	D20	GND_RF	A18	PCS1900_N
К3	AVDD33_USB	D21	GND_RF	B18	PCS1900_P
C7	BATON	D22	GND_RF	Н5	PMU_TESTMODE
A9	BATSNS	D23	GND_RF	M3	PWM
L23	BPI_BUS0	E18	GND_RF	J5	PWRKEY
M23	BPI_BUS1	E19	GND_RF	E5	RESETB
L22	BPI_BUS2	F18	GND_RF	AC22	SCK
N22	BPI_BUS3	F23	GND_RF	A10	SCLK
M22	BPI_BUS4	G17	GND_RF	B11	SCLK2
T5	BT_32K	H17	GND_RF	AD20	SCS
AA2	BT_POWEN	H18	GND_RF	T20	SD_PWREN
D10	CHR_LDO	J17	GND_RF	AB21	SHOLD
AB1	CMDAT0	J18	GND_RF	AC20	SIN
AA1	CMDAT1	K17	GND_RF	D9	SIO
U5	CMDAT2	K18	GND_RF	E9	SIO2
Y3	CMDAT3	K19	GND_RF	AC21	SOUT
AC2	CMDAT4	K21	GND_RF	H2	SPK_OUTN
AB3	CMDAT5	K22	GND_RF	H1	SPK_OUTP
Т6	CMDAT6	K23	GND_RF	V2	SRCLKENAI
AD3	CMDAT7	M20	GPIO70	E10	SRST
AB2	CMHREF	B21	GSM850_N	F9	SRST2
Y4	CMMCLK	A21	GSM850_P	AD21	SWP
AA5	CMPCLK	A20	GSM900_N	Ј6	TESTMODE
AA4	CMPDN	B20	GSM900_P	G20	TP1
Y5	CMRST	В9	ISENSE	G19	TP2
AC3	CMVREF	F5	ISINK0	F22	TP3
W2	DAICLK	G2	ISINK1	G21	TP4

© 2011 MediaTek Inc.

Page 15 of 508

U3	DAIPCMIN	Н3	ISINK2	A16	тхо_нв
T4	DAIPCMOUT	H4	ISINK3	A17	TXO_LB
Y2	DAIRST	V1	JRTCK	T19	UCTS1_B
U4	DAISYNC	R22	JTCK	V21	URTS1_B
A19	DCS1800_N	P21	JTDI	V22	URXD1
B19	DCS1800_P	P23	JTDO	R21	URXD2
В6	DRV	V23	JTMS	W22	URXD3
T11	DVDD33_EMI	P22	JTRST_B	M1	USB11_DM
T12	DVDD33_EMI	P1	KCOL0	M2	USB11_DP
T13	DVDD33_EMI	R1	KCOL1	R23	UTXD1
T14	DVDD33_EMI	R2	KCOL2	U22	UTXD2
T15	DVDD33_SF	P2	KCOL3	R20	UTXD3
Y14	EA0	N3	KCOL4	E14	VA
AA13	EA1	N2	KCOL5	A15	VBAT_ANALOG
AA21	EA10	M4	KCOL6	A13	VBAT_DIGITAL
W20	EA11	W21	KCOL7	B15	VBAT_RF
AA9	EA12	J4	KPLED	J1	VBAT_SPK
AA10	EA13	Y1	KROW0	J2	VBAT_SPK
Y9	EA14	AA3	KROW1	B14	VCAMA
Y10	EA15	R3	KROW2	E13	VCAMD
Y13	EA2	U2	KROW3	D6	VCDT
AA14	EA3	N4	KROW4	A12	VCORE
Y17	EA4	U1	KROW5	M19	VDD33
AA17	EA5	T2	KROW6	N5	VDD33
Y20	EA6	T18	KROW7	Y22	VDD33_MSDC
W18	EA7	AC4	LPTE	M6	VDDK

© 2011 MediaTek Inc.

Page 16 of 508

1	1	ı	1	,	VDD 258
AB22	EA8	AC5	LRSTB	R18	VDDK
Y21	EA9	T21	MCCK	T10	VDDK
Y19	ECS2_B	AA22	MCCM0	B13	VIBR
AB17	ED4	Y23	MCDA0	D13	VIO
AC18	ED6	AB23	MCINS	F13	VM
AB20	ED7	AC6	NC	J3	VMSEL
R19	EDICK	AD6	NC	C10	VREF
T22	EDIDAT	AB15	NC	E17	VRF
U23	EDIWS	AC15	NC	C14	VRTC
Y6	EINT0	AB16	NC	B12	VSIM1
AD4	EINT1	AC16	NC	C12	VSIM2
J22	FREF	AD16	NC	E15	VTCXO
K15	FSOURCE	AC17	NC	C13	VUSB
AA11	GND	AB18	NC	AB10	WATCHDOG
K11	GND	AB19	NC	L2	XIN
K13	GND	AC19	NC	F2	XM
L1	GND	AD18	NC	K2	XOUT
L10	GND	AD22	NC	E1	XP
L12	GND	AD23	NC	G23	XTAL
L14	GND	AC23	NC NC	H22	XTAL_GND
M11	GND	B23	NC	F3	YM
M13	GND	A23	NC	F1	YP
N10	GND	A22	NC		

 Table 1 Pin coordination

© 2011 MediaTek Inc.

Page 17 of 508

2.1.3 **Detailed Pin Description**

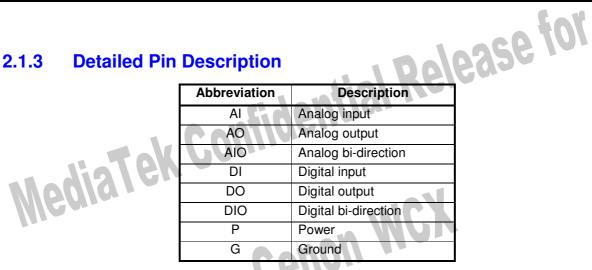


Table 2 Acronyms for pin types

Pin Name	Туре	Description	Power Domain
System			
TEST MODE	DIO	Factory test mode enable input	VRTC
XIN	Al	32.768 KHz crystal input	VRTC
XOUT	AO	32.768 KHz crystal output	VRTC
SRCLKENAI	DIO	Security Enable	VDD33
BT POWEN	DIO	Bluetooth Power Enable	VDD33
SD PWREN	DIO	SD Power Enable	VDDK
BT 32K	DIO	Bluetooth 32KHz clk	VDD33
PWM	DIO	Pulse-width modulated signal	VDD33
RF Control Circuitry		1 001503	
BPI_BUS0	DIO	RF hard-wire control bus bit 0	VDD33
BPI_BUS1	DIO	RF hard-wire control bus bit 1	VDD33
BPI_BUS2	DIO	RF hard-wire control bus bit 2	VDD33
BPI_BUS3	DIO	RF hard-wire control bus bit 3	VDD33
BPI_BUS4	DIO	RF hard-wire control bus bit 4	VDD33
UART Interface 1			
URXD1	DIO	UART 1 receive data	VDDK
UTXD1	DIO	UART 1 transmit data	VDDK
URXD2	DIO	UART 2 receive data	VDDK

MediaTek Confidential

© 2011 MediaTek Inc.

Page 18 of 508

		3 1 2 2 5 1	10.
Pin Name	Туре	Description	Power Domain
UTXD2	DIO	UART 2 transmit data	VDDK
URXD2	DIO	UART 3 receive data	VDDK
UTXD2	DIO	UART 3 transmit data	VDDK
URTS1 B	DIO	UART1 request to send (active low)	DVDD33_EMI
UCTS1 B	DIO	UART1 clear to send (active low)	DVDD33_EMI
Digital Audio Interface		Varia	
DAICLK	DIO	DAI interface clock output	VDD33
DAIPCMOUT	DIO	DAI PCM data output	VDD33
DAIPCMIN	DIO	DAI PCM data input	VDD33
DAISYNC	DIO	DAI reset signal input	VDD33
DAIRST	DIO	DAI frame synchronization input	VDD33
JTAG Interface			
JTMS	DI	JTAG test port mode switch	VDD33
JTDI	DI	JTAG test port data input	VDD33
JTCK	DI	JTAG test port clock input	VDD33
JTRST B	DI	JTAG test port reset input	VDD33
JRTCK	DIO	JTAG test port returned clock output	VDD33
JTDO	DIO	JTAG test port data output	VDD33
External Interrupt			
EINT0	DIO	External interrupt 0	VDDK
EINT1	DIO	External interrupt 1	VDDK
Keypad Interface			
KCOL0	DIO	Keypad column 0	VDD33
KCOL1	DIO	Keypad column 1	VDD33
KCOL2	DIO	Keypad column 2	VDD33
KCOL3	DIO	Keypad column 3	VDD33
KCOL4	DIO	Keypad column 4	VDD33
KCOL5	DIO	Keypad column 5	VDD33
KCOL6	DIO	Keypad column 6	VDD33
KCOL7	DIO	Keypad column 7	VDD33
KROW0	DIO	Keypad row 0	VDD33
KROW1	DIO	Keypad row 1	VDD33
KROW2	DIO	Keypad row 2	VDD33

© 2011 MediaTek Inc.

Page 19 of 508

MEDIATEK

Pin Name	Туре	Description Description	Power Domain
KDOWO		Keypad row 3	VDD00
KROW3 KROW4	DIO	Keypad row 4	VDD33
	DIO	Keypad row 5	VDD33 VDD33
KROW5	DIO	Keypad row 6	VDD33 VDD33
	DIO	Keypad row 7	
KROW7	DIO	Neypau Tow 7	VDD33
CARCT	DIO	CMOC correct signal autout	VDD00
CMRST	DIO	CMOS sensor reset signal output	VDD33
CMPDN	DIO	CMOS sensor power down control	VDD33
CMVREF	DIO	CMOS sensor vertical reference signal input	VDD33
CMHREF	DIO	CMOS sensor horizontal reference signal input	VDD33
CMDAT0	DIO	CMOS sensor data input 0	VDD33
CMDAT1	DIO	CMOS sensor data input 1	VDD33
CMDAT2	DIO	CMOS sensor data input 2	VDD33
CMDAT3	DIO	CMOS sensor data input 3	VDD33
CMDAT4	DIO	CMOS sensor data input 4	VDD33
CMDAT5	DIO	CMOS sensor data input 5	VDD33
CMDAT6	DIO	CMOS sensor data input 6	VDD33
CMDAT7	DIO	CMOS sensor data input 7	VDD33
CMPCLK	DIO	CMOS sensor master clock output	VDD33
CMMCLK	DIO	CMOS sensor master clock output	VDD33
External Memory Interf	ace		
ED4	DIO	Reserved	DVDD33_EMI
ED6	DIO	Reserved	DVDD33_EMI
ED7	DIO	Reserved	DVDD33_EMI
EA0	DIO	Reserved	DVDD33_EMI
EA1	DIO	Reserved	DVDD33_EMI
EA2	DIO	Reserved	DVDD33_EMI
EA3	DIO	Reserved	DVDD33_EMI
EA4	DIO	Reserved	DVDD33_EMI
EA5	DIO	Reserved	DVDD33_EMI
EA6	DIO	Reserved	DVDD33_EMI
EA7	DIO	Reserved	DVDD33_EMI
EA8	DIO	Reserved	DVDD33_EMI
EA9	DIO	Reserved	DVDD33_EMI

MediaTek Confidential

© 2011 MediaTek Inc.

Page 20 of 508

Confidential A

		1_050	10,
Pin Name	Туре	Description	Power Domain
EA10	DIO	Reserved	DVDD33_EMI
EA11	DIO	Reserved	DVDD33_EMI
EA12	DIO	Reserved	DVDD33_EMI
EA13	DIO	Reserved	DVDD33_EMI
EA14	DIO	Reserved	DVDD33_EMI
EA15	DIO	Reserved	DVDD33_EMI
ECS2 B	DIO	Reserved	DVDD33_EMI
WATCHDOG	DIO	Reserved	DVDD33_EMI
MS/SD Card Interface		0.000	
MCINS	DIO	SD Card Detect Input	DVDD33_EMI
MCDA0	DIO	SD Serial Data IO 0/Memory Stick Serial Data IO	VDD33_MSDC
MCCK	DIO	SD Serial Clock/Memory Stick Serial Clock	VDD33_MSDC
MCCM0	DIO	SD Command Output/Memory Stick Bus State Output	VDD33_MSDC
USB Interface			
DP	AIO	D+ data input/output	VUSB
DM	AIO	D- data input/output	VUSB
LCD Interface			
LPTE	DIO	Parallel display interface	DVDD33_EMI
LRSTB	DIO	Parallel display interface Reset Signal	DVDD33_EMI
SIM Card Interface			
SIO	DIO	SIM Data Input / Outputs	VSIM1
SRST	DO	SIM card reset output	VSIM1
SCLK	DO	SIM card clock output	VSIM1
SIO2	DIO	SIM 2 Data Input / Outputs	VSIM2
SRST2	DIO	SIM 2 card reset output	VSIM2
SCLK2	DIO	SIM 2 card clock output	VSIM2
Serial Flash Interface		CADILLIO	
SCS	DIO	Serial Flash Chip Select	DVDD33_SF
SIN	DIO	Serial Flash Data input / output	DVDD33_SF
SOUT	DIO	Serial Flash Data input / output	DVDD33_SF
SHOLD	DIO	Serial Flash Data input / output	DVDD33_SF
SWP	DIO	Serial Flash Data input / output	DVDD33_SF
SCK	DIO	Serial Flash Clock	DVDD33_SF

MediaTek Confidential

© 2011 MediaTek Inc.

Page 21 of 508

	1	1-054	IA.
Pin Name	Туре	Description	Power Domain
PMIC Miscellaneous		et dontial	
PMU TESTMODE	AIO	PMU test mode	
VBAT_RF	AIO	RF used battery voltage input	•
VBAT Analog	AlO	Analog used battery voltage input	-
VBAT Digital	AIO	Digital used battery voltage input	-
VREF	AIO	Reference voltage for PMIC	-
VBAT BACKUP	AIO	Backup battery for RTC	-
BATSNS	AIO	Battery sense input	-
ISENSE	AIO	Current sense input	-
VMSEL	AIO	Memory supply voltage level select input	-
BATON	AIO	Battery insertion test	-
PWRKEY	AIO	Power key press input (low active)	-
RESETB	AIO	Power on reset (low active)	-
VCORE	AIO	Voltage output to digital core	-
SPK OUTP	AIO	Speaker positive output	-
SPK OUTN	AIO	Speaker negative output	-
PMU LDO Outputs			
VTCXO	AIO	Crystal or VCTCXO LDO output	
VRF	AIO	RF LDO output	
VCAMA	AIO	Camera module analog/io power	
VA	AIO	Analog LDO output	
VM	AIO	External memory LDO output	104
VIO	AIO	Digital I/O voltage LDO output	
VCAMD	AIO	Camera module core/io power	
VUSB	AIO	USB power	
VSIM1	AIO	LDO output to SIM card	
VSIM2	AIO	LDO output to SIM 2 card	
PMU Charger and LEI	Driving I	nterface	
DRV	AIO	Charging driving	
CHRIN	AIO	Charger-In voltage detection	
CHR LDO	AIO	Charger regulator	
VIBR	AIO	Vibrator driving output	
KP_LED	AIO	Keypad LED driver input	
ISINK1	AIO	Current sink1 for B/L LED	

© 2011 MediaTek Inc.

Page 22 of 508

Pin Name	Туре	Description	Power Domain
ISINK3	AIO	Current sink3 for B/L LED	
ISINK2	AIO	Current sink2 for B/L LED	
ISINK4	AIO	Current sink4 for B/L LED	
RF Interface	FAV	Guin	
GSM850_N	AIO	Differential RF input ball for RX GSM850 band	AVDD28_RF1
GSM850 P	AIO	Differential RF input ball for RX GSM850 band	AVDD28 RF1
GSM900 N	AIO	Differential RF input ball for RX GSM900 band	AVDD28 RF1
GSM900 P	AIO	Differential RF input ball for RX GSM900 band	AVDD28 RF1
DCS1800_N	AIO	Differential RF input ball for RX DCS1800 band	AVDD28_RF1
DCS1800 P	AIO	Differential RF input ball for RX DCS1800 band	AVDD28 RF1
PCS1900 N	AIO	Differential RF input ball for RX PCS1900 band	AVDD28 RF1
PCS1900_P	AIO	Differential RF input ball for RX PCS1900 band	AVDD28_RF1
TXO_LB	AIO	RF output ball for TX LB (GSM900/GSM850)	AVDD28_RF1
TXO HB	AIO	RF output ball for TX HB (DCS/PCS)	AVDD28 RF1
FREF	AIO	Monitor ball for DCXO output	AVDD28 TCXO
XTAL	AIO	Input ball for DCXO crystal	AVDD28 TCXO
XTAL GND	AIO	Input ball for DCXO crystal ground	AVDD28 TCXO
TP1	AIO	RF test ball 1	AVDD28 TCXO
TP2	AIO	RF test ball 2	AVDD28 TCXO
TP3	AIO	RF test ball 3	AVDD28_TCXO
TP4	AIO	RF test ball 4	AVDD28 TCXO
Analog Baseband Inter	face		Lat
AU MOUTL	Α	Audio analog output left channel	
AU_MOUTR	Α	Audio analog output right channel	
AU_FMINR	Α	FM radio analog input right channel	
AU FMINL	Α	FM radio analog input left channel	
AU_OUT0_N	Α	Earphone 0 amplifier output (-)	
AU OUTO P	Α	Earphone 0 amplifier output (+)	
AU VIN1 P	Α	Microphone 1 amplifier input (+)	
AU VIN1 N	A	Microphone 1 amplifier input (-)	
AU_VINO_N	Α	Microphone 0 amplifier input (+)	
AU_VIN0_P	Α	Microphone 0 amplifier input (-)	
AUX IN4	Α	Auxiliary ADC input	
AUX_IN5	Α	Auxiliary ADC input	

© 2011 MediaTek Inc.

Page 23 of 508

	ı	1-ACE	
Pin Name	Туре	Description	Power Domain
APC	Α	Automatic power control DAC output	
XP	Α	Touch panel X-axis positive input	
XM	Α	Touch panel X-axis negative input	
YP	A	Touch panel Y-axis positive input	
YM	A	Touch panel Y-axis negative input	
AU VCM	Α	Clean VCM for reference buffer	
AU MICBIAS	Α	Microphone bias source P	
Digital Power			
VDDK	Р	Supply voltage of digital core	
VDD33	Р	Supply voltage of digital IO	
DVDD33 SF	P	Supply voltage of digital Serial Flash IO	
VDD33_MSDC	Р	Supply voltage of digital SD/MS IO	
DVDD33_EMI	Р	Supply voltage of external memory interface	
RF Power and Ground			
AVDD28 RF1	Р	AVDD 2.8V for RFSYS front end circuit block	
AVDD28 RF2	Р	AVDD 2.8V for RFSYS RFVCO	
AVDD28 TCXO	Р	AVDD 2.8V for RFSYS DCXO, SX and RX IF	
AVDD28 RFD	Р	AVDD 2.8V for RFSYS Digital circuit block	
GND RF	G	RF Ground	
Analog Power and Gro	und		
AGND28 AFE	Α	AFE AGND (clean reference ground)	-
VUSB	Α	Supply voltage of USB analog	Lat
VRTC	Α	Supply voltage of real time clock circuitry	- 10 1 -
VBAT_SPK	Α	Supply voltage of Speaker	
GND_ANALOG	Α	Supply ground of analog	-
AVDD28 PLL	Α	Supply voltage of PLL	
AVDD28_RFE	Α	Supply voltage of RFE	
AVDD28 MBUF	Α	Audio buffer AVDD	
AVDD28 AFE	Α	AFE AVDD	
AGND	Α	Clean GND for ANALOG Circuitry	
GND	Α	Ground for MT6252	

Table 3 Pin function description and power domain

© 2011 MediaTek Inc.

Page 24 of 508

		Reset		10.0	Termination	
Name	State	Aux	PU/PD	Output Drivability	When Not Used	IO Type
Analog IO		-1	- 10			
APC	-		1211	110.	-	ANALOG
AU_FMINL		17411	NA.	-	-	ANALOG
AU_FMINR	-57	1111	-	-	-	ANALOG
AU_MICBIAS	-	-	-	-	-	ANALOG
AU_MOUTL	-	-	-	- 1	-	ANALOG
AU_MOUTR	-	-	-	-11-	-	ANALOG
AU_OUT0_N	-	-	-	MULA	-	ANALOG
AU_OUT0_P	-	-	-15.0	U dia.	-	ANALOG
AU_VCM	-	-	111	_	-	ANALOG
AU_VIN0_N	-		Air	-	-	ANALOG
AU_VIN0_P	-	-	-	-	-	ANALOG
AU_VIN1_N	-	-	-	-	-	ANALOG
AU_VIN1_P	-	-	-	-	-	ANALOG
AUX_IN4	-	-	-	-	-	ANALOG
AUX_IN5	1	-	-	-	-	ANALOG
BATON	-	-	-	-	-	ANALOG
DCS1800_N	-	-	-	-	-	ANALOG
DCS1800_P	-	-	-	-	-	ANALOG
DRV	-	-	-	-	-	ANALOG
FREF	-	-	-	-	-	ANALOG
FSOURCE	-	-	-	-	- 6	ANALOG
GSM850_N	1	-	-	-		ANALOG
GSM850_P	-	-	-		1053	ANALOG
GSM900_N	-	-	-	1 1001	San	ANALOG
GSM900_P	-	-	-		-	ANALOG
ISENSE	-			1101-	-	ANALOG
ISINK0		10-11		-	-	ANALOG
ISINK1			-	-	-	ANALOG
ISINK2	V	-	-	-	-	ANALOG
ISINK3	-	-	-	-	-	ANALOG
KPLED	-	-	-		-	ANALOG
PCS1900_N	-	-	-	18117.7	-	ANALOG
PCS1900_P	-	-	- 0	V MAA	-	ANALOG

© 2011 MediaTek Inc.

Page 25 of 508

Confidential A

		Reset			255	
Name	State	Aux	PU/PD A	Output Drivability	Termination When Not Used	IO Type
PMU_TESTMODE	-	1	-10		VSS	ANALOG
PWRKEY	-	15.7	1211	Class.	-	ANALOG
RESETB	60	1111	YA.	-	-	ANALOG
SCLK			-	-	-	ANALOG
SCLK2		-	-	-	-	ANALOG
SIO	-	-	-	- 1	-	ANALOG
SIO2	-	-	-	-116	-	ANALOG
SPK_OUTN	-	-	-		-	ANALOG
SPK_OUTP	-	-	- 10 0	W dia.	-	ANALOG
SRST	-	-		-	-	ANALOG
SRST2	-		Ai.	-	-	ANALOG
TP1	-	-	-	-	VSS	ANALOG
TP2	-	-	-	-	VSS	ANALOG
TP3	-	-	-	-	VSS	ANALOG
TP4	-	-	-	-	VSS	ANALOG
TXO_HB	-	-	-	-	-	ANALOG
TXO_LB	-	-	-	-	-	ANALOG
USB11_DM	-	-	-	-	-	ANALOG
USB11_DP	-	-	-	-	-	ANALOG
VCDT	-	-	-	-	-	ANALOG
VMSEL	-	-	-	-	-	ANALOG
VREF	-	-	-	-	- 6	ANALOG
XIN	-	-	-	-	- 60 7	ANALOG
XM	-	-	-	-	1250	ANALOG
XOUT	-	-	-	. 1001	2015	ANALOG
XP	-	-		131 -110	-	ANALOG
XTAL	-			1101	-	ANALOG
YM		MEAN		-	-	ANALOG
YP	1		-	-	-	ANALOG
PWR/GND						
AVDD_RTC	-	-	-	-	-	PWR
AVDD28_AFE	-	-	-	-110	-	PWR
AVDD28_MBUF	-	-	-	A JIM	-	PWR
AVDD28_PLL	-	-	- 0	W Ala	-	PWR

MediaTek Confidential

© 2011 MediaTek Inc.

Page 26 of 508

Confidential A

		Reset			Termination	
Name	State Aux PU/PD		PU/PD	Output Drivability	When Not Used	IO Type
AVDD28_RF1	-		-10		-	PWR
AVDD28_RF2	-	560	1911	Plan.	-	PWR
AVDD28_RFD	6.0	1111	YA.	-	-	PWR
AVDD28_RFE		11:1-	-	-	-	PWR
AVDD28_TCXO		-	-	-	-	PWR
AVDD33_USB	-	-	-	- 1	-	PWR
BATSNS	-	-	-	-11-0	-	PWR
CHR_LDO	-	-	-		-	PWR
VA	-	-	- 100	U 41-	-	PWR
VBAT_ANALOG	-			-	-	PWR
VBAT_DIGITAL	-		Ai.	-	-	PWR
VBAT_RF	-	-	-	-	-	PWR
VBAT_SPK	-	-	-	-	-	PWR
VCAMA	-	-	-	-	-	PWR
VCAMD	-	-	-	-	-	PWR
VCORE	-	-	-	-	-	PWR
VDD33	-	-	-	-	-	PWR
VDD33_MSDC	-	-	-	-	-	PWR
DVDD33_EMI	-	-	-	-	-	PWR
DVDD33_SF	-	-	-	<u>-</u>	-	PWR
VDDK	-	-	-	-	-	PWR
VIBR	-	-	-	-	- 6	PWR
VIO	-	-	-	-		PWR
VM	-	-	-	-	1955	PWR
VRF	-	-	- ,	. 1001	Sain	PWR
VSIM1	-	-			-	PWR
VSIM2	-			11011	-	PWR
VTCXO				-	-	PWR
VUSB			-		-	PWR
VRTC	10	-	-	-	-	PWR
AGND28_AFE	-	-	-	-	-	GND
AGND	-	-	-	-10	-	GND
GND	-	-	-	ANH. N	-	GND
GND_ANALOG	-	-		V AIA	-	GND

MediaTek Confidential

© 2011 MediaTek Inc.

Page 27 of 508

		Reset			Termination	
Name	State	Aux	PU/PD	Output Drivability	When Not Used	IO Type
GND_RF	-	- 1	10		-	GND
XTAL_GND		450	1211	Plan.	-	GND
TESTMODE	60	17111	Non			
TESTMODE		X	PD	12mA	No Need	IO Type 2
RF Control Circuitry						
BPI_BUS4	LO	Х	-	2,4,6,8mA	No Need	IO Type 2
BPI_BUS3	LO	Х	-	2,4,6,8mA	No Need	IO Type 2
BPI_BUS2	LO	Х	-	2,4,6,8mA	No Need	IO Type 2
BPI_BUS1	LO	X	100	2,4,6,8mA	No Need	IO Type 2
BPI_BUS0	LO	Х		2,4,6,8mA	No Need	IO Type 2
UART Interface 1		V	Ai-			
URXD1	I	0	PU	4,8,12,16mA	No Need	IO Type 2
UTXD1	НО	0	PU	4,8,12,16mA	No Need	IO Type 2
UCTS1_B	I	0	PU	4,8,12,16mA	No Need	IO Type 2
URTS1_B	I	0	PU	4,8,12,16mA	No Need	IO Type 2
UART Interface 2						
URXD2	I	0	PU	4,8,12,16mA	No Need	IO Type 2
UTXD2	I	0	PU	4,8,12,16mA	No Need	IO Type 2
UART Interface 3						
URXD3	I	0	PU	4,8,12,16mA	No Need	IO Type 2
UTXD3	I	0	PU	4,8,12,16mA	No Need	IO Type 2
Digital Audio Interface					£	4
DAICLK	I	0	PD	2,4,6,8mA	No Need	IO Type 2
DAIPCMOUT	I	0	PD	2,4,6,8mA	No Need	IO Type 2
DAIPCMIN	I	0	PD	2,4,6,8mA	No Need	IO Type 2
DAISYNC	I	0	PD	2,4,6,8mA	No Need	IO Type 2
DAIRST	I	0	PD	2,4,6,8mA	No Need	IO Type 2
JTAG Interface						
JTMS		X	PU	N/A	No Need	IO Type 3
JTDI 1		Х	PU	N/A	No Need	IO Type 3
JTCK	I	Х	PU	N/A	No Need	IO Type 3
JTRST_B	I	Х	PD	N/A	No Need	IO Type 3
JTDO	XO	Х	-	2,4,6,8mA	No Need	IO Type 2
JRTCK	LO	4	PU	2,4,6,8mA	No Need	IO Type 2

© 2011 MediaTek Inc.

Page 28 of 508

		Reset		2 4 1 2 1 1 1 1	Termination	10.7
Name	State	Aux	PU/PD	Output Drivability	When Not Used	IO Type
PWM			1010			
PWM	1	2	1211	4,8,12,16mA	VSS	IO Type 2
External Interrupt		17111	Non			
EINT0		117	PU	2,4,6,8mA	No Need	IO Type 2
EINT1		1	PU	2,4,6,8mA	No Need	IO Type 2
Keypad Interface			•	- 1		
KCOL7	I	0	PU	2,4,6,8mA	No Need	IO Type 2
KCOL6	I	0	PU	2,4,6,8mA	No Need	IO Type 2
KCOL5	I	0	PU	2,4,6,8mA	No Need	IO Type 2
KCOL4	I	0	PU	2,4,6,8mA	No Need	IO Type 2
KCOL3	ı	0	PU	2,4,6,8mA	No Need	IO Type 2
KCOL2	ı	0	PU	2,4,6,8mA	No Need	IO Type 2
KCOL1	I	0	PU	2,4,6,8mA	No Need	IO Type 2
KCOL0	ı	0	PU	2,4,6,8mA	No Need	IO Type 2
KROW7	ı	0	PD	2,4,6,8mA	No Need	IO Type 2
KROW6	I	0	PD	2,4,6,8mA	No Need	IO Type 2
KROW5	I	0	PD	2,4,6,8mA	No Need	IO Type 2
KROW4	I	0	PD	2,4,6,8mA	No Need	IO Type 2
KROW3	ı	0	PD	2,4,6,8mA	No Need	IO Type 2
KROW2	ı	0	PD	2,4,6,8mA	No Need	IO Type 2
KROW1	I	0	PD	2,4,6,8mA	No Need	IO Type 2
KROW0	I	0	PD	2,4,6,8mA	No Need	IO Type 2
System					- 00 T	UI
SRCLKENA	I	1	PD	2,4,6,8mA	No Need	IO Type 2
Camera Interface			4	. I DON	Gora	
CMRST	1	0	PU	4,8,12,16mA	No Need	IO Type 2
CMPDN	I	0	PD	4,8,12,16mA	No Need	IO Type 2
CMVREF		0	PD	4,8,12,16mA	No Need	IO Type 2
CMHREF	I	0	PD	4,8,12,16mA	No Need	IO Type 2
CMDAT7		0	PD	4,8,12,16mA	No Need	IO Type 2
CMDAT6	_	0	PD	4,8,12,16mA	No Need	IO Type 2
CMDAT5	I	0	PD	4,8,12,16mA	No Need	IO Type 2
CMDAT4	ļ	0	PD	4,8,12,16mA	No Need	IO Type 2
CMDAT3	I	0	PD	4,8,12,16mA	No Need	IO Type 2

© 2011 MediaTek Inc.

Page 29 of 508

Confidential A

		Reset		100	Termination	
Name	State	Aux	PU/PD	Output Drivability	When Not Used	IO Type
CMDAT2	I	0	PD	4,8,12,16mA	No Need	IO Type 2
CMDAT1	1	0	PD	4,8,12,16mA	No Need	IO Type 2
CMDAT0		0	PD	4,8,12,16mA	No Need	IO Type 2
CMPCLK		0	PD	4,8,12,16mA	No Need	IO Type 2
CMMCLK	I	0	PD	4,8,12,16mA	No Need	IO Type 2
LCD Interface				- 11		
LPTE	I	0	PD	4,8,12,16mA	No Need	IO Type 2
LRSTB	I	0	PD	4,8,12,16mA	No Need	IO Type 2
12S			-100			
EDICK	I	0	PD	4,8,12,16mA	No Need	IO Type 2
EDIDAT	I	0	PD	4,8,12,16mA	No Need	IO Type 2
EDIWS	I	0	PD	4,8,12,16mA	No Need	IO Type 2
External Memory Interface						
EA15	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA14	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA13	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA12	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA11	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA10	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA9	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA8	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA7	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA6	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA5	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA4	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA3	LO	0		2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA2	LO	0		2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA1	LO	0		2,4,6,8,10,12,14,16mA	No Need	IO Type 2
EA0	LO	0		2,4,6,8,10,12,14,16mA	No Need	IO Type 2
ECS2_B	НО	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
ED7	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
ED6	LO	0	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
ED4	LO	Х	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
WATCHDOG	НО	Х	PD	2,4,6,8,10,12,14,16mA	No Need	IO Type 2

MediaTek Confidential

© 2011 MediaTek Inc.

Page 30 of 508

						9 -
Name		Reset		Output Drivability	Termination	IO Type
Name	State	Aux	PU/PD	Output Drivability	When Not Used	Ютуре
Serial Flash Interface			- 10			
SCK	LO	11	1211	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
SWP	LO	1	Ya.	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
SHOLD	LO	117	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
SCS	НО	1	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
SIN	LO	1	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
SOUT	LO	1	-	2,4,6,8,10,12,14,16mA	No Need	IO Type 2
MS/SD Card Interface				MUL		
MCINS	I	0	PU	4,8,12,16mA	No Need	IO Type 2
MCCK	I	0	PD	4,8,12,16mA	No Need	IO Type 2
MCDA0	I	0	PD	4,8,12,16mA	No Need	IO Type 2
MCCM0	I	0	PD	4,8,12,16mA	No Need	IO Type 2
SD_PWREN	I	0	PD	2,4,6,8mA	No Need	IO Type 2
MISC/GPIO						
BT_POWEN	1	0	PD	2,4,6,8mA	No Need	IO Type 2
BT_32K	I	0	PD	2,4,6,8mA	No Need	IO Type 2
GPIO70	I	0	PD	2,4,6,8mA	No Need	IO Type 2

Table 4 Default pin state drivability

	Abbreviation	Description
	I	Input
	LO	Low output
	НО	High output
	XO	Low or high output
	PU	Pull-up
	PD	Pull-down
- 1	KO-III-	No PU/PD
MOTON	0~N	Aux. function number
Modialon	Х	Delicate function pin
Menin	Table	e 5 State of Pins

Table 5 State of Pins

© 2011 MediaTek Inc.

Page 31 of 508

MEDIATEK

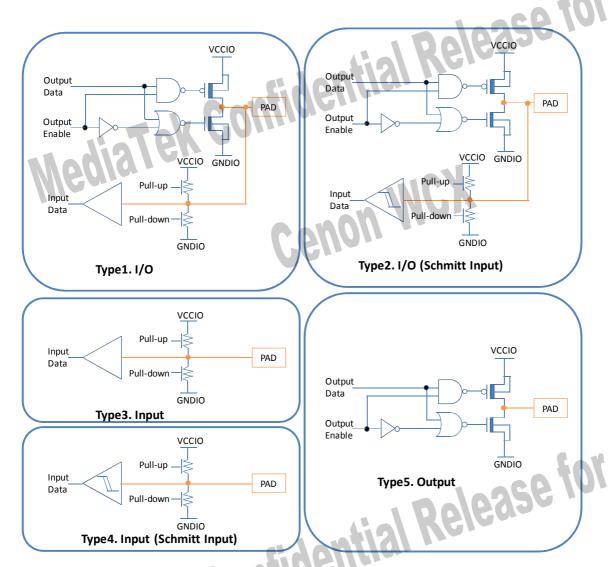


Figure 3 IO Types in state of pins

2.1.4 Pin Multiplexing, Capability and Settings

Abbreviation	Description
PU	Pull-up, not controllable

MediaTek Confidential

© 2011 MediaTek Inc.

Page 32 of 508

	Abbreviation	Description 1028 follows
	PD	Pull-down, not controllable
	CU	Pull-up, controllable
	CD	Pull-down, controllable
- 1.	X	Cannot pull-up or pull-dowm
Matatek	Table 6 Acror	nyms for pull-up/down typess

Name	Aux. Function	Aux. Name	Aux. Type	PU/PD/ CU/CD	Driving	SMT
PWM	0	GPIO0	10	CU. CD	4mA, 8mA, 12mA, 16mA	0
	1	PWM1 output	0	CU, CD	4mA, 8mA, 12mA, 16mA	0
	2	CLKSQ SEL		CU, CD	-	0
KCOL6	0	GPIO1	10	CU, CD	2mA,4mA,6mA,8mA	0
	1	KCOL6	ı	CU, CD	-	0
	2	EINT4	ı	CU, CD	-	0
COL5	0	GPIO2	Ю	CU, CD	2mA,4mA,6mA,8mA	0
	1	KCOL5	ı	CU, CD	-	0
	3	CAM SDA	0	CU, CD	2mA,4mA,6mA,8mA	0
COL4	0	GPIO3	Ю	CU, CD	2mA,4mA,6mA,8mA	0
	1	KCOL4	ı	CU, CD	-	0
	3	CAM SCL	0	CU, CD	2mA,4mA,6mA,8mA	0
COL3	0	GPIO4	10	CU. CD	2mA.4mA.6mA.8mA	0
	1	KCOL3	Ī	CU, CD	-	0
	2	UART1 CTS	1	CU. CD	-	0
	3	BSI clock	0	CU, CD	2mA,4mA,6mA,8mA	0
(COL2	0	GPIO5	10	CU, CD	2mA,4mA,6mA,8mA	0
	1	KCOL2	Ī	CU, CD	-	0
	2	UART1 CTS	ı	CU, CD	- 4	0
	3	BSI clock	0	CU, CD	2mA,4mA,6mA,8mA	0
COL1	0	GPIO6	10	CU, CD	2mA,4mA,6mA,8mA	0
	1	KCOL1	Ī	CU, CD	- 10055	0
	3	BSI clock	0	CU, CD	2mA,4mA,6mA,8mA	0
	5	EDICK	Ю	CU, CD	2mA,4mA,6mA,8mA	0
COL0	0	GPIO7	Ю	CU, CD	2mA,4mA,6mA,8mA	0
	1	KCOL0	- 1	CU, CD		0
KROW5	0	GPIO8	10	CU. CD	2mA,4mA,6mA,8mA	0
	1	KROW5	10	CU, CD	2mA,4mA,6mA,8mA	0
	2	EINT5		CU, CD	-	0
	5	EDIDAT	Ю	CU, CD	2mA,4mA,6mA,8mA	0
(ROW4	0	GPIO9	Ю	CU, CD	2mA,4mA,6mA,8mA	0
	TU TI	KROW4	Ю	CU, CD	2mA,4mA,6mA,8mA	0
MARI	3	SRCLKENA	0	CU, CD	2mA,4mA,6mA,8mA	0
	5	EDIWS	10	CU, CD	2mA,4mA,6mA,8mA	0
KROW3	0	GPIO10	IO	CU, CD	2mA,4mA,6mA,8mA	0
-	1	KROW3	10	CU, CD	2mA,4mA,6mA,8mA	0
	2	URST1 RTS B	0	CU, CD	2mA,4mA,6mA,8mA	0

© 2011 MediaTek Inc.

Page 33 of 508

Confidential A

Name	Aux. Function	Aux. Name	Aux. Type	PU/PD/ CU/CD	Driving	SMT
	4	LSA0	0	CU, CD	2mA,4mA,6mA,8mA	0
KROW2	0	GPIO11	10	CU, CD	2mA,4mA,6mA,8mA	0
	1	KROW2	0	CU, CD	2mA,4mA,6mA,8mA	0
	4	LSCK	0	CU, CD	2mA,4mA,6mA,8mA	0
	5	URTD3	0	CU, CD	2mA,4mA,6mA,8mA	0
KROW1	0	GPIO12	10	CU, CD	2mA,4mA,6mA,8mA	0
	1	KROW1	10	CU. CD	2mA.4mA.6mA.8mA	0
	4	LSDA	10	CU, CD	2mA,4mA,6mA,8mA	0
KROW0	Ö	GPIO13	10	CU, CD	2mA,4mA,6mA,8mA	0
KHOWU	1	KROW0	10	CU. CD	2mA,4mA,6mA,8mA	0
- 1111	4	LSDI	10	CU, CD	2mA,4mA,6mA,8mA	0
-	4	LSDI	10	CO, CD	2mA, 6mA, 8mA, 10mA,	0
ECS2_B	0	GPIO14	Ю	CU, CD	12mA , 14mA, 16mA, 18mA	0
	1	ECS2_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0
	2	LPCE0_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0
	3	LSCE0_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0
	6	SEN2LCM_CS_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0
DAICLK	0	GPIO15	0	CU, CD	2mA,4mA,6mA,8mA	0
27.1.02.1	1	DAICLK	Ö	CU. CD	2mA,4mA,6mA,8mA	0
	3	EDICLK	10	CU, CD	2mA,4mA,6mA,8mA	0
DAIPCMOUT	0	GPIO16	IO	CU, CD	2mA,4mA,6mA,8mA	0
D7 111 O111001	1	DAIPCMOUT	0	CU, CD	2mA,4mA,6mA,8mA	0
	3	EDI DATA	10	CU, CD	2mA,4mA,6mA,8mA	0
DAIPCMIN	0	GPIO17	10	CU, CD	2mA,4mA,6mA,8mA	0
DAII CIVIIIN	1	DAIPCMIN	I	CU, CD	ZIIIA,4IIIA,0IIIA,0IIIA	0
DAIRST	0	GPIO18	10	CU, CD	2mA,4mA,6mA,8mA	0
DAINST	_		I	,	ZIIIA,4IIIA,0IIIA,0IIIA	
	1	DAIRST	•	CU, CD	-	0
DAISYNC	0	GPIO19	10	CU, CD	2mA,4mA,6mA,8mA	0
	1	DAISYNC	0	CU, CD	2mA,4mA,6mA,8mA	0
	3	EDI_WS	10	CU, CD	2mA,4mA,6mA,8mA	0
URXD3	0	GPIO20	IO	CU, CD	4mA,8mA,12mA,16mA	0
	1	URXD3	ı	CU, CD	- LUGIEU-	0
	2	UCTS2_B	I	CU, CD	al Rui	0
UTXD3	0	GPIO21	IO	CU, CD	4mA,8mA,12mA,16mA	0
	1	UTXD3	0	CU, CD	4mA,8mA,12mA,16mA	0
	2	URTS2_B	0	CU, CD	4mA,8mA,12mA,16mA	0
URXD2	0	GPIO22	IO	CU, CD	4mA,8mA,12mA,16mA	0
	1	URXD2		CU, CD	-	0
_	2	UCTS1_B	- 1	CU, CD	-	0
	3	CAM SCL	IO	CU. CD	4mA,8mA,12mA,16mA	0
UTXD2	O O	GPIO23	10	CU, CD	4mA,8mA,12mA,16mA	0
	T	UTXD2	0	CU, CD	-	0
	2	URTS1_B	0	CU, CD	- 3110	0
	3	CAM SDA	10	CU, CD	4mA,8mA,12mA,16mA	0
			_	,-		
UCTS1_B	0	GPIO24	IO	CU, CD	4mA,8mA,12mA,16mA	0
	1	UCTS1_B		CU, CD	1	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 34 of 508

Confidential A

Name	Aux. Function	Aux. Name	Aux. Type	PU/PD/ CU/CD	Driving	SMT
	2	CAM_SCL	IO	CU, CD	4mA,8mA,12mA,16mA	0
	3	NLD13	IO.	CU, CD	4mA,8mA,12mA,16mA	0
	5	EINT5	VI	CU, CD	-	0
URTS1 B	0	GPIO25	IO	CU, CD	4mA,8mA,12mA,16mA	0
_	1	UCTS1 B	0	CU, CD	-	0
- 1	2	CAM SDA	10	CU, CD	4mA,8mA,12mA,16mA	0
	3	NLD14	10	CU, CD	4mA,8mA,12mA,16mA	0
1100	5	EINT6	Ī	CU, CD	-	0
EINT0	0	GPIO26	IO	CU, CD	2mA,4mA,6mA,8mA	0
	1	EINT0	Ī	CU, CD	1 () ()	0
EINT1	0	GPIO27	10	CU, CD	2mA,4mA,6mA,8mA	0
	1	EINT1	i	CU, CD	-	0
BPI BUS4	0	GPIO28	10	CU, CD	2mA,4mA,6mA,8mA	0
DOO+	1	BPI BUS4	0	CU, CD	2mA,4mA,6mA,8mA	0
PAD_IO_SIM2	0	GPIO29	10	X	4mA	0
	1	SIO2	IO	X	4mA	0
PAD CLK SIM2	0	GPIO30	10	X	4mA	0
7.12_011.1_01	1	SCLK2	0	X	4mA	0
PAD RST SIM2	0	GPIO31	10	X	4mA	0
71B_1101_01111E	1	SRST2	0	X	4mA	0
BT POWEN	0	GPIO32	10	CU. CD	2mA,4mA,6mA,8mA	0
SD PWREN	0	GPIO33	10	CU, CD	2mA,4mA,6mA,8mA	0
OD_I WITEIN	1	CLK32K	0	CU, CD	2mA,4mA,6mA,8mA	0
BT 32K	0	GPIO34	10	CU, CD	2mA,4mA,6mA,8mA	0
DI_OLIK	2	SRCLKENA	0	CU, CD	2mA,4mA,6mA,8mA	0
SRCLKENAI	0	GPIO35	10	CU, CD	2mA,4mA,6mA,8mA	0
	1	SRCLKENAI	ı	CU, CD	_	0
MCINS	0	GPIO36	IO	CU, CD	4mA,8mA,12mA,16mA	0
	1	MCINS	i	CU, CD	-	0
	3	NLD15	IO	CU, CD	4mA,8mA,12mA,16mA	0
	5	EINT6	ı	CU, CD	-	0
MCCK	0	GPIO37	10	CU, CD	4mA,8mA,12mA,16mA	0
VIOOR	1	MCCK	i	CU, CD	-	0
MCDA0	0	GPIO38	IO	CU, CD	4mA,8mA,12mA,16mA	0
	1	MCDA0	10	CU, CD	4mA,8mA,12mA,16mA	0
MCCM0	0	GPIO39	10	CU, CD	4mA,8mA,12mA,16mA	0
VICOIVIO	1	MCCM0	10	CU, CD	4mA,8mA,12mA,16mA	0
LPTE	0	GPIO40	IO	CU, CD	4mA,8mA,12mA,16mA	0
	1	LPTE	10	CU, CD	-	0
LRSTB	0	GPIO41	IO	CU, CD	4mA,8mA,12mA,16mA	0
בוטוט	1	LRSTB	0	CU, CD	4mA,8mA,12mA,16mA	0
ECS3_B	0	GPIO42	10	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0
MPO	2	LPCE1_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0
Ma	3	LSCE1_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0
	6	SEN2LCM_CS_B	0	CU, CD	2mA, 6mA, 8mA, 10mA,	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 35 of 508

Name	Aux. Function	Aux. Name	Aux. Type	PU/PD/ CU/CD	Driving	SMT
				10	12mA , 14mA, 16mA, 18mA	
	7	EINT2		CU, CD		0
KCOL7	0	GPIO43	10	CU, CD	2mA,4mA,6mA,8mA	0
	1	KCOL7		CU, CD	-	0
	2	EINT2		CU, CD	-	0
	4	LSCK	0	CU, CD	2mA,4mA,6mA,8mA	0
KROW6	0	GPIO44	10	CU, CD	2mA,4mA,6mA,8mA	0
	1	KROW6	10	CU, CD	2mA,4mA,6mA,8mA	0
	4	LSDA	10	CU, CD	2mA,4mA,6mA,8mA	0
KROW7	0	GPIO45	Ю	CU, CD	2mA,4mA,6mA,8mA	0
	1	KROW6	10	CU, CD	2mA,4mA,6mA,8mA	0
	2	EINT3		CU, CD	. 444	0
	4	CAM_SDA	0	CU, CD	2mA,4mA,6mA,8mA	0
CMDAT0	0	GPIO47	10	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMDAT0		CU, CD	-	0
	2	CAM_CSD		CU, CD	-	0
CMDAT1	0	GPIO48	10	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMDAT1		CU, CD	-	0
	2	LSDA	Ю	CU, CD	4mA,8mA,12mA,16mA	0
CMDAT2	0	GPIO49	Ю	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMDAT2	ı	CU, CD	-	0
CMDAT3	0	GPIO50	Ю	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMDAT3	ı	CU, CD	-	0
CMDAT4	0	GPIO51	Ю	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMDAT4	ı	CU, CD	-	0
CMDAT5	0	GPIO52	Ю	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMDAT5	ı	CU, CD	-	0
CMDAT6	0	GPIO53	Ю	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMDAT6	I	CU, CD	-	0
CMDAT7	0	GPIO54	Ю	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMDAT7	ı	CU, CD	- 4	0
CMHREF	0	GPIO55	Ю	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMHREF	ı	CU, CD		0
CMVREF	0	GPIO56	Ю	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMVREF	ı	CU, CD	- HAIDAJY	0
CMPDN	0	GPIO57	Ю	CU, CD	4mA,8mA,12mA,16mA	0
	1	CMPDN	0	CU, CD	4mA,8mA,12mA,16mA	0
	2	LSCK	0	CU, CD	4mA,8mA,12mA,16mA	0
CMMCLK	0	GPIO58	10	CU, CD	4mA,8mA,12mA,16mA	0
J.VIIVIOLI\	1	CMMCLK	0	CU, CD	4mA,8mA,12mA,16mA	0
CMPCLK	0	GPIO59	IO	CU, CD	4mA,8mA,12mA,16mA	0
OWN OLIV	1	CMPCLK	Ī	CU. CD	-	0
	2	CAM CSK	i	CU, CD	-	0
CMRST	0	GPIO60	IO	CU, CD	4mA,8mA,12mA,16mA	0
	1 1	CMRST	0	CU, CD	4mA,8mA,12mA,16mA	0
EDICK	0	GPIO61	10	CU, CD	4mA,8mA,12mA,16mA	0
LDION	1	EDICK	IO	CU, CD	4mA,8mA,12mA,16mA	0
	3	BPI BUS5	0	CU. CD	4mA,8mA,12mA,16mA	0
EDIDAT	0	GPIO62	_10	CU. CD	4mA,8mA,12mA,16mA	0

© 2011 MediaTek Inc.

Page 36 of 508

Name	Aux. Function	Aux. Name	Aux. Type	PU/PD/ CU/CD	Driving	SMT
	1	EDIDAT	IO_	CU, CD	4mA,8mA,12mA,16mA	0
	3	BPI_BUS6	0	CU, CD	4mA,8mA,12mA,16mA	0
EDI_WS	0	GPIO63	10	CU, CD	4mA,8mA,12mA,16mA	0
	1	EDI_WS	10	CU, CD	4mA,8mA,12mA,16mA	0
	3	BPI_BUS6	0	CU, CD	4mA,8mA,12mA,16mA	0
SCK	0	GPIO64	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
MAD	(0)	SCK	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
Mica	2	LSCK	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
SWP	0	GPIO65	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	SWP	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	LSCK	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
SHOLD	0	GPIO66	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	SHOLD	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	LSCE0_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
SCS	0	GPIO67	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	scs	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	LSCE1_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
SIN	0	GPIO68	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	SIN	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	LSDI	ı	CU, CD		0/1
	3	EINT3	I	CU, CD	- 10056	0/1
SOUT	0	GPIO69	IO	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	SOUT	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	LSDA	47.	CU, CD	1	0/1
	3	EINT3		CU, CD	-	0/1
GPIO70	0	GPIO70	10	CU, CD	2mA,4mA,6mA,8mA	0
	2	EINT4	I	CU, CD	2mA,4mA,6mA,8mA	0
	3	CLK32K	0	CU, CD	2mA,4mA,6mA,8mA	0
	4	CAM_SCL	10	CU, CD	2mA,4mA,6mA,8mA	0
EA0	0	EA0	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
Min	1	LPA0	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
-	3	SEN2LCM_A0	0	CU, CD	2mA, 6mA, 8mA, 10mA,	0/1

MediaTek Confidential

© 2011 MediaTek Inc.

Page 37 of 508

Name	Aux. Function	Aux. Name	Aux. Type	PU/PD/ CU/CD	Driving	SMT
				40	12mA , 14mA, 16mA, 18mA	
EA1	0	EA0	10	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	LRD_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0/1
EA2	0	EA0	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0/1
Malk	197	LWR_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	3	SEN2LCM_WR_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
EA3	0	EA3	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	NLD0	10	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0/1
	2	LSCK	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	3	CAMDAT0	I	CU, CD	-	0/1
EA4	0	EA4	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	NLD1	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	LSA0	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0/1
	3	CAMDAT1	ı	CU, CD	-	0/1
EA5	0	EA5	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	NLD2	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	LSDA	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	3	CAMDAT2	I	CU, CD	-	0/1
EA6	0	EA6	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	NLD3	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	LSDI		CU, CD	- I UDIGO	0/1
EA7	0	CAMDAT3 EA7	I	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0/1
	1	NLD4	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0/1
	3	CMDAT4		CU, CD	-	0/1
EA8	0	EA8	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
Man	101	NLD5	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	3	CMDAT5		CU, CD	-	0/1
EA9	0	EA9	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	NLD6	10	CU, CD	2mA, 6mA, 8mA, 10mA,	0/1

MediaTek Confidential

© 2011 MediaTek Inc.

Page 38 of 508

Name	Aux. Function	Aux. Name	Aux. Type	PU/PD/ CU/CD	Driving	SMT
				-40	12mA , 14mA, 16mA, 18mA	
	3	CMDAT6		CU, CD	101	0/1
EA10	0	EA10	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	15	NLD7	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	3	CMDAT7	ı	CU, CD	-	0/1
EA11	0	EA11	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	NLD8	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
EA12	0	EA12	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	NLD9	10	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	CMMCLK	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	3	CMMCLK	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
EA13	0	EA13	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	NLD10	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	CAM_CSK	I	CU, CD	-	0/1
	3	CMPCLK	I	CU, CD	-	0/1
EA14	0	EA14	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	NLD11	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0/1
	2	CAM_CSD	I	CU, CD	-	0/1
	3	CAMHSYNC	ı	CU, CD	-	0/1
EA15	0	EA15	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	1	NLD12	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	CMPDN	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	3	CAMVSYNC	I	CU, CD		0/1
ED6	0	ED6	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	2	CMRST	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	3	LSCE1_B	Ó	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
	4	SEN2LCM_CS_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
Men	5	CAM_SDA	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
144	6	LPCE1_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
ED7	0	ED7	10	CU, CD	2mA, 6mA, 8mA, 10mA,	0/1

MediaTek Confidential

© 2011 MediaTek Inc.

Page 39 of 508

Name	Aux. Function	Aux. Name	Aux. Type	PU/PD/ CU/CD	Driving	SMT
				10	12mA , 14mA, 16mA, 18mA	
	2	CMPDN	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0/1
	3	LPCE1_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0/1
	4	SEN2LCM_CS_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA , 14mA, 16mA, 18mA	0/1
Man	5	CAM_SCL	Ю	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
Mica	6	LSCE1_B	0	CU, CD	2mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA, 18mA	0/1
URXD1	0	URXD1	I	PU	· WWWIP	0
	1	EINT2	_	PU	-	0
	2	LSCK	0	PU	4mA,8mA,12mA,16mA	0
UTXD1	0	UTXD1	0	PU	4mA,8mA,12mA,16mA	0
•	1	EINT3		PU	4mA,8mA,12mA,16mA	0
	2	LSDA	10	PU/CD	4mA,8mA,12mA,16mA	0

Table 7 Pin multiplexing, capability and settings

2.2 Electrical Characteristics

2.2.1 Absolute Maximum Ratings

Prolonged exposure to absolute maximum ratings may reduce device reliability. Functional operation at these maximum ratings is not implied.

Pin Name	Description	Min	Max	Unit
VBAT_DIGITAL, VBAT_ANALOG, VBAT_SPK, VBAT_RF	Battery regulator supply voltage	-0.3	+4.73	V
VDD33	Regulated digital I/O supply voltage	-0.3	+3.63	V
VUSB	Regulated USB supply voltage	-0.3	+3.63	V
DVDD33_EMI	Regulated memory supply voltage	-0.3	+3.63	V
DVDD33_SF	Regulated serial flash supply voltage	-0.3	+3.63	V

MediaTek Confidential

© 2011 MediaTek Inc.

Page 40 of 508

VDD33_MSDC	Regulated memory card supply voltage	-0.3	+3.63	V
VDDK	Regulated digital circuit supply voltage	-0.3	+1.65	V
AVDD28_MBUF, AVDD28_RFE, AVDD28_AFE, AVDD28_PLL, AVDD_RTC	Regulated analog circuit supply voltage	-0.3	+3.63	V
AVDD28_RF1, AVDD28_RF2, AVDD28_TCXO, AVDD28_RFD	Regulated RF circuit supply voltage	-0.3	+3.63	V

Warning: Stressing the device beyond the Absolute Maximum Ratings may cause permanent damage. These are stress ratings only.

Symbol	Description	Min	Max	Unit
Tstg	Storage temperature	-55	+125	Celsius

2.2.2 Recommended Operating Conditions

Pin Name	Description	Min	Max	Unit
VBAT_DIGITAL, VBAT_ANALOG, VBAT_SPK, VBAT_RF	Battery regulator supply voltage		+4.3	V
VDD33	Regulated digital I/O supply voltage	+2.7	+2.9	v .
VUSB	Regulated USB supply voltage	+2.97	+3.63	V
DVDD33_EMI	Regulated supply voltage for memory	+1.7	+1.95	V
DVDD33_SF	Regulated supply voltage for serial flash	+1.7(+1.65?)	+3.6	V
VDD33_MSDC	Regulated supply voltage for SD card	+2.7	+3.6	V
VDDK	Regulated digital circuit supply voltage	+1.08	+1.32	V
AVDD28_MBUF, AVDD28_RFE, AVDD28_AFE, AVDD28_PLL, AVDD_RTC	Regulated analog supply voltage	+2.7	+2.9	V

MediaTek Confidential

© 2011 MediaTek Inc.

Page 41 of 508

AVDD28_TCXO, AVDD28_RFD	AVDD28_TCXO,	Regulated RF circuit supply voltage +2.7 +2.9 V	
----------------------------	--------------	---	--

Warning: Operation beyond the Operating Conditions is not recommended. Extended exposure may affect device reliability.

Symbol	Description	Min	Max	Unit
Topr	Operating temperature	-20	+80	Celsius

Can	Operating temperature		20	F80	Celsius		
8 Seri	Symbol Description Min. Typ. Max. Unit						
Symbol	Description		Min.	Тур.	Max.	Unit	
fSCLK	Clock frequency for supporting ser			104	MHz		
tSLCH	/CS active setup time (relative to SCLK)			5		ns	
tSHSL	/CS deselect time			10		ns	
tCHSL	/CS not active hold time (relative to SCLK)			5		ns	
tDVCH	Data in setup time			3		ns	
tCHSH	/CS active hold time (relative to SCLK)			5	2	ns	
tSHCH	/CS not active setup time (relative	to SCLK)	- 1	5	361	ns	
tCLQV	Clock Low to Output Valid	Loading :30pF	Re	Sa	8	ns	
IOLQ V	Loading: 30pF / 15pF	Loading:15pF	1110		6	ns	
tCH	Clock high time	Glin		4.5		ns	
tCL	Clock low time			4.5		ns	

Table 8 Serial Flash AC Characteristics

MediaTek Confidential

© 2011 MediaTek Inc.

Page 42 of 508

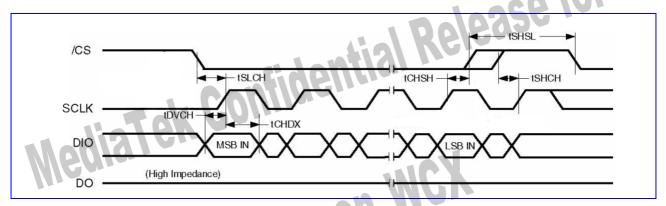


Figure 4 Serial Flash write timing

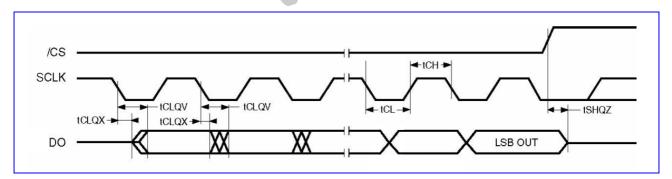


Figure 5 Serial Flash read timing

System Configurations 2.3

Strapping Resistors 2.3.1

2.3 System Configurations 2.3.1 Strapping Resistors					
Pin Name	Description	Trapping Condition			
DIASYNC	Pull-up with 100K resistor	Reset			
PWM	Pull-down with 100K resistor	(GPIO_MODE0==2)			
DAIRST	Pull-up with 100K resistor	Reset			

Table 9 Strapping table

MediaTek Confidential

© 2011 MediaTek Inc.

Page 43 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

GSM/GPRS Baseband Processor Data Sheet Confidential A

2.3.2 **Constant Tied Pins**

2.3.2 Cons	tant Tied Pins
Pin Name	Tie Value
TESTMODE	GND
PMU_TESTMODE	GND

Cellou

Power-on Sequence

The power-on/off sequence which is controlled by "Control" and "Reset Generator" is shown as follows,

MediaTek Confidential

© 2011 MediaTek Inc.

Page 44 of 508

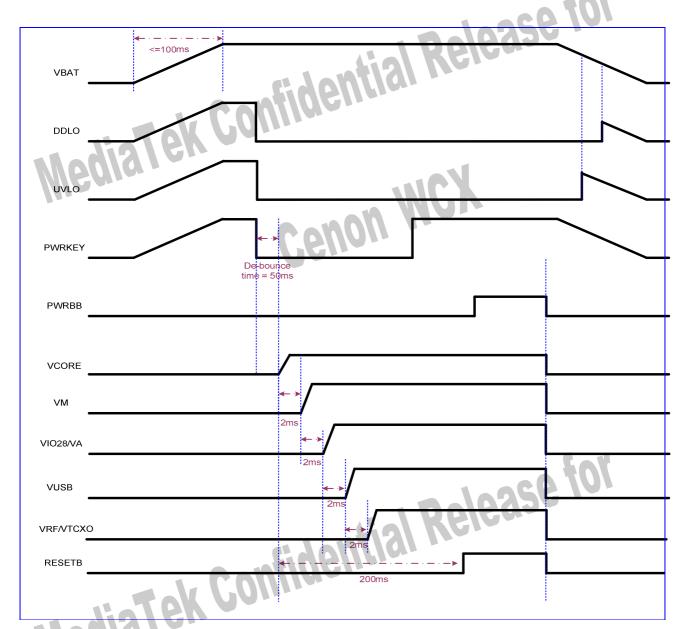


Figure 6 Power-on/off Control Sequence

Note that the above figure only shows one power-on/off condition. The MT6252 handles the powering ON and OFF of the handset. Use the following three ways to switch on the handset (When VBAT \geq 3.2 V):

MediaTek Confidential

© 2011 MediaTek Inc.

Page 45 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

- Pulling PWRKEY low (User push PWRKEY)
- Pulling PWRBB high (Baseband BB_WakeUp)
- Valid charger plug-in

fidential Release for Pulling PWRKEY low is a normal way to turn on the handset. That will turn on VCORE, VIO, VM, VA and VUSB as long as the PWRKEY is kept low. The VRF and VTCXO are turned on when SRCLKEN is high. The microprocessor then starts and pulls PWRBB high. After that, PWRKEY can be released. Pulling PWRBB high will also turn on the handset. This is the case when the alarm in the RTC expires.

In addition, applying a valid external supply on CHRIN will also turn on the handset. However, If the battery is in UV state (VBAT < 3.2 V), the handset cannot be turned on.

The UVLO function of MT6252 prevents system startup when the initial voltage of the main battery is below the 3.2 V threshold. When the battery voltage is greater than 3.2 V, the UVLO comparator switches and the threshold is reduced to 2.9 V. This allows the handset to start smoothly unless the battery decays to 2.9 V and below.

Once the MT6252 enters the UVLO state, it draws a very low quiescent current. The VRTC LDO is still active until the DDLO disables it.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 46 of 508

Analog Baseband 2.5

Audio Mixed-signal Blocks 2.5.1

Block Descriptions 2.5.1.1

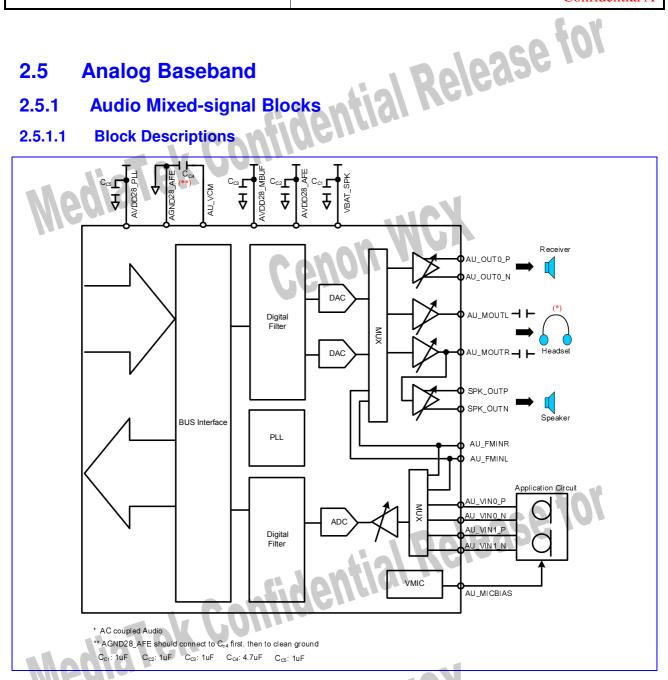
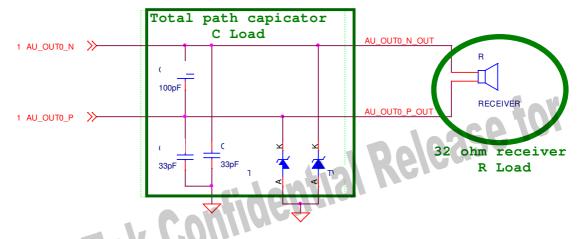


Figure 7 Block diagram of audio/speech part

MediaTek Confidential

© 2011 MediaTek Inc.

Page 47 of 508



Functional Specification 2.5.1.2

ase to The following table provides functional specifications of voice-band uplink/downlink blocks.

Symbol	Description	Min.	Тур.	Max.	Unit
AVDD	Power Supply (AVDD28_MBUF, AVDD28_AFE, AVDD28_PLL)	2.7	2.8	2.9	V
VMIC	Microphone Biasing Voltage		1.9	2.2	V
Uplink Path	1011				
SINAD	Signal to Noise and Distortion Ratio Input Level: -40 dbm0 Input Level: 0 dbm0	29	69		dB dB
RIN	Input Impedance (Differential)	13	20	27	ΚΩ
Downlink Path	COMU				
SINAD	Signal to Noise and Distortion Ratio Input Level: -40 dBm0 Input Level: 0 dBm0	29	69		dB dB
RLOAD	Output Resistor Load (Differential)		32		Ω
CLOAD	Output Capacitor Load			200	pF

Table 10 Functional specifications of analog voice blocks

Functional specifications of the audio blocks are described in the following.

Symbol	Description	Min.	Тур.	Max.	Unit
Fs	Sampling Rate	32	44.1	48	KHz
AVDD	Power Supply (AVDD28 MBUF, AVDD28 AFE,	2.6	2.8	3.0	V

MediaTek Confidential

© 2011 MediaTek Inc.

Page 48 of 508

	AVDD28_PLL)	. 100	V.Y.D	0	
PSNR	Peak Signal to Noise Ratio		88		dB
VOUT	Output Swing for 0dBFS Input Level		0.64		Vrms
THD	Total Harmonic Distortion	9/ 12	70		.ID
	22mW at 32 Ω Load		-70		dB
RLOAD	Output Resistor Load (Single-ended)		32		Ω
CLOAD	Output Capacitor Load			200	pF

Table 11 Functional specifications of the analog audio blocks

Functional Specification

The receiver (RX) performs base-band I/Q channels downlink analog-to-digital conversion:

- 1. Analog input multiplexer: For each channel, a 4-input multiplexer that supports offset and gain calibration is included.
- 2. A/D converter: Two 14-bit sigma-delta ADCs perform I/Q digitization for further digital signal processing.

Symbol	Description	Min.	Тур.	Max.	Unit
N	Resolution		14		Bit
FC	Clock Rate		26		MHz
FS	Output Sampling Rate		13/12		MSPS
SINAD	Signal to Noise and Distortion Ratio - 45kHz sine wave in [0:90] kHz bandwidth - 145kHz sine wave in [10:190] kHz bandwidth	65 65			dB dB
ICN	Idle channel noise - [0:90] kHz bandwidth - [10:190] kHz bandwidth		1025	-74 -70	dB dB
DR	Dynamic Range - [0:90] kHz bandwidth - [10:190] kHz bandwidth	74 70	il Core		dB dB
RIN	Input Resistance	75			kΩ
DVDD	Digital Power Supply	1.08	1.2	1.32	V
AVDD	Analog Power Supply (AVDD_RFE)	2.7	2.8	2.9	V
T	Operating Temperature	-20		80	$^{\circ}\mathbb{C}$
Medica	Current Consumption Power-up Power-down	MC	5 5		mA μA

Table 12 Base-band Downlink Specifications

MediaTek Confidential

© 2011 MediaTek Inc.

Page 49 of 508

Auxiliary ADC / Touch Screen Controller lock Descriptions 2.5.3

2.5.3.1 Block Descriptions

The auxiliary ADC includes the following functional blocks:

- Analog Multiplexer: The analog multiplexer selects signal from one of the several auxiliary input pins. Real world messages to be monitored, such as the temperature, should be transferred to the voltage domain.
- 10-bit A/D Converter: The ADC converts the multiplexed input signal to 10-bit digital data.

Touch Screen Interface can control input pads (XP, XM, YP, and YM) to obtain X/Y-position on the external touch screen device. Touch Screen Interface contains three main blocks; which are touch screen pads control logic, ADC interface logic and interrupt generation logic.

AuxADC Channel ID	Description
Channel 0	Internal use
Channel 1	Internal use
Channel 2	Internal use
Channel 3	Internal use
Channel 4	External (AUX_IN4)
Channel 5	External (AUX_IN5)
Channel 6	Internal use
Channel 7	Internal use
Channel 8	Internal use
Channel 9	Internal use
Channel 10	Internal use
Channel 11	Internal use
Channel 12	Internal use
Channel 13	Internal use
Channel 14	Internal use
Channel 15	Internal use
a dialen	ole 13 AuxADC channel list
Media	WCX

Table 13 AuxADC channel list

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 50 of 508

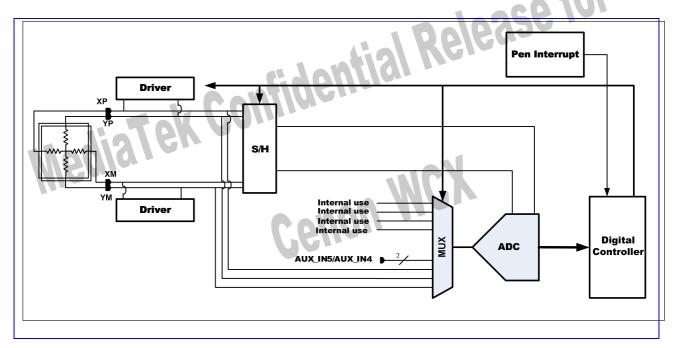


Figure 8 Block diagram of AuxADC and touch screen

2.5.3.2 Function Specifications

The functional specifications of the auxiliary ADC are listed in the following table.

The functional specifi	The functional specifications of the auxiliary ADC are fisted in the following table.						
Symbol	Description	Min.	Тур.	Max.	Unit		
N	Resolution		10		Bit		
FC	Clock Rate	JR	1.0833		MHz		
FS	Sampling Rate @ N-Bit		1.0833/(N+1)		MSPS		
	Input Swing	0		AVDD	V		
CIN	Input Capacitance Unselected Channel Selected Channel			50 1.2	fF pF		
RIN	Input Resistance Unselected Channel Selected Channel	10 1.8	1		ΜΩ ΜΩ		
NA III	Clock Latency		11		1/FC		
DNL	Differential Nonlinearity	44-	+1.0/-1.0		LSB		

MediaTek Confidential

© 2011 MediaTek Inc.

Page 51 of 508

INL	Integral Nonlinearity	1 100	+1.0/-1.0		LSB
DVDD	Digital Power Supply	108	1.2	1.32	V
AVDD	Analog Power Supply (AVDD_RFE)	2.7	2.8	2.9	V
Т	Operating Temperature	-20		80	$^{\circ}\mathbb{C}$
	Current Consumption				
	Power-up		150		μA
	Power-Down		1		μΑ
Ztp	Supported Touch Panel Impedance	200	1	2K	Ohm

Table 14 The Functional specification of Auxiliary ADC

2.5.4 32-KHz Crystal Oscillator (RTC)

The low-power 32-KHz crystal oscillator XOSC32 is designed to work with an external piezoelectric 32.768KHz crystal and a load composed of two functional capacitors, as shown in the following figure.

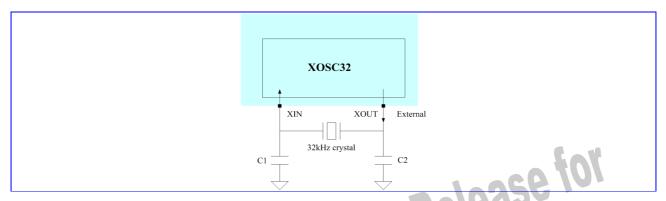


Figure 9 Block diagram of XOSC32

The functional specification of XOSC32 is shown in the following table.

Symbol	Description	Min.	Тур.	Max.	Unit
AVDDRTC	Analog power supply	1.0	2.8	3.0	V
Tosc	Start-up time			1	sec
Dcyc	Duty cycle	20	50	80	%
WIII SOL	Current consumption	-101		5	μA
Mia	Leakage current		1		μA
Т	Operating temperature	-20		80	$^{\circ}$ C

MediaTek Confidential

© 2011 MediaTek Inc.

Page 52 of 508

Table 15 Functional specification of XOSC32

iase for Following are a few recommendations for the crystal parameters to be used with XOSC32.

Symbol	Description	Min.	Тур.	Max.	Unit
F	Frequency range		32768		Hz
GL	Drive level			5	uW
Δf/f	Frequency tolerance		+/- 20		ppm
ESR	Series resistance	- 01		50	ΚΩ
C0	Static capacitance			1.6	pF
C1/C2	Load capacitance	6		12.5	pF

Table 16 Recommended parameters of the 32 kHz crystal

APC DAC 2.5.5

2.5.5.1 Block Descriptions

The APC-DAC is a 10-bit DAC with an output buffer aiming for automatic power control. Following is the functional specification table.

2.5.5.2 Function Specifications

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution		10		Bit
FS	Sampling Rate			1.0833	MSPS
	Output Swing	0		AVDD	V
	Drive Capacitance		200		pF
	Drive Resistance		10		$k\Omega$
DNL	Differential Nonlinearity		+/- 1.0		LSB
INL	Integral Nonlinearity	VALL	+/- 1.0		LSB
DVDD	Digital Power Supply	1.08	1.2	1.32	V
AVDD	Analog Power Supply (AVDD_RFE)	2.7	2.8	2.9	V

MediaTek Confidential

© 2011 MediaTek Inc.

Page 53 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

T	Operating Temperature	-20	(20)	80	$^{\circ}$ C
	Current Consumption Power-up Power-Down	I Ve	200		μΑ μΑ

Table 17 APC-DAC specifications

PMU

enon WCX Power management unit (PMU), is integrated into analog part. Following is the PMU block diagram.

MediaTek Confidential Release for enon WCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 54 of 508

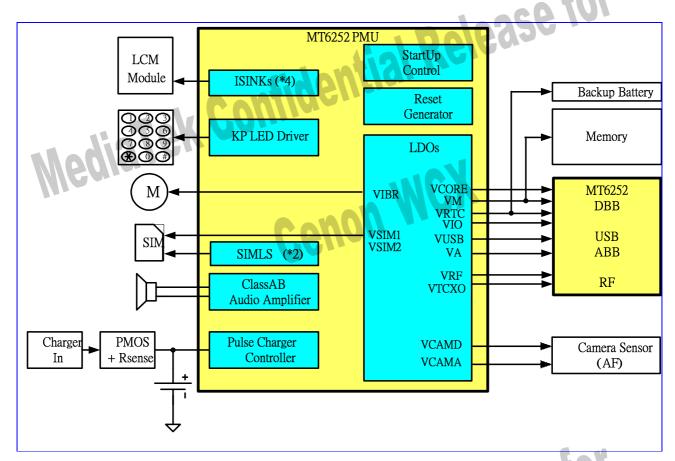


Figure 10 PMU system block diagram

2.6.1 Low Dropout Regulators (LDOs), and Reference

The PMU Integrates 13 LDOs that are optimized for their given functions by balancing quiescent current, dropout voltage, line/load regulation, ripple rejection, and output noise.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 55 of 508

Block Description 2.6.1.1

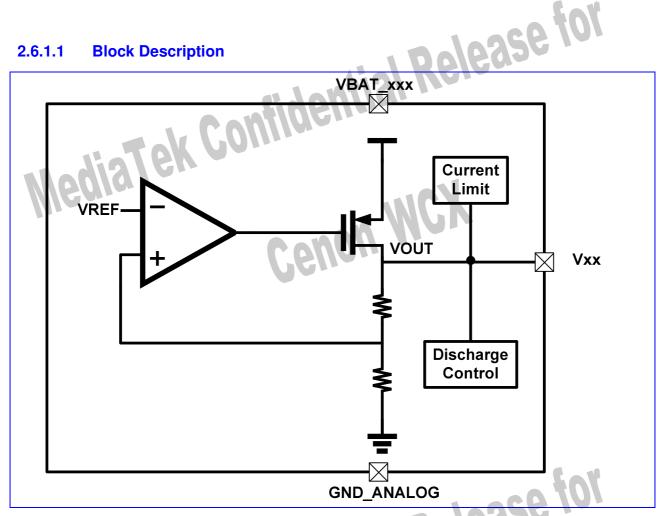


Figure 11 LDO block diagram

2.6.1.2 **LDO Types**

	Туре	LDO Name	Vout	lmax	Description
	ALDO	VRF	2.8	150	RF circuit
\\	ALDO	VA	2.8	100	Analog baseband
	ALDO	VTCXO	2.8	40	13/26 MHz reference clock

MediaTek Confidential

© 2011 MediaTek Inc.

Page 56 of 508

Туре	LDO Name	Vout	lmax	Description
ALDO	VCAMA	1.5/1.8/2.5/2.8	150	Analog camera power
DLDO	VCORE	0.8V~1.35V(25mv/step)	200	Digital core
DLDO	VIO	2.8	200	Digital IO
DLDO	VM	1.8/2.9	150	External memory, selectable
DLDO	VSIM1	1.8/3.0	30	SIM card, selectable
DLDO	VSIM2	1.3/1.5/1.8/2.5/2.8/3.0/3.3	30	SIM2 card, selectable
DLDO	VUSB	3.3	50	USB
DLDO	VIBR	1.3/1.5/1.8/2.5/2.8/3.0/3.3	150	Vibrator
DLDO	VCAMD	1.3/1.5/1.8/2.5/2.8/3.0/3.3	100	Digital camera power
RTCLDO	VRTC	2.8	2	Real-time clock

Table 18 LDO types and brief specification

2.6.1.3 Functional Specification

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	Load capacitor(VA/VTCXO)			1		μF
	Load capacitor(VRF/VCAMA)			2.2		μF
	Current limit		1.2*lmax		5*Imax	mA
	Vout	Including load regulation, line regulation, and temperature coefficient	max(-5%, -0.1V)		max(+5% , +0.1V)	٧
	Transient response	Slew: 15mA/us	-0.1	AGE	+0.1	V
	Temperature coefficient				100	ppm/C
	PSRR	lout<0.5*lmax 217 <f<3k hz<="" td=""><td>65</td><td>O.</td><td></td><td>dB</td></f<3k>	65	O.		dB
		lout<0.5*lmax 3K <f<30k hz<="" td=""><td>45</td><td></td><td></td><td>dB</td></f<30k>	45			dB
	Output noise	10 to 80K Hz		90		uVrms
	Quiescent current	lout=0			55	μA
	Turn-on overshoot	lout=0			max(+10 %, +0.1V)	٧
	Turn-on settling time	lout=0			360	μS

Table 19 Analog LDO Specification

MediaTek Confidential

© 2011 MediaTek Inc.

Page 57 of 508

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	Load capacitor(except VIO)		1.712	W T		μF
	Load capacitor(VIO)			2.2		μF
	Current limit(except VCAMD)		1.2*lmax		5*lmax	mA
	Current limit(VCAMD)		2*Imax		8*lmax	mA
	Vout	Include load regulation, line regulation, and temperature coefficient	max(-5%, -0.1V)		max(+5% , +0.1V)	>
	Transient response	Slew: 15mA/us	max(-5%, -0.1V)		max(+5% , +0.1V)	V
	Temperature coefficient				100	ppm/C
	Output noise	10 to 80K Hz		250	500	uVrms
	Quiescent current	lout=0			15	μΑ
	Turn-on overshoot	lout=0	77		max(+10 %, +0.1V)	٧
	Turn-on settling time(except VIO)	lout=0			360	μs
	Turn-on settling time(VIO)	lout=0			40	μs

Table 20 Digital LDO Specification

MediaTek Confidential

2.6.2 SIM Interface

2.6.2.1 **Block Description**

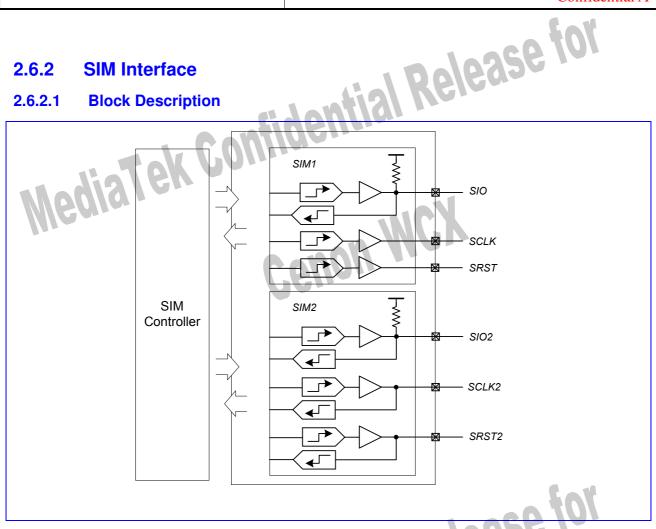


Figure 12 SIM interface block diagram

There are two SIM card interface modules to support two SIM cards simultaneously. The SIM card interface circuitry of PMU meets all ETSI and IMT-2000 SIM interface requirements. It provides level shifting needs for the low voltage GSM controller to communicate with either 1.8 V or 3 V SIM cards. All SIM cards contain a clock input, a reset input, and a bi-directional data input/output. The clock and reset inputs to SIM cards are level shifted from the supply of digital baseband to the SIM supply (Vsim). The bi-directional data bus is internal pull high to Vsim via 5 k Ω resistor.

The 2nd SIM card interface can be used for supporting another SIM card or mobile TV. The interface pins such as SIO2, SRST2, SCLK2, can be configured as GPIO when there is no need to use the 2nd SIM card interface.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 59 of 508

All pins that connect to the SIM card (Vsim, SRST, SCLK, SIO) withstand over 2kV HBM (human body mode) ESD. In order to ensure proper ESD protection, careful board layout is required.

Functional Specification 2.6.2.2

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
Interface to	3 V SIM Card		•			
	Output Low of SRST	Ι = 200 μΑ	~1		0.36	V
	Output High of SRST	Ι = -200 μΑ	0.9*VSIM			V
	Output Low of SCLK	Ι = 200 μΑ			0.4	V
	Output High of SCLK	Ι =-100 μΑ	0.9*VSIM			V
	Input/Output High of SIO	$I = \pm 20 \mu A$	VSIM-0.4			V
	(IiI)Pull high current of SIO	Vil = 0 V			-1	mΑ
	(Vol)Input/Output Low of SIO	lol = 1 mA			0.4	V
Interface to	1.8 V SIM Card	9-				
	Output Low of SRST	I = 200 μA			0.2*VSIM	V
	Output High of SRST	I = -200 μA	0.9*VSIM			V
	Output Low of SCLK	Ι = 200 μΑ			0.12*VSI M	V
	Output High of SCLK	I = -100 μA	0.9*VSIM			V
	Input/Output Low of SIO				0.15*VSI M	V
	Input/Output High of SIO	$I = \pm 20 \mu A$	VSIM-0.4			٧
	(IiI)Pull high current of SIO	Vil = 0 V			-1	mΑ
	(Vol)Input/Output Low of SIO	IoI = 1 mA			0.15*VSI M	V
SIM Card In	terface Timing					
	SIO pull-up resistance to VSIM		4	5	6	kΩ
	SRST, SIO rise/fall times	VSIM = 3, 1.8 V, load with 30 pF			1	μs
	SCLK rise/fall times	VSIM = 3 V, CLK load with 30 pF			18	ns
	001111	VSIM = 1.8 V, CLK load with 30 pF			50	ns
	SCLK frequency	CLK load with 30 pF		-00	5	MHz
	SCLK duty cycle	SIMCLK Duty = 50%, fsimclk = 5 MHz	47	256	53	%
	SCLK duty cycle	Table 21 SIM Level Shifter	(Gle	O.		
M	Salara	o mon W	JX.			

MediaTek Confidential

© 2011 MediaTek Inc.

Page 60 of 508

2.6.3 Current Sink Driver and Keypad LED Switches

2.6.3.1 Block Description

Figure 13 Current sink and keypad LED driver block diagram

2.6.3.2 Functional Specification

Four current controlled open drain drivers (Isink0~3) are also implemented to drive LCM backlight module and each provides 6 current level steps up to 24 mA. These current sinks are controlled by enabling registers (RG_ISINK0~3_EN). The impedance output is high when disabled. The sink current can be set by RG_ISINK0~3_STEP[2:0] from 000 (4 mA)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 61 of 508

to 101 (24 mA) at 4 mA per step. Also, the drivers can be switching on/off through dimming control. The dimming frequency and duty can be programmed by registers. For details, please refer to the "PWM' section.

Built-in open-drain output switches drive the Keypad LED in the handset. This driver is controlled by baseband with enable registers (RG_KPLED_EN), and the output is high impedance when disabled. The Keypad LED connects its anode to VBAT and its cathode to the ballast resistor. The other terminal of the ballast resistor connects to the driver of MT6252. The Keypad LED driver is a low Ron switch which allows 60mA current.

The brightness of the Keypad LED can be controlled by changing the external ballast resistor or switching on/off the driver through dimming control. The dimming frequency and duty can be programmed by registers. For the details, please refer to the "PWM" section.

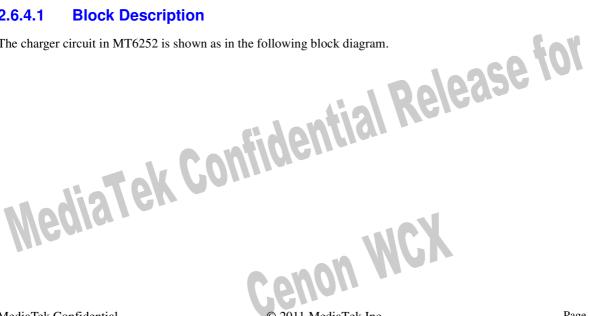

		Celloll III				
Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	Sink current of Keypad LED Driver	Von<0.5V, 100% dimming duty	60			mA
	Sink current of ISINK0~3	Von<0.3V, 100% dimming duty		24		mA

Table 22 KP LED functional specification

2.6.4 **Battery Charge**

2.6.4.1 **Block Description**

The charger circuit in MT6252 is shown as in the following block diagram.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 62 of 508

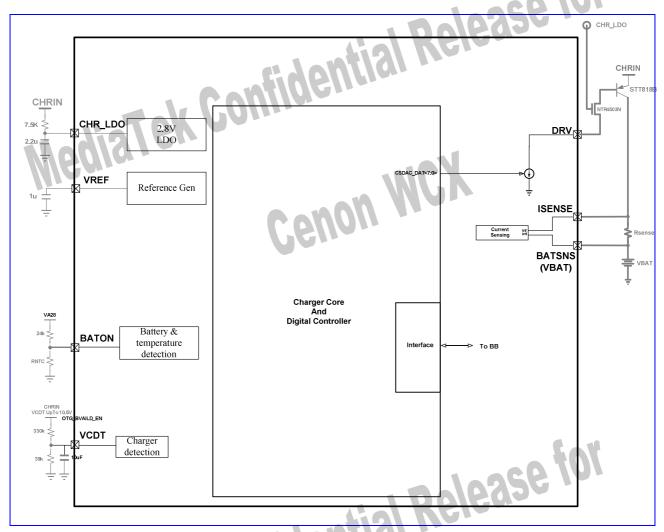


Figure 14 Battery charger block diagram

2.6.4.2 Functional Specification

The charger controller senses the charger input voltage (CHRIN) from either a standard AC-DC adaptor or an USB charger. When the charger input voltage is within a pre-determined range, the charging process is activated. This detector can resist higher input voltages than other parts of the PMU. Therefore, if an invalid charging source is detected (> 7.0 V), the charger detector stops the charging process immediately to avoid burning out the chip or even the phone.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 63 of 508

Also if the charger-in level is not high enough (<4.3V), the charger will also be disabled to avoid improper charging behavior.

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	Charger detect-on range	MILICIA	4.3		7	٧

Table 23 Charger Specifications

2.6.4.3 **Charging Control**

When the charger is active, the charger controller manages the charging phase according to the battery status. During the charging period, the battery voltage is constantly monitored. The battery charger in MT6252 supports pre-charge mode (VBAT<3.2V, PMU power-off state), CC mode (constant current mode or fast charging mode within the range of 3.2V<VBAT<4.2V) and Top-Off mode to optimize the charging procedure for the Li-ion battery.

2.6.4.4 **Pre-charge Mode**

When the battery voltage is in the UVLO state, the charger operates in the pre-charge mode. There are two steps in this mode. While the battery voltage is deeply discharged below 2.2V, PRECC0 trickle charging current applies to the battery.

The PRECC0 trickle charging current is about 56 mA when VBAT is under 2.2 V.

When the battery voltage exceeds 2.2 V, the so-called PRECC1 stage, the closed-loop pre-charge is enabled. The dential Release voltage drop across the external RSENSE is kept around 40 mV (AC Charger) or 14 mV (USB Host). The closed-loop pre-charge current can be calculated using the following formulas:

$$I_{PRECC1,AC \text{ adapter}} = \frac{V_{SENSE}}{Rsense} = \frac{40mV}{Rsense}$$

$$I_{PRECC1,USBHOST} = \frac{V_{SENSE}}{Rsense} = \frac{14mV}{Rsense}$$

Symbol	Description	Condition	<u>M</u> in.	Тур.	Max.	Unit
	IUNIT with 500ms Pulse	VBAT<2.2V		56		mA
		VBAT<2.2V		56		mA
	Pre-charging current	VBAT>=2.2V(USB HOST)		14/R _{sense}		mA
		VBAT>=2.2V(AC Adapter)		40/R _{sense}		mA

MediaTek Confidential

© 2011 MediaTek Inc.

Page 64 of 508

Symbol	Description	Condition	Min.	Typ.	Max.	Unit
	IUNIT with 500ms Pulse	VBAT<2.2V		56		mΑ
	Pre-charging off threshold	CHR_EN=L	M	3.3		٧
	Pre-charging off hysteresis	"CIUGIIIIA"		0.4		V

 Table 24 Pre-charge Specifications

2.6.4.5 Constant Current Mode

As the battery is charged up and over 3.2 V, it can switch to the CC mode (CHR_EN should be high). In CC mode, several charging currents can be set by programming registers or the external RSENSE resistor. The charging current can be determined by CS_VTH/RSENSE, where CS_VTH is programmed by registers. For example, if RSENSE is selected as 0.2 ohm, the CC mode charging current can be set between 70 mA and 800 mA. It can accommodate the battery charger to the various charger inputs with different current capabilities.

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
		RG_CS_VTH [2:0]=000		14/R _{sense}		mA
		RG_CS_VTH [2:0]=001		40/R _{sense}		mA
	CC made sharping august	RG_CS_VTH [2:0]=010		80/R _{sense}		mA
	CC mode charging current	RG_CS_VTH [2:0]=011		90/R _{sense}		mA
	(CS_VTH)	RG_CS_VTH [2:0]=100		110/R _{sense}		mA
		RG_CS_VTH [2:0]=101		130/R _{sense}		mA
		RG_CS_VTH [2:0]=110		140/R _{sense}		mA
		RG_CS_VTH [2:0]=111		160/R _{sense}	TAT	mA
	Current sensing resistor	RSENSE	1	0.2	101	ohm

Table 25 Constant Current Specifications

2.6.4.6 Top-Off Mode and Over-voltage Protection

While the battery voltage reaches about 4.2 V, a constant current with a much shorter period is used for charging. It allows more frequent full battery detections in the non-charging period. This is called full voltage charging mode or constant voltage charging mode in correspondence to a linear charger. While the battery voltage reaches 4.2 V, more

MediaTek Confidential

© 2011 MediaTek Inc.

Page 65 of 508

than the pre-setting times within the limited charging cycles, the end-of-charging process starts. It may prolong the charging and detecting period to get the optimized the full charging volume. This end-of-charging process is fully controlled by the baseband and can be easily optimized for different battery packs. Once the battery voltage exceeds 4.35 V, a hardware Over-voltage protection (OV) should be activated and the charger will be turned off immediately.

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	Charging complete threshold	-11	4.15	4.2	4.25	V
	Battery Over voltage protection threshold (OV)	O - MON W		4.35		V

Table 26 Top-Off Specifications

MediaTek Confidential

© 2011 MediaTek Inc.

Page 66 of 508

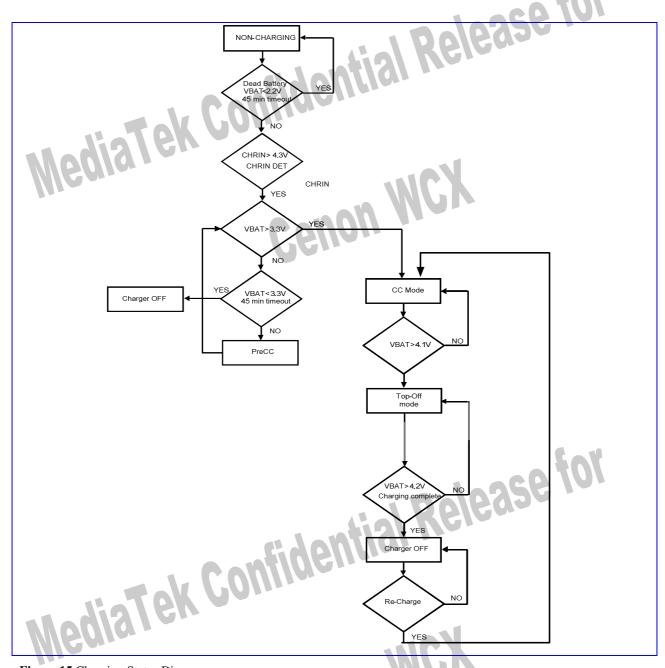


Figure 15 Charging States Diagram

MediaTek Confidential

© 2011 MediaTek Inc.

Page 67 of 508

CHR_EN is a register programmed by the register setting, which is controlled by BB or SW. In other words, BB and SW are the masters to manage the charging process at VBAT > 3.2 V. It can implement any charging profile; e.g. trickling charging, simply by programming CHR_EN.

Pin BATON turns off the charger immediately if it goes high (> 2.5±0.1 V). This function is designated to stop CC or Top-Off charging mode in case the battery is accidentally removed

2.6.4.7 Charging Profile

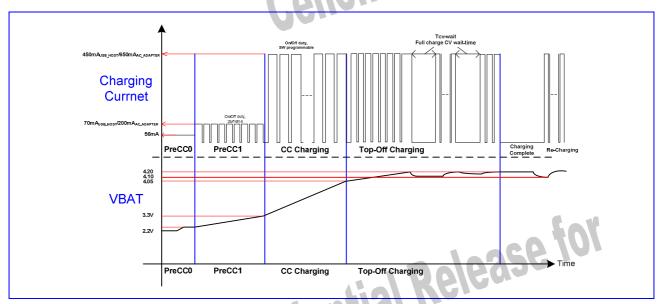


Figure 16 I-V curve of Li-Ion battery charging

2.6.5 Class-AB Audio Amplifier

2.6.5.1 Block Description

MT6252 has a built-in high fidelity class AB audio power amplifier. It is capable of delivering 1 watt of power to an 8 ohm BTL load with less than 10% distortion (THD+N) from a 4.2 V battery supply.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 68 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

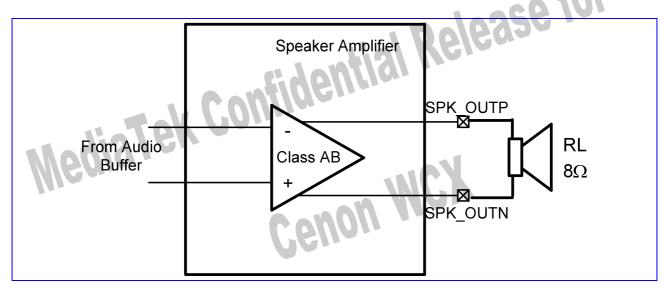
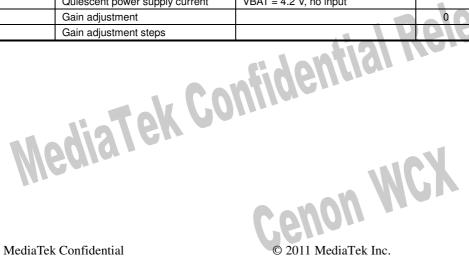



Figure 17 Class-D audio amplifier block diagram

2.6.5.2 Functional Specification

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
	RMS Power	8Ω load, VBAT = 4.2 V		900		mW
		8Ω load, VBAT = 3.4 V		550		mW
	THD+N	1KHz, Po=0.8Wrms, 4.2V		0.01		%
	PSRR	20 Hz ~ 1 kHz, diff. mode		75	4 - 11	dB
	Shutdown current	SPKL_EN = SPKR_EN = 0		0.03	FAI	μΑ
	Quiescent power supply current	VBAT = 4.2 V, no input		3	101	mA
	Gain adjustment		0		18	dB
	Gain adjustment steps			3		dB

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

2.7 **GSM/GPRS RF**

2.7.1 **Block Description**

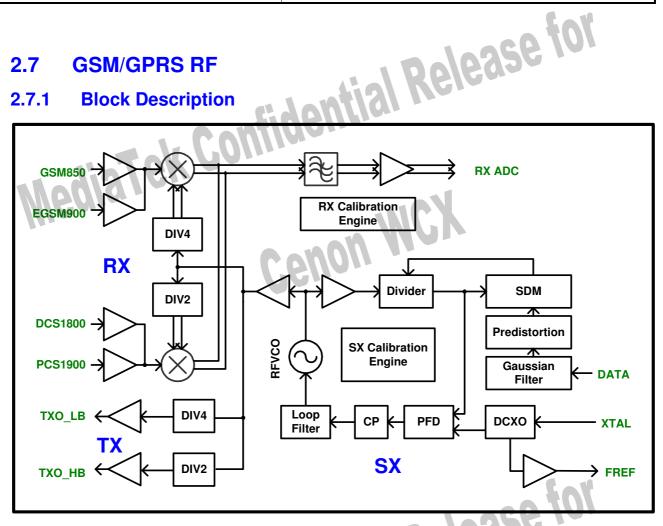


Figure 18 RFSYS Block Diagram

MT6252 RFSYS is a low current transceiver to support a true quad-band GSM/GPRS cellular system. The highly integrated RF system implements a high sensitivity and channel selection receiver, a high precision transmission modulator, a low phase noise frequency synthesizer, and a digitally controlled crystal oscillator. The external components required for the GPRS radio design are the Rx SAWs, PA, switchplexer, X'TAL, and a few passives.

Receiver 2.7.1.1

The receiver section integrates a low noise amplifier (LNA), down-converting mixers, and baseband amplifier/channel filters. The input of the receiver are from four LNAs to support quad-band applications. The LNAs are used to amplify

MediaTek Confidential

© 2011 MediaTek Inc.

Page 70 of 508

the received signal from the antenna, and then output to the mixer. While receiving large input signals, the LNAs can be switched to the low gain mode. The LO of quadrature mixers are generated from divide-by-4 and divide-by-2 of Fractional-N SX output. The sebsequent baseband amplifier is then used to amplify the down-converted signal. The gain of the baseband amplifier is programmable. DC offset correction is built in, and the DC correction is automatically triggered for each receiver slot. To provide the necessary adjacent channel and blocking filtering, the RX IF channel filter is built in.

2.7.1.2 Transmitter

The transmit section is a frequency modulator. The input DATA stream of transmitter is Gaussian filtered from baseband, and is fed to a pre-distortion filter. SX calibration engine are built in and are triggered by the Warm-up state before a TX slot. The pre-distorted DATA stream together with the channel word is then input to SD modulator for DIV-N control and frequency modulation of RFVCO.

The output of RFVCO is then divided by four for the applications of GSM850 and EGSM bands and by two for the applications of DCS and PCS bands. TX output buffers amplify the divided signals for PA input.

2.7.1.3 Synthesizer

The synthesizer section is a Phase-locked Loop (PLL) based fractional-N frequency synthesizer with a fully integrated set of RF VCO and loop filter. It provides the Local Oscillator (LO) signals for both the receiver and the transmitter. Other blocks in PLL are also included, such as the divider, Phase Frequency Detector (PFD), Charge Pump (CP), Sigma-delta Modulator (SDM), and X'TAL oscillator. The X'TAL oscillator is used to generate a 26 MHz clock as a reference signal for the synthesizer and the baseband. It is a digitally controlled X'TAL oscillator. A coarse capacitor array is built in for the factory 26 MHz clock frequency calibration, and a fine capacitor array is for the dynamic frequency control of the GSM system. The SX PLL takes the 26 MHz clock as a reference signal, and synthesize the desired LO frequency for both the receiver and transmitter. The synthesizer frequency programming is detailed as in Section 2.7.3.3.

2.7.2 Functional Specification

RFSYS MODE	AVDD28_RFD	AVDD28_TCXO	AVDD28_RF1 AVDD28_RF2	RFSYS Total	Unit
Deep Sleep (DCXO is off)	8.1	2.3	2.5	13	uA
Sleep (DCXO is on)	0.5	2.3	0.0025	2.8	mA
RX (GSM850/EGSM)	0.8	14	48	62	mA
RX (DCS/PCS)	0.8	14	51	65	mA
TX (GSM850/EGSM)	3.9	6.6	44	55	mA
TX (DCS/PCS)	3.9	6.6	39	50	mA

MediaTek Confidential

© 2011 MediaTek Inc.

Page 71 of 508

Table 27 DC Characteristic (TA=25°C, VDD=2.8V unless otherwise stated)

Symbol	Description	Band	Condition	Min.	Тур.	Max.	Unit
F _{RX}		GSM850	-1011/11	869		894	MHz
		GSM900	Ourie.	925		960	MHz
	Input frequency	DCS1800		1805		1880	MHz
		PCS1900		1930		1990	MHz
G _{max}	TOK V	GSM850	LNA = high gain. PGA = 54 dB	92 ¹	95		dB
		GSM900		92 ²	95		dB
	Differential max voltage gain	DCS1800		92 ³	95		dB
	mai	PCS1900		92 ⁴	95		dB
$G_{\text{step,LNA}}$	Front-end LNA gain step	GSM850	LNA = high gain to low gain	23 ¹	26	29 ¹	dB
		GSM900		23 ¹	26	29 ¹	dB
		DCS1800		23 ¹	26	29 ¹	dB
		PCS1900		23 ¹	26	29 ¹	dB
	Naire favore at 0500	GSM850	LNA = high gain. PGA = 54 dB		2.5	4.5 ¹	dB
NF ₂₅		GSM900			2.5	4.5^{2}	dB
INF 25	Noise figure at 25 ℃	DCS1800			2.5	4.5^{3}	dB
		PCS1900			2.5	4.5 ⁴	dB
		GSM850			3.5	4 ⁵	dB
NF ₈₅	Noise figure at 95.90	GSM900	LNA = high gain.		3.5	4 ⁵	dB
INF 85	Noise figure at 85℃	DCS1800	PGA = 54 dB		3.5	4 ⁵	dB
		PCS1900			3.5	4 ⁵	dB
	2 nd -order input intercept point	GSM850	LNA = high gain. PGA = 54 dB	31 ¹	43		dBm
UDO		GSM900		31 ²	43		dBm
IIP2		DCS1800		31 ³	43		dBm
		PCS1900		31 ⁴	43		dBm
	3 rd -order input intercept point	GSM850	LNA = high gain. PGA = 0 dB	-14 ¹	-3		dBm
IIP3		GSM900		-14 ²	-3		dBm
		DCS1800		-14 ³	-3		dBm
		PCS1900		-14 ⁴	-3		dBm
IIP3 ₋₂₀	3 rd -order input intercept point @ -20 ℃	GSM850			-5		dBm
		GSM900	LNA = high gain. PGA = 0 dB		-5	-0	dBm
		DCS1800			-5		dBm
		PCS1900			-5		dBm
IP _{1dB}	Input 1 dB compression point	GSM850	LNA = high gain.		-20		dBm
		GSM900		TPYA	-20		dBm
		DCS1800	PGA = 0dB		-20		dBm
		PCS1900	tial no		-20		dBm
SN _{3M}	Receiver S/N with 3 MHz	GSM850	Blocker = -23 dBm.	11 ¹	14		dB
			Noise power is calculated				
		GSM900	within 130 kHz bandwidth	11 ²	14		dB
	blocker	DCS1800	Blocker = -26 dBm.	11 ³	14		dB
	" Tak U	PCS1900	Noise power is calculated within 130 kHz bandwidth	11 ⁴	14		dB
PGA _{linear}	PGA gain linearity	ALL	INL		0.2	1 ⁵	dB
	T GA gailt lilleality		DNL		0.1	0.5 ⁵	dB
PGA _{step}	PGA gain step	ALL	16		2		dB
PGA _{step}	PGA dynamic range	ALL	PGA = 0 dB to 60 dB		60		dB

Table 28 RX AC Characteristic (TA=25°C, VDD=2.8V unless otherwise stated)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 72 of 508

Confidential A

Symbol	Description	Band	Condition	Min.	Тур.	Max.	Unit
-		GSM850		824		849	MHz
_	F	GSM900	Gal NG	880		915	MHz
F_{TX}	Frequency	DCS1800		1710		1785	MHz
		PCS1900	JOHN HOLE	1850		1910	MHz
DE	DMC phase array	GSM850 GSM900	1011		1	2.5 ^{1,2}	degrees
PE_{rms}	RMS phase error	DCS1800 PCS1900			1	2.5 ^{3,4}	degrees
110	413121	GSM850 GSM900	400 kHz offset		-70	-64 ^{1,2}	dBc
ODEC	Media	PCS1900	(RBW = 30 kHz bandwidth)		-67	-64 ^{3,4}	dBc
ORFS	Output modulation spectrum	GSM850 GSM900	1.8 MHz offset			-75 ⁵	dBc
		DCS1800 PCS1900	(RBW = 30 kHz bandwidth)			-75⁵	dBc
		CCMOEO	20 MHz Offset		-165	-164 ⁵	dBc/Hz
		GSM850	35 MHz Offset		-168	-167⁵	dBc/Hz
TV	Tx noise in Bx band	GSM900	20 MHz Offset		-165	-164 ⁵	dBc/Hz
TX_{NOISE}	TX Hoise in Ax band	GS1V1900	35 MHz Offset		-168	-167 ⁵	dBc/Hz
		DCS1800	20 MHz Offset		-160	-156 ⁵	dBc/Hz
		PCS1900	20 MHz Offset		-160	-156 ⁵	dBc/Hz
D	Output neway level	GSM850 GSM900	PA driver amplifier.	1 ^{1,2}	3	6 ^{1,2}	dBm
P _{out}	Output power level	DCS1800 PCS1900	$R_{load} = 50 \Omega$	1 ^{3,4}	3	6 ^{3,4}	dBm
TX _{HARM}	Output 3 rd harmonics	ALL	PA driver amplifier.		-10		dBc

Table 29 TX AC Characteristic (TA=25°C, VDD=2.8V unless otherwise stated)

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
Frange	Frequency range		3296		3980	MHz
F _{ref}	Reference frequency			26	4	MHz
F _{res}	Frequency step resolution			3		Hz
PN _{10k}		@ 10 kHz offset		-83		dBc/Hz
PN _{400k}	Phase noise	@ 400 kHz offset		-116		dBc/Hz
PN _{3M}		@ 3 MHz offset		-136		dBc/Hz
T _{lock_rx}	Lock time of RX Burst	Frequency error<± 0.1ppm		150	200 ⁵	us
T _{lock tx}	Lock time of TX Burst	Frequency error<± 0.1ppm		200	300 ⁵	us
RFVCO _{PS}	Pushing figure	Supply Pushing from VDD28_RF2		400		kHz/V

Table 30 DCXO AC Characteristic (TA=25°C, VDD=2.8V unless otherwise stated)

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
F _{ref}	Operating frequency			26		MHz
C_L	Crystal C Load			7.5		pF
Ts	Crystal tuning sensitivity		27.5	32.3		ppm/pF
SR	Static range	CDAC from 0 to 100	± 22	± 30		ppm
DR	Dynamic range	CAFC from 0 to 8191	36	42		ppm
TC	Tempe Characteristic	T ^A from -20°C to 65°C		+2		ppm
F _{res-AFC}	AFC tuning step			0.01		ppm/DA

MediaTek Confidential

© 2011 MediaTek Inc.

Page 73 of 508

Symbol	Description	Condition Min.		Тур.	Max.	Unit
				Ci.		С
T _{AFC}	AFC settling time	CAFC from 0 to 8191 CAFC from 8191 to 0 Frequency error < 0.1ppm		100	200 ⁵	us
T _{DCXO}	Start-up time	Frequency error < 1ppm Amplitude > 90 %			2 ⁵	ms
DCXO _{PS}	Pushing figure	Supply Pushing from VDD28_TCXO		0.5		ppm/V
V_{Fref}	Fref buffer output level	Loading = C3pF//R2Kohm	600 ⁵	800		mV_{p-p}
		@ 1kHz offset		-135		dBc/Hz
XO _{PN}	Fref buffer output phase noise CDAC=50	@ 10 kHz offset		-145		dBc/Hz
XOPN	CAFC=6400	@ 100 kHz offset		-155		dBc/Hz
	UAI 0=0400	@ 1 MHz offset		-155		dBc/Hz

Table 31 DCXO AC Characteristic (TA=25°C, VDD=2.8V unless otherwise stated)

- 1. Tested at channel 190 of GSM 850 band
- 2. Tested at channel 70 of E-GSM 900 band
- 3. Tested at channel 700 of DCS 1800 band
- 4. Tested at channel 660 of PCS 1900 band
- 5. Not subject to production test verified by characterization and design
- 6. AVDD includes AVDD28_RF1, AVDD28_RF2, AVDD28_TCXO, and AVDD28_RFD

2.7.3 Software Programming

The RFSYS transceiver operation commands are sent to control words via 3-wire serial interface, so that the transceiver works at the defined state and setting, which are described in Section 2.7.3.

2.7.3.1 Control Word Registers Description

Several control word registers are used for normal transceiver operation mode and SX frequency plan as listed below. These control word registers can be set automatically to default values after software or hardware Power-on-Reset.

Reg	Bit(s)	Name	Description
00h	19	SOR CO	Software Register Rest 0 = Disable (default) 1 = Enable Note(s): 1. Used to restore the default values of registers.
01h	17:10	N_INT[7:0]	Integer Part of N Counter Note(s): 1. Used to set output frequency of SX
01h 02h	9:0 12:0	N_FRAC[9:0] N_FRAC[22:10]	Fractional Part of N Counter Note(s): 1. Used to set output frequency of SX

MediaTek Confidential © 2011 MediaTek Inc. Page 74 of 508

Reg	Bit(s)	Name	Description
02h	19:18	TRX[1:0]	Mode Selection between TX and RX 00 = RX (default) 01 = TX 1X = Reserved Note(s): 1. Used as a flag before TX or RX mode.
02h	17:16	BAND[1:0]	Band Selection 00 = GSM 850 band 01 = EGSM 900 band (default) 10 = DCS 1800 band 11 = PCS 1900 band
02h	15:13	MODE[2:0]	Mode Selection 000 = Sleep mode (default) 010 = Standby mode 001 = Warmup mode 011 = RX mode 100 = TX mode
60h	5:0	RX_GC[5:0]	RX PGA Gain Setting 111111 = Maximum gain (default) Note(s): 1. Sending CW96 is to enter RX mode, too.
39h	12:0	CAFC[12:0]	DCXO Fine Frequency Adjustment for Digital AFC 000000000000 = Lowest frequency 110010000000 = Midscale frequency (default) 11111111111 = Highest frequency

Table 32 Description of Control Registers and Power-On-Reset Values of MT6252 RFSYS 3wire tablecontrol registers

2.7.3.2 Operation Control System Descriptions

There are seven operation states in the RFSYS, which are reset, deep sleep, sleep, stand-by, warm-up, receive and transmit state. The detailed descriptions are as follows.

Reset States (Power-on Reset)

To ensure the RFSYS in a known state after power-on, a power-on reset circuit is included. In this state, the supply voltage should be ready for RFSYS. Then, RFSYS will do power-on reset to ensure the known state. There are two reset methods for RFSYS: Power-on-Reset by the internal hardware power-on reset circuit. Software can be reset by setting the CW0:SOR = 1

The effect of the reset is to load default values to all the RFSYS control bits.

Deep Sleep State

In the Deep Sleep State, the RFSYS circuit blocks are inactive, including the 26 MHz DCXO.

Sleep State

MediaTek Confidential

© 2011 MediaTek Inc.

Page 75 of 508

In the Sleep State, the RFSYS circuit blocks are inactive, with the exception of DCXO. Programming [MODE] = [000] of CW2 will cause the RFSYS to enter the Sleep State. The Sleep State is the default state after either a power-on reset or a software reset.

Stand-by State

In the Standby State, Sx related blocks will be active. Programming [MODE] = [010] of CW2 will cause the RFSYS to enter the Standby State.

Warm-up State

In the Warm-up State, all circuit blocks except the Rx and Tx are active. Programming CW1 or programming [MODE]=[001] will cause the RFSYS to enter the Warm-up State. Entering the warm-up mode begins Sx calibrations before Tx and Rx slots.

Rx State

In the Rx State only the Tx circuit blocks are inactive. Programming [MODE] = [011] of CW2 or sending CW96 will cause the RFSYS to enter the Rx State...

Tx State

In the Tx State, only the Rx circuit blocks are inactive. Programming [MODE] = [100] of CW2 or sending CW133 will cause the RFSYS to enter the Tx State.

2.7.3.3 Synthesizer Frequency Programming

This section describes the synthesizer frequency planning in RX and TX modes. ntial Release for

The channel frequency ranges of Rx mode and TX mode are shown below:

RX-GSM850	869 MHz ~ 894 MHz
RX-EGSM900	925 MHz ~ 960 MHz
RX-DCS1800	1805 MHz ~ 1880 MHz
RX-PCS1900	1930 MHz ~ 1990 MHz
TX-GSM850	824 MHz ~ 849 MHz
TX-EGSM900	880 MHz ~ 915 MHz
TX-DCS1800	1710 MHz ~ 1785 MHz
TX-PCS1900	1850 MHz ~ 1910 MHz

The SX divider number N is decided by the following procedure in the RX/TX mode

MediaTek Confidential

© 2011 MediaTek Inc.

Page 76 of 508

GSM/GPRS Baseband Processor Data Sheet

ease to

1. Calculate LO frequency f_{VCO} from RX/TX channel frequency f_{CH} for GSM850 and EGSM900 $f_{VCO} = 4 * f_{CH}$

 $f_{VCO} = 2 * f_{CH}$

for DCS1800 and PCS1900

2. Calculate N_{int} and N_{frac}.

 $N = f_{VCO}/26M = N_{INT} + N_{FRAC}/2^{23}$

 $64 \le N_{INT} \le 255, 0 \le N_{FRAC} < 2^{23}-1$

N_INT and N_FRAC are integers, which use the binary equivalents of N_INT and N_FRAC to program registers CW1:N_INT[7:0], CW1:N_FRAC[9:0] and CW2:N_FRAC[22:10].

RFSYS Power-on Sequence 2.7.3.4

BSI Programming of TX Burst 2.7.3.4.1

- 1. Initialization of RFSYS control registers
- 2. Stand-by (CW2/CW57, BSI)

Set CW2 TRX[1:0]=01, MODE[2:0]=010, BAND[1:0] (00: GSM850, 01:EGSM900, 10:DCS, 11:PCS) and N FRAC based on channel information

Set CW57 XO_CAFC[12:0]

- 3. Warm-up (CW1, BSI) Set CW1 N INT, N FRAC based on channel information ential Release for
- 4. TX-mode (CW133, BSI)
- Sleep-mode (CW2, BSI) 5.

BSI Programming of RX Burst 2.7.3.4.2

- 1. Initialization of RFSYS control registers
- 2. Stand-by (CW2/CW57, BSI)

Set CW2 TRX[1:0]=00, MODE[2:0]=010, BAND[1:0] (00: GSM850, 01:EGSM900, 10:DCS, 11:PCS) and N_FRAC based on channel information

ion MCX

Set CW57 XO_CAFC[12:0]

Warm-up (CW1, BSI)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 77 of 508

Confidential A

МЕДІЛТЕК

- mx-mode (CW96, BSI)
 Set RX_GC[5:0] based on RX gain setting
 Sleep-mode (CW2, BSI) ريد _يد[5:0] based on RX gain setti 6. Sleep-mode (CW2, BSI)

Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

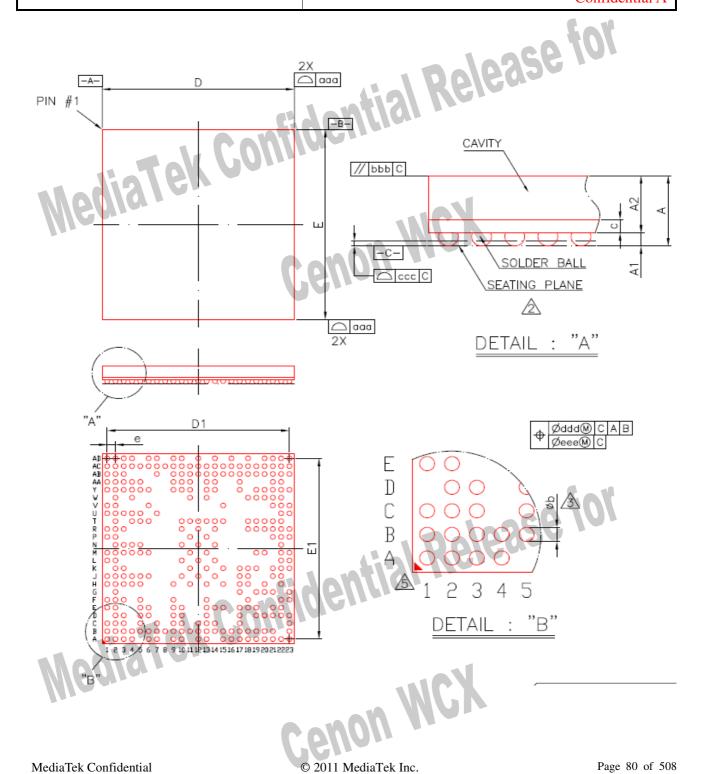
Page 78 of 508

Confidential A

2.8

2.8.1

MediaTek Confidential Release for Cenon MCX



MediaTek Confidential

© 2011 MediaTek Inc.

Page 79 of 508

MT6252

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

						10	ace
		Dime	nsion in	mm	Dimension in inch		
	Symbol	MIN	NOM	MAX	MIN	NOM	MAX
	Α		-	1.20	7.07		0.047
	A1	0.16	0.21	0.26	0.006	0.008	0.010
	A2	0.86	0.91	0.96	0.034	0.036	0.038
	C	0.17	0.21	0.25	0.007	0.008	0.010
110A12	D	11.50	11.60	11.70	0.453	0.457	0.461
Misain	E	12.00	12.10	12.20	0.472	0.476	0.480
Min	D1		11.00		-4-//	0.433	
	E1		11.50			0.453	
	е		0.50			0.020	
	b	0.25	0.30	0.35	0.010	0.012	0.014
	aaa	·	0.10	·		0.004	
	bbb		0.10		0.004		
	ccc		0.08			0.003	
	ddd		0.15			0.006	
	eee		0.05			0.002	
	MD/ME		23/24			23/24	

NOTE:

1. CONTROLLING DIMENSION: MILLIMETER.

PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

DIMENSION & IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.

4. SPECIAL CHARACTERISTICS C CLASS: bbb, ccc

THE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY.

Figure 19 Outlines and Dimension of MT6252 TFBGA 11.6mm * 12.1mm 0.5mm pitch package

Body Size	Ball Count	Ball Pitch	Ball Dia.	Package Thk.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 81 of 508

МЕДІЛІТЕК

GSM/GPRS Baseband Processor Data Sheet

MT6252

Confidential A

0.5 11.6 12.1 305

Table 33 MT6252 definition of TFBGA 11.6 x 12.1 mm 0.5 mm pitch package (unit: mm)

Thermal Operating Specifications 2.8.2

Symbol	Description	Value	Unit	Notes
ӨЈА	Thermal resistance from device junction to package case	27.67	'C/W	

Lead-free Packaging 2.8.3

MT6252 is provided in a lead-free package which meets RoHS requirements.

2.9 **Ordering Information**

Top Marking Definition 2.9.1

MT6252A DDDD-#### LLLLL **KKKK**

MT6252A: Part No. DDDD: **Date Code**

####: Subcontractor Code

Die1 Lot No. LLLLL; Die2 Lot No. KKKK:

Figure 20 Top marking of MT6252

MediaTek Confidential

© 2011 MediaTek Inc.

Page 82 of 508

3 Micro-Controller Unit Subsystem

Figure 21 illustrates the block diagram of the Micro-Controller Unit Subsystem in MT6252. The subsystem utilizes a main 32-bit ARM7EJ-S RISC processor, which plays the role of the main bus master controlling the whole subsystem. All processor transactions go to code cache first. The code cache controller accesses TCM (memory dedicated to ARM7EJS core), cache memory, or bus according to the processor's request address. If the requested content is found in TCM or in cache, no bus transaction is required. If the code cache hit rate is high enough, bus traffic can be effectively reduced and processor core performance maximized.

The bus comprises of two-level system buses: Advanced High-Performance Bus (AHB) and Advanced Peripheral Bus (APB). All bus transactions originate from bus masters, while slaves can only respond to requests from bus masters. Before data transfer can be established, the bus master must ask for bus ownership, accomplished by request-grant handshaking protocol between masters and arbiters.

Two levels of bus hierarchy are designed to provide optimum usage for different performance requirements. Specifically, AHB Bus, the main system bus, is tailored toward high-speed requirements and provides 32-bit data path with multiplex scheme for bus interconnections. The APB Bus, on the other hand, is designed to reduce interface complexity for lower data transfer rate, and so it is isolated from high bandwidth AHB Bus by APB Bridge. APB Bus supports 16-bit addressing and both 16-bit and 32-bit data paths. APB Bus is also optimized for minimal power consumption by turning off the clock when there is no APB bus activity.

During operation, if the target slave is located on AHB Bus, the transaction is conducted directly on AHB Bus. However, if the target slave is a peripheral and is attached to the APB bus, then the transaction is conducted between AHB and APB bus through the use of APB Bridge.

In order to off-load the processor core, a DMA Controller is designated to act as a master and share the bus resources on AHB Bus to do fast data movement between modules. This controller comprises thirteen DMA channels.

The Interrupt Controller provides a software interface to manipulate interrupt events. It can handle up to 32 interrupt sources asserted at the same time. In general, it generates 2 levels of interrupt requests, FIQ and IRQ, to the processor.

A SRAM is provided for acting as system memory for high-speed data access. For factory programming purpose, a Boot ROM module is used. These two modules use the same Internal Memory Controller to connect to AHB Bus.

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 83 of 508

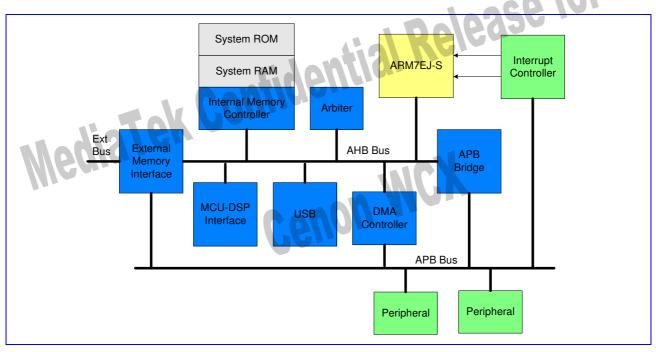


Figure 21 Block Diagram of the Micro-Controller Unit Subsystem in MT6252

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Direct Memory Access 3.1

3.1.1

General Description

AA Controller is placed on Layer 2 AHR Portroller, specific devices A generic DMA Controller is placed on Layer 2 AHB Bus to support fast data transfers and to off-load the processor. With this controller, specific devices on AHB or APB buses can benefit greatly from quick completion of data movement from or to memory modules such as Internal System RAM or External SRAM, excluding TCM. TCM is invisible for DMA engine. Such Generic DMA Controller can also be used to connect any two devices other than memory module as long as they can be addressed in memory space. Figure 22 illustrates the system connections.

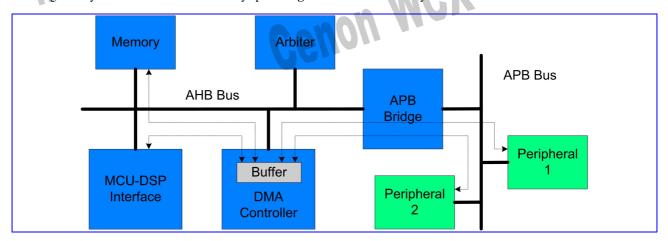


Figure 22 Variety Data Paths of DMA Transfers

Up to fourteen channels of simultaneous data transfers are supported. Each channel has a similar set of registers to be configured to different scheme as desired. If more than fourteen devices are requesting the DMA resources at the same time, software based arbitration should be employed. Once the service candidate is decided, the responsible device driver should configure the Generic DMA Controller properly in order to conduct DMA transfers. Both Interrupt and Polling based schemes in handling the completion event are supported. The block diagram of such generic DMA MediaTek Co Controller is illustrated in Figure 23

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 85 of 508

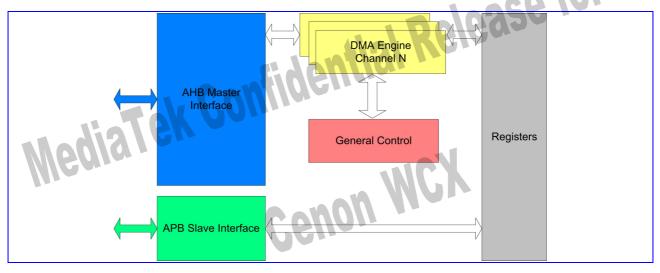


Figure 23 DMA Block Diagram

3.1.1.1 Full-Size & Half-Size DMA Channels

There are three types of DMA channels in the DMA controller. The first one is called a full-size DMA channel, the second one is called a half-size DMA channel, and the last is Virtual FIFO DMA. Channel 1 is full-size DMA channel; channels 2 through 9 are half-size ones; and channels 10 through 15 are Virtual FIFO DMA channels. The difference between the first two types of DMA channels is that both source and destination address are programmable in full-size DMA channels, but only the address of one side can be programmed in half-size DMA channel. In half-size channels, only either the source or destination address can be programmed, while the addresses of the other side are preset. Which preset address is used depends on the setting of MAS in DMA Channel Control Register. Refer to the Register Definition section for more detail.

3.1.1.2 Ring Buffer & Double Buffer Memory Data Movement

DMA channels 1 through 9 support ring-buffer and double-buffer memory data movement. This can be achieved by programming DMA_WPPT and DMA_WPTO, as well as setting WPEN in DMA_CON register to enable. **Figure 24** illustrates how this function works. Once the transfer counter reaches WPPT, the next address will jump to WPTO address after completing the WPPT data transfer. Note that only one side can be configured as ring-buffer or double-buffer memory, and this is controlled by WPSD in DMA_CON register.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 86 of 508

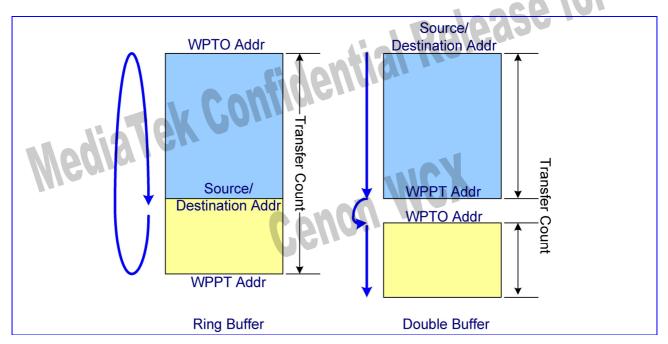


Figure 24 Ring Buffer and Double Buffer Memory Data Movement

3.1.1.3 Unaligned Word Access

The address of word access on AHB bus must be aligned to word boundary, or the 2 LSB is truncated to 00b. If programmers do not notice this, it may cause an incorrect data fetch. In the case where data is to be moved from unaligned addresses to aligned addresses, the word is usually first split into four bytes and then moved byte by byte. Thus four read and four write transfers will be appeared on the bus.

To improve bus efficiency, unaligned-word access is provided in DMA2~9. While this function is enabled, DMAs move data from unaligned address to aligned address by executing four continuous byte-read access and one word-write access, reducing the number of transfers on the bus by three.

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

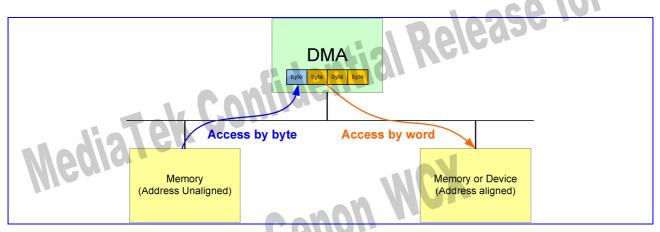


Figure 25 Unaligned Word Accesses

3.1.1.4 Virtual FIFO DMA

Virtual FIFO DMA is used to ease UART control. The difference between the Virtual FIFO DMAs and the ordinary DMAs is that Virtual FIFO DMA contains additional FIFO controller. The read and write pointers are kept in the Virtual FIFO DMA. During a read from the FIFO, the read pointer points to the address of the next data. During a write to the FIFO, the write pointer moves to the next address. If the FIFO is empty, a FIFO read is not allowed. Similarly, data is not written into the FIFO if the FIFO is full. Due to UART flow control requirements, an alert length is programmed. Once the FIFO Space is less than this value, an alert signal is issued to enable UART flow control. The type of flow control performed depends on the setting in UART.

Each Virtual FIFO DMA can be programmed as RX or TX FIFO. This depends on the setting of DIR in DMA_CON register. If DIR is "0" (READ), it means TX FIFO. On the other hand, if DIR is "1" (WRITE), the Virtual FIFO DMA is specified as a RX FIFO.

Virtual FIFO DMA provides an interrupt to MCU. This interrupt informs MCU that there is data in the FIFO, and the amount of data is over or under the value defined in DMA_COUNT register. With this, MCU does not need to poll DMA to know when data must be removed from or put into the FIFO.

Note that Virtual FIFO DMAs cannot be used as generic DMAs, i.e. DMA1~9.

Page 88 of 508

Confidential A

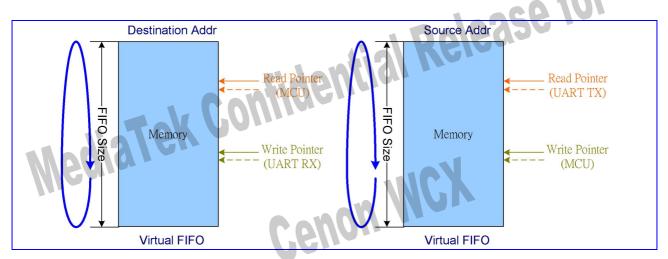


Figure 26 Virtual FIFO DMA

DMA number	Address of V	irtual FIFO Acce	ess Port Re	eference UART			
DMA9	7800_0000h		U	ART1 RX	_		
DMA10	7800_0100h		U	ART2 RX	_		
DMA11	7800_0200h		U	ART 3 RX			
DMA12	7800_0300h		U	ART1 TX			
DMA13	7800_0400h		U	ART2 TX	Yal		
DMA14	7800_0500h		U	ART3 TX	CO TUI		
Table 34 Virtual FIFO Access Port							
DMA number	Type	Ring Buffer	Double Buffe	r Burst Mode	Unaligned Word Access		

DMA number	Type	Ring Buffer	Double Buffer	Burst Mode	Unaligned Word Access
DMA1	Full Size	•	•		
DMA2	Half Size	•	• 40 W		•

MediaTek Confidential

© 2011 MediaTek Inc.

Page 89 of 508

					CD IA
DMA3	Half Size	•	•	30107	.50
DMA4	Half Size	•	• 450	Yelo.	•
DMA5	Half Size	• 440	MILOI		•
DMA6	Half Size	·AFINE		•	•
DMA7	Half Size	•	•	•	•
DMA8	Half Size	•	•	•	•
DMA9	Half Size	•	•	•	•
DMA10	Virtual FIFO	•	- 11	67	
DMA11	Virtual FIFO	•		4	
DMA12	Virtual FIFO	• 6 6 18			
DMA13	Virtual FIFO	• 8-	10.		
DMA14	Virtual FIFO	•			
DMA15	Virtual FIFO	•			

Table 35 Function List of DMA channels

	ease for	
Register Address	Register Function	Acronym
0x8102_0000h	DMA Global Status Register	DMA_GLBSTA
0x8102_0028h	DMA Global Bandwidth Limiter Register	DMA_GLBLIMITER
0x8102_0100h	DMA Channel 1 Source Address Register	DMA1_SRC

MediaTek Confidential

© 2011 MediaTek Inc.

Page 90 of 508

		OCD IVI
0x8102_0104h	DMA Channel 1 Destination Address Register	DMA1_DST
0x8102_0108h	DMA Channel 1 Wrap Point Address Register	DMA1_WPPT
0x8102_010Ch	DMA Channel 1 Wrap To Address Register	DMA1_WPTO
0x8102_0110h	DMA Channel 1 Transfer Count Register	DMA1_COUNT
0x8102_0114h	DMA Channel 1 Control Register	DMA1_CON
0x8102_0118h	DMA Channel 1 Start Register	DMA1_START
0x8102_011Ch	DMA Channel 1 Interrupt Status Register	DMA1_INTSTA
0x8102_0120h	DMA Channel 1 Interrupt Acknowledge Register	DMA1_ACKINT
0x8102_0124h	DMA Channel 1 Remaining Length of Current Transfer	DMA1_RLCT
0x8102_0128h	DMA Channel 1 Bandwidth Limiter Register	DMA1_LIMITER
0x8102_0208h	DMA Channel 2 Wrap Point Address Register	DMA2_WPPT
0x8102_020Ch	DMA Channel 2 Wrap To Address Register	DMA2_WPTO
0x8102_0210h	DMA Channel 2 Transfer Count Register	DMA2_COUNT
0x8102_0214h	DMA Channel 2 Control Register	DMA2_CON
0x8102_0218h	DMA Channel 2 Start Register	DMA2_START
0x8102_021Ch	DMA Channel 2 Interrupt Status Register	DMA2_INTSTA
0x8102_0220h	DMA Channel 2 Interrupt Acknowledge Register	DMA2_ACKINT
0x8102_0224h	DMA Channel 2 Remaining Length of Current Transfer	DMA2_RLCT
0x8102_0228h	DMA Channel 2 Bandwidth Limiter Register	DMA2_LIMITER
0x8102_022Ch	DMA Channel 2 Programmable Address Register	DMA2_PGMADDR
0x8102_0308h	DMA Channel 3 Wrap Point Address Register	DMA3_WPPT
0x8102_030Ch	DMA Channel 3 Wrap To Address Register	DMA3_WPTO
0x8102_0310h	DMA Channel 3 Transfer Count Register	DMA3_COUNT
0x8102_0314h	DMA Channel 3 Control Register	DMA3_CON
-	- A HIVIT	L

MediaTek Confidential

© 2011 MediaTek Inc.

Page 91 of 508

Confidential A

		CC IV
0x8102_0318h	DMA Channel 3 Start Register	DMA3_START
0x8102_031Ch	DMA Channel 3 Interrupt Status Register	DMA3_INTSTA
0x8102_0320h	DMA Channel 3 Interrupt Acknowledge Register	DMA3_ACKINT
0x8102_0324h	DMA Channel 3 Remaining Length of Current Transfer	DMA3_RLCT
0x8102_0328h	DMA Channel 3 Bandwidth Limiter Register	DMA3_LIMITER
0x8102_032Ch	DMA Channel 3 Programmable Address Register	DMA3_PGMADDR
0x8102_0408h	DMA Channel 4 Wrap Point Address Register	DMA4_WPPT
0x8102_040Ch	DMA Channel 4 Wrap To Address Register	DMA4_WPTO
0x8102_0410h	DMA Channel 4 Transfer Count Register	DMA4_COUNT
0x8102_0414h	DMA Channel 4 Control Register	DMA4_CON
0x8102_0418h	DMA Channel 4 Start Register	DMA4_START
0x8102_041Ch	DMA Channel 4 Interrupt Status Register	DMA4_INTSTA
0x8102_0420h	DMA Channel 4 Interrupt Acknowledge Register	DMA4_ACKINT
0x8102_0424h	DMA Channel 4 Remaining Length of Current Transfer	DMA4_RLCT
0x8102_0428h	DMA Channel 4 Bandwidth Limiter Register	DMA4_LIMITER
0x8102_042Ch	DMA Channel 4 Programmable Address Register	DMA4_PGMADDR
0x8102_0508h	DMA Channel 5 Wrap Point Address Register	DMA5_WPPT
0x8102_050Ch	DMA Channel 5 Wrap To Address Register	DMA5_WPTO
0x8102_0510h	DMA Channel 5 Transfer Count Register	DMA5_COUNT
0x8102_0514h	DMA Channel 5 Control Register	DMA5_CON
0x8102_0518h	DMA Channel 5 Start Register	DMA5_START
0x8102_051Ch	DMA Channel 5 Interrupt Status Register	DMA5_INTSTA
0x8102_0520h	DMA Channel 5 Interrupt Acknowledge Register	DMA5_ACKINT
0x8102_0524h	DMA Channel 5 Remaining Length of Current Transfer	DMA5_RLCT
	WU!	1

MediaTek Confidential

© 2011 MediaTek Inc.

Page 92 of 508

		CCD IV
0x8102_0528h	DMA Channel 5 Bandwidth Limiter Register	DMA5_LIMITER
0x8102_052Ch	DMA Channel 5 Programmable Address Register	DMA5_PGMADDR
0x8102_0608h	DMA Channel 6 Wrap Point Address Register	DMA6_WPPT
0x8102_060Ch	DMA Channel 6 Wrap To Address Register	DMA6_WPTO
0x8102_0610h	DMA Channel 6 Transfer Count Register	DMA6_COUNT
0x8102_0614h	DMA Channel 6 Control Register	DMA6_CON
0x8102_0618h	DMA Channel 6 Start Register	DMA6_START
0x8102_061Ch	DMA Channel 6 Interrupt Status Register	DMA6_INTSTA
0x8102_0620h	DMA Channel 6 Interrupt Acknowledge Register	DMA6_ACKINT
0x8102_0624h	DMA Channel 6 Remaining Length of Current Transfer	DMA6_RLCT
0x8102_0628h	DMA Channel 6 Bandwidth Limiter Register	DMA6_LIMITER
0x8102_062Ch	DMA Channel 6 Programmable Address Register	DMA6_PGMADDR
0x8102_0708h	DMA Channel 7 Wrap Point Address Register	DMA7_WPPT
0x8102_070Ch	DMA Channel 7 Wrap To Address Register	DMA7_WPTO
0x8102_0710h	DMA Channel 7 Transfer Count Register	DMA7_COUNT
0x8102_0714h	DMA Channel 7 Control Register	DMA7_CON
0x8102_0718h	DMA Channel 7 Start Register	DMA7_START
0x8102_071Ch	DMA Channel 7 Interrupt Status Register	DMA7_INTSTA
0x8102_0720h	DMA Channel 7 Interrupt Acknowledge Register	DMA7_ACKINT
0x8102_0724h	DMA Channel 7 Remaining Length of Current Transfer	DMA7_RLCT
0x8102_0728h	DMA Channel 7 Bandwidth Limiter Register	DMA7_LIMITER
0x8102_072Ch	DMA Channel 7 Programmable Address Register	DMA7_PGMADDR
0x8102_0808h	DMA Channel 8 Wrap Point Address Register	DMA8_WPPT
0x8102_080Ch	DMA Channel 8 Wrap To Address Register	DMA8_WPTO
	WIND A WIND	1

MediaTek Confidential

MEDIATEK

© 2011 MediaTek Inc.

Page 93 of 508

		ACU IV
0x8102_0810h	DMA Channel 8 Transfer Count Register	DMA8_COUNT
0x8102_0814h	DMA Channel 8 Control Register	DMA8_CON
0x8102_0818h	DMA Channel 8 Start Register	DMA8_START
0x8102_081Ch	DMA Channel 8 Interrupt Status Register	DMA8_INTSTA
0x8102_0820h	DMA Channel 8 Interrupt Acknowledge Register	DMA8_ACKINT
0x8102_0824h	DMA Channel 8 Remaining Length of Current Transfer	DMA8_RLCT
0x8102_0828h	DMA Channel 8 Bandwidth Limiter Register	DMA8_LIMITER
0x8102_082Ch	DMA Channel 8 Programmable Address Register	DMA8_PGMADDR
0x8102_0908h	DMA Channel 9 Wrap Point Address Register	DMA9_WPPT
0x8102_090Ch	DMA Channel 9 Wrap To Address Register	DMA9_WPTO
0x8102_0910h	DMA Channel 9 Transfer Count Register	DMA9_COUNT
0x8102_0914h	DMA Channel 9 Control Register	DMA9_CON
0x8102_0918h	DMA Channel 9 Start Register	DMA9_START
0x8102_091Ch	DMA Channel 9 Interrupt Status Register	DMA9_INTSTA
0x8102_0920h	DMA Channel 9 Interrupt Acknowledge Register	DMA9_ACKINT
0x8102_0924h	DMA Channel 9 Remaining Length of Current Transfer	DMA9_RLCT
0x8102_0928h	DMA Channel 9 Bandwidth Limiter Register	DMA9_LIMITER
0x8102_092Ch	DMA Channel 9 Programmable Address Register	DMA9_PGMADDR
0x8102_0C10h	DMA Channel 10 Transfer Count Register	DMA10_COUNT
0x8102_0A14h	DMA Channel 10 Control Register	DNA10_CON
0x8102_0A18h	DMA Channel 10 Start Register	DNA10_START
0x8102_0A1Ch	DMA Channel 10 Interrupt Status Register	DNA10_INTSTA
0x8102_0A20h	DMA Channel 10 Interrupt Acknowledge Register	DNA10_ACKINT
0x8102_0A28h	DMA Channel 10 Bandwidth Limiter Register	DNA10_LIMITER
	LA ULU IV	<u> </u>

MediaTek Confidential

© 2011 MediaTek Inc.

Page 94 of 508

Confidential A

		ACH IV
0x8102_0A2Ch	DMA Channel 10 Programmable Address Register	DNA10_PGMADDR
0x8102_0A30h	DMA Channel 10 Write Pointer	DNA10_WRPTR
0x8102_0A34h	DMA Channel 10 Read Pointer	DNA10_RDPTR
0x8102_0A38h	DMA Channel 10 FIFO Count	DNA10_FFCNT
0x8102_0A3Ch	DMA Channel 10 FIFO Status	DNA10_FFSTA
0x8102_0A40h	DMA Channel 10 Alert Length	DNA10_ALTLEN
0x8102_0A44h	DMA Channel 10 FIFO Size	DNA10_FFSIZE
0x8102_0B10h	DMA Channel 11 Transfer Count Register	DMA11_COUNT
0x8102_0B14h	DMA Channel 11 Control Register	DMA11_CON
0x8102_0B18h	DMA Channel 11 Start Register	DMA11_START
0x8102_0B1Ch	DMA Channel 11 Interrupt Status Register	DMA11_INTSTA
0x8102_0B20h	DMA Channel 11 Interrupt Acknowledge Register	DMA11_ACKINT
0x8102_0B28h	DMA Channel 11 Bandwidth Limiter Register	DMA11_LIMITER
0x8102_0B2Ch	DMA Channel 11 Programmable Address Register	DMA11_PGMADDR
0x8102_0B30h	DMA Channel 11 Write Pointer	DMA11_WRPTR
0x8102_0B34h	DMA Channel 11 Read Pointer	DMA11_RDPTR
0x8102_0B38h	DMA Channel 11 FIFO Count	DMA11_FFCNT
0x8102_0B3Ch	DMA Channel 11 FIFO Status	DMA11_FFSTA
0x8102_0B40h	DMA Channel 11 Alert Length	DMA11_ALTLEN
0x8102_0B44h	DMA Channel 11 FIFO Size	DMA11_FFSIZE
0x8102_0C10h	DMA Channel 12 Transfer Count Register	DMA12_COUNT
0x8102_0C14h	DMA Channel 12 Control Register	DMA12_CON
0x8102_0C18h	DMA Channel 12 Start Register	DMA12_START
0x8102_0C1Ch	DMA Channel 12 Interrupt Status Register	DMA12_INTSTA
		1

MediaTek Confidential

© 2011 MediaTek Inc.

Page 95 of 508

		CC IV
0x8102_0C20h	DMA Channel 12 Interrupt Acknowledge Register	DMA12_ACKINT
0x8102_0C28h	DMA Channel 12 Bandwidth Limiter Register	DMA12_LIMITER
0x8102_0C2Ch	DMA Channel 12 Programmable Address Register	DMA12_PGMADDR
0x8102_0C30h	DMA Channel 12 Write Pointer	DMA12_WRPTR
0x8102_0C34h	DMA Channel 12 Read Pointer	DMA12_RDPTR
0x8102_0C38h	DMA Channel 12 FIFO Count	DMA12_FFCNT
0x8102_0C3Ch	DMA Channel 12 FIFO Status	DMA12_FFSTA
0x8102_0C40h	DMA Channel 12 Alert Length	DMA12_ALTLEN
0x8102_0C44h	DMA Channel 12 FIFO Size	DMA12_FFSIZE
0x8102_0D10h	DMA Channel 13 Transfer Count Register	DMA13_COUNT
0x8102_0D14h	DMA Channel 13 Control Register	DMA13_CON
0x8102_0D18h	DMA Channel 13 Start Register	DMA13_START
0x8102_0D1Ch	DMA Channel 13 Interrupt Status Register	DMA13_INTSTA
0x8102_0D20h	DMA Channel 13 Interrupt Acknowledge Register	DMA13_ACKINT
0x8102_0D28h	DMA Channel 13 Bandwidth Limiter Register	DMA13_LIMITER
0x8102_0D2Ch	DMA Channel 13 Programmable Address Register	DMA13_PGMADDR
0x8102_0D30h	DMA Channel 13 Write Pointer	DMA13_WRPTR
0x8102_0D34h	DMA Channel 13 Read Pointer	DMA13_RDPTR
0x8102_0D38h	DMA Channel 13 FIFO Count	DMA13_FFCNT
0x8102_0D3Ch	DMA Channel 13 FIFO Status	DMA13_FFSTA
0x8102_0D40h	DMA Channel 13 Alert Length	DMA13_ALTLEN
0x8102_0D44h	DMA Channel 13 FIFO Size	DMA13_FFSIZE
0x8102_0E10h	DMA Channel 14 Transfer Count Register	DMA14_COUNT
0x8102_0E14h	DMA Channel 14 Control Register	DMA14_CON
	A HIV	1

MediaTek Confidential

© 2011 MediaTek Inc.

Page 96 of 508

Confidential A

		ACH IV
0x8102_0E18h	DMA Channel 14 Start Register	DMA14_START
0x8102_0E1Ch	DMA Channel 14 Interrupt Status Register	DMA14_INTSTA
0x8102_0E20h	DMA Channel 14 Interrupt Acknowledge Register	DMA14_ACKINT
0x8102_0E28h	DMA Channel 14 Bandwidth Limiter Register	DMA14_LIMITER
0x8102_0E2Ch	DMA Channel 14 Programmable Address Register	DMA14_PGMADDR
0x8102_0E30h	DMA Channel 14 Write Pointer	DMA14_WRPTR
0x8102_0E34h	DMA Channel 14 Read Pointer	DMA14_RDPTR
0x8102_0E38h	DMA Channel 14 FIFO Count	DMA14_FFCNT
0x8102_0E3Ch	DMA Channel 14 FIFO Status	DMA14_FFSTA
0x8102_0E40h	DMA Channel 14 Alert Length	DMA14_ALTLEN
0x8102_0E44h	DMA Channel 14 FIFO Size	DMA14_FFSIZE
0x8102_0F10h	DMA Channel 15 Transfer Count Register	DMA15_COUNT
0x8102_0F14h	DMA Channel 15 Control Register	DMA15_CON
0x8102_0F18h	DMA Channel 15 Start Register	DMA15_START
0x8102_0F1Ch	DMA Channel 15 Interrupt Status Register	DMA15_INTSTA
0x8102_0F20h	DMA Channel 15 Interrupt Acknowledge Register	DMA15_ACKINT
0x8102_0F28h	DMA Channel 15 Bandwidth Limiter Register	DMA15_LIMITER
0x8102_0F2Ch	DMA Channel 15 Programmable Address Register	DMA15_PGMADDR
0x8102_0F30h	DMA Channel 15 Write Pointer	DMA15_WRPTR
0x8102_0F34h	DMA Channel 15 Read Pointer	DMA15_RDPTR
0x8102_0F38h	DMA Channel 15 FIFO Count	DMA15_FFCNT
0x8102_0F3Ch	DMA Channel 15 FIFO Status	DMA15_FFSTA
0x8102_0F40h	DMA Channel 15 Alert Length	DMA15_ALTLEN
0x8102_0F44h	DMA Channel 15 FIFO Size	DMA15_FFSIZE
	- A HIVIT	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 97 of 508

GSM/GPRS Baseband Processor Data Sheet Confidential A

.. registers Release for Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 98 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

3.1.2 **Register Definitions**

Register programming tips:

- al Release for Start registers shall be cleared, when associated channels are being programmed.
- PGMADDR, i.e. programmable address, only exists in half-size DMA channels. If DIR in Control Register is high, PGMADDR represents Destination Address. Conversely, If DIR in Control Register is low, PGMADDR represents Source Address.
- Functions of ring-buffer and double-buffer memory data movement can be activated on either source side or destination side by programming DMA_WPPT & and DMA_WPTO, as well as setting WPEN in DMA_CON register high. WPSD in DMA_CON register determines the activated side.

DMA+0000h **DMA Global Status Register**

DMA GLBSTA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IT14	RUN1 4	IT13	RUN1 3	IT12	RUN1 2	IT11	RUN1 1	IT10	RUN1 0	IT9	RUN9
Туре					RO	RO	RO	RO								
Reset					0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IT8	RUN8	IT7	RUN7	IT6	RUN6	IT5	RUN5	IT4	RUN4	IT3	RUN3	IT2	RUN2	IT1	RUN1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

tial Release for This register helps software program keep track of the global status of DMA channels.

RUN_N DMA channel n status

- Channel n is stopped or has completed the transfer already.
- Channel n is currently running.

IT_N Interrupt status for channel n

- No interrupt is generated.
- An interrupt is pending and waiting for service

DMA Global Bandwidth limiter Register DMA+0028h

DMA GLBLIMIT

ER

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name									1	III						
Type											7					
Reset																

MediaTek Confidential

© 2011 MediaTek Inc.

Page 99 of 508

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												GLBLI	MITER	7		
Type									WO							
Reset									TV			C)			

Please refer to the expression in DMAn_LIMITER for detailed note. The value of DMA_GLBLIMITER is set to all DMA channels, from 1 to 15.

DMA+0n00h DMA Channel n Source Address Register

DMAn_SRC

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								SRC[3	31:16]							
Type								R/	W							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								SRC[15:0]							
Type		•	•		•	•		R/	W		•	•	•	•	•	
Reset		•	•		•	•		()		•	•	•	•	•	

The above registers contain the base or current source address that the DMA channel is currently operating on. Writing to this register specifies the base address of transfer source for a DMA channel. Before programming these registers, the software program should make sure that STR in DMAn_START is set to 0; that is, the DMA channel is stopped and disabled completely. Otherwise, the DMA channel may run out of order. Reading this register returns the address value from which the DMA is reading.

Note that n is 1 and SRC can't be TCM address. TCM is not accessible by DMA..

SRC [31:0] specifies the base or current address of transfer source for a DMA channel, i.e. channel 1.

WRITE Base address of transfer source

READ Address from which DMA is reading

DMA+0n04h DMA Channel n Destination Address Register

DMAn_DST

Bit	31	30 ¶	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DST[3	31:16]							
Type		IV						R/	W							
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DST[15:0]	111	U					
Type			•			•		R/	W					•		

MediaTek Confidential

© 2011 MediaTek Inc.

Page 100 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Reset 0

The above registers contain the base or current destination address that the DMA channel is currently operating on..

Writing to this register specifies the base address of the transfer destination for a DMA channel. Before programming these registers, the software should make sure that STR in DMAn_START is set to '0'; that is, the DMA channel is stopped and disabled completely. Otherwise, the DMA channel may run out of order. Reading this register returns the address value to which the DMA is writing.

Note that n is 1 and DST can't be TCM address. TCM is not accessible by DMA.

DST DST[31:0] specifies the base or current address of transfer destination for a DMA channel, i.e. channel 1 WRITE Base address of transfer destination.

READ Address to which DMA is writing.

DMA+0n08h DMA Channel n Wrap Point Count Register

DMAn WPPT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		_	-	-	-	_	-	-	-	_	-	-	-	-	-	
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								WPPT	[15:0]							
Type								R/	W						1	
Reset								()							

The above registers are to specify the transfer count required to perform before the jump point. This can be used to support ring buffer or double buffer style memory accesses. To enable this function, two control bits, WPEN and WPSD, in DMA control register must be programmed. See the following register description for more details. If the transfercounter in the DMA engine matches this value, an address jump occurs, and the next address is the address specified in DMAn_WPTO. Before programming these registers, the software should make sure that STR in DMAn_START is set to '0', that is the DMA channel is stopped and disabled completely. Otherwise, the DMA channel may run out of order. To enable this function, WPEN in DMA_CON is set. Note that the total size of data specify in the wrap point count in a DMA channel is determined by LEN together with the SIZE in DMAn_CON, i.e. WPPT x SIZE.

Note that n is from 1 to 9.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 101 of 508

WPPT WPPT[15:0] specifies the amount of the transfer count from start to jumping point for a DMA channel, i.e.

channel 1 - 9.

WRITE Wrap point transfer count.

READ Value set by the programmer.

DMA+0n0Ch DMA Channel n Wrap To Address Register

DMAn_WPTO

Bit	31 (30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		IV						WPTO	[31:16]							
Type								R/	W							
Reset	5							()	\mathbf{T}						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								WPTC	[15:0]							
Type								R/	W							
Reset)							

The above registers specify the address of the jump destination of a given DMA transfer to support ring buffer or double buffer style memory accesses. To enable this function, set the two control bits, WPEN and WPSD, in the DMA control register. See the following register description for more details. Before programming these registers, the software should make sure that STR in DMAn_START is set to '0', that is the DMA channel is stopped and disabled completely. Otherwise, the DMA channel may run out of order. To enable this function, WPEN in DMA_CON should be set.

Note that n is from 1 to 9.

WPTO WPTO[31:0] specifies the address of the jump point for a DMA channel, i.e. channel 1-9.

WRITE Address of the jump destination.

READ Value set by the programmer.

DMA+0n10h DMA Channel n Transfer Count Register

DMAn COUNT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name									14							
Type						7	Ž									
Reset				,		107	1101	71								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								LE	N							
Type								R/	W							
Reset		\V						()							

This register specifies the amount of total transfer count that the DMA channel is required to perform. Upon completion, the DMA channel generates an interrupt request to the processor while ITEN in DMAn_CON is set as '1'.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 102 of 508

Note that the total size of data being transferred by a DMA channel is determined by LEN together with the SIZE in DMAn_CON, i.e. LEN x SIZE.

For virtual FIFO DMA, this register is used to configure the RX threshold and TX threshold. Interrupt is triggered while FIFO count >= RX threshold in RX path or FIFO count =< TX threshold in TX path. Note that ITEN bit in DMA_CON register shall be set, or no interrupt is issued.

Note that n is from 1 to 15.

LEN The amount of total transfer count

DMA+0n14h DMA Channel n Control Register

DMAn CON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							X			MAS				DIR	WPEN	WPS D
Type										R/W				R/W	R/W	R/W
Reset										0				0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	ITEN						BURST				B2W	DRQ	DINC	SINC	SIZ	ZE
Туре	R/W						R/W				R/W	R/W	R/W	R/W	R/	W
Reset	0						0				0	0	0	0	C)

This register contains all the available control schemes for a DMA channel that is ready for software programmer to configure. Note that all these fields cannot be changed while DMA transfer is in progress or an unexpected situation may occur.

Note that n is from 1 to 15.

SIZE Data size within the confine of a bus cycle per transfer.

These bits confines the data transfer size between source and destination to the specified value for individual bus cycle. The size is in terms of byte and has maximum value of 4 bytes. It is mainly decided by the data width of a DMA master.

- 00 Byte transfer/1 byte
- **01** Half-word transfer/2 bytes
- 10 Word transfer/4 bytes
- 11 Reserved

SINC Incremental source address. Source addresses increase every transfer. If the setting of SIZE is Byte, Source addresses increase by 1 every single transfer. If Half-Word, increase by 2; and if Word, increase by 4.

- O Disable
- 1 Enable

MediaTek Confidential

© 2011 MediaTek Inc.

Page 103 of 508

MEDIATEK

DINC Incremental destination address. Destination addresses increase every transfer. If the setting of SIZE is Byte, Destination addresses increase by 1 every single transfer. If Half-Word, increase by 2; and Iif Word, increase by 4.

- O Disable
- 1 Enable

DREQ Throttle and handshake control for DMA transfer

- No throttle control during DMA transfer or transfers occurred only between memories
- 1 Hardware handshake management

The DMA master is able to throttle down the transfer rate by way of request-grant handshake.

Word to Byte or Byte to Word transfer for the applications of transferring non-word-aligned-address data to word-aligned-address data. Note that BURST is set to 4-beat burst while enabling this function, and the SIZE is set to Byte.

NO effect on channel 1 & 10 - 15.

- O Disable
- 1 Enable

BURST Transfer Type. Burst-type transfers have better bus efficiency. Mass data movement is recommended to use this kind of transfer. However, note that burst-type transfer does not stop until all of the beats in a burst are completed or transfer length is reached. FIFO threshold of peripherals must be configured carefully while being used to move data from/to the peripherals.

What transfer type can be used is restricted by the SIZE. If SIZE is 00b, i.e. byte transfer, all of the four transfer types can be used. If SIZE is 01b, i.e. half-word transfer, 16-beat incrementing burst cannot be used. If SIZE is 10b, i.e. word transfer, only single and 4-beat incrementing burst can be used.

fidential Release for

NO effect on channel 10 - 15.

000 Single

001 Reserved

010 4-beat incrementing burst

011 Reserved

100 8-beat incrementing burst

101 Reserved

110 16-beat incrementing burst

111 Reserved

ITEN DMA transfer completion interrupt enable.

O Disable

1 Enable

WPSD The side using address-wrapping function. Only one side of a DMA channel can activate address-wrapping function at a time.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 104 of 508

NO effect on channel 10 - 15.

- 0 Address-wrapping on source.
 - Address-wrapping on destination.
- ial Release for WPEN Address-wrapping for ring buffer and double buffer. The next address of DMA jumps to WRAP TO address when the current address matches WRAP POINT count.

NO effect on channel 10 - 15.

- 0 Disable
 - Enable
- DIR Directions of DMA transfer for half-size and Virtual FIFO DMA channels, i.e. channels 2~15. The direction is from the perspective of the DMA masters. WRITE means read from master and then write to the address specified in DMA_PGMADDR, and vice versa.

NO effect on channel 1

- Read
- Write 1
- Master selection. Specifies which master occupies this DMA channel. Once assigned to certain master, the MAS corresponding DREQ and DACK are connected. For half-size and Virtual FIFO DMA channels, i.e. channels 2 ~ 15, a predefined address is assigned as well.

00000 SIM

00001 MSDC

00010 Reserved

00011 Reserved

00100 USB1 TX

00101 USB1 RX

00110 USB2 TX

00111 USB2 RX

01000 UART1 TX

01001 UART1 RX

01010 UART2 TX

01011 UART2 RX

01100 UART3 TX

01101 UART3 RX **01110** DSP-DMA 1

01111 Reserved

10000 Reserved

10001 I2C dual TX

10010 I2C dual RX

MediaTek Confidential

© 2011 MediaTek Inc.

Confidential Release for

non WCX

Page 105 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

10011 SIM2 **10011** DSP-DMA 2

OTHERS

Reserved

fidential Release for DMA+0n18h DMA Channel n Start Register

DMAn START

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	12															
Type										111						
Reset										11/1	5					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	STR								1/1/1							
Type	R/W						R									
Reset	0															

This register controls the activity of a DMA channel. Note that prior to setting STR to "1", all the configurations should be done by giving proper value to the registers. Note also that once the STR is set to "1", the hardware does not of STR stays "1" regardless of the completion of DMA transfer. Therefore, the software program should be sure to clear STR to "0" before restarting another DMA transfer. If this bit is cleared to "0" during DMA transfer is active, software should polling MDDMA_GLBSTA RUN_N after this bit is cleared to ensure current DMA transfer is terminated by DMA engine.

Note that n is from 1 to 15.

STR Start control for a DMA channel.

- The DMA channel is stopped.
- The DMA channel is started and running.

DMA Channel n Interrupt Status Register DMA+0n1Ch

Release for **DMAn INTSTA**

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						111										
Type		_ 1		// -												
Reset		H		717												
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INT															
Type	RO								1	III						
Reset	0															

MediaTek Confidential

© 2011 MediaTek Inc.

Page 106 of 508

This register shows the interrupt status of a DMA channel. It has the same value as DMA_GLBSTA

Note that n is from 1 to 14.

INT Interrupt Status for DMA Channel

- **0** No interrupt request is generated.
- 1 One interrupt request is pending and waiting for service.

DMA+0n20h DMA Channel n Interrupt Acknowledge Register DMAn_ACKINT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										111						
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	ACK						D									
Type	WO															
Reset	0															

This register is used to acknowledge the current interrupt request associated with the completion event of a DMA channel by software program. Note that this is a write-only register, and any read to it returns a value of "0".

Note that n is from 1 to 15.

ACK Interrupt acknowledge for the DMA channel

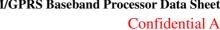
- 0 No effect
- 1 Interrupt request is acknowledged and should be relinquished.

DMA+0n24h DMA Channel n Remaining Length of Current Transfer

DMAn_RLCT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name												1 Y		9		
Type										— ,	1.7	14	A			
Reset									47.							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						4		RL	CT							
Type								R	0							
Reset						111		()							

This register is to reflect the left count of the transfer. Note that this value is transfer count not the transfer data size.


Note that n is from 1 to 9.

MediaTek Confidential

© 2011 MediaTek Inc.

ion MC

Page 107 of 508

DMA Bandwidth limiter Register DMA+0n28h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						I	TY	70	11.							
Type						-7-7	1.1	AI								
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												LIMI				
Type												R/	W			
Reset		111										()			

This register is to suppress the Bus utilization of the DMA channel. The value is from 0 to 255. 0 means no limitation, and 255 means totally banned. The value between 0 and 255 means certain DMA can have permission to use AHB every (4 X n) AHB clock cycles.

Note that it is not recommended to limit the Bus utilization of the DMA channels because this increases the latency of response to the masters, and the transfer rate decreases as well. Before using it, programmer must make sure that the bus masters have some protective mechanism to avoid entering the wrong states.

Note that n is from 1 to 15.

LIMITER from 0 to 255. 0 means no limitation, 255 means totally banned, and others mean Bus access permission every (4 X n) AHB clock.

DMA Channel n Programmable Address Register DMA+0n2Ch

DMAn_PGMAD

DR

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							P	MADE	R[31:1	6]						
Type								R/	W						- 1	
Reset								()							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							P	GMADI	DR[15:	0]						
Type								R/	W			171	Ya			
Reset								(15					

The above registers specify the address for a half-size DMA channel. This address represents a source address if DIR in DMA_CON is set to 0, and represents a destination address if DIR in DMA_CON is set to 1. Before being able to program these register, the software should make sure that STR in DMAn_START is set to '0', that is the DMA channel is stopped and disabled completely. Otherwise, the DMA channel may run out of order.

Note that n is from 2 to 15 and PGMADDR can't be TCM address. TCM is not accessible by DMA.

PGMADDR PGMADDR[31:0] specifies the addresses for a half-size or a Virtual FIFO DMA channel, i.e. channel 2 – 15.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 108 of 508

Confidential A

WRITE Base address of transfer source or destination according to DIR bit

MediaTek Confidential

DMA Channel n Virtual FIFO Write Pointer Register DMA+0n30h **DMAn WRPTR**

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								VRPTR	[31:16]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							,	WRPT	R[15:0]							
Type								R	0							_

Note that n is from 10 to 15.

WRPTR Virtual FIFO Write Pointer.

DMA Channel n Virtual FIFO Read Pointer Register DMAn RDPTR DMA+0n34h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RDPTR	[31:16]							
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RDPTF	R[15:0]					7		
Type								R	0						A1	

Note that n is from 10 to 15.

RDPTR Virtual FIFO Read Pointer.

DMA Channel n Virtual FIFO Data Count Register DMAn_FFCNT DMA+0n38h

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name			14.													
Type		IV.														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								FFC	CNT							
Type			•			•		R	0	II.II						

MediaTek Confidential

© 2011 MediaTek Inc.

Page 109 of 508

Note that n is from 10 to 15.

FFCNT To display the number of data stored in FIFO. 0 means FIFO empty, and FIFO is full if FFCNT is equal to FFSIZE.

DMA Channel n Virtual FIFO Status Register DMA+0n3Ch

DMAn FFSTA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		1		777												
Type		IV														
Reset	1															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									10		7)			ALT	EMPT Y	FULL
Type								110						RO	RO	RO
Reset					•									1	1	1

Note that n is from 10 to 15.

FULL To indicate FIFO is full.

Not Full 0

1 Full

EMPTY To indicate FIFO is empty.

Not Empty

Empty

ALT To indicate FIFO Count is larger than ALTLEN. DMA issues an alert signal to UART to enable UART flow control.

Not reach alert region.

Reach alert region.

DMA Channel n Virtual FIFO Alert Length Register DMA+0n40h

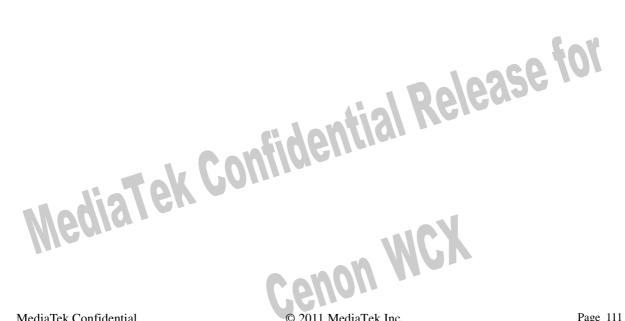
Bit	31	30	29	28	27	26	25	24	23	22	21_	20	19	18	17	16
Name									TL	/ =						
Type										77						
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				M		1/7							ALT	LEN		
Type													R/	W		
Reset	1												()		
Note th	nat n is	from 10	0 to 15.				30	n C	M.	N	CX					
3.6.11.5		C* 1					5								D 1	10 6 6

MediaTek Confidential

© 2011 MediaTek Inc.

Page 110 of 508

Specifies the Alert Length of Virtual FIFO DMA. Once the remaining FIFO space is less than ALTLEN, **ALTLEN** an alert signal is issued to UART to enable flow control. Normally, ALTLEN shall be larger than 16 for UART application.


DMA Channel n Virtual FIFO Size Register DMA+0n44h

DMAn FFSIZE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				1												
Type	_	TL'														
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								FFS	IZE	1 / 1						
Type								R/	W							
Reset										1						

Note that n is from 10 to 15.

FFSIZE Specifies the FIFO Size of Virtual FIFO DMA.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 111 of 508

Interrupt Controller 3.2

3.2.1 **General Description**

dential Release for Figure 27 outlines the major functionality of the MCU Interrupt Controller. The interrupt controller processes all interrupt sources coming from external lines and internal MCU peripherals. Since ARM7EJ-S core supports two levels of interrupt latency, this controller generates two request signals: FIQ for fast, low latency interrupt request and IRQ for more general interrupts with lower priority.

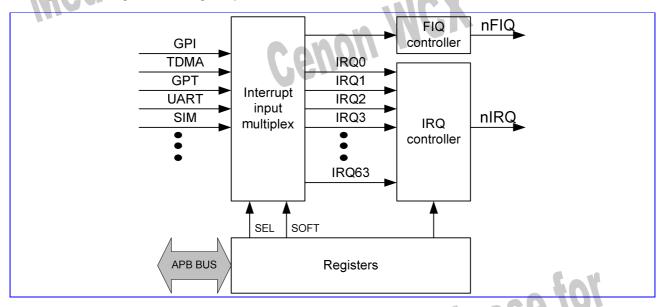


Figure 27 Block Diagram of the Interrupt Controller

One and only one of the interrupt sources can be assigned to FIQ Controller and have the highest priority in requesting timing critical service. All the others share the same IRQ signal by connecting them to IRQ Controller. The IRQ Controller manages up 64 interrupt lines of IRQ0 to IRQ63 with fixed priority in descending order.

The Interrupt Controller provides a simple software interface by mean of registers to manipulate the interrupt request shared system. IRQ Selection Registers and FIQ Selection Register determine the source priority and connecting relation among sources and interrupt lines. IRQ Source Status Register allows software program to identify the source of interrupt that generates the interrupt request. IRQ Mask Register provides software to mask out undesired sources some time. End of Interrupt Register permits software program to indicate to the controller that a certain interrupt service routine has been finished.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 112 of 508

Binary coded version of IRQ Source Status Register is also made available for software program to helpfully identify the interrupt source. Note that while taking advantage of this feature, it should also take the binary coded version of End of Interrupt Register coincidently.

The essential Interrupt Table of ARM7EJ-S core is shown as Table 37.

Address	Description
00000000h	System Reset
00000018h	IRQ
0000001Ch	FIQ

Table 37 Table of ARM7EJ-S

3.2.1.1 Interrupt Source Masking

Interrupt controller provides the function of Interrupt Source Masking by the way of programming MASK register. Any of them can be masked individually.

However, because of the bus latency, the masking takes effect no earlier than 3 clock cycles later. In this time, the to-be-masked interrupts could come in and generate an IRQ pulse to MCU, and then disappear immediately. This IRQ forces MCU going to Interrupt Service Routine and polling Status Register (IRQ_STA2), but the register shows there is no interrupt. This might cause MCU malfunction.

There are two ways for programmer to protect their software.

- 1. Return from ISR (Interrupt Service Routine) immediately while the Status register shows no interrupt.
- 2. Set I bit of MCU before doing Interrupt Masking, and then clear it after Interrupt Masking done.

Both avoid the problem, but the first item is recommended in the ISR.

3.2.1.2 External Interrupt

This interrupt controller also integrates an External Interrupt Controller that can support up to 10 interrupt requests coming from external sources, the EINT0~6+10~12, and 3 WakeUp interrupt requests, i.e. EINT7~9, coming from peripherals used to inform system to resume the system clock. All EINT sources can wake up system.

The external interrupts can be used for different kind of applications, mainly for event detections: detection of hand free connection, detection of hood opening, detection of battery charger connection.

Since the external event may be unstable in a certain period, a de-bounce mechanism is introduced to ensure the functionality. The circuitry is mainly used to verify that the input signal remains stable for a programmable number of periods of the clock. When this condition is satisfied, for the appearance or the disappearance of the input, the output

MediaTek Confidential

© 2011 MediaTek Inc.

Page 113 of 508

of the de-bounce logic changes to the desired state. Note that, because it uses the 32768Hz slow clock for performing the de-bounce process, the parameter of de-bounce period and de-bounce enable takes effect no sooner than one 32768Hz clock cycle (~30.52us) after the software program sets them. When the sources of External Interrupt Controller are used to resume the system clock in sleep mode, the de-bounce mechanism must be enabled. However, the polarities of EINTs are clocked with the system clock. Any changes to them take effect immediately.

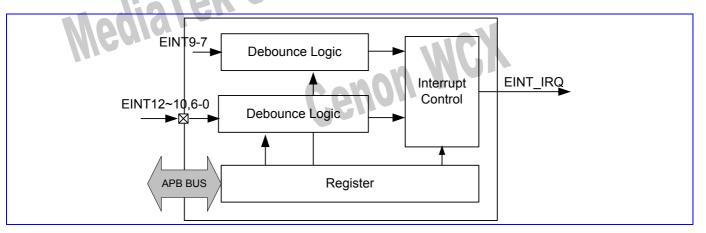


Figure 28 Block Diagram of External Interrupt Controller

3.2.1.3 External Interrupt Input Pins

EINT	Edge / Level HW Debounce	SOURCE PIN	SUPPLEMENT
EINT0	Edge / Level Yes	if(GPIO26_M==1) then EINT0=GPIO26(EINT0) else EINT0=1	1. GPIOs should be in the input mode
EINT1	Edge / Level Yes	if(GPIO27_M==1) then EINT1=GPIO27(EINT1) else EINT1=1	and are effected by
EINT2	Edge / Level Yes	if(GPIO43_M==2) then EINT2=GPIO43(KCOL7) else if(GPIO42_M==7) then EINT2=GPIO42(ECS3_B) else if(urxd1_spmode==1) then EINT2=URXD1 else EINT2=1	GPIO data input inversion registers.2. GPIOxx M is
EINT3	Edge / Level Yes	if(GPIO45_M==2) then EINT3=GPIO45(KROW7) else if(utxd1_spmode==1) then EINT3=UTXD1 else EINT3=1	the GPIO mode
EINT4	Edge / Level Yes	if(GPIO1_M==2) then EINT4=GPIO1(KCOL6) else if(GPIO70_M==2) then EINT4=GPIO70 else EINT4=1	control registers, please refer to
EINT5	Edge / Level Yes	if(GPIO8_M==2) then EINT5=GPIO8(KROW5) else if(GPIO24_M==5) then EINT5=GPIO24(UCTS1_B) else EINT5=1	GPIO segment.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 114 of 508

EINT6	Edge / Level Yes	if(GPIO36_M==5) then EINT6=GPIO36(MCINS) else if(GPIO25_M==5) then EINT6=GPIO25(URTS1_B) else EINT6=1	
EINT7	Edge / Level Yes	Charger detect interrupt (Active low)	
EINT8	Edge / Level Yes	PMU OC interrupt (Active low)	
EINT9	Edge / Level Yes	PMU OV protection interrupt (Active low)	
EINT10	Edge / Level Yes	URXD1	
EINT11	Edge / Level Yes	if(GPIO22_M==1) then EINT11=GPIO22(URXD2) else EINT11=1	
EINT12	Edge / Level Yes	if(GPIO20_M==1) then EINT12=GPIO20(URXD3) else EINT12=1	
EINT13	Edge / Level Yes	Reserved	

Table 38 EINT source

REGISTER ADDRESS	REGISTER NAME	SYNONYM
0x8101_0000h	IRQ Selection 0 Register	IRQ_SEL0
0x8101_0004h	IRQ Selection 1 Register	IRQ_SEL1
0x8101_0008h	IRQ Selection 2 Register	IRQ_SEL2
0x8101_000ch	IRQ Selection 3 Register	IRQ_SEL3
0x8101_0010h	IRQ Selection 4 Register	IRQ_SEL4
0x8101_0014h	IRQ Selection 5 Register	IRQ_SEL5
0x8101_0018h	IRQ Selection 6 Register	IRQ_SEL6
0x8101_001ch	IRQ Selection 7 Register	IRQ_SEL7
0x8101_0020h	IRQ Selection 8 Register	IRQ_SEL8
0x8101_0024h	IRQ Selection 9 Register	IRQ_SEL9
0x8101_0028h	IRQ Selection 10 Register	IRQ_SEL10
0x8101_002ch	IRQ Selection 11 Register	IRQ_SEL11
0x8101_0030h	IRQ Selection 12 Register	IRQ_SEL12
0x8101_0034h	IRQ Selection 13 Register	IRQ_SEL13
0x8101_0038h	IRQ Selection 14 Register	IRQ_SEL14

MediaTek Confidential

© 2011 MediaTek Inc.

Page 115 of 508

		CC IV
0x8101_003ch	IRQ Selection 15 Register	IRQ_SEL15
0x8101_006ch	FIQ Selection Register	FIQ_SEL
0x8101_0070h	IRQ Mask Register (low)	IRQ_MASKL
0x8101_0074h	IRQ Mask Register (high)	IRQ_MASKH
0x8101_0080h	IRQ Mask Clear Register (low)	IRQ_MASK_CLRL
0x8101_0084h	IRQ Mask Clear Register (high)	IRQ_MASK_CLRH
0x8101_0090h	IRQ Mask Set Register (low)	IRQ_MASK_SETL
0x8101_0094h	IRQ Mask Set Register (high)	IRQ_MASK_SETH
0x8101_00a0h	IRQ End of Interrupt Register (low)	IRQ_EOIL
0x8101_00a4h	IRQ End of Interrupt Register (high)	IRQ_EOIH
0x8101_00b0h	IRQ Sensitive Register (low)	IRQ_SENSL
0x8101_00b4h	IRQ Sensitive Register (high)	IRQ_SENSH
0x8101_00c0h	IRQ Software Interrupt Register (low)	IRQ_SOFTL
0x8101_00c4h	IRQ Software Interrupt Register (high)	IRQ_SOFTH
0x8101_00d0h	FIQ Control Register	FIQ_CON
0x8101_00d4h	FIQ End of Interrupt Register	FIQ_EOI
0x8101_00d8h	Binary Coded Value of IRQ_STATUS	IRQ_STA2
0x8101_00dch	Binary Coded Value of IRQ_EOI	IRQ_EOI2
0x8101_0100h	EINT Status Register	EINT_STA
0x8101_0104h	EINT Mask Register	EINT_MASK
0x8101_0108h	EINT Mask Clear Register	EINT_MASK_CLR
0x8101_010ch	EINT Mask Set Register	EINT_MASK_SET
0x8101_0110h	EINT Interrupt Acknowledge Register	EINT_INTACK
0x8101_0114h	EINT Sensitive Register	EINT_SENS
0x8101_0118h	EINT Software Interrupt Register	EINT_SOFT
0x8101_0120h	EINT0 De-bounce Control Register	EINT0_CON
0x8101_0130h	EINT1 De-bounce Control Register	EINT1_CON
0x8101_0140h	EINT2 De-bounce Control Register	EINT2_CON
0x8101_0150h	EINT3 De-bounce Control Register	EINT3_CON
0x8101_0160h	EINT4 De-bounce Control Register	EINT4_CON
0x8101_0170h	EINT5 De-bounce Control Register	EINT5_CON
0x8101_0180h	EINT6 De-bounce Control Register	EINT6_CON
	BARILLI	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 116 of 508

Confidential A

		ACB 10
0x8101_0190h	EINT7 De-bounce Control Register	EINT7_CON
0x8101_01a0h	EINT8 De-bounce Control Register	EINT8_CON
0x8101_01b0h	EINT9 De-bounce Control Register	EINT9_CON
0x8101_01c0h	EINT10 De-bounce Control Register	EINT10_CON
0x8101_01d0h	EINT11 De-bounce Control Register	EINT11_CON
0x8101_01e0h	EINT12 De-bounce Control Register	EINT12_CON
0x8101_01f0h	EINT13 De-bounce Control Register	EINT13_CON

Table 39 Interrupt Controller Register Map

Register Definitions

0x8101_0000 IRQ Selection 0 Register

IRQ_SEL0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IR	Q3							IRC	2		
Type					R/	W							R/\	V		
Reset					3	3							2			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IR	Q1							IRC	00		
Type					R/	W							R/\	٧		
Reset						1							0	<u> </u>		

0x8101_0004 IRQ Selection 1 Register

IRQ_SEL1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				-	IR	Q7	-	_				_	IRC	26		-
Type					R/	W							R/\	W		
Reset					7	7							6			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IR	Q5							IRC	24	-	
Type					R/	W					17		R/\	W		
Reset					Ę	5	-		TL				4			

IRQ Selection 2 Register 0x8101_0008

IRQ_SEL2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		_ 1	PA		IR	QB							IRC	QA		
Type		H			R	W							R/\	W		
Reset		IA			0:	xb					1		0x	a		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IR	Q9							IRO	38		
Type					R	W					JIN		R/\	W		
Reset				•	,	9							8	}		

MediaTek Confidential

© 2011 MediaTek Inc.

Page 117 of 508

0x8101	000c	IRQ Selection 3 Register

IRQ_SEL3

Confidential A

											1	00	SP	1	16	
0x81	01_0	00c	IRQ S	Selec	tion 3	Reg	ister		1 1			60		I	RQ_S	EL3
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IR	QF	$\mathbf{A}\mathbf{V}$	$I \cap I$					IRC	ΣE		_
Type					R/	W	1.1	41					R/\	Ν		
Reset					0	xf							0x	е		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IR	Q̈́D	-	-				_	IRC	C	_	-
Type		TP!			R/	W							R/\	Ν		
Reset		110			0:	٠d							0x	С		

0x8101_0010 IRQ Selection 4 Register

IRQ_SEL4

Bit	31	30	29	28	27	26	25	24	23	22	-21	20	19	18	17	16
Name					IRO	213							IRQ	12		
Type					R	W							R/\	Ν		
Reset					0x	13							0x1	2		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IRO	211							IRQ	10		
Type					R	W							R/\	Ν		
Reset					0x	11	•	•				•	0x1	0	•	

0x8101_0014 IRQ Selection 5 Register

IRQ_SEL5

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IRC	217		-				-	IRQ	16	-	_
Type					R/	W							R/\	W		
Reset					0x	17							0x1	16		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IRC	215							IRQ	14		
Type				•	R/	W	•						R/\	W	40	
Reset					0x	15							0x1	14	77.	

0x8101_0018 IRQ Selection 6 Register

IRQ SEL6

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IRC	11B			110				IRQ	1A		
Type					R/	W		-14	11				R/	W		
Reset					0x	1b	$T \cdot V$						0x	1a		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IRC	19							IRC	18		
Type	1				R/	W							R/	W		
Reset					0x	19							0x	18		

0x8101_001c IRQ Selection 7 Register

IRQ_SEL7

0x81	01_0	01c	IRQ S	Selec	tion 7	Reg	ister			-16	V			I	RQ_S	EL7
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IRC	21F				. / /			IRQ	1E		

MediaTek Confidential

© 2011 MediaTek Inc.

Page 118 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Type					R/	W							N	R/	W		
Reset					0×	df							4	0x	1e		
Bit	15	14	13	12	11	10	9	8	7	6		5	4	3	2	1	0
Name				-	IRC	21D			11		- '			IRC	1C		
Type					R/	W	TAV							R/	W		
Reset					0x	1d	177	911						0x	1c		

0x8101_0020 IRQ Selection 8 Register

IRQ_SEL8

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IRC	223		-				-	IRC	22	-	-
Type	12	7			R/	W				71	1 N		R/	W		
Reset					0x	23				$I \cup I$	- N		0x2	22		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IRC	221	101						IRC	20		
Type					R/	W							R/	W		
Reset					0x	21							0x2	20		

0x8101_0024 IRQ Selection 9 Register

IRQ_SEL9

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					IRC	227							IRQ	26		
Type					R/	W							R/\	V		
Reset					0x	27							0x2	26		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IRC	225							IRQ	24		
Type					R/	W							R/\	V		
Reset					0x	0.							0x2	1		

0x8101_0028 IRQ Selection 10 Register

IRQ_SEL10

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				_	IRC	2B	-	_				-	IRQ	2A		-
Туре					R/	W							R/	W		
Reset					0x	2b						65	0x2	2a		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IRC	229	-	•			15		IRC	28	-	
Type					R/	W		- 10	17 A				R/	W		
Reset					0x	29		111	HIL				0x2	28		

0x8101_002c IRQ Selection 11 Register

IRQ_SEL11

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		TLI		177	IRC	2F							IRC	2E		
Type					R/	W							R/	W		
Reset	1				0×	c2f				-10			0x2	2e		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					IRC	22D				11.1	7 1		IRQ	2C		
Type					R/	W	- 1	10 A					R/	W		

MediaTek Confidential

© 2011 MediaTek Inc.

Page 119 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Doost						0,	ر0 م ا							0x	20	Q1	
Reset						0)	⟨2d							UX	20		
0x81	01_00	030	IRQ	Sel	ect	tion ⁻	12 Re	giste	r	10		16	10.		IF	RQ_S	EL12
Bit	31	30	29	2	8	27	26	25	24	23	22	21	20	19	18	17	16
Name							233	101						IRC			
Type							/W 33							0x3			
Reset Bit	15	14	13	1:	2	11	10	9	8	7	6	5	4	3	2	1 1	0
Name	13	110	10	4			231	1 3	_ 0	,		-		IRC		<u> </u>	U
Type		11.	-				/W							R/			
Reset							31							0x3			
- 14			_								1///			-			
0x81	01_0	034	IRQ	Sel	ec		13 Re	giste		M.	AA	91			IF	RQ_S	EL13
Bit	31	30	29	2	8	27	26	25	24	23	22	21	20	19	18	17	16
Name							Q37	5						IRC			
Туре			_				/W							R/			
Reset	45	4.4	10	T 4	0		(37		T 0	7			Τ 4	0x:	_	T 4	
Bit	15	14	13	1	2	11	10	9	8	7	6	5	4	3	2	1	0
Name Type			-				Q35 /W					-		IRC R/			
Reset							35					_		0x			
	01_00							giste		00	00	0.1	20	10			EL14
Bit Name	31	30	29	28	Ö	27	26 23B	25	24	23	22	21	20	19 IRG	18	17	16
Туре							/W							R/			
Reset							(3b							0x:			
Bit	15	14	13	1:	2	11	10	9	8	7	6	5	4	3	2	1	0
Name						IRO	239							IRC	38	48	
Туре						R	/W							R/			
Reset						0>	(39							0x	38		
0x81	01_00	03c	IRQ	Sel	ect	tion ⁻	15 Re	giste	r	. 1	10		66	9	IF	RQ_S	EL15
Bit	31	30	29	28	8	27	26	25	24	23	22	21	20	19	18	17	16
Name				-			Q3F		7',1	111			-	IRC		•	-
Туре							/W	LAT		7110			· · · · · ·	R/			· · · · ·
Reset				-			x3f		7					0x		_	-
Bit	15	14	13	1:	2	11	10	9	8	7	6	5	4	3	2	1	0
Name				2//			23D							IRC			
Type		TY.			-		/W							R/			
Reset						UX	α3d							0x	ან		
0x81	01_0 0	06c	FIQ 29	Sele	ect	ion F	Regis	ter	24	23	22	21	20	19		FIQ	_SEL

MediaTek Confidential

© 2011 MediaTek Inc.

Page 120 of 508

															$\overline{}$	
Name																
Type										-	1-7		A			
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					-	7	7 . 1					_	FI	Q	_	-
Type					70	1,11	10						R/	W		
Reset							1						C)		

The IRQ/FIQ Selection Registers provide system designers with a flexible routing scheme to make various mappings of priority among interrupt sources possible. The registers allow the interrupt sources to be mapped onto interrupt requests of either FIQ or IRQ. While only one interrupt source can be assigned to FIQ, the other ones share IRQs by mapping them onto IRQ0 to IRQ3F connected to IRQ controller. The priority sequence of IRQ0~IRQ3F is fixed, i.e. IRQ0 > IRQ1 > IRQ2 > ... > IRQ1E > IRQ3F. During the software configuration process, the Interrupt Source Code of desired interrupt source should be written into source field of the corresponding IRQ_SEL0-IRQ_SEL15/FIQ_SEL. 6-bit Interrupt Source Codes for all interrupt sources are fixed and defined.

	Interrupt Source	STA2 (Hex)	STA	·
	GPI_FIQ	0	00000001	•
	TDMA_CTIRQ1	1	00000002	-
	TDMA_CTIRQ2	2	00000004	-
	DSP12CPU	3	00000008	-
	SIM	4	00000010	
	DMA	5	00000020	
	TDMA	6	00000040	6 - 11
	UART1	7	08000000	ease for
	KP	8	00000100	2366 In.
	UART2	9	00000200	Eda
	GPTimer	A	00000400	-
	EINT	B	00000800	-
4	USB	C	00001000	-
MediaTek	MSDC	D	00002000	-
an dialen	RTC	Е	00004000	-
Wolla	Serial-Flash	F	0008000	-
Ma	LCD	10	00010000	
	UART3	11	00020000	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 121 of 508

Table 40 Interrupt Source Code

FIQ, IRQ0-3F The 6-bit content of this field corresponds to an Interrupt Source Code shown above.

IRQ Mask Register (low) 0x8101 0070

IRQ MASKL

Bit	31 🖠	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	71	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 122 of 508

Confidential A

															·	
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Туре	R/W															
Reset	1	1	1	1	1	1	1	1	41	1	11	1	1	1	1	1

0x8101_0074 IRQ Mask Register (high)

IRQ_MASKH

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ3F	IRQ3E	IRQ3 D	IRQ3 C	IRQ3	IRQ3 A	IRQ39	IRQ38	IRQ37	IRQ36	IRQ35	IRQ34	IRQ33	IRQ32	IRQ31	IRQ30
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	11.	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQ2F	IRQ2E	IRQ2 D	IRQ2 C	IRQ2 B	IRQ2 A	IRQ29	IRQ28	IRQ27	IRQ26	IRQ25	IRQ24	IRQ23	IRQ22	IRQ21	IRQ20
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

This register contains a mask bit for each interrupt line in IRQ Controller. The register allows each interrupt source IRQ0 to IRQ3F to be disabled or masked separately under software control. After a system reset, all bit values are set to 1 to indicate that interrupt requests are prohibited.

IRQ0-3F Mask control for the associated interrupt source in the IRQ controller

- Interrupt is enabled
- Interrupt is disabled

0x8101_0080 IRQ Mask Clear Register (low)

IRQ_MASK_CL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Type	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C

0x8101_0084 IRQ Mask Clear Register (high)

IRQ_MASK_CL RH

Bit	31	30 🛮	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ3F	IRQ3E	IRQ3 D	IRQ3	IRQ3 B	IRQ3 A	IRQ39	IRQ38	IRQ37	IRQ36	IRQ35	IRQ34	IRQ33	IRQ32	IRQ31	IRQ30
Type	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		14 IRQ2E	IPO2		IRQ2 B	IDO	9 IRQ29	8 IRQ28	7 IRQ27		-	4 IRQ24	3 IRQ23	2 IRQ22	1 IRQ21	0 IRQ20

MediaTek Confidential

© 2011 MediaTek Inc.

Page 123 of 508

This register is used to clear bits in IRQ Mask Register. When writing to this register, the data bits that are HIGH cause the corresponding bits in IRQ Mask Register to be cleared. Data bits that are LOW have no effect on the corresponding bits in IRQ Mask Register.

IRQ0-3F Clear corresponding bits in IRQ Mask Register.

- O No effect
- 1 Disable the corresponding MASK bit

0x8101 0090 IRQ Mask SET Register (low)

IRQ_MASK_SE

TL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Туре	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S

0x8101_0094 IRQ Mask SET Register (high)

IRQ_MASK_SE TH

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ3F	IRQ3E	IRQ3 D	IRQ3 C	IRQ3 B	IRQ3 A	IRQ39	IRQ38	IRQ37	IRQ36	IRQ35	IRQ34	IRQ33	IRQ32	IRQ31	IRQ30
Type	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQ2F	IRQ2E	IRQ2 D	IRQ2 C	IRQ2 B	IRQ2 A	IRQ29	IRQ28	IRQ27	IRQ26	IRQ25	IRQ24	IRQ23	IRQ22	IRQ21	IRQ20
Type	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S

This register is used to set bits in the IRQ Mask Register. When writing to this register, the data bits that are HIGH cause the corresponding bits in IRQ Mask Register to be set. Data bits that are LOW have no effect on the corresponding bits in IRQ Mask Register.

IRQ0-3F Set corresponding bits in IRQ Mask Register.

- O No effect
- 1 Enable corresponding MASK bit

0x8101_00a0 IRQ End of Interrupt Register (low)

IRQ EOIL

Bit		31	30	29	28	27	26	25	24	23 🔹	22	21	20	19	18	17	16
Nam	е	RQ1F	IRQ1E	IRQ1	IRQ1	IRQ1	IRQ1	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10

MediaTek Confidential

© 2011 MediaTek Inc.

- 1

Page 124 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Туре	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Type	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8101_00a4 IRQ End of Interrupt Register (high)

IRQ EOIH

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ3F	IRQ3E	IRQ3 D	IRQ3 C	IRQ3 B	IRQ3 A	IRQ39	IRQ38	IRQ37	IRQ36	IRQ35	IRQ34	IRQ33	IRQ32	IRQ31	IRQ30
Type	W	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0_	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQ2F	IRQ2E	IRQ2 D	IRQ2 C	IRQ2 B	IRQ2 A	IRQ29	IRQ28	IRQ27	IRQ26	IRQ25	IRQ24	IRQ23	IRQ22	IRQ21	IRQ20
Type	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register provides a mean for software to relinquish and to refresh the interrupt controller. Writing a 1 to a specific bit position results in an End of Interrupt command issued internally to the corresponding interrupt line.

IRQ0-3F End of Interrupt command for the associated interrupt line.

- **0** No service is currently in progress or pending
- 1 Interrupt request is in-service

0x8101_00b0 IRQ Sensitive Register (low)

IRQ SENSL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ1F	IRQ1E	IRQ1 D	IRQ1 C	IRQ1 B	IRQ1 A	IRQ19	IRQ18	IRQ17	IRQ16	IRQ15	IRQ14	IRQ13	IRQ12	IRQ11	IRQ10
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	IRQF	IRQE	IRQD	IRQC	IRQB	IRQA	IRQ9	IRQ8	IRQ7	IRQ6	IRQ5	IRQ4	IRQ3	IRQ2	IRQ1	IRQ0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8101_00b4 IRQ Sensitive Register (high)

IRQ_SENSH

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	IRQ3F	IRQ3E	IRQ3 D	IRQ3 C	IRQ3 B	IRQ3 A	IRQ39	IRQ38	IRQ37	IRQ36	IRQ35	IRQ34	IRQ33	IRQ32	IRQ31	IRQ30
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	- 7	6	5	4	3	2	1	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 125 of 508

Name	IRQ2F	IRQ2E	IRQ2 D	IRQ2 C	IRQ2 B	IRQ2 A	IRQ29	IRQ28	IRQ27	IRQ26	IRQ25	IRQ24	IRQ23	IRQ22	IRQ21	IRQ20
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

All interrupt lines of IRQ Controller, IRQ0~IRQ3F can be programmed as either edge or level sensitive. By default, all the interrupt lines are edge sensitive and should be active LOW. Once a interrupt line is programmed as edge sensitive, an interrupt request is triggered only at the falling edge of interrupt line, and the next interrupt is not accepted until the EOI command is given. However, level sensitive interrupts trigger is according to the signal level of the interrupt line. Once the interrupt line become from HIGH to LOW, an interrupt request is triggered, and another interrupt request is triggered if the signal level remain LOW after an EOI command. Note that in edge sensitive mode, even if the signal level remains LOW after EOI command, another interrupt request is not triggered. That is because edge sensitive interrupt is only triggered at the falling edge.

IRQ0-3F Sensitivity type of the associated Interrupt Source

- Edge sensitivity with active LOW
- 1 Level sensitivity with active LOW

0x8101_00c0 IRQ Software Interrupt Register (low)

IRQ SOFTL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	INT_S RC1F	INT_S RC1E	INT_S RC1D	INT_S RC1C	INT_S RC1B	INT_S RC1A	INT_S RC19	INT_S RC18	INT_S RC17	INT_S RC16		_	INT_S RC13	_	_	INT_S RC10
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W									
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INT_S	INT_S	INT_S	INT_S	INT_S	INT_S	INT_S									
ivame	RCF	RCE	RCD	RCC	RCB	RCA	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W									
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8101 00c4 IRQ Software Interrupt Register (high)

IRQ SOFTH

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	INT_S RC3F	INT_S RC3E	INT_S RC3D	INT_S RC3C	INT_S RC3B	INT_S RC3A	INT_S RC39	INT_S RC38	INT_S RC37	INT_S RC36	INT_S RC35			INT_S RC32		INT_S RC30
Type	R/W	R/W	R/W	R/W	R/W	R/W										
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INT_S RC2F	INT_S RC2E	INT_S RC2D	INT_S RC2C	INT_S RC2B	INT_S RC2A	INT_S RC29	INT_S RC28	INT_S RC27	INT_S RC26				INT_S RC22		INT_S RC20
Туре	R/W	R/W	R/W	R/W	R/W	R/W										
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- 14							20	nO	N	M	Gr					

MediaTek Confidential

© 2011 MediaTek Inc.

Page 126 of 508

Setting "1" to the specific bit position generates a software interrupt for corresponding interrupt line before interrupt input multiplex. This register is used for debug purpose.

INT_SRC0-3F Software Interrupt

0x8101_00d0 FIQ Control Register

FIQ CON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	1			417												
Type		IV														
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									-		ודט				SENS	MASK
Type															R/W	R/W
Reset															0	1

This register provides a means for software program to control the FIQ controller.

MASK Mask control for the FIQ Interrupt Source

- Interrupt is enabled
- 1 Interrupt is disabled

SENS Sensitivity type of the FIQ Interrupt Source

- Edge sensitivity with active LOW
- 1 Level sensitivity with active LOW

0x8101_00d4 FIQ End of Interrupt Register

FIQ EOI

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset														1		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												I Y				EOI
Type											1.7	12				WO
Reset									TL							0

This register provides a means for software to relinquish and to refresh the FIQ controller. Writing a '1' to the specific bit position results in an End of Interrupt command issued internally to the corresponding interrupt line.

EOI End of Interrupt command

0x8101_00d8 Binary Coded Value of IRQ_STATUS

IRQ STA2

Bit	31	30	29	28	27	26	25	24	23 🜓	22	21	20	19	18	17	16
Name										11/1	ווט					
Type																

MediaTek Confidential

© 2011 MediaTek Inc.

Page 127 of 508

Reset												LY P			
Bit	15	14	13	12	11	10	9	8	7	6	5	4 3	2	1	0
Name								NOIR Q	14.		10		STA	-	
Type						13. 4	TA	RO	177				RO		
Reset						[]. \ 1	1101	0					0		

This Register is a binary coded version of IRQ_STA. It is used by the software program to poll which interrupt line has generated the IRQ interrupt request in a much easier way. Any read to it has the same result as reading IRQ_STA. The IRQ_STA2 is also read-only; write access has no effect on the content. Note that IRQ_STA2 should be coupled with IRQ_EOI2 while using it.

STA Binary coded value of IRQ_STA

NOIRQ Indicating if there is an IRQ or not. If there is no IRQ, this bit is HIGH, and the value of STA is 0_0000b.

0x8101_00dc Binary Coded Value of IRQ_EOI

IRQ_EOI2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
Name																			
Туре																			
Reset																			
Bit	15	14	13	12	11	10	9	8	7	6	5 4 3 2 1 0								
Name											EOI								
Туре											WO								
Reset											0								

This register is a binary coded version of IRQ_EOI. It provides an easier way for software program to relinquish and to refresh the interrupt controller. Writing a specific code results in an End of Interrupt command issued internally to the corresponding interrupt line. Note that IRQ_EOI2 should be coupled with IRQ_STA2 while using it.

EOI Binary coded value of IRQ_EOI

0x8101_0100 EINT Interrupt Status Register

EINT STA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										11						
Type							TA		171							
Reset								5								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		H	EINT1	EINT1 2	EINT1	EINT1 0	EINT9	EINT8	EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Type		IV	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	にに		0	0	0	0	0	0	0	0	0	0	0	0	0	0

This register keeps up with current status of which EINT Source generated the interrupt request. If EINT sources are set to edge sensitive, EINT_IRQ is de-asserted while the corresponding EINT_INTACK is programmed by 1.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 128 of 508

Confidential A

EINTO-EINT13 Interrupt Status

- O No interrupt request is generated
- 1 Interrupt request is pending

0x8101_0104 EINT Interrupt Mask Register

ntial Release tot EINT_MASK

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		1														
Type	1	TL'		717												
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			EINT1 3	EINT1 2	EINT1 1	EINT1 0	EINT9	EINT8	EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Type			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset			1	1	1	1			1	1	1	1	1	1	1	1

This register controls whether or not EINT Source is allowed to generate an interrupt request. Setting a "1" to the specific bit position prohibits the external interrupt line from becoming active.

EINTO-EINT13 Interrupt Mask

- Interrupt request is enabled.
- Interrupt request is disabled.

0x8101 0108 EINT Interrupt Mask Clear Register

EINT MASK CL

R

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			EINT1 3	EINT1 2	EINT1 1	EINT1 0	EINT9	EINT8	EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Type			W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C

This register is used to clear individual mask bits. Only the bits set to 1 are in effect, and interrupt masks for which the mask bit is set are cleared (set to 0). Otherwise the interrupt mask bit retains its original value.

EINTO-EINT13 Disable mask for the associated external interrupt source

- O No effect.
- 1 Disable the corresponding MASK bit.

0x8101_010C EINT Interrupt Mask Set Register

EINT_MASK_SE

T

									4							
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

MediaTek Confidential

© 2011 MediaTek Inc.

Page 129 of 508

Name												I V		9 -		
Type											1-7		A			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			EINT1 3	EINT1 2	EINT1 1	EINT1 0	EINT9	EINT8	EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Type			W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S	W1S

This register is used to set individual mask bits. Only the bits set to 1 are in effect, and interrupt masks for which the mask bit is set are set to 1. Otherwise the interrupt mask bit retains its original value.

EINTO-EINT13 Disable mask for the associated external interrupt source,

- 0 No effect.
 - Enable corresponding MASK bit.

0x8101_0110 EINT Interrupt Acknowledge Register

EINT_INTACK

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			EINT1 3	EINT1 2	EINT1 1	EINT1 0	EINT9	EINT8	EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Type			WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset			0	0	0	0	0	0	0	0	0	0	0	0	0	0

Writing "1" to the specific bit position acknowledges the interrupt request correspondingly to the external interrupt line

EINTO-EINT13 Interrupt acknowledgement

- No effect.
- Interrupt Request is acknowledged.

0x8101_0114 EINT Sensitive Register

EINT SENS

EINT0	-EINT	13 Inte	errupt a	cknow	ledgem	ent									- 18	
	0	No effe	ct.													
	1	Interrup	t Requ	est is a	cknowle	edged.						08	151	3 1	Q,	
0x81	01_0	114	EINT	Sens	sitive	Regi	ster		40	1 1		10,		E	NT_S	SENS
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						1	T. 1		171							
Type							1101	5								
Reset						111										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		J.	EINT1 3	EINT1 2	EINT1 1	EINT1 0	EINT9	EINT8	EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Type	121	117	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset			1	1	1	1	1	1	1	11	1	1	1	1	1	1

Sensitivity type of external interrupt source.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 130 of 508

Release **EINTO-EINT13** Sensitive type of the associated external interrupt source

- Edge sensitivity.
- Level sensitivity.

0x8101 0118 EINT Software Interrupt Register

EINT_SOFT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		1														
Type		TL'														
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			EINT1 3	EINT1 2	EINT1 1	EINT1 0	EINT9	EINT8	EINT7	EINT6	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
Туре			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	•		0	0	0	0	0	0	0	0	0	0	0	0	0	0

Setting "1" to the specific bit position generates a software interrupt for corresponding interrupt line before mask. This register is used for debug purpose.

EINTO-EINT13 Software Interrupt

0x8101_0120+ **EINTn De-bounce Control Register** n*0x10

EINTn_CON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EN	PR	ESCAL	ER	POL	L CNT										
Type	R/W		R/W		R/W	R/W										
Reset	0		0		0	0 0										

These registers control the de-bounce logic for external interrupt sources in order to minimize the possibility of false activations.

When the external interrupt sources is used to resume the system clock from the sleep mode, the De-bounce control circuit must be enabled.

Note that n is from 0 to 13

De-bounce duration in terms of numbers of 32768Hz clock cycles. The cycle length is determined by CNT **PRESCALER**

POL Activation type of the EINT source

Negative polarity

MediaTek Confidential

© 2011 MediaTek Inc.

Page 131 of 508

1 Positive polarity

PRESCALER Determine the clock cycle period for debounce count.

000 32768Hz, max: 0.0625sec

001 16384Hz

010 8192Hz

011 4096Hz

100 2048Hz, max: 1sec

101 1024Hz

110 512Hz

111 256Hz, max: 8secs

EN De-bounce control circuit

Disable

Enable

If you have to change the debounce setting of some EINT. Please follow the steps:

Cenon MCX

- 1. mask the EINT which you want to change the debounce setting
- 2. disable debounce (EN=0)
- 3. delay at least 5 32K cycles
- 4. Enable the debounce (EN=1) and change the debounce setting
- 5. unmask the EINT

MediaTek Confidential

© 2011 MediaTek Inc.

Page 132 of 508

alease fo

4 Microcontroller Peripherals

Microcontroller (MCU) Peripherals are devices that are under direct control of the Microcontroller. Most of the devices are attached to the Advanced Peripheral Bus (APB) of the MCU subsystem, and serve as APB slaves. Each MCU peripheral must be accessed as a memory-mapped I/O device; that is, the MCU or the DMA bus master reads from or writes to the specific peripheral by issuing memory-addressed transactions.

4.1 Pulse-Width Modulation Outputs

4.1.1 General Description

Three generic pulse-width modulators are implemented to generate pulse sequences with programmable frequency and duty cycle for LCD backlight or charging purpose. The duration of the PWM output signal is LOW as long as the internal counter value is greater than or equal to the threshold value. The waveform is shown in **Figure 29**.

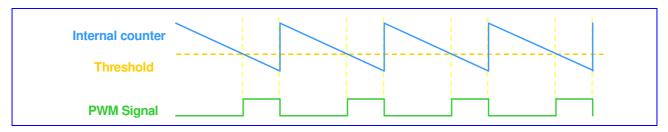


Figure 29 PWM waveform

The frequency and volume of PWM output signal are determined by these registers: PWM_COUNT, PWM_THRES, PWM_CON. The POWERDOWN (pdn_pwm) signal is applied to power-down the PWM module. When PWM is deactivated (POWERDOWN=1), the output is in LOW state.

The output PWM frequency is determined by:

 $CLOCK_DIV = 1$, when CLK[1:0] = 00b

 $CLOCK_DIV = 2$, when CLK[1:0] = 01b

 $CLOCK_DIV = 4$, when CLK[1:0] = 10b


 $CLOCK_DIV = 8$, when CLK[1:0] = 11b

MediaTek Confidential

© 2011 MediaTek Inc.

on WCX

Page 133 of 508

lease fo

Confidential A

МЕДІЛІТЕК

The output PWM duty cycle is determined by: PWM _ THRES PWM _ COUNT +1

Note that PWM_THRES should be less than the PWM_COUNT: if this condition is not satisfied, the output pulse of the PWM is always HIGH.

4.1.2 **Register Definitions**

0x81080000h PWM1 Control register

PWM1 CON

0x810	8000	0h	PWM	1 Co	ntrol	regis	ter			. 1				PWN	11_CON
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
Name										M				CLKSE L	CLK [1:0]
Type								110						R/W	R/W
Reset							NA							0	0

CLK Select PWM1 clock prescaler scale.

00 CLK Hz

01 CLK/2 Hz

10 CLK/4 Hz

11 CLK/8 Hz

Note: When PWM1 module is disabled, its output should be kept in the LOW state.

CLKSEL Select PWM1 clock

> 0 CLK=13M Hz

1 CLK=32K Hz

0x81080004h PWM1 max counter value register

PWM1 COUNT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									PWM1_	COUN	T [12:0		PI			
Type										R/W		4				
Reset										1FFFh	17					

PWM1_COUNT

PWM1 max counter value. This value is the initial value for the internal counter. Regardless of the operation mode, if PWM1_COUNT is written while the internal counter is counting backwards, the new initial value does not take effect until the internal counter counts down to zero, i.e. a complete period.

PWM1 Threshold Value register 0x81080008h

PWM1_THRES

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									PWM1_	THRE	S [12:0	0]				
Type										R/W						

MediaTek Confidential

© 2011 MediaTek Inc.

Page 134 of 508

MT6252

MEDIATEK

GSM/GPRS Baseband Processor Data Sheet

Reset 0

PWM1_THRES Threshold value. When the internal counter value is greater than or equal to PWM1_THRES, the PWM1 output signal is 0; when the internal counter is less than PWM1_THRES, the PWM1 output signal is 1.

0x8108000Ch PWM2 Control register

PWM2 CON

Confidential A

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	1	10									01			CLK	SEL	CLK [1:0]
Type														R/	W	R/W
Reset														()	0

CLK Select PWM2 clock prescaler scale.

00 CLK Hz

01 CLK/2 Hz

10 CLK/4 Hz

11 CLK/8 Hz

Note: When PWM2 module is disabled, its output should be kept in the LOW state.

CLKSEL Select PWM2 clock

O CLK=13M Hz

1 CLK=32K Hz

0x81080010h PWM2 max counter value register

PWM2_COUNT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									PWM2	COU	NT [12:	0]		C	-4	
Type										R/W					10/1	
Reset										1FFF	h		76			

PWM2_COUNT PWM2 max counter value. This value is the initial value for the internal counter. Regardless of the operation mode, if PWM2_COUNT is written while the internal counter is counting backwards, the new initial value does not take effect until the internal counter counts down to zero, i.e. a complete period.

0x81080014h PWM2 Threshold Value register

PWM2_THRES

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-71								PWM2	THRE	S [12:0]					
Type										R/W						
Reset										0						

MediaTek Confidential

© 2011 MediaTek Inc.

Page 135 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛІТЕК

PWM2_THRES Threshold value. When the internal counter value is greater than or equal to PWM2_THRES, the PWM2 output signal is 0; when the internal counter is less than PWM2_THRES, the PWM2 output signal is 1.

PWM3 Control register 0x81080018h

PWM3_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		7	13	V										CLKSE L	CLK	[1:0]
Type		NO.									_1			R/W	R/	W
Reset	4	7								116	7.			0	C)
CLK	02 CI		Iz	prescal	er scale		e	10	U /	W	,	<i>y</i>				

11 CLK/8 Hz

Note: When PWM3 module is disabled, its output should be kept in the LOW state.

CLKSEL Select PWM3 clock

> CLK=13M Hz 0

CLK=32K Hz

0x8108001Ch PWM3 max counter value register

PWM3 Threshold Value register

PWM3_COUNT PWM3 max counter value. This value is the initial value for the internal counter.

PWM3 COUNT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									PWM	3_COU	NT [12	:0]				
Type										R/V	I					
Reset										1FFF	-h				Ca	1

the operation mode, if PWM3_COUNT is written while the internal counter is counting backwards, the new initial value does not take effect until the internal counter counts down to zero, i.e. a

complete period.

PWM3_THRES

Regardless of

Bit	15	14	13	12	111	10	9	8	7	6	5	4	3	2	1	0
Name	1							F	WM3_	THRES	[12:0]					
Type		VI								R/W						
Reset	•] [0						

MediaTek Confidential

0x81080020h

© 2011 MediaTek Inc.

Page 136 of 508

PWM3_THRES Threshold value. When the internal counter value is greater than or equal to PWM3_THRES, the PWM3 output signal is 0; when the internal counter is less than PWM3_THRES, the PWM3 output signal is 1.

Figure 30 shows the PWM waveform with the indicated register values.

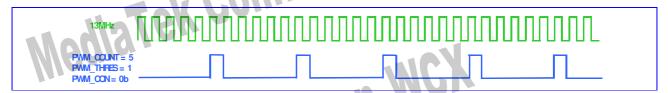


Figure 30 PWM waveform with register values

4.2 SIM Interface

The MT6252 contains two dedicated smart card interfaces to allow the MCU to access the two SIM cards. Each interface can operate via 5 terminals. As shown is the Figure 31, SIMVCC, SIMSEL, SIMRST, SIMCLK and SIMDATA are for one SIM interface, while SIM2VCC, SIM2SEL, SIM2RST, SIM2CLK and SIM2DATA are for the other one.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 137 of 508

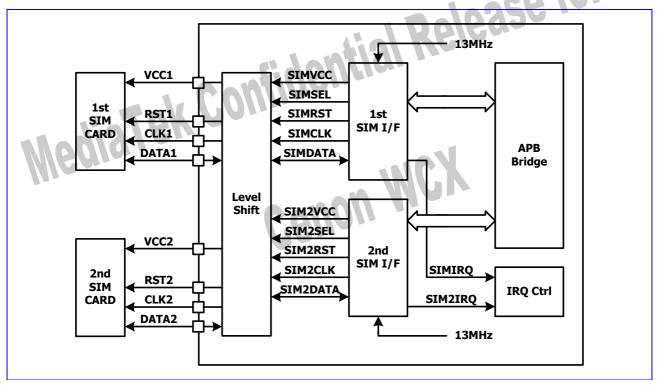


Figure 31 SIM Interface Block Diagram

The functions of the two SIM interfaces are identical; therefore, only first SIM interface will be described in this document. The SIMVCC is used to control the external voltage supply to the SIM card and SIMSEL determines the regulated smart card supply voltage. SIMRST is used as the SIM card reset signal. Besides, SIMDATA and SIMCLK are used for data exchange purpose.

Basically, the SIM interface acts as a half duplex asynchronous communication port and its data format is composed of ten consecutive bits: a start bit in state Low, eight information bits, and a tenth bit used for parity checking. The data format can be divided into two modes as follows:

Direct Convention Mode (ODD=SDIR=SINV=0)

SB D0 D1 D2 D3 D4 D5 D6 D7 PB

SB: Start Bit (in state Low)

Dx: Data Byte (LSB is first and logic level ONE is in state High)

PB: Even Parity Check Bit

MediaTek Confidential

© 2011 MediaTek Inc.

Page 138 of 508

Inverse Convention Mode (ODD=SDIR=SINV=1)

SB N7 N6 N5 N4 N3 N2 N1 N0 PB

SB: Start Bit (in state Low)

tial Release for Nx: Data Byte (MSB is first and logic level ONE is in state Low)

PB: Odd Parity Check Bit

If the receiver gets a wrong parity bit, it will respond by pulling the SIMDATA Low to inform the transmitter and the transmitter will retransmit the character.

When the receiver is a SIM Card, the error response starts 0.5 bits after the PB and it may last for 1~2 bit periods.

When the receiver is the SIM interface, the error response starts 0.5 bits after the PB and lasts for 1.5 bit period.

When the SIM interface is the transmitter, it will take totally 14 bits guard period whether the error response appears. If the receiver shows the error response, the SIM interface will retransmit the previous character again else it will transmit the next character.

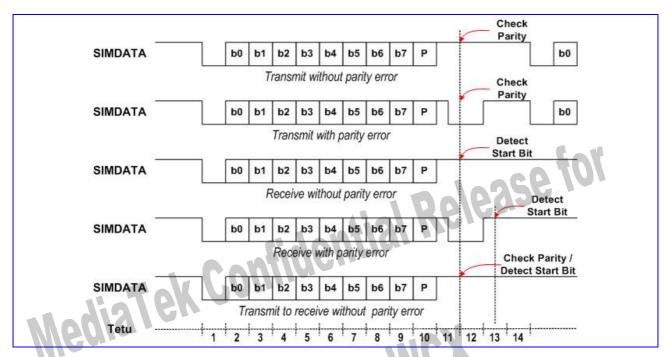


Figure 32 SIM Interface Timing Diagram

MediaTek Confidential

© 2011 MediaTek Inc.

Page 139 of 508

4.2.1 **Register Definitions**

ease For MCU to control two SIM card interface, all registers are duplicated to two copies but with different base address. In the following, n = "1" is for 1^{st} SIM card interface, while n=2 is for 2^{nd} SIM card interface. For example, address SIM1+0000h is mapped to SIM1_SIM_CTRL register, while address SIM2+0000h is mapped to SIM2_SIM_CTRL register.

- 41

Register Overview 4.2.1.1

MCU Register Address (hex)	Acronym	Discription
1 st SIM card Inte	rface	Ou.
SIM1+0000h	SIM1_SIM_CTRL	Control register
SIM1+0004h	SIM1_SIM_CONF	Configuration register
SIM1+0008h	SIM1_SIM_BRR	Baud rate register
SIM1+0010h	SIM1_SIM_IRQEN	Interrupt enable register
SIM1+0014h	SIM1_SIM_STS	Status register
SIM1+0020h	SIM1_SIM_RETRY	Retry limit register
SIM1+0024h	SIM1_SIM_TIDE	FIFO tide mark register
SIM1+0030h	SIM1_SIM_DATA	TX/RX data register
SIM1+0034h	SIM1_SIM_COUNT	FIFO count register
SIM1+0040h	SIM1_SIM_ATIME	Activation time register
SIM1+0044h	SIM1_SIM_DTIME	Deactivation time register
SIM1+0048h	SIM1_SIM_TOUT	Character to character waiting time register
SIM1+004Ch	SIM1_SIM_GTIME	Block to block guard time register
SIM1+0050h	SIM1_SIM_ETIME	Block to error signal time register
SIM1+0054h	SIM1_SIM_EXT_TIME	Extend data I/O state switch time register
SIM1+0060h	SIM1_SIM_INS	Command header register: INS

MediaTek Confidential

© 2011 MediaTek Inc.

Page 140 of 508

			1 000 1
	SIM1+0064h	SIM1_SIM_IMP3	Command header register: P3
	SIM1+0068h	SIM1_SIM_SW1	Procedure byte register : SW1
	SIM1+006Ch	SIM1_SIM_SW2	Procedure byte register : SW2
	SIM1+0070h	SIM1_SIM_ATRSTA	ATR state register
ľ	SIM1+0074h	SIM1_SIM_STATUS	Protocol state register
	SIM1+0080h	SIM1_SIM_DMADATA	TX/RX data register for DMA
	2 nd SIM card Inte	erface	- MUN
	SIM2+0000h	SIM2_SIM_CTRL	Control register
	SIM2+0004h	SIM2_SIM_CONF	Configuration register
	SIM2+0008h	SIM2_SIM_BRR	Baud rate register
	SIM2+0010h	SIM2_SIM_IRQEN	Interrupt enable register
	SIM2+0014h	SIM2_SIM_STS	Status register
	SIM2+0020h	SIM2_SIM_RETRY	Retry limit register
	SIM2+0024h	SIM2_SIM_TIDE	FIFO tide mark register
	SIM2+0030h	SIM2_SIM_DATA	TX/RX data register
	SIM2+0034h	SIM2_SIM_COUNT	FIFO count register
	SIM2+0040h	SIM2_SIM_ATIME	Activation time register
	SIM2+0044h	SIM2_SIM_DTIME	Deactivation time register
	SIM2+0048h	SIM2_SIM_TOUT	Character to character waiting time register
	SIM2+004Ch	SIM2_SIM_GTIME	Block to block guard time register
	SIM2+0050h	SIM2_SIM_ETIME	Block to error signal time register
١	SIM2+0054h	SIM2_SIM_EXT_TIME	Extend data I/O state switch time register
	SIM2+0060h	SIM2_SIM_INS	Command header register : INS
	SIM2+0064h	SIM2_SIM_IMP3	Command header register : P3

MediaTek Confidential

© 2011 MediaTek Inc.

Page 141 of 508

GT1 50 00 601	GT CO GT C GTT	
SIM2+0068h	SIM2_SIM_SW1	Procedure byte register : SW1
SIM2+006Ch	SIM2_SIM_SW2	Procedure byte register : SW2
SIM2+0070h	SIM2_SIM_ATRSTA	ATR state register
SIM2+0074h	SIM2_SIM_STATUS	Protocol state register
SIM2+0080h	SIM2_SIM_DMADATA	TX/RX data register for DMA

4.2.1.2 Register Description

SIMn+0000h SIM module control register

SIMN SIM CTRL

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														WRST	CSTO P	SIMO N
Type														W	R/W	R/W
Reset														0	0	0

SIMON SIM card power-up/power-down control

O An 1-to-0 change will start the card deactivation sequence

1 A 0-to-1 change will start the card activation sequence

CSTOP Enable clock stop mode. Together with CPOL in SIM_CONF register, it determines the polarity of the SIMCLK in this mode.

• Enable the SIMCLK output.

1 Disable the SIMCLK output

WRST SIM card warm reset control

SIMn+0004h SIM module configuration register

SIMN SIM CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						HFEN	TOEN	T1EN	TOUT	SIMS	ODD	SDI R	SINV	CPOL	TXAC K	RXAC K
Type						R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset						0	0	0	0	0	0	0	0	0	0	0

RXACK SIM card reception error handshake control

Disable character receipt handshaking

1 Enable character receipt handshaking

TXACK SIM card transmission error handshake control

O Disable character transmission handshaking

MediaTek Confidential

© 2011 MediaTek Inc.

Page 142 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A ntial Release for

МЕDIЛТЕК

1 Enable character transmission handshaki	1	Enable cha	aracter trans	smission	handshakir	ıg
---	---	------------	---------------	----------	------------	----

CPOL SIMCLK polarity control in clock stop mode

- Make SIMCLK stop in LOW level
- 1 Make SIMCLK stop in HIGH level

SINV Data invert mode

- Not invert the transmitted and received data, data logic ONE is in high state
- Invert the transmitted and received data, data logic ONE is in low state cenon WCX

SDIR **Data Transfer Direction**

- LSB is transmitted and received first
- MSB is transmitted and received first

ODD Select odd or even parity

- Even parity
- Odd parity

SIMSEL SIM card supply voltage select

- 0 SIMSEL pin is set to LOW level, 1.8V
- SIMSEL pin is set to HIGH level, 3V

TOUT SIM work waiting time counter control

- 0 Disable Time-Out counter
- **Enable Time-Out counter**

T1EN T=1 protocol controller control

- Disable T=1 protocol controller
- Enable T=1 protocol controller

TOEN T=0 protocol controller control

- Disable T=0 protocol controller
- Enable T=0 protocol controller

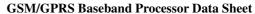
HFEN Hardware flow control

- Disable hardware flow control
- Enable hardware flow control

SIMn +0008h **SIM Baud Rate Register**

ential Release for SIMN SIM BRR

Bit	15	14	13	12	11	10 9	8	7	6	5	4	3	2	1	0		
Name	- 1						ETU[8:0]										
Type		L V		777			R/W										
Reset	1/2	110							372d	- 1				0			


SIMCLK Set SIMCLK frequency

00 Reserved

MediaTek Confidential

© 2011 MediaTek Inc.

Page 143 of 508

Confidential A

MEDIATEK

01 13/4 MHz

10 13/8 MHz

11 13/12 MHz

ial Release for Determines the duration of elementary time unit in unit of SIMCLK **ETU**

SIM interrupt enable register SIMn +0010h

SIMN_SIM_IRQEN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		J/				EDCE RR	T1EN D	RXER R	T0EN D	SIMO FF	ATRER R	TXER R	TOU T	OVRU N	RXTID E	TXTID E
Туре	7	4				R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset						0	0	0	0	0	0	0	0	0	0	0
For all	these	bits Interruj	nt is dis	abled			0	NO	N	AA						
	1	Interruj	-				76									

SIMn +0014h SIM module status register

SIMN_SIM_STS

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						EDCE RR	T1EN D	RXER R	T0EN D	SIMO FF	ATRER R	TXER R	TOU T	OVRU N	RXTID E	TXTID E
Type						R/C	R/C	R/C	R/C	R/C	R/C	R/C	R/C	R/C	R	R
Reset						_	_	_	_	_	_	_	_	_	_	_

TXTIDE The interrupt occurs when number of transmitted data in the FIFO is less than transmitted tide.

RXTIDE The interrupt occurs when number of received data in the FIFO is larger than received tide.

OVRUN Receive FIFO overflow interrupt occurred **TOUT** Between characters timeout interrupt occurred **TXERR** Character transmission error interrupt occurred

ATRERR ATR start time-out interrupt occurred

SIMOFF Card deactivation complete interrupt occurred

please for **TOEND** Data Transfer handled by T=0 Controller completed interrupt occurred

RXERR Character reception error interrupt occurred

T1END Data Transfer handled by T=1 Controller completed interrupt occurred

T=1 Controller CRC error occurred **EDCERR**

SIMn +0020h SIM retry limit register

SIMN_SIM_RETRY

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						T.	XRETR	Υ						RXRETRY		
Type							R/W		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1///	5				R/W	
Reset							3h		M	V V					3h	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 144 of 508

RXRETRY Specify the maximum numbers of receive retries that are allowed when parity error has occurred.

TXRETRY Specify the maximum numbers of transmit retries that are allowed when parity error has occurred.

SIMn +0024h SIM FIFO tide mark register

SIMN SIM TIDE

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	- 1					TXTIC	E[3:0]							RXTID	E[3:0]	
Type	BF		II;	477		R	/W							R/	W	
Reset	1.1					C)h							0	h	

Trigger point of RXTIDE interrupt **RXTIDE TXTIDE** Trigger point of TXTIDE interrupt

SIMn +0030h Data register used as Tx/Rx Data Register

SIMN_SIM_DATA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												DATA	\[7:0]			
Type												R/	W			
Reset												=	=			

DATA Eight data digits. These correspond to the character being read or written

SIMn +0034h SIM FIFO count register

SIMN SIM COUNT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													CC	UNT[4	:0]	
Type														R/W		
Reset														0h		

COUNT The number of characters in the SIM FIFO when read, and flushes when written.

SIMn +0040h SIM activation time register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								ATIM	E[15:0]		13					
Type							-	R	/W ->		10					
Reset								AF	C7h	77						

ATIME

The register defines the duration, in SIM clock cycles, of the time taken for each of the three stages of the card activation process, from SIMON transits to high to turn on VCC, from turn on VCC to pull DATA high and then from pull DATA high to turn on CLK.

SIMn +0044h SIM deactivation time register

SIMN SIM DTIME

SIMn +	0044	h S	SIM d	eact	ivatio	n tim	ne reg	gister		-116	N		SIN	/IN_S	IM_D	TIME
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									14	DTIME	[11:01					

MediaTek Confidential

© 2011 MediaTek Inc.

Page 145 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

MEDIATEK

Type		R/W
Reset		3E7h

DTIME

The register defines the duration, in 13MHz clock cycles, of the time taken for each of the three stages of the card deactivation sequence, from pull RST low to turn of CLK, from turn off CLK to pull DATA low, from pull DATA low to turn off VCC.

SIMn +0048h Character to character waiting time register

SIMN SIM TOUT

Bit	31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16
Name		WTIME[24:0]
Type		R/W
Reset		983h
Bit	15 14 13 12 11 10 9	8 7 6 5 4 3 2 1 0
Name		WTIME[24:0]
Type		R/W
Reset		983h

WTIME Maximum interval between the leading edge of two consecutive characters in 4 ETU unit

SIMn +004Ch Block to block guard time register

SIMN SIM GTIME

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														GT	ME	
Type														R/	W	
Reset														1()d	

GTIME

Minimum interval between the leading edge of two consecutive characters sent in opposite directions in ETU unit

SIMn +0050h Block to error signal time register

SIMN SIM ETIME

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1	0
Name												I V	ET	IME	
Type											1.7		R	/W	
Reset									4				1	5d	

ETIME

The register defines the interval, in 1/16 ETU unit, between the end of transmitted parity bit and time to check parity error signal sent from SIM card.

SIMn +0054h Active High Period Control register

SIMN_SIM_EXT_TI

ME

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										1.11	1			EXT_	TIME	
Type									10	/ / /				R/	W	
Reset														1	d	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 146 of 508

EXT_TIME The register defines the interval, in 1/16 ETU unit, between the end of transmitted parity bit and the time to switch SIO to input mode. This value should less than ETIME.

SIMn +0060h SIM command header register: INS

SIMN SIM INS

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	-1		70			7		INSD				SIMIN	S[7:0]			
Type				4 / 1				R/W				R/	W			
Reset		17.						0h				0	h			_

This field should be identical to the INS instruction code. When writing to this register, the T=0 controller

will be activated and data transfer will be initiated.

[Description for this register field]

0 T=0 controller receives data from the SIM card

SIM command header register: P3

1 T=0 controller sends data to the SIM card

SIMN SIM IMP3

(ICC LEN)

														<u> </u>	_	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								SIMP3 [8]				SIMP	3[7:0]			
Type								R				R/	W			
Reset								0h				0	h			

SIMP3

SIMINS

SIMn +0064h

This field should be identical to the P3 instruction code. It should be written prior to the SIM_INS register. While the data transfer is going on, this field shows the no. of the remaining data to be sent or to be received

SIMn +0068h SIM procedure byte register: SW1

SIMN_SIM_SW1 (ICC LEN)

Bit	15	14	13	12	11	10	9	8	7	6 5 4 3 2 1 0
Name										SIMSW1[7:0]
Туре									1 V 1	R
Reset							AY	7		0h

SIMSW1 This field holds the last received procedure byte for debug purpose. When the T0END interrupt occurred, it keeps the SW1 procedure byte.

SIMn +006Ch SIM procedure byte register: SW2

SIMN_SIM_SW2

(ICC EDC)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										IIII		SIMSV	V2[7:0]			
Type												F	7			·

MediaTek Confidential

© 2011 MediaTek Inc.

Page 147 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Reset		, oh
SIMSW2	This field holds the SW2 procedure byte	dia Release
SIMp ±0	070h SIM ATR state register	SIMN_SIM_ATRS

SIMn +0070h SIM ATR state register

SIMN SIM ATRST

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	- 41							AL	IR							OFF
Type		LI	1					R	R							R
Reset								0h	0h							1h

Initial, SIM card is turned off. After configuring SIMON of SIMn_SIM_CTRL and ATR procedure,

SIMn SIM ATRSTA will set IR or AL to 1 to indicate the card's feature.

OFF SIM card's ON/OFF indicator IR SIM card is IR (internal reset) card AL SIM card is AL (active low reset) card

SIMN SIM STATU

Release for

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											ALL	ONE				IDLE
Type											R	R				R
Reset											0h	0h				1h

Initial, SIM card's T0 or T1 protocol is turned off. When T0 or T1 protocol is turned on, SIMn_SIM_STATUS will transit between ONE or ALL according to SIM card's procedure byte.

IDLE SIM card's T0 or T1 protocol is active or idle.

SIMn +0074h SIM protocol state register

ONE SIM card will send next byte

ALL SIM card will send all remained bytes.

SIM Card Insertion and Removal 4.2.2

The detection of physical connection to the SIM card and card removal is done by the external interrupt controller or by GPIO.

Card Activation and Deactivation 4.2.3

The card activation and deactivation sequence both are controlled by H/W. The MCU initiates the activation sequence by writing a "1" to bit 0 of the SIM_CTRL register, and then the interface performs the following activation sequence:

Assert SIMRST LOW

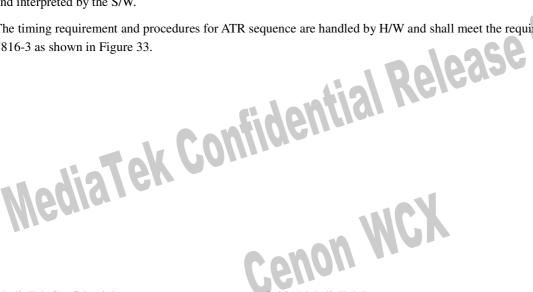
MediaTek Confidential

© 2011 MediaTek Inc.

Page 148 of 508

- Set SIMVCC at HIGH level and SIMDATA in reception mode
- Enable SIMCLK clock
- Release fo De-assert SIMRST HIGH (required if it belongs to active low reset SIM card)

The final step in a typical card session is contact deactivation in order that the card is not electrically damaged. The deactivation sequence is initiated by writing a "0" to bit 0 of the SIM_CTRL register, and then the interface performs the following deactivation sequence: Cenon WCX


- Assert SIMRST LOW
- Set SCIMCLK at LOW level
- Set SIMDATA at LOW level
- Set SIMVCC at LOW level

4.2.4 **Answer to Reset Sequence**

After card activation, a reset operation results in an answer from the card consisting of the initial character TS, followed by at most 32 characters. The initial character TS provides a bit synchronization sequence and defines the conventions to interpret data bytes in all subsequent characters.

On reception of the first character, TS, MCU should read this character, establish the respective required convention and reprogram the related registers. These processes should be completed prior to the completion of reception of the next character. And then, the remainder of the ATR sequence is received, read via the SIM_DATA in the selected convention and interpreted by the S/W.

The timing requirement and procedures for ATR sequence are handled by H/W and shall meet the requirement of ISO 7816-3 as shown in Figure 33.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 149 of 508

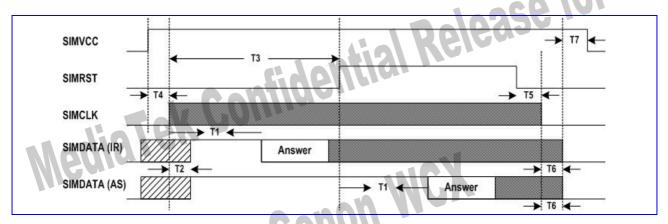


Figure 33 Answer to Reset Sequence

Time	Value	Comment
T1	> 400 SIMCLK	SIMCLK start to ATR appear
T2	< 200 SIMCLK	SIMCLK start to SIMDATA in reception mode
T3	> 40000 SIMCLK	SIMCLK start to SIMRST High
T4	_	SIMVCC High to SIMCLK start
T5	_	SIMRST Low to SIMCLK stop
T6	_	SIMCLK stop to SIMDATA Low
T7	_	SIMDATA Low to SIMVCC Low

Table 41 Answer to Reset Sequence Time-Out Condition

4.2.5 SIM Data Transfer

Two transfer modes are provided, either in software controlled byte by byte fashion or in a block fashion using T=0 controller and DMA controller. In both modes, the time-out counter could be enabled to monitor the elapsed time between two consecutive bytes.

4.2.5.1 Byte Transfer Mode

This mode is used during ATR and PPS procedure. In this mode, the SIM interface only ensures error free character transmission and reception.

Receiving Character

MediaTek Confidential

© 2011 MediaTek Inc.

Page 150 of 508

Upon detection of the start-bit sent by SIM card, the interface transforms into reception mode and the following bits are shifted into an internal register. If no parity error is detected or character-receive handshaking is disabled, the received-character is written into the SIM FIFO and the SIM_COUNT register is increased by one. Otherwise, the SIMDATA line is held low at 0.5 etu after detecting the parity error for 1.5 etus, and the character is re-received. If a character fails to be received correctly for the RXRETRY times, the receive-handshaking is aborted and the last-received character is written into the SIM FIFO, the SIM_COUNT is increased by one and the RXERR interrupt is generated

When the number of characters held in the receive FIFO exceeds the level defined in the SIM_TIDE register, a RXTIDE interrupt is generated. The number of characters held in the SIM FIFO can be determined by reading the SIM_COUNT register and writing to this register will flush the SIM FIFO.

Sending Character

Characters that are to be sent to the card are first written into the SIM FIFO and then automatically transmitted to the card at timed intervals. If character-transmit handshaking is enabled, the SIMDATA line is sampled at 1 etu after the parity bit. If the card indicates that it did not receive the character correctly, the character is retransmitted a maximum of TXRETRY times before a TXERR interrupt is generated and the transmission is aborted. Otherwise, the succeeding byte in the SIM FIFO is transmitted.

If a character fails to be transmitted and a TXERR interrupt is generated, the interface needs to be reset by flushing the SIM FIFO before any subsequent transmit or receive operation.

When the number of characters held in the SIM FIFO falls below the level defined in the SIM_TIDE register, a TXTIDE interrupt is generated. The number of characters held in the SIM FIFO can be determined by reading the SIM_COUNT register and writing to this register will flush the SIM FIFO.

4.2.5.2 Block Transfer Mode

Basically, the SIM interface is designed to work in conjunction with the T=0 protocol controller and the DMA controller during non-ATR and non-PPS phase, though it is still possible for software to service the data transfer manually like in byte transfer mode if necessary and thus the T=0 protocol should be controlled by software.

The T=0 controller is accessed via four registers representing the instruction header bytes INS and P3, and the procedure bytes SW1 and SW2. These registers are:

SIM_INS, SIM_P3

SIM_SW1, SIM_SW2

MediaTek Confidential

© 2011 MediaTek Inc.

ion MCX

Page 151 of 508

During characters transfer, SIM_P3 holds the number of characters to be sent or to be received and SIM_SW1 holds the last received procedure byte including NULL, ACK, NACK and SW1 for debug purpose.

Data Receive Instruction

Data Receive Instructions receive data from the SIM card. It is instantiated as the following procedure.

- 1. Enable the T=0 protocol controller by setting the T0EN bit to 1 in SIM_CONF register
- 2. Program the SIM_TIDE register to 0x0000 (TXTIDE = 0, RXTIDE = 0)
- 3. Program the SIM_IRQEN to 0x019C (Enable RXERR, TXERR, TOEND, TOUT and OVRUN interrupts)
- 4. Write CLA, INS, P1, P2 and P3 into SIM FIFO
- 6. Write P3 into SIM_P3 register and then INS into SIM_INS register (Data Transfer is initiated now)
- 7. Enable the Time-out counter by setting the TOUT bit to 1 in SIM_CONF register
- 8. Start the DMA controller by writing 0x8000 into the DMAn_START register

Upon completion of the Data Receive Instruction, T0END interrupt will be generated and then the Time-out counter should be disabled by setting the TOUT bit back to 0 in SIM_CONF register.

If error occurs during data transfer (RXERR, TXERR, OVRUN or TOUT interrupt is generated), the SIM card should be deactivated first and then activated prior subsequent operations.

Data Send Instruction

Data Send Instructions send data to the SIM card. It is instantiated as the following procedure.

- 1. Enable the T=0 protocol controller by setting the T0EN bit to 1 in SIM_CONF register
- 2. Program the SIM_TIDE register to 0x0100 (TXTIDE = 1, RXTIDE = 0)
- 3. Program the SIM_IRQEN to 0x019C (Enable RXERR, TXERR, TOEND, TOUT and OVRUN interrupts)
- 4. Write CLA, INS, P1, P2 and P3 into SIM FIFO
- 5. Program the DMA controller:

 DMAn_MSBSRC and DMAn_LSBSRC: memory address reserved to store the transmitted characters

 DMAn_MSBDST and DMAn_LSBDST: address of SIM_DATA register

 DMAn_COUNT: identical to P3

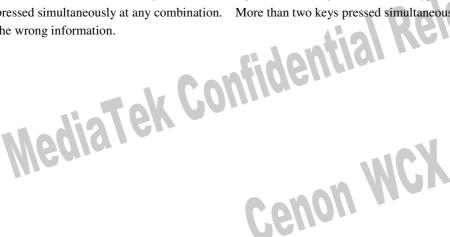
 DMAn_CON: 0x0074
- 6. Write P3 into SIM_P3 register and then (0x0100 | INS) into SIM_INS register (Data Transfer is initiated now)
- 7. Enable the Time-out counter by setting the TOUT bit to 1 in SIM_CONF register
- 8. Start the DMA controller by writing 0x8000 into the DMA n_{s} START register

MediaTek Confidential

© 2011 MediaTek Inc.

Page 152 of 508

Upon completion of the Data Send Instruction, T0END interrupt will be generated and then the Time-out counter should be disabled by setting the TOUT bit back to 0 in SIM_CONF register.


If error occurs during data transfer (RXERR, TXERR, OVRUN or TOUT interrupt is generated), the SIM card should be deactivated first and then activated prior subsequent operations.

4.3 Keypad Scanner

4.3.1 General Description

The keypad can be divided into two parts: one is the keypad interface including 8 columns and 8 rows with one dedicated power-key, as shown in **Fig. 1** The other is the key detection block which provides key pressed, key released and de-bounce mechanisms. Each time the key is pressed or released, i.e. something different in the 8 x 8 matrix or power-key, the key detection block senses the change and recognizes if a key has been pressed or released. Whenever the key status changes and is stable, a KEYPAD IRQ is issued. The MCU can then read the key(s) pressed directly in KP_MEM1, KP_MEM2, KP_MEM3, KP_MEM4 and KP_MEM5 registers. To ensure that the key pressed information is not missed, the status register in keypad is not read-cleared by APB read command. The status register can only be changed by the key-pressed detection FSM.

This keypad can detect one or two key-pressed simultaneously with any combination. **Fig. 2** shows one key pressed condition. **Fig. 3** (a) and **Fig. 3** (b) illustrate two keys pressed cases. Since the key press detection depends on the HIGH or LOW level of the external keypad interface, if keys are pressed at the same time and there exists a key that is on the same column and the same row with the other keys, the pressed key cannot be correctly decoded. For example, if there are three key presses: key1 = (x1, y1), key2 = (x2, y2), and key3 = (x1, y2), then both key3 and key4 = (x2, y1) are detected, and therefore they cannot be distinguished correctly. Hence, the keypad can detect only one or two keys pressed simultaneously at any combination. More than two keys pressed simultaneously in a specific pattern retrieve the wrong information.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 153 of 508

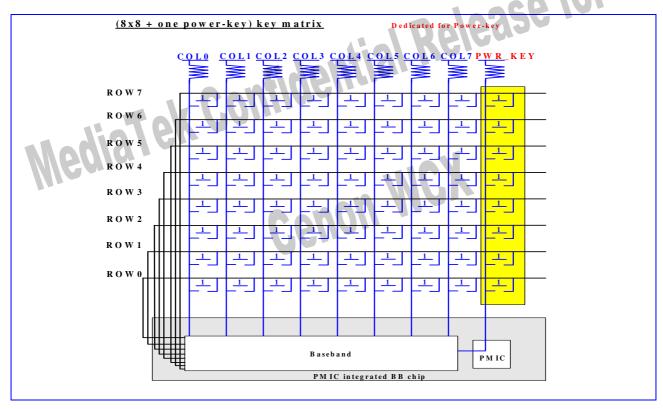


Fig. 1 8x8 matrix with one power-key

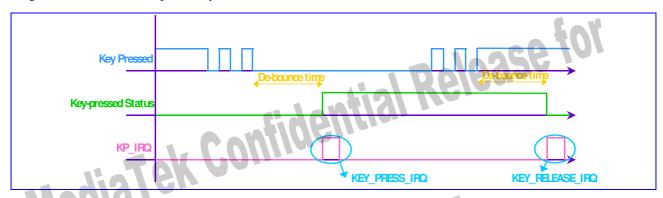


Fig. 2. One key pressed with de-bounce mechanism denoted

MediaTek Confidential

© 2011 MediaTek Inc.

Page 154 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

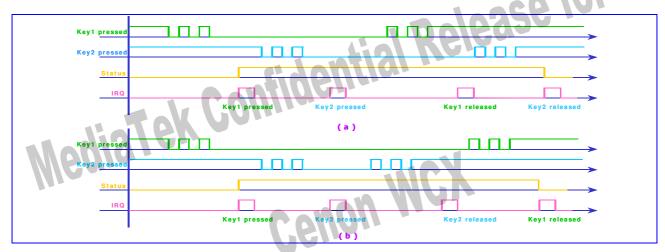


Fig. 3. (a) Two keys pressed, case 1 (b) Two keys pressed, case 2

Register Definitions 4.3.2

KP +0000h **Keypad status KP STA** 12 10 6 2 Name STA RO Type Reset

STA This register indicates the keypad status. The register is not cleared by the read operation.

- No key pressed
- Key pressed

KP +0004h **Keypad scanning output Register**

KP MEM1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	KEY 15	KEY 14	KEY 13	KEY 12	KEY 11	KEY 10	KEY 9	KEY 8	KEY 7	KEY 6	KEY 5	KEY 4	KEY 3	KEY 2	KEY 1	KEY 0
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	_1	1	1	1	1	1	1	1	1	1	1	1	1	1

The register shows up the key-press status of key0(LSB)~key15. Please reference Table 42.

KP +	-0008	h	Keyp	ad so	anni	ng ວເ	ıtput	Regis	ster	111				ı	KP_N	IEM2
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

MediaTek Confidential

MARIO

© 2011 MediaTek Inc.

Page 155 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Name	KEY 31	KEY 30	KEY 29	KEY 28	KEY 27	KEY 26	KEY 25	KEY 24	KEY 23	KEY 22	KEY 21	KEY 20	KEY 19	KEY 18	KEY 17	KEY 16
Type	RO															
Reset	1	1	1	1	1	1	1	14	11/	11	1	1	1	1	1	1

The register shows up the key-press status of key16(LSB)~key31. Please reference Table 42.

KP +000Ch Keypad scanning output Register

KP_MEM3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	KEY 47	KEY 46	KEY 45	KEY 44	KEY 43	KEY 42	KEY 41	KEY 40	KEY 39	KEY 38	KEY 37	KEY 36	KEY 35	KEY 34	KEY 33	KEY 32
Type	RO															
Reset	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1

The register shows up the key-press status of key32(LSB)~key47. Please reference Table 42.

KP +0010h Keypad scanning output Register

KP MEM4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	KEY 63	KEY 62	KEY 61	KEY 60	KEY 59	KEY 58	KEY 57	KEY 56	KEY 55	KEY 54	KEY 53	KEY 52	KEY 51	KEY 50	KEY 49	KEY 48
Type	RO															
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

The register shows up the key-press status of key48(LSB)~key63. Please reference Table 42.

KP +0014h Keypad scanning output Register

KP_MEM5

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									KEY 71	KEY 70	KEY 69	KEY 68	KEY 67	KEY 66	KEY 65	KEY 64
Туре									RO	RO	RO	RO	RO	RO	RO	RO
Reset									1	1	11	1	1	1	1	1

The register shows up the key-press status of key64(LSB)~key71. Please reference Table 42.

KP +0010h Keypad scanning output Register

KP MEM4

Bit	15 14	13 12	11 10	9	8	7	6	5	4	3	2	1	0
Name					KEYS	[15:0]							
Type					R								
Reset					16'hF	FFF	-1						

The register shows up the key-press status of key48(LSB)~key63. Please reference Table 42.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 156 of 508

Keypad scanning output Register KP +0014h

KP MEM5

Confidential A

Bit	15	14	13	12	11	10	9	8	7-	6	5	4	3	2	1	0
Name								7				KEYS	[7:0]			
Type						1		41				R	0			
Reset			-							,	•	8'h	FF			-

The register shows up the key-press status of key64(LSB)~key71. Please reference Table 42.

These five registers list the status of 72 keys on the keypad but KEY[8], KEY[17], KEY[26], KEY[35], KEY[44], KEY[53], KEY[62], KEY[71] is dedicated for power key. When the MCU receives the KEYPAD IRQ, both two registers must be read. If any key is pressed, the relative bit is set to 0.

In order to work normally, the corresponding pull-up/down setting must be programmed correctly. If some keys can be use because their COL or ROW is use as GPIO, these corresponding bit will be tie to high.

KEYS Status list of the 72 keys.

KP +00018h **De-bounce period setting**

KP DEBOUNCE

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				DEBOUNCE [13:0]												
Туре									R/	W						
Reset									40	0h						

This register defines the waiting period before key press or release events are considered stale. If debounce setting is too small, keypad will be too sensitive and detect too many unexpected key-press. The suitable debounce time setting must be adjust for the user's habit.

DEBOUNCE

MediaTek Confidential Release for non WCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 157 of 508

	COL0	COL1	COL2	COL3	COL4	COL5	COL6	COL7	PWRKEY
ROW7	63	64	65	66	67	68	69	70	71
ROW6	54	55	5 6	57	58	59	60	61	62
ROW5	45	46	4 7	48	49	50	51	52	53
ROW4	36	37	38	39	40	41	42	43	44
ROW3	27	28	29	30	31	32	33	34	35
ROW2	18	19	20	21	22	23	24	25	26
ROW1	9	10	11	12	13	14	15	16	17

2

3

4

5

7

6

8

Table 42 KEY's order number in COL/ROW matrix.

ROW0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 158 of 508

General Purpose Inputs/Outputs 4.4

Release for MT6252 offers 71 general-purpose I/O pins. By setting the control registers, MCU software can control the direction, the output value, and read the input values on these pins. These GPIOs and GPOs are multiplexed with other functionalities to reduce the pin count. In addition, all GPO pins are removed. To facilitate application use, software can configure which clock to send outside the chip. There are 6 clock-out ports embedded in 71 GPIO pins, and each clock-out can be programmed to output appropriate clock source.

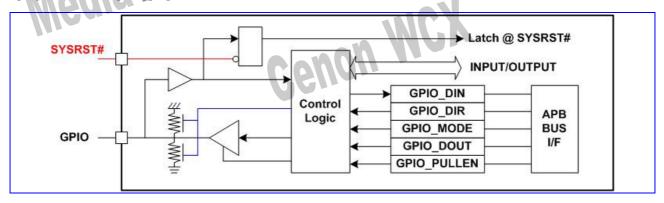


Figure 34 GPIO Block Diagram

GPIOs at RESET

Upon hardware reset (SYSRST#), the digital IOs which are configurated in the mode of aux. function 0 (GPIOs) are all inputs and the following alternative usages of GPIO pins are enabled:

al Release These GPIOs are used to latch the inputs upon reset to memorize the desired configuration to make sure that the system restarts or boots in the right mode.

4.4.1 **Register Definitions**

GPIO direction control register 1 0x8002 0000

GPIO DIR1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nama	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO
Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 159 of 508

0x8002_0010

GPIO_DIR2

											. 1		SE		U1	
0x800	02_00	10	GPIC	dire	ction	cont	rol re	giste	r 2	1 6		130	Ya,	G	PIO_	DIR2
Bit	15	14	13	12	11	10	9	8	77	6	5	4	3	2	1	0
Name	GPIO 31	GPIO 30	GPIO 29	GPIO 28	GPIO 27	GPIO 26	GPIO 25	GPIO 24	GPIO 23	GPIO 22	GPIO 21	PGIO 20	GPIO 19	GPIO 18	GPIO 17	GPIO 16
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8002 0020 **GPIO** direction control register 3

GPIO DIR3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO
Name	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0

0x8002 0030 **GPIO** direction control register 4

GPIO DIR4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 63	GPIO 62	GPIO 61	GPIO 60	GPIO 59	GPIO 58	GPIO 57	GPIO 56	GPIO 55	GPIO 54	GPIO 53	GPIO 52	GPIO 51	GPIO 50	GPIO 49	GPIO 48
Туре	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIO direction control register 5 0x8002_0040

GPIO_DIR5

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				RE	SERVI	ED				GPIO 70	GPIO 69	GPIO 68	GPIO 67	GPIO 66	GPIO 65	GPIO 64
Туре				F	Reserve	d				R/W						
Reset				F	Reserve	d				0	0	0	0	0	0	0
GPIO	7 GP 0 1	IO direct GPIOs GPIOs	are con	figured	-	it out		en			Ke					

GPIO GPIO direction control

- O GPIOs are configured as input
- GPIOs are configured as output

0x8002_0050 GPIO pull-up/pull-down enable register 1

GPIO PULLE1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 15	GPIO 14	GPIO 13	GPIO 12	GPIO 11	GPIO 10	GPIO 9	GPIO 8	GPIO 7	GPIO 6	GPIO 5	GPIO 4	GPIO 3	GPIO 2	GPIO 1	GPIO 0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MediaTek Confidential

© 2011 MediaTek Inc.

Page 160 of 508

МЕДІЛІТЕК

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

														A -	
Reset	1	0	0	0	0	0	0	0	1	1	1	1	1 1	1	0

0x8002_0060 GPIO pull-up/pull-down enable register 2

GPIO_PULLEN

2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 31	GPIO 30	GPIO 29	GPIO 28	GPIO 27	GPIO 26	GPIO 25	GPIO 24	GPIO 23	GPIO 22	GPIO 21	PGIO 20	GPIO 19	GPIO 18	GPIO 17	GPIO 16
Type	R/W															
Reset	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1

0x8002_0070 GPIO pull-up/pull-down enable register 3

GPIO_PULLEN

3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 47	GPIO 46	GPIO 45	GPIO 44	GPIO 43	GPIO 42	GPIO 41	GPIO 40	GPIO 39	GPIO 38	GPIO 37	GPIO 36	GPIO 35	GPIO 34	GPIO 33	GPIO 32
Type	R/W															
Reset	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1

0x8002_0080 GPIO pull-up/pull-down enable register 4

GPIO_PULLEN4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 63	GPIO 62	GPIO 61	GPIO 60	GPIO 59	GPIO 58	GPIO 57	GPIO 56	GPIO 55	GPIO 54	GPIO 53	GPIO 52	GPIO 51	GPIO 50	GPIO 49	GPIO 48
Type	R/W															
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

0x8002_0090 GPIO pull-up/pull-down enable register 5

GPIO_PULLEN5

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	11	0
Name	RESE	RVED								GPIO 70	GPIO 69	GPIO 68	GPIO 67	GPIO 66	GPIO 65	GPIO 64
Туре				F	Reserve	d			47.	R/W						
Reset				F	Reserve	d				1	0	0	0	0	0	0

GPIOn GPIO pull up/down enable. GPIO29, GPIO30, GPIO31, does not have the pull up/down options.

- O GPIOs pull up/down is not enabled
- 1 GPIOs pull up/down is enabled

0x8002_00A0 GPIO data inversion control register 1

GPIO DINV1

Bit	15	14	13	12	11	10	9	8	7	6 5	4	3	2	1	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 161 of 508

GSM/GPRS Baseband Processor Data Sheet

Nomo	INIV/15	INIV/4.4	INIV/12	INIVAO	INIV/4.4	INIV40	INIVO	INIVO	INIVZ	INIVE	INIVE	INIVA	CVIAL	INIVO	INIV/4	INV0
Name	CIVVII	11117 14	114 4 1 2	114 7 1 2	II V VII	III V I U	IIIV9	OVFII	IIN V /	IIIVO	CVVII	114 4 4	LINVS	HV V Z	IIVVI	IIVVU
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8002_00B0 GPIO data inversion control register 2

GPIO_DINV2

Confidential A

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INV31	INV30	INV29	INV28	INV27	INV26	INV25	INV24	INV23	INV22	INV21	INV20	INV19	IVN18	INV17	INV16
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8002_00C0 GPIO data inversion control register 3

GPIO_DINV3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INV47	INV46	INV45	INV44	INV43	INV42	INV41	INV40	INV39	INV38	INV37	INV36	INV35	INV34	INV33	INV32
Туре	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8002_00D0 GPIO data inversion control register 4

GPIO_DINV4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INV63	INV62	INV61	INV60	INV59	INV58	INV57	INV56	INV55	INV54	INV53	INV52	INV51	INV50	INV49	INV48
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8002 00E0 GPIO data inversion control register 5

GPIO DINV5

	_						•						_	
Bit	15	14 13	12 11	10	9	8	7	6	5	4	3	2	1	0
Name			RESERVE	D				INV 70	INV 69	INV 68	INV 67	INV 66	INV 65	INV 64
Туре			Reserved	I				R/W						
Reset			Reserved	I				0	0	0	0	0	0	0

INVn GPIO inversion control

- O GPIOs data inversion disable
- 1 GPIOs data inversion enable

0x8002_00F0 GPIO data output register 1

GPIO DOUT1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 15	GPIO 14	GPIO 13	GPIO 12	GPIO 11	GPIO 10	GPIO 9	GPIO 8	GPIO 7	GPIO 6	GPIO 5	GPIO 4	GPIO 3	GPIO 2	GPIO 1	GPIO 0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MediaTek Confidential

© 2011 MediaTek Inc.

Page 162 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Reset 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8002_0100 GPIO data output register 2

GPIO_DOUT2

Bit	15	14	13	12	_11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 31	GPIO 30	GPIO 29	GPIO 28	GPIO 27	GPIO 26	GPIO 25	GPIO 24	GPIO 23	GPIO 22	GPIO 21	PGIO 20	GPIO 19	GPIO 18	GPIO 17	GPIO 16
Туре	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8002_0110 GPIO data output register 3

GPIO DOUT3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 47	GPIO 46	GPIO 45	GPIO 44	GPIO 43	GPIO 42	GPIO 41	GPIO 40	GPIO 39	GPIO 38	GPIO 37	GPIO 36	GPIO 35	GPIO 34	GPIO 33	GPIO 32
Туре	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8002_0120 GPIO data output register 4

GPIO_DOUT4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 63	GPIO 62	GPIO 61	GPIO 60	GPIO 59	GPIO 58	GPIO 57	GPIO 56	GPIO 55	GPIO 54	GPIO 53	GPIO 52	GPIO 51	GPIO 50	GPIO 49	GPIO 48
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0x8002_0130 GPIO data output register 5

GPIO_DOUT5

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				RE	SERVE	D				GPIO 70	GPIO 69	GPIO 68	GPIO 67	GPIO 66	GPIO 65	GPIO 64
Туре				R	eserve	d				R/W						
Reset				R	eserve	d	11 1	219	TY	0	0	0	0	0	0	0

GPIOn GPIO data output control

- O GPIOs data output 0
- 1 GPIOs data output 1

0x8002_0140 GPIO data Input register 1

GPIO_DIN1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 163 of 508

MT6252

MEDIATEK

GSM/GPRS Baseband Processor Data Sheet

Name	GPIO	GPIO	GPIO	CDIOS	GPIO	GPIO	GPIO	GPIO	GPIO							
ivairie	15	14	13	12	11	10	9	8	7	6	GPIUS	4	3	2	1	0
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO							
Reset	Χ	Х	Х	Х	Χ	Χ	X	X	X	Х	Χ	Χ	Χ	Χ	Χ	Χ

0x8002_0150 GPIO data Input register 2

GPIO_DIN2

Confidential A

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nama	GPIO	GPIO	GPIO	GPIO ₂	PGIO	GPIO	GPIO	GPIO	GPIO							
Name	31	30	29	28	27	26	25	24	23	22	1	20	19	18	17	16
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	X	Χ	Χ	Х	Χ	Χ	Χ	Χ	X	X	X	Χ	Χ	Χ	Χ	Χ

0x8002_0160 GPIO data Input register 3

GPIO DIN3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO3	GPIO	GPIO	GPIO	GPIO	GPIO
Ivallie	47	46	45	44	43	42	41	40	39	38	7	36	35	34	33	32
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ

0x8002_0170 GPIO data input register 4

GPIO_DIN4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 63	GPIO 62	GPIO 61	GPIO 60	GPIO 59	GPIO 58	GPIO 57	GPIO 56	GPIO 55	GPIO 54	GPIO5 3	GPIO 52	GPIO 51	GPIO 50	GPIO 49	GPIO 48
Type	RO															
Reset	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	X	Χ	Х	Х	Х	Х

0x8002_0180 GPIO data input register 5

GPIO_DIN5

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 1	0
Name				RE	SERVI	D					GPIO 69	GPIO 68	GPIO 67	GPIO 66	GPIO 65	GPIO 64
Type				R	eserve	d			47.		R/W	R/W	R/W	R/W	R/W	R/W
Reset				R	leserve	d	EA		MC		0	0	0	0	0	0

GPIOn GPIOs data input

MediaTek Confidential

© 2011 MediaTek Inc.

Page 164 of 508

GPIO Specific Mode 0 0x8002_0210

GPIO SPMODE0

												15	18	01	
0x80	02_0210	GPIO	Spe	cific	Mode	0				LP.			GPIO	_SPN	MODE0
Bit	31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	10
Name	EA15_SPMO										_SPMO	EA9_9	SPMOD		SPMO
Ivallie	DE	DI	E		DE)E		DE		DE		E		DE
Type	R/W	R/\	W	B	I/W	R	/W	F	R/W	F	R/W	R	/W	R	R/W
Reset	0	0			0		0		0		0		0		0
Bit	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EA7_SPMOD	EA6_S	PMOD	EA5_	SPMOD	EA4_S	SPMOD	EA3_	SPMOD	EA2_		EA1_9	SPMOD		
Ivanic	E	E			E		E		E	- 1	E		E		DE
Type	R/W	R/\	W	R	R/W	R	/W	F	R/W	F	R/W	R	/W	R	R/W
Reset	0	0)		0		0	,	0		0		0		0
EA0_	SPMODE 00 EMI EA 01 LPA0	A 0				Çe	Wo	W	ÄA	V					

EAO SPMODE

- **00** EMI EA0
- **01** LPA0
- 10 Reserved
- 11 SEN2LCM_A0

EA1 SPMODE

- **00** EMI EA1
- **01** LRD B
- 10 Reserved
- 11 Reserved

EA2 SPMODE

- **00** EMI EA2
- **01** LWR B
- 10 Reserved
- sk Confidential Release for 11 SEN2LCM WR B

EA3 SPMODE

- **00** EMI EA3
- **01** NLD0
- 10 LSCK
- **11** CMDAT0

EA4 SPMODE

- **00** EMI EA4
- **01** NLD1
- 11 CMDAT1

EA5 SPMODE

MediaTek Confidential

enon WCX © 2011 MediaTek Inc.

Page 165 of 508

00 EMI EA5

01 NLD2

10 LSDA

11 CMDAT2

EA6 SPMODE

00 EMI EA6

01 NLD3

10 LSDI

11 CMDAT3

EA7 SPMODE

00 EMI EA7

01 NLD4

10 Reserved

11 CMDAT4

EA8 SPMODE

00 EMI EA8

01 NLD5

10 Reserved

11 CMDAT5

EA9 SPMODE

00 EMI EA9

01 NLD6

10 Reserved

11 CMDAT6

EA10_SPMODE

00 EMI EA10

01 NLD7

10 Reserved

11 CMDAT7

EA11_SPMODE

00 EMI EA11

01 NLD8

10 Reserved

11 Reserved

EA12 SPMODE

00 EMI EA12

MediaTek Confidential

© 2011 MediaTek Inc.

Cenon MCX

ek Confidential Release for

non WCX

Page 166 of 508

- **01** NLD9
- 10 CMMCLK
- 11 CMMCLK

EA13 SPMODE

- **00** EMI EA13
- **01** NLD10
- 10 CAM CSK
- 11 CMPCLK

EA14 SPMODE

- **00** EMI EA14
- **01** NLD11
- 10 CAM_CSD
- 11 HSYNC

EA15 SPMODE

- **00** EMI EA15
- **01** NLD12
- 10 CMPDN
- 11 VSYNC

GPIO Specific Mode 1 0x8002 0220

GPIO SPMODE1

				•												
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type	R	/W	R/	W	R/	W	R/	W	R/	W	R/	/W	R	W	R/	W
Reset	(0	()	()	()	()	(0	())
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		1_SPM		_		FD7	SPMO	ODE	RESE	EDA	SPMO	ODE			EA23 _	
Ivallic	O	DE	10	DE	RVED		_01 1111	JDL	RVED					E	D	E
Type	R	/W	R/	W	R/W		R/W		R/W		R/W		R	W	R/	W
Reset	0 0				0		0	- 40	0-		0		()	()
EA23_	00 01	EMI EA	ed	k	Co	n		SU	Mic							
	10	Reserve	ed													

Confidential Release for

Cenon WCX

EA23 SPMODE

- **00** EMI EA23
- **01** Reserved
- 10 Reserved
- 11 LSCE0_B

SPMODE

00 EMI EA24

MediaTek Confidential

enon MCX © 2011 MediaTek Inc.

Page 167 of 508

01 Reserved

10 Reserved

11 LPCE0 B

ED6 SPMODE

000 EMI ED6

001 JRTCK

010 CMRST

011 LSCE1 B

100 SEN2LCM CS B

101 CAM SDA

110 LPCE1_B

111 Reserved

ED7 SPMODE

000 EMI ED7

001 JRTCK

010 CMPDN **011** LPCE1 B

100 SEN2LCM CS B

101 CAM_SCL

110 LSCE1_B

111 Reserved

URXD1_SPMODE

00 URXD1

01 EINT2

10 LSCK

11 Reserved

UTXD1 SPMODE

00 UTXD1

01 EINT3

10 LSDA11 Reserved

GPIO+0300h CLK_OUT0 setting

ridential Release for sidential Release for

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	13									- 1				CLK	OUT	
Type										111				R/	W	
Reset														()	•

Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 168 of 508

МЕДІЛІТЕК

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Confidential Release for **CLKOUT** select the clock output source

- **JRTCK** 0
- 1 f26m ck
- f13m ck
- f65m_ck, 6.5MHz
- f32k ck
- dsp1 ck
- dsp2 ck
- mcu hclk ck
- ahb hclk ck
- slow ck
- fmcu_ck, PLL output, 104MHz
- fdsp_ck, PLL output, 104MHz
- cenon WCX C fusb_ck, USB PHY clock output, 30MHz
- fgsm_ck, GPLL output, 104MHz
- E dsp1_gated_ck
- dsp2_gated_ck

GPIO+0310h **CLK_OUT1** setting

CLKO_MODE1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														CLK	OUT	
Type														R/	W	
Reset)	

CLK_OUT2 setting GPIO+0320h

CLKO MODE2

												07	15	31	Ų١		
GPIC	+032	0 h	CL	K_O	JT2 s	etting	9		40	1		10,		CLK	CO_M	ODE2	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name					_	1	$\Gamma_{\bullet}\Gamma$	11						CLK	OUT		
Type					Ba	1.1		A 2.					R/W				
Reset						111							0				

CLK_OUT3 setting

CLKO_MODE3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														CLK	OUT	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 169 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Type								R/W
Reset						101	14	0

GPIO+0340h

CLKO_MODE4

							A	aN			In					
GPIO																DDE4
Bit																0
Name			VA.	7 / /										CLK	OUT	
Type		IV												R	/W	
Reset											51				0	_

GPIO+0350h

CLKO MODE5

Reset	- 1													1	U							
///	lo,								10		5											
GPIC	O+0350h														CO_M	ODE5						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0						
Name														CLK	OUT							
Type												R/W										
Reset														0 0								

GPIO+0360h **CLK_OUT6** setting

CLKO_MODE6

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														CLK	OUT	
Туре														R/	W	
Reset													CLKOUT R/W 0			

GPIO+0360h **CLK_OUT7** setting

CLKO_MODE7

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3 2 1 0
Name										140		17	CLKOUT
Туре											14	M.	R/W
Reset									14				0

GPIO mode control register 1 0x8002_0190

GPIO_MODE1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		G	PIO7_	M		G	PIO6_	M			PIO5_I	M		G	PIO4_I	VI
Type			R/W				R/W				R/W				R/W	
Reset						0			IIII	0				0		
Bit	15	14	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name		15 14 13 12 GPIO3 M				G	PIO2	M	///		PIO1	M		G	PIO0 I	VI

MediaTek Confidential

© 2011 MediaTek Inc.

Page 170 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Type	R/W	R/W	R/W	R/W
Reset	0	0	0	2

Cenon MCX

fidential Release for

GPIO0 M GPIO mode selection

000 Configured as GPIO function

001 PWM1 output

010 CLKSQ_SEL

011 Reserved

100 EMI ED bus 0 monitor

101 Serial flash debug output 0

110 USB debug output 0

111 USB debug output 8

GPIO1 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad column 6, KCOL6

010 External interrupt 4, EINT4

011 Clock monitor 0

100 EMI ED bus 1 monitor

101 Serial flash debug output 3

110 USB debug output 1

111 USB debug output 9

GPIO2 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad column 5, KCOL5

010 TDMA event validate

011 CAM_SDA

100 EMI ED bus 2 monitor

101 Serial flash debug output 1

110 MIXEDSYS_MON_DATA0

111 Reserved

GPIO3 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad column 4, KCOL4

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 171 of 508

010 TDMA_BTXEN

011 CAM SCL

100 EMI ED bus 3 monitor

101 Clock monitor 1

110 Reserved

111 Reserved

GPIO4 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad column 3, KCOL3

010 UART1 CTS

011 BSI clock

100 EMI ED bus 4 monitor

101 Serial flash debug output 2

110 MIXEDSYS_MON_DATA0

111 RF AUXOUT

GPIO5 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad column 2, KCOL2

010 CTIRQ2

011 host DSP ICE data

100 EMI ED bus 5 monitor

101 URXD3

110 Reserved

111 Reserved

GPIO6 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad column 1, KCOL1

010 CTIRQ1

011 Host DSP ICE clock

100 EMI ED bus 6 monitor

101 EDICK

110 USB debug output 2

111 USB debug output 10

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Cenon MCX

idential Release for

Page 172 of 508

GPIO7 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad column 0, KCOL0

010 DTIRQ

011 Host DSP ICE mode-select

100 EMI ED bus 7 monitor

101 Serial flash debug output 4

110 USB debug output 3

111 USB debug output 11

Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 173 of 508

GPIO mode control register 2 0x8002 01A0

GPIO_MODE2

Confidential A

Bit	31	30	29	28	27	26	2 <u>5</u>	24	23	22	21	20	19	18	17	16
Name		G	PIO15	_M		GF	PIO14	M		G	PIO13	M		G	PIO12	M
Type			R/W				R/W	1			R/W				R/W	
Reset			0	4			1	9-			0				0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		G	PIO11	M		G	PIO10_	M			PIO9_	M		G	PIO8_	M
Type			R/W				R/W				R/W				R/W	
Reset	1/2	110	0				0				0				0	
GPIO8	000 (001) 010)	Configi Key-pa Externa	ured as	GPIO 1 5, KRO rupt 5, I	function W5	1	je	WC	n	W	G					

100 EMI ED bus 8 monitor

101 EDI DAT

110 MIXEDSYS_MON_DATA1

111 Reserved

GPIO9 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad row 4, KROW4

010 TDMA serial data output bit 0

011 SRCLKENA | SRECLKENAI

100 EMI ED bus 9 monitor

101 EDI WS

110 Reserved

111 Reserved

GPIO10 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad row 3, KROW3

010 UART1 RTS_B

011 Reserved

100 LSA0

MediaTek Confidential

101 Serial flash debug output 5

non WCX © 2011 MediaTek Inc.

fidential Release for

Page 174 of 508

fidential Release for

fidential Release for

on WCX

Cenon MCX

110 MIXEDSYS_MON_DATA1

111 RF TEST EN DCXO O

GPIO11 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad row 2, KROW2

010 BTXFS

011 DSP2 ICE data

100 LSCK

101 UTXD3

110 Reserved

111 Reserved

GPIO12 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad row 1, KROW1

010 BRXEN

011 DSP2 ICE clock

100 LSDA

101 Reserved

110 Reserved

111 Reserved

GPIO13 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad row 0, KROW0

010 BRXFS

011 DSP2 IMS

100 LSDI

101 Serial flash debug output 6

110 USB debug output 4

111 USB debug output 12

GPIO14_M GPIO mode selection

000 Configured as GPIO function

001 external memory chip-select 2, ECS2_B

MediaTek Confidential

© 2011 MediaTek Inc.

Page 175 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A Confidential Release for

n	н	n	T	\cap	\mathbf{r}	C	CI	ገ

011 LSCE0 B

100 EMI ECS1 B monitor

101 Reserved

110 SEN2LCM_CS_B

111 Reserved

GPIO15 M GPIO mode selection

000 Configured as GPIO function

001 DAI clock output

010 TDMA serial data output bit 1

011 EDI clock

100 EMI ED[10] monitor

101 Reserved

110 Reserved

111 Reserved

MediaTek Confidential Release for enon WCX

Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 176 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

GPIO mode control register 3 0x8002 01B0

GPIO MODE3

Bit	31	30	29	28	27	26	2 <u>5</u>	24	23	22	21	20	19	18	17	16
Name		GPIO23_M				GPIO22_M			GPIO21_M				GPIO20_M			
Type		R/W			R/W			R/W					R/W			
Reset		0			0			0					0			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		GPIO19_M				GPIO18_M			GPIO17_M			GPIO16_M		M		
Type		R/W				R/W			R/W			R/W				
Reset	t 0					0			0				0			
GPIO16_M GPIO mode selection 000 Configured as GPIO function 001 DAI PCM output 010 TDMA_FS 011 EDI data																

100 EMI ED[11] monitor

101 Reserved

110 Reserved

111 Reserved

GPIO17 M GPIO mode selection

000 Configured as GPIO function

001 DAI PCM input

010 Reserved

011 Reserved

100 EMI ED[12] monitor

101 Serial flash debug output 7

110 MIXEDSYS_MON_DATA 2

111 RF_TEST_DCXODELAY

GPIO18 M GPIO mode selection

000 Configured as GPIO function

001 DAI reset

010 Reserved

011 Reserved

100 EMI ED[13] monitor

101 Serial flash debug output 8

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

fidential Release for

Page 177 of 508

110 MIXEDSYS_MON_DATA 3
111 RF_TEST_EN_O

GPIO19_M GPIO mode selection
000 Configured as GPIO function
001 DAI sync.
010 TDMA_CK
011 EDI_WS
100 EMI ED[14] monitor
101 Reserved
110 Reserved
111 Reserved

GPIO20_M GPIO mode selection
000 Configured as GPIO function
001 URXD3

010 UART2 flow control, UCTS2_B

011 Reserved

100 EMI EA[18] monitor

101 Serial flash debug output 10

110 USB debug output 5

111 USB debug output 13

GPIO21 M GPIO mode selection

000 Configured as GPIO function

001 UTXD3

010 UART2 flow control, URTS2 B

011 Reserved

100 EMI EA[19] monitor

101 Serial flash debug output 11

110 USB debug output 6

111 USB debug output 14

GPIO22_M GPIO mode selection

000 Configured as GPIO function

001 URXD2

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

tidential Release for

Page 178 of 508

04	n	UART1	CTC	D
υı	ıu	UAKII	C12	В

011 CAM SCL

100 EMI EA[20] monitor

101 Serial flash debug output 12

110 MIXEDSYS_MON_DATA 4

111 DBG RF TEST SCLK O

GPIO23 M GPIO mode selection

000 Configured as GPIO function

001 UTXD2

010 UART1 RTS B

011 CAM_SDA

100 EMI EA[21] monitor

101 Clock monitor 2

110 MIXEDSYS_MON_DATA 5

111 DBG_RF_TEST_SDATAI_O

MediaTek Confidential Release for enon MCX

Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 179 of 508

GPIO mode control register 4 0x8002 01C0

GPIO MODE4

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		GPIO31_M				GPIO30_M			GPIO29_M				GPIO28_M			
Type		R/W			R/W			R/W					R/W			
Reset		0			0			0				0				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		GPIO27_M			GPIO26_M			GPIO25_M			G	GPIO24_M				
Type			R/W				R/W				R/W			R/W		
Reset	Reset 1					1			0				0			
GPIO24_M GPIO mode selection																
000 Configured as GPIO function																
001 UART1 flow control, UCTS1_B																
010 CAM_SCL																
011 LCD data 13																

GPIO24_M GPIO mode selection

100 EMI EUB B monitor

101 EINT5

110 Reserved

111 Reserved

GPIO25 M GPIO mode selection

000 Configured as GPIO function

001 UART1 flow control, URTS1_B

010 CAM_SDA

011 LCD data 14

100 EMI ELB B monitor

101 EINT6

110 Reserved

111 Reserved

GPIO26 M GPIO mode selection

000 Configured as GPIO function

001 EINTO

010 Reserved

011 Clock monitor 4

100 Reserved

101 Serial flash debug 14

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

fidential Release for

Page 180 of 508

МЕДІЛТЕК

fidential Release for 110 MIXEDSYS_MON_DATA 6 111 DBG_RF_TEST_SDATAO_O **GPIO27** M GPIO mode selection **000** Configured as GPIO function **001** EINT1 010 Reserved Cenon MCX 011 Clock monitor 3 100 Reserved 101 Serial flash debug 15 110 MIXEDSYS MON DATA 7 111 Reserved **GPIO28** M GPIO mode selection **000** Configured as GPIO function **001** BPI BUS 4 010 Reserved 011 Reserved 100 EMI EADV_B monitor 101 Reserved 110 Reserved 111 Reserved k Confidential Release for **GPIO29** M GPIO mode selection **000** Configured as GPIO function

001 SIM2 IO

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved 111 Reserved

GPIO30 M GPIO mode selection

000 Configured as GPIO function

001 SIM2 CLK

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 181 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A Confidential Release for

04	^ D
UT.	Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO31 M GPIO mode selection

000 Configured as GPIO function

001 SIM2 RST

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

MediaTek Confidential Release for cenon WCX

Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 182 of 508

GPIO mode control register 5 0x8002 01D0

GPIO MODE5

Bit	31	30	29	28	27	26	2 <u>5</u>	24	23	22	21	20	19	18	17	16
Name		G	PIO39	_M		GF	PIO38 _	M		G	PIO37 _	_M		G	PIO36_	M
Type			R/W				R/W	71			R/W				R/W	
Reset			0	4			0				0				0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		G	PIO35	M		GF	PIO34_	M		G	PIO33_	_M		G	PIO32_	M
Type		TL	R/W				R/W				R/W				R/W	
Reset	1/4	110	1				0				0				0	
GPIO32	000 (001 I 010 I		ured as ed ed		functior	1	je	WC	M	W	G					

100 EMI ED15 monitor

101 Serial flash debug output 9

110 USB debug output 7

111 USB debug output 15

GPIO33 M GPIO mode selection

000 Configured as GPIO function

001 Clock monitor 2

010 Reserved

011 LSCE1_B

100 EMI EA16 monitor

101 Reserved

110 Reserved

111 Reserved

GPIO34 M GPIO mode selection

000 Configured as GPIO function

001 Clock monitor 6

010 SRCLKENAISRCLKENAI

011 Reserved

100 EMI EA17 monitor

101 Serial flash debug output 13

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

fidential Release for

Page 183 of 508

110 Reserved

111 Reserved

GPIO35 M GPIO mode selection

000 Configured as GPIO function

001 SRECLKENAI

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO36 M GPIO mode selection

000 Configured as GPIO function

001 MCINS

010 Reserved

011 LCD data 15

100 EMI ERD_B monitor

101 EINT6

110 Reserved

111 Reserved

GPIO37_M GPIO mode selection

onfidential Release for **000** Configured as GPIO function

001 MSDC clock output

010 Reserved

011 Reserved

100 EMI ECLK monitor

101 Reserved

110 Reserved

111 DBG RF TEST SCLK

GPIO38 M GPIO mode selection

000 Configured as GPIO function

001 MSDC data

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Cenon MCX

Page 184 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

01	IN:	Reserved
U	ıu	Kesei veu

GPIO39 M GPIO mode selection

...ved
110 Reserved
111 DBG_RF_TEST_EN_I

M GPIO mode select
000 Cart **000** Configured as GPIO function

001 MSDC command

010 Reserved

011 Reserved

100 EMI EWR B monitor

101 Reserved

110 Reserved

111 DBG_RF_TEST_SDATA_I

Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 185 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

МЕДІЛІТЕК

GPIO mode control register 6 0x8002 01E0

GPIO MODE6

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		G	PIO47_	M		GF	PIO46	M		G	PIO45	_M		G	PIO44_	M
Type			R/W				R/W	71			R/W				R/W	
Reset			0			1.1	4				0				0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		G	PIO43_	M		GF	PIO42_	M		G	PIO41 _.	_M		G	PIO40_	M
Type			R/W				R/W				R/W				R/W	
Reset	1/1	110	0				0				0				0	
GPIO46	000 (001 I 010 I		ired as E ed		unction	1	je	WC	M	W	G					

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO41 M GPIO mode selection

000 Configured as GPIO function

001 LCD reset

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO42 M GPIO mode selection

000 Configured as GPIO function

001 Reserved

010 LCD_CS1_B

011 LSCE1_B

100 Reserved

101 Reserved

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

fidential Release for

Page 186 of 508

Confidential A

fidential Release for

Cenon MCX

110 SEN2LCM_CS_B

111 EINT2

GPIO43 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad column 7, KCOL7

010 EINT2

011 Clock monitor 2

100 LSCK

101 JRTCK

110 Reserved

111 Reserved

GPIO44 M GPIO mode selection

000 Configured as GPIO function

001 Key-pad row 6, KROW6

010 Reserved

011 Reserved

100 LSDA

101 Reserved

110 Reserved

111 Reserved

GPIO45 M GPIO mode selection

Confidential Release for **000** Configured as GPIO function

001 Key-pad row 7, KROW7

010 EINT3

011 Clock monitor 5

100 CAM_SDA

101 Reserved

110 Reserved

111 Reserved

GPIO46_M GPIO mode selection

000 Configured as GPIO function

001 Reserved

010 Reserved

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 187 of 508

n	4	1	Reserved
u			Reserved

100 JRTCK

101 Reserved

110 Reserved

111 Reserved

GPIO47_M GPIO mode selection

000 Configured as GPIO function

001 Camera data bit 0, CMDAT0

010 CAM CSD

011 Slave DSP task ID 0

100 Reserved

101 Reserved

110 Reserved

111 Reserved

Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 188 of 508

МЕДІЛІТЕК

GPIO mode control register 7 0x8002 01F0

GPIO MODE7

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		G	PIO55_	_M		GI	PIO54 _	M		G	PIO53 _	M		G	PIO52_	M
Type			R/W				R/W	11			R/W				R/W	
Reset			0				0				0				0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		G	PIO51	M		GI	PIO50_	M		G	PIO49_	M		GI	PIO48_	M
Type			R/W				R/W				R/W				R/W	
Reset		110	0 0												0	
GPIO4	000 (001 (010 I	Configu	ıred as data b	GPIO f it 1, CN	unction		36	WO	n	W	G					

GPIO48_M GPIO mode selection

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO49 M GPIO mode selection

000 Configured as GPIO function

001 Camera data bit 2, CMDAT2

010 Reserved

011 Slave DSP task ID 2

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO50 M GPIO mode selection

000 Configured as GPIO function

001 Camera data bit 3, CMDAT3

010 Reserved

011 Slave DSP task ID 3

100 Reserved

101 Reserved

MediaTek Confidential

non WCX © 2011 MediaTek Inc.

fidential Release for

Page 189 of 508

110 Reserved

111 Reserved

GPIO51 M GPIO mode selection

000 Configured as GPIO function

001 Camera data bit 4, CMDAT4

010 Reserved

011 Slave DSP task ID 4

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO52 M GPIO mode selection

000 Configured as GPIO function

001 Camera data bit 5, CMDAT5

010 Reserved

011 Slave DSP task ID 5

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO53 M GPIO mode selection

Confidential Release for **000** Configured as GPIO function

001 Camera data bit 6, CMDAT6

010 Reserved

011 Slave DSP task ID 6

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO54 M GPIO mode selection

000 Configured as GPIO function

001 Camera data bit 7, CMDAT7

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Cenon MCX

Page 190 of 508

01	0 Reserve	А
v	U Keseive	"

011 Host DSP task ID 0

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO55 M GPIO mode selection

000 Configured as GPIO function

001 CMHREF

010 Reserved

010 Host DSP task ID 1

100 Reserved

101 Reserved

110 Reserved

111 Reserved

MediaTek Confidential Release for enon WCX

Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 191 of 508

GPIO mode control register 8 0x8002 0200

GPIO MODE8

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		G	PIO63_	M		GI	PIO62_	M	111	G	PIO61	_M		G	PIO60_	M
Type			R/W				R/W	7			R/W				R/W	
Reset			0				0				0				0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		G	PIO59	M		GI	PIO58_	M		G	PIO57	_M		G	PIO56_	M
Type			R/W				R/W				R/W				R/W	
Reset	11.	110	0				0				0				0	
M	5									\overline{M}	À					
GPIO56	5_M (GPIO m	ode se	lection					M	W	91					
	0000	Configu	red as	GPIO f	unction					-						
		CMVRI														
	010 F	Reserve	ed													

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO57_M GPIO mode selection

000 Configured as GPIO function

001 CMPDN

010 LSCK

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO58_M GPIO mode selection

nfidential Release for **000** Configured as GPIO function

001 CMMCLK

010 Reserved

011 Reserved

100 Reserved

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 192 of 508

fidential Release for

Cenon MCX

101 Reserved

110 Reserved

111 Reserved

GPIO59 M GPIO mode selection

000 Configured as GPIO function

001 CMPCLK

010 CAM_CSK

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO60 M GPIO mode selection

000 Configured as GPIO function

001 CMRST

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO61 M GPIO mode selection

K Confidential Release for **000** Configured as GPIO function

001 EDI CK

010 Reserved

011 BPI_BUS_5

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO62 M GPIO mode selection

000 Configured as GPIO function

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 193 of 508

МЕДІЛІТЕК

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A Confidential Release for

001 EDI DAT

010 Reserved

011 BPI BUS 6

100 Reserved

101 Reserved

110 Reserved

111 Reserved

GPIO63 M GPIO mode selection

000 Configured as GPIO function

001 EDI WS

010 Reserved

011 BPI BUS 7

100 Reserved

101 Reserved

110 Reserved

111 Reserved

0x8002 0230 **GPIO** mode control register 9

GP			

Bit	31	30	29	28	27	26	25 24	23	22	21	20	19	18	17	16
Name						GP	O70_M	1	G	P1069_M			GI	PIO68_	M
Туре							R/W	MAY	/	R/W				R/W	
Reset						1	0			1				1	
Bit	15	14	13	12	11_	10	9 8	7	6	5	4	3	2	1	0
Name		G	PIO67	M		GP	O66_M		G	PIO65_M			GI	PIO64_	M
Type	R/W						R/W			R/W				R/W	
Reset			1				1			1				1	
GPIO64	_			election GPIO f			-00	M	W	CX					
								7/1							

Cenon WCX

MediaTek Confidential

© 2011 MediaTek Inc.

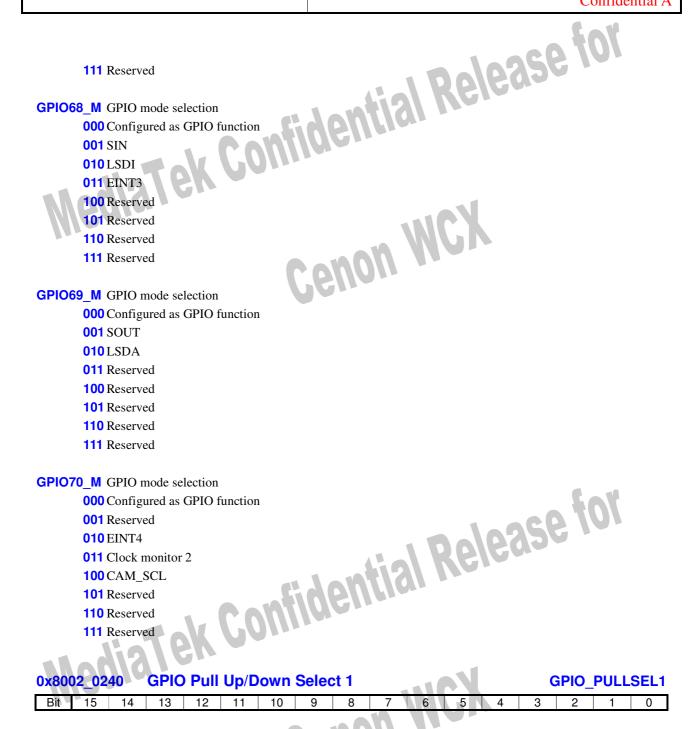
Page 194 of 508

Confidential A

Page 195 of 508

MediaTek Confidential

Confidential Release for **001** SCK 010 LSCK **011** Clock monitor 2 100 Reserved 101 Reserved 110 Reserved 111 Reserved Cenon MCX **GPIO65** M GPIO mode selection **000** Configured as GPIO function **001** SWP **010** LSA0 011 Reserved 100 Reserved 101 Reserved 110 Reserved 111 Reserved **GPIO66** M GPIO mode selection **000** Configured as GPIO function 001 SHOLD **010** LSCE0 B tidential Release for 011 Reserved 100 Reserved 101 Reserved 110 Reserved 111 Reserved **GPIO67** M GPIO mode selection **000** Configured as GPIO function **001** SCS 010 LSCE1 B non WCX 011 Reserved 100 Reserved 101 Reserved 110 Reserved

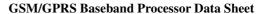

This document contains information that is proprietary to MediaTek Inc.

© 2011 MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

GSM/GPRS Baseband Processor Data Sheet

Confidential A



MediaTek Confidential

MEDIATEK

© 2011 MediaTek Inc.

Page 196 of 508

Confidential A

Name		GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO	GPIO							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	417	1	1	1	1	1	1	0

0x8002_0250 GPIO Pull Up/Down Select 2

GPIO_PULLSEL2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO	GPIO	GPIO	GPIO	GPIO		GPIO	GPIO	GPIO	GPIO	GPIO	PGIO	GPIO	GPIO	GPIO	GPIO
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	1	1	1_	7	1		1	0	0	0	0

0x8002_0260 GPIO Pull Up/Down Select 3

GPIO_PULLSEL3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 47	GPIO 46	GPIO 45	GPIO 44	GPIO 43	GPIO 42	GPIO 41	GPIO 40	GPIO 39	GPIO 38	GPIO 37	GPIO 36	GPIO 35	GPIO 34	GPIO 33	GPIO 32
Type	R/W															
Reset	0	1	0	0	1	1	0	0	0	0	0	1	0	0	0	0

0x8002_0270 GPIO Pull Up/Down Select 4

GPIO_PULLSEL4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	GPIO 63	GPIO 62	GPIO 61	GPIO 60	GPIO 59	GPIO 58	GPIO 57	GPIO 56	GPIO 55	GPIO 54	GPIO 53	GPIO 52	GPIO 51	GPIO 50	GPIO 49	GPIO 48
Туре	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GPIO GPIO pull up/down selection, only valid if corresponding GPIO_PULLEN is high

- O GPIOs pull down is selected
- 1 GPIOs pull up is selected

0x8002_0280 GPIO Pull Up/Down Select5

GPIO_PULLSEL5

Bit	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	Par		RE	SERV	ED			1	GPIO	GPIO	GPIO	GPIO		GPIO	
								1	70	69	80	67	66	65	64
Type			F	Reserve	d			19	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MediaTek Confidential

© 2011 MediaTek Inc.

Page 197 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Reset	Reserved	0	0	0	0	0	0	0

GPIO GPIO pull up/down selection, only valid if corresponding GPIO_PULLEN is high

- GPIOs pull down is selected
- GPIOs pull up is selected

OE read-back selection

GPIO	+037	0h	OE r	ead-b	ack s	select	ion								GPIC	_TM
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								nn		11						TM_D IR
Type																R/W
Reset																0

TM DIR Select to read GPIO DIRx as the real pad output-enable or the MCU-configured GPIO DIR

- MCU-configured
- Real pad OE

GPIO+xxx4h **GPIO xxx register SET**

GPIO_XXX_SET

For all registers addresses listed above, writing to the +4h addresse offset will perform a bit-wise **OR** function between the 16bit written value and the 16bit register value already existing in the corresponding GPIO_xxx registers. Eg.

If $GPIO_DIR1 (GPIO + 0000h) = 16'h0F0F$,

writing GPIO DIR1 SET (GPIO+0004h) = 16'F0F0 will result in GPIO DIR1 = 16'hFFFF.

GPIO xxx register CLR GPIO+xxx8h

GPIO XXX CLR

For all registers addresses listed above, writing to the +8h addresse offset will perform a bit-wise AND-NOT function between the 16bit written value and the 16bit register value already existing in the corresponding GPIO_xxx registers. Eg.

If $GPIO_DIR1 (GPIO + 0000h) = 16'h0F0F$,

writing GPIO_DIR1_CLR (GPIO+0008h) = 16'0F0F will result in GPIO_DIR1 = 16'h0000.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 198 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

CONFG +0700h Misc usage

ACIF_CON0

													GE		01	
CON	FG +0	700 h	Mi	sc us	age					1 6		180	Yo,	A	CIF_C	ON0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	LCD_ EA_S R	LCD_ EA_E 8	LCD_ EA_E 4	LCD_ EA_E 2	SF_R	DSEL	SF_T	DSEL	SF_IE S	SF_S MT	RESE RVED	_	SF E2	SF SR	SF E8	SF E4
Type	R/W	R/W	R/W	R/W	R/	W	R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0)	()	1	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BPIB US SR	LCD SR	LCD E4	LCD E8	CMPC LK SMT	CMM CLK SR	CMM CLK E8	CMM CLK E4	RESE	RVED	BT_P OWE N SR	BT_P OWE N E4	BT_32 K SR	BT_32 K E4	D2ICK _SMT	D1IC K_SM T
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	1	1	0	0			0	0	1	0	0	0

D1ICK SMT

- O Host DSP ice clock without Schmitt trigger
- Host DSP ice clock with Schmitt trigger.

D2ICK SMT

- Slave DSP ice clock without Schmitt trigger
- Slave DSP ice clock with Schmitt trigger.

BT 32K E4

- 0 2 mA
- 1 6 mA.

BT 32K SR

- 0 Fast slew rate
- Slow slew rate

BT POWEN E4

- 2 mA 0
- 6 mA.

BT POWEN SR

- Fast slew rate
- Slow slew rate

CMMCLK E8

- +0 mA
- 1 + 8 mA. CMMCLK default is 4 mA.

CMMCLK E4

+0 mA

MediaTek Confidential

non WCX © 2011 MediaTek Inc.

Confidential Release for

Page 199 of 508

MEDIATEK

Confidential Release for + 4 mA. CMMCLK default is 4 mA.

CMMCLK SR

- Fast slew rate
- Slow slew rate

CMPCLK SMT

- **Enable SMT**

LCD E4

- +0 mA
- + 4 mA. LCD related control pins default is 4 mA.

LCD E8

- +0 mA
- + 8 mA. LCD related control pins default is 4 mA.

LCD SR

- Fast slew rate
- Slow slew rate
- **BPIBUS SR** Note that BPIBUS driving current settings are located at BPI module
 - Fast slew rate
 - Slow slew rate
- **SF E4** Serial Flash driving current setting
 - +0 mA
 - + 4 mA. Default is 2 mA.
- **SF E8** Serial Flash driving current setting
 - +0 mA
 - + 8 mA. Default is 2 mA.
- SF SR Serial Flash output slew rate
 - Fast slew rate
 - Slow slew rate
- SF E2 Serial Flash driving current setting

 - + 2 mA. Default is 2 mA.
- SF SMT SF SMT
 - Disable
 - 1 Enable
- **SF IES** SF IES
 - 0 Disable

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

idential Release for

Page 200 of 508

GSM/GPRS Baseband Processor Data Sheet

fidential Release for

senon WCX

Confidential A

MEDIATEK

1 Enable

SF TDSEL IO_CUP RDSEL option for SF

00 Default mode

Others Experiment mode

SF_RDSEL IO_CUP TDSEL option for SF

00 Default mode

Others Experiment mode

LCD_EA E2 EA[15:12] driving current setting

0 + 0 mA

+ 4 mA. Default is 2 mA.

LCD_EA E4 EA[15:12] driving current setting

0 + 0 mA

+ 4 mA. Default is 2 mA.

LCD EA E8 EA[15:12] driving current setting

0 + 0 mA

+ 8 mA. Default is 2 mA.

LCD EASR EA[15:12] output slew rate

• Fast slew rate

Slow slew rate

CONFG +0704h Misc usage

ACI	F (C	O	Ν	1
	_				

CON	FG +(0 704 ŀ	1	Misc	usag	j e						05	SE	A	CIF_C	ON1
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	LCD_ ED_S R	LCD_ ED_E 8	LCD_ ED_E 4	LCD_ ED_E 2	L	CD_EA	_O_DE	۵N	LCD_E	'	LCD_I	_	LCD_ EA_IE S	LCD_ EA_S MT	LCD_ EA_P D	CD_P
Type	R/W	R/W	R/W	R/W		R/	W	An.	* R/	W	R	W	R/W	R/W	R/W	R/W
Reset	0	0	0	0)		()	()	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RESE RVED	KP_C OL SR	KP_C OL E2	οī	RESE RVED	CM SR	CM E8	CM E4	RESE RVED	UART SR	UART E4	UART E8	RESE RVED	EDI SR	EDI E4	EDI E8
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	0	0	0	1	0	0	0	0	0	0	1	1	0	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 201 of 508

МЕDIЛТЕК

٦I		EDI	driving	~~~~~~	a attima
JI	E4	ЕЛЛ	arrying	current	semme

- r o mA
 + 4 mA. EDI related control and data pins default is 4 mA.
 driving current setting
 + 0 mA
 + 8 mA. EDI related control and data pins default is 4 mA.

EDI E8 EDI driving current setting

- + 8 mA. EDI related control and data pins default is 4 mA.

EDISR

- Fast slew rate
- Slow slew rate

UART E4 UART data and control driving current setting(does not include UCTS1 B/URTS1 B)

- + 4 mA. UART related control and data pins default is 4 mA.

UART E8 UART data and control driving current setting(does not include UCTS1_B/URTS1_B)

- + 8 mA. UART related control and data pins default is 4 mA.

UART SR UART Output slew rate control (does not include UCTS1_B/URTS1_B)

- Fast slew rate
- Slow slew rate

CM E8 Camera output signal driving current setting

- +0 mA
- + 8 mA. Camera related control and data pins default is 4 mA.

CM E4 Camera output signal driving current setting

- +0 mA
- ential Release for + 4 mA. Camera related control and data pins default is 4 mA.

CM SR

- 0 Fast slew rate
- Slow slew rate

KP_COL E2 Key pad column driving current setting

- +0 mA
- + 2 mA. Default is 2 mA.

KP COL E4

- $+0 \, \text{mA}$
- + 4 mA. Default is 2 mA.

KP COL SR

- Fast slew rate
- Slow slew rate

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 202 of 508

Confidential Release for

tial Release for

_ 1

LCD EA PU EA[15:12] PU

0 Disable

Enable

LCD EA PD EA[15:12] PD

0 Disable

1 Enable

LCD EA SMT EA[15:12] SMT

O Disable

Enable

LCD EA IES EA[15:12] IES

0 Disable

Enable

Cenon WCX LCD EA TDSEL IO CUP RDSEL option for EA[15:12]

00 Default mode

Others Experiment mode

LCD EA RDSEL IO CUP TDSEL option for EA[15:12]

00 Default mode

Others Experiment mode

LCD EA O DEL IO_CUP Output delay for EA[15:12]

LCD_ED E2 ED[7:6] and EA[24:23] driving current setting

1 + 4 mA. Default is 2 mA.

LCD ED E4 ED[7:6] and EA[24:23] driving current setting

0 + 0 mA

+ 4 mA. Default is 2 mA.

LCD ED E8 ED[7:6] and EA[24:23] driving current setting

+ 8 mA. Default is 2 mA.

ED[7:6] and EA[24:23] output slew rate LCD ED SR

Fast slew rate

1 Slow slew rate

C	ON	FG +	0708l	1	Misc	usa	ge			4	. 11	Y			A	CIF_C	CON2
	Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

MediaTek Confidential

© 2011 MediaTek Inc.

Page 203 of 508

													<u>14'</u>		y -	
Name	RESE RVED	2V8_I 2C SR	2V8_I 2C E4	2V8_I 2C E2	RESE RVED	KRO W_SL CM SR	KRO W_SL CM E2	IW SL	-	MCIN S SR		MCIN S E8	LCD_ CSSR	LCD_ CSE8	LCD_ CSE4	LCD_ CSE2
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RESE	RVED	PWM SR		RESE RVED	WATC HDOG SR	WATC HDOG E2	WAIL	SRCL KENA I SR		SD_P WRE N SR	SD_P WRE N E4	KP_R OW SR	KP_R OW E4	CLK_ RDSE L	CMD_ RDSE L
Type			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	1	1	0	0	0	0	0	0	0	0	0

CMD RDSEL MDDR IO CUP RDSEL option for CMD MACRO

- Operation of the contract o
- Experiment mode

CLK_RDSEL MDDR IO_CUP RDSEL option for CLK_MACRO

- Operation of the contract o
- Experiment mode

KP_ROW E2 Key pad row driving current setting

- 0 + 0 mA
- 1 + 2 mA. Default is 2 mA.

KP ROW E4 Key pad row driving current setting

- 0 + 0 mA
- + 4 mA. Default is 2 mA.

KP ROW SR

- O Fast slew rate
- Slow slew rate

fidential Release for **SD PWREN E4** MSDC power enable driving current setting

- 0 + 0 mA
- 1 + 4 mA. Default is 2 mA.

SD PWREN SR

- O Fast slew rate
- 1 Slow slew rate

SRCLKENAL E4 Driving current setting

- 0 + 0 mA
- 1 + 4 mA. Default is 4 mA.

SRCLKENAI SR

MediaTek Confidential

enon WCX © 2011 MediaTek Inc.

Page 204 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A fidential Release for

- Fast slew rate
- Slow slew rate

WATCHDOG E2 Driving current setting

- + 2 mA. Default is 2 mA.

WATCHDOG E4 Driving current setting

- 0 + 0 mA
- 1 + 4 mA. Default is 2 mA.

WATCHDOG SR

- 0 Fast slew rate
- Slow slew rate

PWM E8 Driving current setting

- +0 mA
- + 8 mA. Default is 4 mA.

PWM SR

- Fast slew rate
- Slow slew rate

LCD_CS E2 ECS[3:2] driving current setting

- 0 + 0 mA
- + 4 mA. Default is 2 mA.

LCD_CS E4 ECS[3:2] driving current setting

- + 4 mA. Default is 2 mA.

LCD_CS E8 ECS[3:2] driving current setting

- +0 mA
- + 8 mA. Default is 2 mA.

LCD CS SR ECS[3:2] output slew rate

- Fast slew rate
- Slow slew rate

tial Release for MCINS E4 MCINS/UCTS1_B/URTS1_B output signal driving current setting

- + 0 mA
- +4 mA. Default is 4 mA.

MCINS E8 MCINS/UCTS1_B/URTS1_B output signal driving current setting

- 0 + 0 mA
- + 8 mA. Default is 4 mA.

MCINS SR MCINS/UCTS1_B/URTS1_B output slew rate control

MediaTek Confidential

© 2011 MediaTek Inc.

Cenon MCX

Page 205 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

1 Slow slew rate

KROW_SLCM E4 KROW[3:0] output signal driving current setting

0 + 0 mA

1 + 4 mA. Default is 4 mA.

KROW_SCLM E8

- 0 + 0 mA
- 1 + 8 mA. Default is 4 mA.

KROW SCLM SR KROW[3:0] output signal slew rate

- O Fast slew rate
- Slow slew rate

2V8_I2C E2 KROW7 and GPIO70 output signal driving current setting

- 0 + 0 mA
- 1 + 2 mA. Default is 4 mA.

2V8 I2C E4 KROW7 and GPIO70 output signal driving current setting

- 0 + 0 mA
- 1 + 4 mA. Default is 4 mA.

KROW7 and GPIO70 output signal slew rate 2V8 I2C SR

- Fast slew rate
- Slow slew rate

CONFG +070Ch Misc usage

	\sim	NIO
AL	L.U	/IV.5

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				F	Reserve	ed				JRTC K SR		JRTC K E4	RESE RVED	KP_S LCM E8	KP_S LCM E4	KP_S LCM E2
Type					R/W				TU	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset					0	1	AY			0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EMI_I ES	MCD PUPD		MCCK PUPD		RDSE L	ESER VED	BSI_E XT_S EL	JTDO SR	JTDO E2	RE	SERV	ED	DAI SR	DAI E2	DAI E4
Type	R/W	R/W	R/W	R/W	R/W	R/W		R/W	R/W	R/W		R/W		R/W	R/W	R/W
Reset	0	0	0	0	0	0		0	1	1				1	1	0
DAIE		ing curr + 0 mA		ting			3.5	no	W	W	GN					

MediaTek Confidential

© 2011 MediaTek Inc.

Page 206 of 508

МЕДІЛТЕК

	Col	mue
1	+ 2 mA. Default is 2 mA.	Y
Dri	ing current setting	
0	+ 0 mA	
1	+ 4 mA. Default is 2 mA.	
	CANTIUG	
0	Fast slew rate	
1	Slow slew rate	

DAI E4 Driving current setting

- +0 mA
- + 4 mA. Default is 2 mA.

DAI SR

- Slow slew rate

JTDO E2 Driving current setting

- 0 + 0 mA
- + 2 mA. Default is 2 mA.

JTDO SR

- 0 Fast slew rate
- Slow slew rate

BSI EXT SEL BSI selection

- Internal BSI
- External BSI

RDSEL IO_CUP RDSEL option for GPIO

- Operation of the contract o
- Experiment mode

TDSEL IO CUP TDSEL option for GPIO

- 0 Default mode
- Experiment mode

MCCK PUPD MCCK pad PUPD port connection

- O Pullup
- Pulldown

MSDC command pad PUPD port connection up down MSDC data pads PUDS MCC PUPD

- Pullup
- Pulldown

MCD PUPD

- Pullup
- Pulldown

EMI IES **EMI IES**

- O Disable
- Enable

KP SCLM E4 KROW6 and KCOL7 driving current setting

MediaTek Confidential

© 2011 MediaTek Inc.

Cenon MCX

Page 207 of 508

GSM/GPRS Baseband Processor Data Sheet

tial Release for

Confidential A

1 + 4 mA. Default is 4 mA.

KP_SCLM E8 KROW6 and KCOL7 driving current setting

0 + 0 mA

1 + 8 mA. Default is 4 mA.

KP SCLM SR KROW6 and KCOL7 output signal slew rate

O Fast slew rate

1 Slow slew rate

JRTCK E4 JRTCK driving current setting

0 + 0 mA

1 + 4 mA. Default is 4 mA.

JRTCK E2 JRTCK driving current setting

0 + 0 mA

+ 2 mA. Default is 4 mA.

JRTCK SR JRTCK output signal slew rate

O Fast slew rate

Slow slew rate

The pull-up pull-down resistance value for MCCK, MSDC command pad (MCCM0) and MSDC data pads (MCDA0) is determined by the following tables

cenon WCX

PUPD	R0	R1	Result
0	0	0	high-Z
0	0	1	pull-up with 47K
0	1	0	pull-up with 47K
0	1	1	pull-up with 23.5K
1	0	0	high-Z
1	0	1	pull-down with 47K
1	1	911 0	pull-down with 47K
	1	1	pull-down with 23.5K

 Table 43 MSDC Input Ports Definition

MediaTek Confidential

© 2011 MediaTek Inc.

Page 208 of 508

Confidential A

GSM/GPRS Baseband Processor Data Sheet

MediaTek Confidential Release for Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 209 of 508

PAD	PUPD	Aux. Func. 0	Aux. Func. 1
	PU 47K	1. 0x8001070c[14] = 0 2. 0x80020070[6] = 1	1. 0x8001070c[14] = 0 2. 0x81110000[27:26]=0x1 or 0x2
	PU 23.5K	NA NA	1. 0x8001070c[14] = 0 2. 0x81110000[27:26]=0x3
MCDA0 (GPIO38)	High-Z	1.0x80020070[6] = 0	1. 0x81110000[27:26]=0x0
Mic	PD 47K	1. 0x8001070c[14] = 1 2. 0x80020070[6] = 1	1. 0x8001070c[14] = 1 2. 0x81110000[27:26]=0x1 or 0x2
	PD 23.5K	NA C	1. 0x8001070c[14] = 1 2. 0x81110000[27:26]=0x3
	PU 47K	1. $0x8001070c[12] = 0$ 2. $0x80020070[5] = 1$	1. 0x8001070c[12] = 0 2. 0x80020070[5] = 1
	PU 23.5K	NA	NA
MCCK (GPIO37)	High-Z	1. 0x80020070[5] = 0	1. 0x80020070[5] = 0
	PD 47K	1. 0x8001070c[12] = 1 2. 0x80020070[5] = 1	1. 0x8001070c[12] = 1 2. 0x80020070[5] = 1
	PD 23.5K	NA	NA
	PU 47K	1. 0x8001070c[13] = 0 2. 0x80020070[7] = 1	1. 0x8001070c[13] = 0 2. 0x81110000[25:24]=0x1 or 0x2
	PU 23.5K	NA	1. 0x8001070c[13] = 0 2. 0x81110000[25:24]=0x3
MCCM0 (GPIO39)	High-Z	1. 0x80020070[7] = 0	1. 0x81110000[25:24]=0x0
Mal	PD 47K	1. 0x8001070c[13] = 1 2. 0x80020070[7] = 1	1. 0x8001070c[13] = 1 2. 0x81110000[25:24]=0x1 or 0x2
Me	PD 23.5K	NA	1. 0x8001070c[13] = 1 2. 0x81110000[25:24]=0x3

MediaTek Confidential

© 2011 MediaTek Inc.

Page 210 of 508

	PU	1. 0x80020070[4] = 1 2. 0x80020260[4] = 1	1. 0x81110014[9:8]=0x2
MCINS (GPIO36)	High-Z	1. 0x80020070[4] = 0	1. 0x81110014[9:8]=0x0
	PD	1. 0x80020070[4] = 1 2. 0x80020260[4] = 0	1. 0x81110014[9:8]=0x1

Table 44 MT6253EL MSDC PADs Configurations

General Purpose Timer

4.5.1 **General Description**

Four general-purpose timers are provided. Three timers are 16 bits long and one timer is 32 bits long and run independently of each other. GPT1~3 use 32k clock source to count, whereas GPT4 uses 26M clock source. 26M clock source could be gated when system enters sleep mode and this will cause GPT4 stop counting, whereas 32k clock source is always toggling. GPT1 and GPT2 can operate in one of two modes: one-shot mode and auto-repeat mode; GPT3 and GPT4 are free running timer. In one-shot mode, when the timer counts down and reaches zero, it is halted. In auto-repeat mode, when the timer reaches zero, it simply resets to countdown initial value and repeats the countdown to zero; this loop repeats until the disable signal is set to 1. Regardless of the timer's mode, if the countdown initial value (i.e. GPTIMER1_DAT for GPT1 or GPTIMER_DAT2 for GPT2) is written when the timer is running, the new initial value does not take effect until the next time the timer is restarted. In auto-repeat mode, the new countdown start value is used on the next countdown iteration. Therefore, before enabling the gptimer, the desired values for GPTIMER_DAT and the GPTIMER_PRESCALER registers must first be set.

4.5.2 **Register Definitions**

REGISTER ADDRI	ESS	REGISTER NAME	SYNONYM
0x8106_0000		General Purpose Timer 1 Control Register	GPTIMER1_CON
0x8106_0004		General Purpose Timer 1 Time-Out Interval Register	GPTIMER1_DAT
0x8106_0008		General Purpose Timer 2 Control Register	GPTIMER2_CON
0x8106_000C		General Purpose Timer 2 Time-Out Interval Register	GPTIMER2_DAT
0x8106_0010		General Purpose Timer Status Register	GPTIMER_STA

MediaTek Confidential

© 2011 MediaTek Inc.

Page 211 of 508

0x8106_0014	General Purpose Timer 1 Prescalar Register	GPTIMER1_PRESCALAR
0x8106_0018	General Purpose Timer 2 Prescalar Register	GPTIMER2_PRESCALAR
0x8106_001C	General Purpose Timer 3 Control Register	GPTIMER3_CON
0x8106_0020	General Purpose Timer 3 Time-Out Interval Register	GPTIMER3_DAT
0x8106_0024	General Purpose Timer 3 Prescalar Register	GPTIMER3_PRESCALAR
0x8106_0028	General Purpose Timer 4 Control Register	GPTIMER4_CON
0x8106_002C	General Purpose Timer 4 Data Register	GPTIMER4_DAT

 Table 45 [General Purpose Timer Register Map]

0x8106_0000h GPT1 Control register

МЕДІЛІТЕК

GPTIMER1 CO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit Name		14 MODE		12	11	10		8	7	6	5	4	3	2	1	
				12	11	10		8	7	6	5	4	3	2	1	

MODE This register controls GPT1 to count repeatedly (in a loop) or just one-shot.

- One-shot mode is selected.
- Auto-repeat mode is selected.

EN This register controls GPT1 to start counting or to stop.

0x8106_0004h GPT1 Time-Out Interval register

- GPT1 is disabled.
- 1 GPT1 is enabled.

Release for **GPTIMER1 DA**

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name			1			111										
Туре				/		A										
Reset	1			7 / /												
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	17							CNT [15:0]							
Туре								R/	W	III						
Reset		•						FFF	Fh	I I I I	UIL					_

MediaTek Confidential

© 2011 MediaTek Inc.

Page 212 of 508

CNT [15:0] Initial counting value. GPT1 counts down from GPTIMER1_DAT. When GPT1 counts down to zero, a GPT1 interrupt is generated.

0x8106 0008h GPT2 Control register

GPTIMER2_CO

N

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	1															
Type				71-												
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	EN	MODE								1//1						
Type	R/W	R/W							10							
Reset	0	0							IIII							

MODE This register controls GPT2 to count repeatedly (in a loop) or just one-shot.

- One-shot mode is selected
- 1 Auto-repeat mode is selected

EN This register controls GPT2 to start counting or to stop.

- **O** GPT2 is disabled.
- 1 GPT2 is enabled.

0x8106_000Ch GPT2 Time-Out Interval register

GPTIMER2_DA

+

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type															4	
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								CNT	15:0]				<i>P1</i>			
Type								R/	W			14				
Reset								FF	FFh		15					

CNT [15:0] Initial counting value. GPT2 counts down from GPTIMER2_DAT. When GPT2 counts down to zero, a GPT2 interrupt is generated.

0x8106_0010h GPT Status register

GPTIMER_STA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	14															
Type										111						
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 213 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Name						. 1		W	Y		GPT2	GPT1
Type							10	1//	1	A	RC	RC
Reset					47.			1			0	0

This register illustrates the gptimer timeout status. Each flag is set when the corresponding timer countdown completes, and can be cleared when the CPU reads the status register.

0x8106_0014h GPT1 Prescaler register

GPTIMER1_PR ESCALER

0x81	06_0	014h	GPT1	1 Pres	scale	r regi	MON						ESCALER						
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
Name								-00											
Type																			
Reset							R												
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Name														PRESCALER [2:0]					
Туре														R/W					
Reset														100b					

PRESCALER This register controls the counting clock for gptimer1.

000 16384 Hz

001 8192 Hz

010 4096 Hz

011 2048 Hz

100 1024 Hz

0x8106_0018h GPT2 Prescaler register

ESCALER

	101	512 Hz													- 48	
	110	256 Hz														
	111	128 Hz											C		Ai	
0x81	06_0	018h	GPT2	2 Pres	scale	r regi	ster	~ M	ti2		16	6				2_PR ALER
Bit	31	30	29	28	_27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type						111										
Reset	V															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														PRES	CALE	R [2:0]
Туре	14	N. S.								- 1					R/W	
Reset										IIII					100b	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 214 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

confidential Release to **PRESCALER** This register controls the counting clock for gptimer2.

000 16384 Hz

001 8192 Hz

010 4096 Hz

011 2048 Hz

100 1024 Hz

101 512 Hz

110 256 Hz

111 128 Hz

0x8106_001Ch GPT3 Control register

GPTIMER3 CO

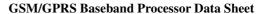
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																EN
Type																R/W
Reset																0

EN This register controls GPT3 to start counting or to stop.

0x8106_0020h GPT3 Time-Out Interval register

- GPT3 is disabled.
- GPT3 is enabled.

GPTIMER3 DA


Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											1.7		A			
Type									47.							
Reset									11	\ 						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				_	BA	1.1		CNT	[15:0]							
Type						IIII		R	0							
Reset	1				U			()							

CNT [15:0] If EN=1, GPT3 is a free running timer. This register records GPT3 value. If EN=0, this register is cleared

MediaTek Confidential

© 2011 MediaTek Inc.

Page 215 of 508

MEDIATEK

0x8106_0024h GPT3 Prescaler register

GPTIMER3_PR ESCALER

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name							1101	71									
Type			1		M	111											
Reset																	
Bit	15	14	13	_ 12	11	10	9	8	7	6	5	4	3	2	1	0	
Name		14												PRES	PRESCALER [2:		
Type		11												R/W			
Reset										$\Gamma \Gamma \Gamma$					100b		

PRESCALER This register controls the counting clock for gptimer3.

000 16384 Hz

001 8192 Hz

010 4096 Hz

011 2048 Hz

100 1024 Hz

101 512 Hz

110 256 Hz

111 128 Hz

0x8106_0028h GPT4 Control register

GPTIMER4_CO

N

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name														11	1 / A	
Type													14			
Reset																
Bit	15	14	13	12	11	10	9	8	17	6	5	4	3	2	1	0
Name									16						LOCK	EN
Type									MI.	7.					R/W	R/W
Reset						10	101	41							0	0

- **EN** This register controls GPT4 to start counting or to stop.
 - O GPT4 is disabled.
 - 1 GPT4 is enabled.

LOCK This register controls GPT4 EN bit can be modified or not

- O No lock. Software can configure EN bit
- 1 Lock. Software cannot program EN bit until reset

MediaTek Confidential

© 2011 MediaTek Inc.

Page 216 of 508

0x8106_002Ch GPT4 Data register

0x81	06_0	02Ch	GPT4	1 Data	a regi	ster	. 1		412	11	Re	6	15	GPTI	MER	4_DA T
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						197		CNT	31:16]							
Type						$\mathbf{M}\mathbf{M}$		F	RO							
Reset									0							
Bit	15	14	13	_12	11	10	9	8	7	6	5	4	3	2	1	0
Name		IV						CNT	[15:0]							
Type				•		•	•	F	? O						•	
Reset				•		•	•	•	0	$T\overline{T}$					•	

CNT [31:0] If EN=1, GPT4 is a free running timer. This register records GPT4 value. If EN=0, this register is cleared

This register is not allowed continuous read. Need at least 1 26M clock cycle between 2 APB reads.

4.6 **UART**

4.6.1 **General Description**

The baseband chipset houses three UARTs. The UARTs provide full duplex serial communication channels between baseband chipset and external devices.

The UART has M16C450 and M16550A modes of operation, which are compatible with a range of standard software drivers. The extensions have been designed to be broadly software compatible with 16550A variants, but certain areas offer no consensus.

In common with the M16550A, the UART supports word lengths from five to eight bits, an optional parity bit and one or two stop bits, and is fully programmable by an 8-bit CPU interface. A 16-bit programmable baud rate generator and an 8-bit scratch register are included, together with separate transmit and receive FIFOs. Eight modem control lines and a diagnostic loop-back mode are provided. The UART also includes two DMA handshake lines, used to indicate when the FIFOs are ready to transfer data to the CPU. Interrupts can be generated from any of the 10 sources.

Note: The UART has been designed so that all internal operations are synchronized by the CLK signal. This synchronization results in minor timing differences between the UART and the industry standard 16550A device, which means that the core is not clock for clock identical to the original device.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 217 of 508

After a hardware reset, the UART is in M16C450 mode. Its FIFOs can be enabled and the UART can then enter M16550A mode. The UART adds further functionality beyond M16550A mode. Each of the extended functions can be selected individually under software control.

The UART provides more powerful enhancements than the industry-standard 16550:

Hardware flow control. This feature is very useful when the ISR latency is hard to predict and control in the embedded applications.
 The MCU is relieved of having to fetch the received data within a fixed amount of time.

Note: In order to enable any of the enhancements, the Enhanced Mode bit, EFR[4], must be set. If EFR[4] is not set, IER[7:5], FCR[5:4], IIR[5:4] and MCR[7:6] cannot be written. The Enhanced Mode bit ensures that the UART is backward compatible with software that has been written for 16C450 and 16550A devices.

Error! Reference source not found. Fig 7 shows the block diagram of the UART device.

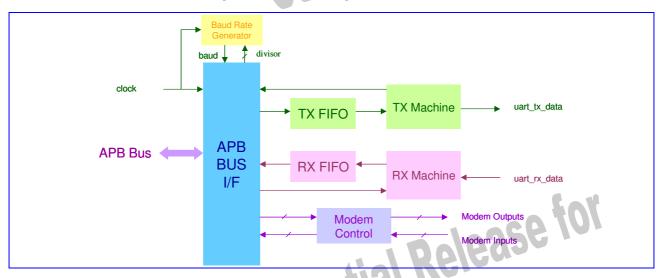


Figure 35 Block Diagram of UART

4.6.2 Register Definitions

UART1 Register Mapping Table:

MCU Register Addr.	Register Function	Acronym	101
81030000h	RX Buffer Register	UARTn_RBR	MGA
		1000	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 218 of 508

			Confider
			ease for
81030000h	TX Holding Register	UARTn_THR	GNZA
81030004h	Interrupt Enable Register	UARTn_IER	
81030008h	Interrupt Identification Register	UARTn_IIR	
81030008h	FIFO Control Register	UARTn_FCR	
8103000Ch	Line Control Register	UARTn_LCR	
81030010h	Modem Control Register	UARTn_MCR	
81030014h	Line Status Register	UARTn_LSR	
81030018h	Modem Status Register	UARTn_MSR	
8103001Ch	Scratch Register	UARTn_SCR	
81030000h	Divisor Latch (LS)	uartn_dll	
81030004h	Divisor Latch (MS)	uartn_dlM	
81030008h	Enhanced Feature Register	UARTn_EFR	
81030010h	XON1	UARTn_XON1	
81030014h	XON2	UARTn_XON2	103
81030018h	XOFF1	UARTn_XOFF1	age IVI
8103001Ch	XOFF2	UARTn_XOFF2	ease for
81030020h	AUTOBAUD_EN	UARTn_AUTOBAUD_EN	
81030024h	HIGH SPEED UART	UARTn_HIGHSPEED	
81030028h	SAMPLE_COUNT	UARTn_SAMPLE_COUNT	
8103002Ch	SAMPLE_POINT	UARTn_SAMPLE_POINT	
	2	Sellou 110	
MediaTek Confidential		© 2011 MediaTek Inc.	Page 21

Page 219 of 508

			Confider
			70f 920
81030030h	AUTOBAUD_REG	UARTn_AUTOBAUD_REG	6320
81030034h	Rate Fix Address	UARTn_RateFix_ad	
81030038h	AUTOBAUDSAMPLE	UARTn_AUTOBAUDSAMPLE	
8103003Ch	Guard time added register	UARTn_GUARD	
81030040h	Escape character register	UARTn_ESCAPE_DAT	
81030044h	Escape enable register	UARTn_ESCAPE_EN	
81030048h	Sleep enable register	UARTn_SLEEP_EN	
8103004Ch	Virtual FIFO enable register	UARTn_VFIFO_EN	
81030050h	Rx Trigger Address	UARTn_RXTRI_AD	
81030054h	Fractional Divider LSB Address	UARTn_Fracdiv_I	
81030058h	Fractional Divider MSB	UARTn_FRACDIV_M	

UART2 Register Mapping Table:

Address

0100000011	Address	O/WITH_TTD/OBIV_W	e a
UART2 Register Mappin	ng Table:	, pol	ease for
MCU Register Addr.	Register Function	Acronym	
81040000h	RX Buffer Register	UARTn_RBR	
81040000h	TX Holding Register	UARTn_THR	
81040004h	Interrupt Enable Register	UARTn_IER	
81040008h	Interrupt Identification Register	UARTn_IIR	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 220 of 508

			Confider
			ease for
81040008h	FIFO Control Register	UARTn_FCR	6326
8104000Ch	Line Control Register	UARTn_LCR	
81040010h	Modem Control Register	UARTn_MCR	
81040014h	Line Status Register	UARTn_LSR	
81040018h	Modem Status Register	UARTn_MSR	
8104001Ch	Scratch Register	UARTn_SCR	
81040000h	Divisor Latch (LS)	uartn_dll	
81040004h	Divisor Latch (MS)	uartn_dlM	
81040008h	Enhanced Feature Register	UARTn_EFR	
81040010h	XON1	UARTn_XON1	
81040014h	XON2	UARTn_XON2	
81040018h	XOFF1	UARTn_XOFF1	
8104001Ch	XOFF2	UARTn_XOFF2	
81040020h	AUTOBAUD_EN	UARTn_AUTOBAUD_EN	
81040024h	HIGH SPEED UART	UARTn_HIGHSPEED	ease for
81040028h	SAMPLE_COUNT	UARTn_SAMPLE_COUNT	6926
8104002Ch	SAMPLE_POINT	UARTn_SAMPLE_POINT	
81040030h	AUTOBAUD_REG	UARTn_AUTOBAUD_REG	
81040034h	Rate Fix Address	UARTn_RateFix_ad	
81040038h	AUTOBAUDSAMPLE	UARTn_AUTOBAUDSAMPLE	
8104003Ch	Guard time added	UARTn_GUARD	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 221 of 508

			Confide
	register	La Release	tof
81040040h	Escape character register	UARTn_ESCAPE_DAT	
81040044h	Escape enable register	UARTn_ESCAPE_EN	
81040048h	Sleep enable register	UARTn_SLEEP_EN	
8104004Ch	Virtual FIFO enable register	UARTn_VFIFO_EN	
81040050h	Rx Trigger Address	UARTn_RXTRI_AD	
81040054h	Fractional Divider LSB Address	UARTn_Fracdiv_I	
81040058h	Fractional Divider MSB Address	UARTn_FRACDIV_M	

UART3 Register Mapping Table:

MCU Register Addr.	Register Function	Acronym	
81050000h	RX Buffer Register	UARTn_RBR	
81050000h	TX Holding Register	UARTn_THR	int .
81050004h	Interrupt Enable Register	UARTn_IER	ease for
81050008h	Interrupt Identification Register	UARTn_IIR	
81050008h	FIFO Control Register	UARTn_FCR	
8105000Ch	Line Control Register	UARTn_LCR	
81050010h	Modem Control Register	UARTn_MCR	
	(Sellou Man	
MediaTek Confidential		© 2011 MediaTek Inc.	Page 2

Page 222 of 508

				Confider
			UARTn_LSR UARTn_MSR	101
	81050014h	Line Status Register	UARTn_LSR	
	81050018h	Modem Status Register	UARTn_MSR	
	8105001Ch	Scratch Register	UARTn_SCR	
	81050000h	Divisor Latch (LS)	uartn_dll	
	81050004h	Divisor Latch (MS)	uartn_dlM	
	81050008h	Enhanced Feature Register	UARTn_EFR	
	81050010h	XON1	UARTn_XON1	
	81050014h	XON2	UARTn_XON2	
	81050018h	XOFF1	UARTn_XOFF1	
	8105001Ch	XOFF2	UARTn_XOFF2	
•	81050020h	AUTOBAUD_EN	UARTn_AUTOBAUD_EN	
•	81050024h	HIGH SPEED UART	UARTn_HIGHSPEED	
	81050028h	SAMPLE_COUNT	UARTn_SAMPLE_COUNT	
•	8105002Ch	SAMPLE_POINT	UARTn_SAMPLE_POINT	
	81050030h	AUTOBAUD_REG	UARTn_AUTOBAUD_REG	101
•	81050034h	Rate Fix Address	UARTn_AUTOBAUD_REG UARTn_RateFix_ad	
	81050038h	AUTOBAUDSAMPLE	UARTn_AUTOBAUDSAMPLE	
	8105003Ch	Guard time added register	UARTn_GUARD	
	81050040h	Escape character register	UARTn_ESCAPE_DAT	
	81050044h	Escape enable register	UARTn_ESCAPE_EN	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 223 of 508

Confidential A

			Соннае
			10f 920 -
81050048h	Sleep enable register	UARTn_SLEEP_EN	6920.
8105004Ch	Virtual FIFO enable register	UARTn_VFIFO_EN	
81050050h	Rx Trigger Address	UARTn_RXTRI_AD	
81050054h	Fractional Divider LSB Address	UARTn_Fracdiv_I	
81050058h	Fractional Divider MSB Address	UARTn_FRACDIV_M	

n = 1, 2, 3; for uart1, uart2 and uart3 respectively.

UARTn+0000h RX Buffer Register

UARTN RBR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name									RBR[7:0]								
Туре									RO								

RBR RX Buffer Register. Read-only register. The received data can be read by accessing this register. Modified when LCR[7] = 0.

UARTn+0000h TX Holding Register

UARTn_THR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									THR[7:0]							
Type											-	W	0			

THR TX Holding Register. Write-only register. The data to be transmitted is written to this register, and then sent to the PC via serial communication.

Modified when LCR[7] = 0.

UARTn+0004h Interrupt Enable Register

UARTN IER

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		M		41					CTSI	RTSI	XOFFI	VFF_FC_EN	EDSSI	ELSI	ETBEI	ERBFI
Type												R/W				
Reset	17	1.17									10	0				

IER By storing a '1' to a specific bit position, the interrupt associated with that bit is enabled. Otherwise, the interrupt is disabled.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 224 of 508

IER[3:0] are modified when LCR[7] = 0.

IER[7:4] are modified when LCR[7] = 0 & EFR[4] = 1.

lease for **CTSI** Masks an interrupt that is generated when a rising edge is detected on the CTS modem control line.

Note: This interrupt is only enabled when hardware flow control is enabled.

- Mask an interrupt that is generated when a rising edge is detected on the CTS modem control line.
- Unmask an interrupt that is generated when a rising edge is detected on the CTS modem control line.
- **RTSI** Masks an interrupt that is generated when a rising edge is detected on the RTS modem control line.

Note: This interrupt is only enabled when hardware flow control is enabled.

- Mask an interrupt that is generated when a rising edge is detected on the RTS modem control line.
- Unmask an interrupt that is generated when a rising edge is detected on the RTS modem control line.

XOFFI Masks an interrupt that is generated when an XOFF character is received.

Note: This interrupt is only enabled when software flow control is enabled.

- Mask an interrupt that is generated when an XOFF character is received.
- Unmask an interrupt that is generated when an XOFF character is received.
- VFF FC EN Enable flow control triggered by RX FIFO full when VFIFO_EN is set.

EDSSI When set ("1"), an interrupt is generated if DDCD, TERI, DDSR or DCTS (MSR[4:1]) becomes set.

- No interrupt is generated if DDCD, TERI, DDSR or DCTS (MSR[4:1]) becomes set.
- 1 An interrupt is generated if DDCD, TERI, DDSR or DCTS (MSR[4:1]) becomes set.
- **ELSI** When set ("1"), an interrupt is generated if BI, FE, PE or OE (LSR[4:1]) becomes set.
 - No interrupt is generated if BI, FE, PE or OE (LSR[4:1]) becomes set.
 - An interrupt is generated if BI, FE, PE or OE (LSR[4:1]) becomes set.
- **ETBEI** When set ("1"), an interrupt is generated if the TX Holding Register is empty or the contents of the TX FIFO have been reduced to its Trigger Level.
 - No interrupt is generated if the TX Holding Register is empty or the contents of the TX FIFO have been reduced to its Trigger Level.
 - An interrupt is generated if the TX Holding Register is empty or the contents of the TX FIFO have been reduced to its Trigger Level

ERBFI When set ("1"), an interrupt is generated if the RX Buffer contains data.

- No interrupt is generated if the RX Buffer contains data.
- An interrupt is generated if the RX Buffer contains data.

UARTn+0008h Interrupt Identification Register

UARTN IIR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									FIF	OE	ID4	ID3	ID2	ID1	ID0	NINT
Type										IIII		R	0			
Reset									0	0	0	0	0	0	0	1

MediaTek Confidential

© 2011 MediaTek Inc.

Page 225 of 508

IIR Identify if there are pending interrupts; ID4 and ID3 are presented only when EFR[4] = 1.

The following table gives the IIR[5:0] codes associated with the possible interrupts:

IIR[5:0]	Priority	Interrupt	Source
	Level		GIIII
000001	-	No interrupt pending	
000110	1	Line Status Interrupt	BI, FE, PE or OE set in LSR
	dia	Ru -	(Under IER[2]=1)
000100	2	RX Data Received	RX Data received or RX Trigger Level reached.
	9		(Under IER[0]=1)
001100	2	RX Data Timeout	Timeout on character in RX FIFO.
			(Under IER[0]=1)
000010	3	TX Holding Register Empty	TX Holding Register empty or TX FIFO Trigger Level reached.
			(Under IER[1]=1)
000000	4	Modem Status change	DDCD, TERI, DDSR or DCTS set in MSR
			(Under IER[3]=1)
010000	5	Software Flow Control	XOFF Character received
			(Under IER[5]=1)
100000	6	Hardware Flow Control	CTS or RTS Rising Edge
			(Under IER[6]=1, EDR[6]=1)

Table 46 The IIR[5:0] codes associated with the possible interrupts

Line Status Interrupt: A RX Line Status Interrupt (IIR[5:0`] == 000110b) is generated if ELSI (IER[2]) is set and any of BI, FE, PE or OE (LSR[4:1]) becomes set. The interrupt is cleared by reading the Line Status Register.

RX Data Received Interrupt: A RX Received interrupt (IER[5:0] == 000100b) is generated if EFRBI (IER[0]) is set and either RX Data is placed in the RX Buffer Register or the RX Trigger Level is reached. The interrupt is cleared by reading the RX Buffer Register or the RX FIFO (if enabled).

RX Data Timeout Interrupt:

When virtual FIFO mode is disabled, RX Data Timeout Interrupt is generated if all of the following apply:

- 1. FIFO contains at least one character;
- 2. The most recent character was received longer than four character periods ago (including all start, parity and stop bits);
- 3. The most recent CPU read of the FIFO was longer than four character periods ago.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 226 of 508

The timeout timer is restarted on receipt of a new byte from the RX Shift Register, or on a CPU read from the RX FIFO.

The RX Data Timeout Interrupt is enabled by setting EFRBI (IER[0]) to 1, and is cleared by reading RX FIFO.

When virtual FIFO mode is enabled, RX Data Timeout Interrupt is generated if all of the following apply:

- 1. FIFO is empty;
- 2. The most recent character was received longer than four character periods ago (including all start, parity and stop bits):
- 3. The most recent CPU read of the FIFO was longer than four character periods ago.

The timeout timer is restarted on receipt of a new byte from the RX Shift Register.

TX Holding Register Empty Interrupt: A TX Holding Register Empty Interrupt (IIR[5:0] = 000010b) is generated if ETRBI (IER[1]) is set and either the TX Holding Register or, if FIFOs are enabled, the TX FIFO becomes empty. The interrupt is cleared by writing to the TX Holding Register or TX FIFO if FIFO enabled.

Modem Status Change Interrupt: A Modem Status Change Interrupt (IIR[5:0] = 000000b) is generated if EDSSI (IER[3]) is set and either DDCD, TERI, DDSR or DCTS (MSR[3:0]) becomes set. The interrupt is cleared by reading the Modem Status Register.

Software Flow Control Interrupt: A Software Flow Control Interrupt (IIR[5:0] = 010000b) is generated if Software Flow Control is enabled and XOFFI (IER[5]) becomes set, indicating that an XOFF character has been received. The interrupt is cleared by reading the Interrupt Identification Register.

Hardware Flow Control Interrupt: A Hardware Flow Control Interrupt (IER[5:0] = 100000b) is generated if Hardware Flow Control is enabled and either RTSI (IER[6]) or CTSI (IER[7]) becomes set indicating that a rising edge has been detected on either the RTS/CTS Modem Control line. The interrupt is cleared by reading the Interrupt Identification Register.

UARTn+0008h FIFO Control Register

UARTn_FCR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						7	TY	-/1	RFTL1	RFTL0	TFTL1	TFTL0	DMA1	CLRT	CLRR	FIFOE
Type							101	41				W	0			

FCR is used to control the trigger levels of the FIFOs, or flush the FIFOs.

FCR[7:6] is modified when LCR != BFh

FCR[5:4] is modified when LCR != BFh & EFR[4] = 1

FCR[4:0] is modified when LCR != BFh

FCR[7:6] RX FIFO trigger threshold. (RX FIFO contains total 24 bytes.)

0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 227 of 508

- 1
- 2 12
- **RXTRIG**

Release for TX FIFO trigger threshold (TX FIFO contains total 16 bytes.) FCR[5:4]

- 14 (FIFOSIZE 2)

This bit determines the DMA mode, which the TXRDY and RXRDY pins support. TXRDY and RXRDY act to support single-byte transfers between the UART and memory (DMA mode 0) or multiple byte transfers (DMA model). Note that this bit has no effect unless the FIFOE bit is set as well

- The device operates in DMA Mode 0.
- The device operates in DMA Mode 1.

TXRDY - mode0: Goes active (low) when the TX FIFO or the TX Holding Register is empty. And it becomes inactive when a byte is written to the Transmit channel.

TXRDY – mode1: Goes active (low) when there are no characters in the TX FIFO. And it becomes inactive when the TX FIFO is full.

RXRDY - mode0: Becomes active (low) when at least one character is in the RX FIFO or the RX Buffer Register is full. And it becomes inactive when there are no more characters in the RX FIFO or RX Buffer register.

RXRDY - mode1: Becomes active (low) when the RX FIFO Trigger Level is reached or an RX FIFO Character Timeout occurs. And it goes inactive when the RX FIFO is empty.

- **CLRT** Clear Transmit FIFO. This bit is self-clearing.
 - Leave TX FIFO intact.
 - Clear all the bytes in the TX FIFO.
- **CLRR** Clear Receive FIFO. This bit is self-clearing.
 - Leave RX FIFO intact.
 - Clear all the bytes in the RX FIFO.

FIFOE FIFO Enabled. This bit must be set to 1 for any of the other bits in the registers to have any effect.

- Disable both the RX and TX FIFOs.
- Enable both the RX and TX FIFOs.

UARTn+000Ch Line Control Register

UARTN LCR

Release for

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									DLAB	SB	SP	EPS	PEN	STB	WLS1	WLS0
Type									19			R/	W			
Reset									0	0	0	0	0	0	0	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 228 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛІТЕК

LCR Line Control Register. Determines characteristics of serial communication signal Modified when LCR[7] = 0.

- **DLAB** Divisor Latch Access Bit.
 - The RX and TX Registers are read/written at Address 0 and the IER register is read/written at Address 4.
 - The Divisor Latch LS is read/written at Address 0 and the Divisor Latch MS is read/written at Address 4.
- SB Set Break
 - No effect
 - SOUT signal is forced into the "0" state.
- Stick Parity
 - No effect. 0
 - The Parity bit is forced into a defined state, depending on the states of EPS and PEN: If EPS=1 & PEN=1, the Parity bit is set and checked = 0. If EPS=0 & PEN=1, the Parity bit is set and checked = 1.
- **EPS Even Parity Select**
 - When EPS=0, an odd number of ones is sent and checked.
 - When EPS=1, an even number of ones is sent and checked.
- **PEN** Parity Enable
 - The Parity is neither transmitted nor checked.
 - The Parity is transmitted and checked.
- **STB** Number of STOP bits
 - One STOP bit is always added.
 - ential Release for Two STOP bits are added after each character is sent; unless the character length is 5 when 1 STOP bit is added.
- WLS1, 0 Word Length Select.
 - 5 bits
 - 1 6 bits
 - 7 bits
 - 8 bits

UARTn+0010h Modem Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	6	14.		51					XOFF STATUS		DCM_EN	LOOP	OUT2	OUT1	RTS	DTR
Type	14										AV	R/W				
Reset									0		0	0	0	0	0	0

MCR Modem Control Register. Control interface signals of the UART.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 229 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛІТЕК

MCR[4:0] are modified when LCR[7] = 0,

ial Release for MCR[7:6] are modified when LCR[7] = 0 & EFR[4] = 1.

XOFF Status This is a read-only bit.

- When an XON character is received
- When an XOFF character is received.
- DCM EN DCM Function enable
 - **0** DCM function is forbidden.
 - 1 DCM function is permit.
- **LOOP** Loop-back control bit.
 - No loop-back is enabled.
 - Loop-back mode is enabled.
- **OUT2** Controls the state of the output NOUT2, even in loop mode.
 - NOUT2=1.
 - NOUT2=0.
- **OUT1** Controls the state of the output NOUT1, even in loop mode.
 - NOUT1=1.
 - NOUT1=0.
- RTS Controls the state of the output NRTS, even in loop mode.
 - NRTS=1.
 - NRTS=0.
- **DTR** Control the state of the output NDTR, even in loop mode.
 - NDTR=1.
 - NDTR=0.

UARTn+0014h Line Status Register

UARTn LSR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									FIFOERR	TEMT	THRE	BI	FE	PE	OE	DR
Type											17	R/W	1			
Reset							- 1	-1	0	1	1	0	0	0	0	0

LSR Line Status Register.

Modified when LCR[7] = 0

FIFOERR RX FIFO Error Indicator.

- O No PE, FE, BI set in the RX FIFO.
- 1 Set to 1 when there is at least one PE, FE or BI in the RX FIFO.
- TEMT TX Holding Register (or TX FIFO) and the TX Shift Register are empty.
 - Empty conditions below are not met

MediaTek Confidential

© 2011 MediaTek Inc.

Page 230 of 508

1 If FIFOs are enabled, the bit is set whenever the TX FIFO and the TX Shift Register are empty. If FIFOs are disabled, the bit is set whenever TX Holding Register and TX Shift Register are empty.

THRE Indicates if there is room for TX Holding Register or TX FIFO is reduced to its Trigger Level.

- 0 Reset whenever the contents of the TX FIFO are more than its Trigger Level (FIFOs are enabled), or whenever TX Holding Register is not empty(FIFOs are disabled).
- 1 Set whenever the contents of the TX FIFO are reduced to its Trigger Level (FIFOs are enabled), or whenever TX Holding Register is empty and ready to accept new data (FIFOs are disabled).
- Bl Break Interrupt.
 - Reset by the CPU reading this register
 - If the FIFOs are disabled, this bit is set whenever the SIN is held in the 0 state for more than one transmission time (START bit + DATA bits + PARITY + STOP bits).
 - If the FIFOs are enabled, this error is associated with a corresponding character in the FIFO and is flagged when this byte is at the top of the FIFO. When a break occurs, only one zero character is loaded into the FIFO: the next character transfer is enabled when SIN goes into the marking state and receives the next valid start bit.
- **FE** Framing Error.
 - **0** Reset by the CPU reading this register
 - 1 If the FIFOs are disabled, this bit is set if the received data did not have a valid STOP bit. If the FIFOs are enabled, the state of this bit is revealed when the byte it refers to is the next to be read.
- PE Parity Error
 - **0** Reset by the CPU reading this register
 - 1 If the FIFOs are disabled, this bit is set if the received data did not have a valid parity bit. If the FIFOs are enabled, the state of this bit is revealed when the referred byte is the next to be read.
- **OE** Overrun Error.
 - Reset by the CPU reading this register.
 - 1 If the FIFOs are disabled, this bit is set if the RX Buffer was not read by the CPU before new data from the RX Shift Register overwrote the previous contents.
 - If the FIFOs are enabled, an overrun error occurs when the RX FIFO is full and the RX Shift Register becomes full. OE is set as soon as this happens. The character in the Shift Register is then overwritten, but not transferred to the FIFO.
- DR Data Ready.
 - O Cleared by the CPU reading the RX Buffer or by reading all the FIFO bytes.
 - 1 Set by the RX Buffer becoming full or by a byte being transferred into the FIFO.

UARTn+0018h Modem Status Register

UARTn_MSR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										_						

MediaTek Confidential

© 2011 MediaTek Inc.

Page 231 of 508

Name					DCD	Ri	DSR	CTS	DDCD	TERI	DDSR	DCTS
Type					R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset					Input	Input	Input	Input	0	0	0	0

Note: After a reset, D4-D7 are inputs. A modem status interrupt can be cleared by writing '0' or set by writing '1' to this register. D0-D3 can be written to.

Modified when LCR[7] = 0.

MSR Modem Status Register

DCD Data Carry Detect.

When Loop = "0", this value is the complement of the NDCD input signal.

When Loop = "1", this value is equal to the OUT2 bit in the Modem Control Register.

Ring Indicator.

When Loop = "0", this value is the complement of the NRI input signal.

When Loop = "1", this value is equal to the OUT1 bit in the Modem Control Register.

DSR Data Set Ready

When Loop = "0", this value is the complement of the NDSR input signal.

When Loop = "1", this value is equal to the DTR bit in the Modem Control Register.

CTS Clear To Send.

When Loop = "0", this value is the complement of the NCTS input signal.

When Loop = "1", this value is equal to the RTS bit in the Modem Control Register.

DDCD Delta Data Carry Detect.

- O The state of DCD has not changed since the Modem Status Register was last read
- Set if the state of DCD has changed since the Modem Status Register was last read.

TERI Trailing Edge Ring Indicator

- O The NRI input does not change since this register was last read.
- 1 Set if the NRI input changes from "0" to "1" since this register was last read.

DDSR Delta Data Set Ready

- O Cleared if the state of DSR has not changed since this register was last read.
- Set if the state of DSR has changed since this register was last read.

DCTS Delta Clear To Send

- O Cleared if the state of CTS has not changed since this register was last read.
- Set if the state of CTS has changed since this register was last read.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 232 of 508

Confidential A

UARTn+001Ch Scratch Register

UARTN SCR

Bit	15	14	13	12	11	10	9	8	7-	6	5	4	3	2	1	0
Name						I	K		111.			SCR	[7:0]			
Type								7				R/	W			

A general purpose read/write register. After reset, its value is un-defined.

Modified when LCR[7] = 0.

UARTn+0000h Divisor Latch (LS)

UARTn DLL

Bit	15	14	13	12	11	10	9	8	7	6	5 4	3	2	1	0
Name											DLL	[7:0]			
Type							MA				R/	W			
Reset							J.				1				

UARTn+0004h Divisor Latch (MS)

UARTn_DLM

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												DLM	[7:0]			
Туре												R/	W			
Reset												()			

Note: DLL & DLM can only be updated if DLAB is set ("1").. Note too that division by 1 generates a BAUD signal that is constantly high.

Modified when LCR[7] = 1.

The table below shows the divisor needed to generate a given baud rate from CLK inputs of 13, 26 MHz and 52 MHz. The effective clock enable generated is 16 x the required baud rate.

	BAUD	6.5MHz	13MHz	26MHz	52MHz
	110	3693	7386	14773	29545
	300	1354	2708	5417	10833
	1200	338	677	1354	2708
	2400	169	338	677	1354
11.70	4800	85	169	339	677
11 41215	9600	42	85	169	339
Wonly.	19200	21	42	85	169
Min	38400	11	21	42	85
	57600	7	14	28	56

MediaTek Confidential

© 2011 MediaTek Inc.

Page 233 of 508

						010	
115200	*	6	14	28	DY.	20 .	
Table 47	Divisor	needed to ge	enerate a	riven baud	rate		

Table 47 Divisor needed to generate a given baud rate

UARTn+0008h Enhanced Feature Register

UARTN EFR

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		FG	11						AUTO CTS	AUTO RTS		ENABLE -E	SW	FLOW	CONT	[3:0]
Type									R/W	R/W		R/W		R	/W	
Reset	17	177							0	0		0	•	(0	

*NOTE: Only when LCR=BF'h

Auto CTS Enables hardware transmission flow control

Disabled.

Enabled.

Auto RTS Enables hardware reception flow control

Disabled.

Enabled.

Enable-E Enable enhancement features.

Disabled.

Enabled. 1

CONT[3:0] Software flow control bits.

00xx No TX Flow Control

10xx Transmit XON1/XOFF1 as flow control bytes

01xx Transmit XON2/XOFF2 as flow control bytes

lease for Transmit XON1 & XON2 and XOFF1 & XOFF2 as flow control words 11xx

xx00 No RX Flow Control

Receive XON1/XOFF1 as flow control bytes **xx10**

Receive XON2/XOFF2 as flow control bytes **xx01**

Receive XON1 & XON2 and XOFF1 & XOFF2 as flow control words **xx11**

UARTn+0010h XON1

UARTN XON1

Bit	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			777								XON1	1[7:0]			
Type											R/	W			
Reset											()			

MediaTek Confidential

© 2011 MediaTek Inc.

Page 234 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

UARTn+0014h XON2

UARTN XON2

Bit	15	14	13	12	11	10	9	8	7-	6	5	4	3	2	1	0
Name							K	7				XON	2[7:0]			
Type								41				R/	W			
Reset												()			

UARTn+0018h XOFF1

UARTn XOFF1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													1[7:0]			
Type												R	W			
Reset									M	717)			

UARTn+001Ch XOFF2

UARTn_XOFF2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												XOFF	2[7:0]			
Type												R/	W			
Reset										•	•	()	•	•	

^{*}Note: XON1, XON2, XOFF1, XOFF2 are valid only when LCR=BFh.

UARTn+0020h AUTOBAUD EN

UARTN AUTOBAUD EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																AUTO_EN
Туре																R/W
Reset																0

AUTOBAUD_EN Auto-baud enable signal

- Auto-baud function disable
- 1 Auto-baud function enable (UARTn+0024h SPEED should be set 0)

UARTn+0024h HIGH SPEED UART

UARTN HIGHSPEED

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		1				111									SPEE	0:1]
Type			M:	77/											R/	W
Reset		IV													0)

SPEED UART sample counter base

- based on 16*baud_pulse, baud_rate = system clock frequency/16/{DLH, DLL}
- 1 based on 8*baud_pulse, baud_rate = system clock frequency/8/{DLH, DLL}

MediaTek Confidential

© 2011 MediaTek Inc.

Page 235 of 508

- 2 based on 4*baud_pulse, baud_rate = system clock frequency/4/{DLH, DLL}
- 3 based on sampe_count * baud_pulse, baud_rate = system clock frequency / sampe_count / {DLM, DLL}

The table below shows the divisor needed to generate a given baud rate from CLK inputs of 13 MHz based on different HIGHSPEED value.

	BAUD	HIGHSPEED = 0	HIGHSPEED = 1	HIGHSPEED = 2
L'al	110	7386	14773	29545
Monta	300	2708	7386	14773
Mean	1200	677	2708	7386
	2400	338	677	2708
	4800	169	338	677
	9600	85	169	338
	19200	42	85	169
	38400	21	42	85
	57600	14	21	42
	115200	7	14	21
	230400	*	7	14
	460800	*	*	7
	921600	*	*	*

Table 48 Divisor needed to generate a given baud rate from 13MHz based on different HIGHSPEED value

The table below shows the divisor needed to generate a given baud rate from CLK inputs of 26 MHz based on different HIGHSPEED value.

	BAUD	HIGHSPEED = 0	HIGHSPEED = 1	HIGHSPEED = 2
	110	14773	29545	59091
	300	5417	14773	29545
	1200	1354	5417	14773
15 a T	2400	677	1354	5417
I biholla	4800	339	677	1354
Mean	9600	169	339	667
	19200	85	169	339

MediaTek Confidential

© 2011 MediaTek Inc.

Page 236 of 508

			1 00
38400	42	85	169
57600	28	42	85
115200	14	28	42
230400	7	14	28
460800	*	7	14
921600	*	*	7

Table 49 Divisor needed to generate a given baud rate from 26 MHz based on different HIGHSPEED value

The table below shows the divisor needed to generate a given baud rate from CLK inputs of 52MHz based on different HIGHSPEED value.

BAUD	HIGHSPEED = 0	HIGHSPEED = 1	HIGHSPEED = 2
110	29545	59091	118182
300	10833	29545	59091
1200	2708	10833	29545
2400	1354	2708	10833
4800	677	1354	2708
9600	339	677	1354
19200	169	339	677
38400	85	169	339
57600	56	85	169
115200	28	56	85
230400	14	28	56
460800	7	14	28
921600	*	7	14

Table 50

Divisor needed to generate a given baud rate from 52 MHz based on different HIGHSPEED value

MediaTek Confidential

© 2011 MediaTek Inc.

Page 237 of 508

UARTn+0028h SAMPLE_COUNT

UARTH SAMPLE COUNT

Bit	15	14	13	12	11	10	9	8	7 6	5	4	3	2	1	0
Name										SA	MPLEC	OUNT	[7:0]		
Type						10		7			R	/W			
Reset						7.1						0			

When HIGHSPEED=3, the sample_count is the threshold value for UART sample counter (sample_num). Count from 0 to sample_count.

UARTn+002Ch SAMPLE POINT

JARTN SAMPLE POINT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											SAI	MPLEP	OINT [7:0]		
Туре												R/	W			
Reset										<u> </u>		F	h	<u> </u>		

When HIGHSPEED=3, UART gets the input data when sample_count=sample_num.

e.g. system clock = 13MHz, 921600 = 13000000 / 14

sample_count = 14 and sample point = 6 (sample the central point to decrease the inaccuracy)

The SAMPLE_POINT is usually (SAMPLE_COUNT-1)/2 and remove the decimal.

UARTn+0030h AUTOBAUD_REG

UARTN AUTOBAUD REG

																_
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									В	AUD_S	TAT[3	:0]		BAUDR	ATE[3:0]
Type										F	RO			F	RO	
Reset											0				0	
BAUD	_RATO	115200 57600 38400 19200 9600 4800 2400		d baud	rate	011	id	er	ti	al	Re	je,	25	e T	01	
AA	7	1200		A												

BAUD RATE Autobaud baud rate

- 115200
- 57600
- 38400
- 19200
- 9600
- 4800
- 2400
- 1200
- 300
- 110

BAUDSTAT Autobaud format

MediaTek Confidential

© 2011 MediaTek Inc.

ion MCX

Page 238 of 508

МЕDIЛТЕК

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

- Confidential Release for Autobaud is detecting
- AT 7N1
- AT_701
- AT_7E1
- AT 8N1
- AT 801
- AT 8E1
- at 7N1
- at 7E1
- at 701
- **10** at 8N1
- **11** at 8E1
- **12** at 801
- **13** Autobaud detection fails

UARTn+0034h **Rate Fix Address**

UARTN_RATEFIX_AD

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													RESTRICT	FREQ_SEL	AUTOBAUD_RATE_FIX	RXTE_FIX
Type													R/W	R/W	R/W	R/W
Reset													0	0	0	0

Cenon MCX

RATE FIX

When you set "rate_fix" (34H[0]), you can transmit and receive data only if

- 1) the f13m_en is enable and the freq_sel (34H[2]) is set to 1, or
- 2) the f26m_en is enable and the freq_sel (34H[2]) is set to 0.

AUTOBAUD_RATE_FIX When you set "autobaud_rate_fix" (34H[1]), you can tx/rx the autobaud packet only if

- 1) the f13m_en is enable and the freq_sel (34H[2]) is set to 1, or
- 2) the f26m_en is enable and the freq_sel (34H[2]) is set to 0.

FREQ SEL

- Select f26m_en for rate_fix and autobaud_rate_fix 0
- Select f13m_en for rate_fix and autobaud_rate_fix

RESTRICT

The "restrict" (34H[3]) is used to set a more condition for the autobaud fsm starting point

non WCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 239 of 508

UARTn+0038h AUTOBAUDSAMPLE

UARTn_AUTOBAUDSA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							101	27			1	AUTOE	AUDS	AMPLE		
Type						111				R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset			7 6	$\mathbf{V} =$									dh			

Since the system clock may change, autobaud sample duration should change as system clock changes.

When system clock = 13MHz, autobaudsample = 6; when system clock = 26MHz, autobaudsample = 13.

UARTn+003Ch Guard time added register

UARTN GUARD

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												GUARD_ EN	GI	JARD_	CNT[3:	(0]
Type												R/W	R/W	R/W	R/W	R/W
Reset												0	0	0	0	0

GUARD_CNT Guard interval count value. Guard interval = (1/(system clock / div_step / div)) * GUARD_CNT. GUARD_EN Guard interval add enable signal.

- No guard interval added.
- 1 Add guard interval after stop bit.

UARTn+0040h Escape character register

UARTN ESCAPE DAT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											ES	CAPE_	DAT[7	:0]	- 1	
Type												R/	W		7/ 🗆	
Reset											- 1	FE	h			

ESCAPE_DAT Escape character added before software flow control data and escape character, i.e. if tx data is xon (31h), with esc_en =1, uart transmits data as esc + CEh (~xon).

UARTn+0044h Escape enable register

UARTn_ESCAPE_EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			76		DA											ESC_E N
Type		IV														R/W
Reset																0

ESC EN Add escape character in transmitter and remove escape character in receiver by UART.

O Do not deal with the escape character.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 240 of 508

Add escape character in transmitter and remove escape character in receiver.

UARTn+0048h Sleep enable register

UARTN SLEEP EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					6			211								SELL P_EN
Туре		1			TI'											R/W
Reset			14.						_							0

SLEEP EN For sleep mode issue

- Do not deal with sleep mode indicate signal
- To activate hardware flow control or software control according to software initial setting when chip enters sleep mode. Releasing hardware flow when chip wakes up; but for software control, uart sends xon when awaken and when FIFO does not reach threshold level.

UARTn+004Ch RX Virtual FIFO enable register

UARTN RXVFF EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																RXVF F_EN
Type																R/W
Reset																0

RXVFF_EN UART RX Virtual FIFO mechanism enable signal.

- Disable RX VFIFO mode.
- Enable RX VFIFO mode. When UART RX virtual mode is enabled, the flow control is based on the DMA threshold, and generates a timeout interrupt for DMA.

UARTn+0050h Rx Trigger Address

UAR [*]	Tn . O	050h	Dv T	riaao	r Add	lroco								JAKI	n_HX	CIRI_
UAN	111+0	USUII	nx i	rigge	i Auu	11622				1 1			13,	9		AD
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								M	VAY	// -				RXTR	IG [3:0]	
Type						, de	TAV							R/	/W	
Reset	<u> </u>					TAT	1101							(0	

RXTRIG When {rtm,rtl}=2'b11, The Rx FIFO threshold will be Rxtrig.

The value is suggested to be less than half of RX FIFO size, which is 24 Bytes.

UARTn+0054h Fractional Divider LSB Address

UARTN FRACDIV L

D.:	45	4.4	40	40	4.4	40	_	0	7	6	- F	4	^	_	4	^
Bit	15	14	13	12	11	10	9	8	Y	Ь	5	4	3	2	1	U

MediaTek Confidential

© 2011 MediaTek Inc.

Page 241 of 508

Confidential A

Name								FRAC				
Туре							•]]	R/	W			
Reset					0 0)	0	0	0	0	0	0

FRACDIV L Add sampling count (+1) from state data7 to data0, in order to contribute fractional divisor.

UARTn+0058h Fractional Divider MSB Address

UARTN FRACDIV M

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	にと														FRACI	M_VIC
Type										111					R/	W
Reset			•												0	0

FRACDIV M Add sampling count when in state stop to parity, in order to contribute fractional divisor.

UARTn+005Ch

FIFO Control Register

UARTH FCR RD

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									RFTL1	RFTL0	TFTL1	TFTL0	DMA1	CLRT	CLRR	FIFOE
Тур	е															RO

Please refer to UARTn_FCR register.

Real Time Clock

4.7.1 **General Description**

The Real Time Clock (RTC) module provides time and data information. The clock is based on a 32.768KHz oscillator with an independent power supply. When the mobile handset is powered off, a dedicated regulator supplies the RTC block. If the main battery is not present, a backup supply such as a small mercury cell battery or a large capacitor is used. In addition to providing timing data, an alarm interrupt is generated and can be used to power up the baseband core via the BBWAKEUP pin. Regulator interrupts corresponding to seconds, minutes, hours and days can be generated whenever the time counter value reaches a maximum value (e.g., 59 for seconds and minutes, 23 for hours, etc.). The year span is supported up to 2127. The maximum day-of-month values, which depend on the leap year condition, are stored in the RTC block.

Register Definitions

REGISTER ADDRESS	REGISTER NAME	-100			SYNONYM

MediaTek Confidential

© 2011 MediaTek Inc.

Page 242 of 508

		PCR IA.
0x810c_0000	Baseband power up	RTC_BBPU
0x810c_0004	RTC IRQ status	RTC_IRQ_STA
0x810c_0008	RTC IRQ enable	RTC_IRQ_EN
0x810c_000C	Counter increment IRQ enable	RTC_CII_EN
0x810c_0010	RTC alarm mask	RTC_AL_MASK
0x810c_0014	RTC seconds time counter register	RTC_TC_SEC
0x810c_0018	RTC minutes time counter register	RTC_TC_MIN
0x810c_001C	RTC hours time counter register	RTC_TC_HOU
0x810c_0020	RTC day-of-month time counter register	RTC_TC_DOM
0x810c_0024	RTC day-of-week time counter register	RTC_TC_DOW
0x810c_0028	RTC month time counter register	RTC_TC_MTH
0x810c_002C	RTC year time counter register	RTC_TC_YEA
0x810c_0030	RTC second alarm setting register	RTC_AL_SEC
0x810c_0034	RTC minute alarm setting register	RTC_AL_MIN
0x810c_0038	RTC hour alarm setting register	RTC_AL_HOU
0x810c_003C	RTC day-of-month alarm setting register	RTC_AL_DOM
0x810c_0040	RTC day-of-week alarm setting register	RTC_AL_DOW
0x810c_0044	RTC month alarm setting register	RTC_AL_MTH
0x810c_0048	RTC year alarm setting register	RTC_AL_YEA
0x810c_004C	XOSC bias current control register	RTC_XOSCCALI
0x810c_0050	RTC_POWERKEY1 register	RTC_POWERKEY1
0x810c_0054	RTC_POWERKEY2 register	RTC_POWERKEY2
0x810c_0058	PDN1	RTC_PDN1
0x810c_005C	PDN2	RTC_PDN2
0x810c_0064	Spare register for specific purpose	RTC_SPAR1
0x810c_0068	Lock / unlock scheme to prevent RTC miswriting	RTC_PROT
0x810c_006c	One-time calibration offset	RTC_DIFF
0x810c_0070	Repeat calibration offset	RTC_CALI
0x810c_0074	Enable the transfers from core to RTC in the queue	RTC_WRTGR

 Table 51 RTC Register Map

MediaTek Confidential

© 2011 MediaTek Inc.

Page 243 of 508

0x810c 0000 Baseband power up

RTC BBPU

0x810	c_00	00 i	Basel	oand	powe	er up				1 6	اما	6	15	R	TC_E	BBPU
Bit	15	14	13	12	11	10	9	8	7.7	6	5	4	3	2	1	0
Name				KEY_	BBPU	12.		211	DBIN G	CBUS Y	RELO AD	CLRP KY	AUTO	BBPU	WRITE_E N	PWRE N
Type				W	10	1.11			RO	RO	WO	WO	R/W	R/W	R/W	R/W

KEY_BBPU A bus write is acceptable only when KEY_BBPU=0x43.

DBING This bit indicates RTC is still de-bouncing.

CBUSY The read/write channels between RTC / Core is busy. This bit indicates high after software program sequence to anyone of RTC data registers and enable the transfer by RTC_WRTGR=1. By the way, it is high after the reset from low to high because RTC reload process.

RELOAD Reload the values from RTC domain to Core domain. Generally speaking, RTC will reload synchronize the data from RTC to core when reset from 0 to 1. This bit can be treated as debug bit.

CLRPKY Clear powerkey1 and powerkey2 at the same time. In some cases, software may clear powerkey1 & powerkey2. The BBWAKEUP depends on the matching specific patterns of powerkey1 and powerkey2. If any one of powerkey1 or powerkey2 or BBPU is cleared, BBWAKEUP goes low immediately. Software can't program the other control bits without power. By program RTC_BBPU with CLRPKY=1 and BBPU=0 condition, RTC can clear powerkey1, powerkey2 and BBPU at the same moment.

AUTO Controls if BBWAKEUP is automatically in the low state when SYSRST# transitions from high to low.

- BBWAKEUP is not automatically in the low state when SYSRST# transitions from high to low.
- BBWAKEUP is automatically in the low state when SYSRST# transitions from high to low.

BBPU Controls the power of PMIC. If powerkey1=A357h and powerkey2=67D2h, PMIC takes on the value programmed by software; otherwise PMIC is low.

- Power down
- Power on 1

WRITE_EN When WRITE_EN is write 0 by the MCU, the RTC programing interface is disabled immediately (MCU can't program RTC). After the debounce counter is time-out, the interface enabled again (MCU can program RTC). The debounce counter time-out period is decided by RTC_PDN1. Note that the WRITE_EN value read out is meaningless. The hardware only care about the "write-0 action" to WRITE EN control bit.

> When WRITE_EN==0, avoid to "read out RTC_BBPU, AND/OR something and write back", like this -> *RTC_BBPU=*RTC_BBPU|RTC_BBPU_KEY|0x1. This would disable RTC write interface for a while and hard to debug.

- RTC alarm has no action on power switch.
- When an RTC alarm occurs, BBPU is set to 1 and the system powers on by RTC alarm wakeup.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 244 of 508

Confidential A

0x810c_0004 RTC IRQ status

RTC IRQ STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							7.1	31	HI						TCST A	ALST A
Туре								9-							R/C	R/C

ALSTA This register indicates the IRQ status and whether or not the alarm condition has been met.

- O No IRQ occurred; the alarm condition has not been met.
- 1 IRQ occurred; the alarm condition has been met.

TCSTA This register indicates the IRQ status and whether or not the tick condition has been met.

- No IRQ occurred; the tick condition has not been met.
- 1 IRQ occurred; the tick condition has been met.

0x810c_0008 RTC IRQ enable

RTC IRQ EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														ONESHO T	TC_E N	AL_E N
Type														R/W	R/W	R/W

The function is only active when RTC_POWERKEY1 & RTC_POWERKEY2 match the correct values.

ONESHOT Controls automatic reset of AL EN and TC EN.

AL_EN This register enables the control bit for IRQ generation if the alarm condition has been met.

- **0** Disable IRQ generations.
- 1 Enable the alarm time match interrupt. Clear the interrupt when ONESHOT is high upon generation of the corresponding IRQ.

TC_EN This register enables the control bit for IRQ generation if the tick condition has been met.

- **0** Disable IRQ generations.
- 1 Enable the tick time match interrupt. Clear the interrupt when ONESHOT is high upon generation of the corresponding IRQ.

0x810c 000C Counter increment IRQ enable

RTC_CII_EN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				7.7			1/8SEC	1/4SEC	1/2SEC	YEAC	MTHC	DOW	DOM	HOUC	MINCI	SECC
Ivaille		TU		777			CII	CII	CII	- II	II	CII	CII	H II	1	II .
Type		110					R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

This register activates or de-activates the IRQ generation when the TC counter reaches its maximum value.

SECCII Set this bit to 1 to activate the IRQ at each second update.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 245 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

MINCII Set the bit to 1 to activate the IRQ at each minute update.

HOUCIISet the bit to 1 to activate the IRO at each hour update.

lelease fo Set the bit to 1 to activate the IRQ at each day-of-month update

DOWCII Set the bit to 1 to activate the IRQ at each day-of-week update.

MTHCII Set the bit to 1 to activate the IRQ at each month update.

YEACII Set the bit to 1 to activate the IRQ at each year update.

1/2SECCII Set the bit to 1 to activate the IRQ at each one-half of a second update.

1/4SECCII Set the bit to 1 to activate the IRQ at each one-fourth of a second update.

1/8SECCII Set the bit to 1 to activate the IRO at each one-eighth of a second update.

0x810c_0010 RTC alarm mask

RTC_AL_MASK

Bit	15	14	13	12	11	10 9	8	7	6	5	4	3	2	1	0
Name									YEA_M SK	MTH_M SK	DOW_M SK	DOM_M SK	HOU_M SK	MIN_MS K	SEC_M SK
Type									R/W						

The alarm condition for alarm IRQ generation depends on whether or not the corresponding bit in this register is masked. Warning: If you set all bits 1 in RTC_AL_MASK (i.e. RTC_AL_MASK=0x7f) and PWREN=1 in RTC_BBPU, it means alarm comes EVERY SECOND, not disabled.

SEC_MSK

- 0 Condition (RTC_TC_SEC = RTC_AL_SEC) is checked to generate the alarm signal.
- 1 Condition (RTC_TC_SEC = RTC_AL_SEC) is masked, i.e. the value of RTC_TC_SEC does not affect the alarm IRQ generation.

MIN_MSK

- Condition (RTC_TC_MIN = RTC_AL_MIN) is checked to generate the alarm signal.
- Condition (RTC_TC_MIN = RTC_AL_MIN) is masked, i.e. the value of RTC_TC_MIN does not affect the alarm IRQ generation.

HOU MSK

- Condition (RTC_TC_HOU = RTC_AL_HOU) is checked to generate the alarm signal.
- Condition (RTC_TC_HOU = RTC_AL_HOU) is masked, i.e. the value of RTC_TC_HOU does not affect the alarm IRQ generation.

DOM MSK

- Condition (RTC_TC_DOM = RTC_AL_DOM) is checked to generate the alarm signal.
- Condition (RTC_TC_DOM = RTC_AL_DOM) is masked, i.e. the value of RTC_TC_DOM does not affect the alarm IRQ generation.

DOW MSK

Condition (RTC_TC_DOW = RTC_AL_DOW) is checked to generate the alarm signal.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 246 of 508

МЕДІЛІТЕК

1 Condition (RTC_TC_DOW = RTC_AL_DOW) is masked, i.e. the value of RTC_TC_DOW does not affect the alarm IRQ generation.

MTH MSK

- O Condition (RTC_TC_MTH = RTC_AL_MTH) is checked to generate the alarm signal.
- 1 Condition (RTC_TC_MTH = RTC_AL_MTH) is masked, i.e. the value of RTC_TC_MTH does not affect the alarm IRQ generation.

YEA MSK

- Ocondition (RTC_TC_YEA = RTC_AL_YEA) is checked to generate the alarm signal.
- 1 Condition (RTC_TC_YEA = RTC_AL_YEA) is masked, i.e. the value of RTC_TC_YEA does not affect the alarm IRQ generation.

0x810c_0014 RTC seconds time counter register

RTC_TC_SEC

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name											TC_SECOND							
Type											R/W							

TC SECOND The second initial value for the time counter. The range of its value is: 0-59.

0x810c_0018 RTC minutes time counter register

RTC TC MIN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													TC_M	NUTE		
Type													R/	W		

TC_MINUTE The minute initial value for the time counter. The range of its value is: 0-59.

0x810c_001C RTC hours time counter register

RTC TC HOU

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											14		T	C_HOU	IR	
Type									1 7					R/W		

TC HOUR The hour initial value for the time counter. The range of its value is: 0-23.

0x810c_0020 RTC day-of-month time counter register

RTC_TC_DOM

Bit	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									M			T	C_DON	/ I	
Type									1//1				R/W		

MediaTek Confidential

© 2011 MediaTek Inc.

Page 247 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

TC_DOM The day-of-month initial value for the time counter. The day-of-month maximum value depends on the leap year condition, i.e. 2 LSB of year time counter are zeros.

0x810c_0024 RTC day-of-week time counter register

RTC_TC_DOW

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				1										T	C_DOV	V
Type	4	TL'													R/W	

TC_DOW The day-of-week initial value for the time counter. The range of its value is: 1-7.

0x810c 0028 RTC month time counter register

RTC_TC_MTH

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														TC_M	ONTH	
Туре														R/	W	

TC_MONTH The month initial value for the time counter. The range of its value is: 1-12.

0x810c 002C RTC year time counter register

RTC_TC_YEA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												AL	SECO	ND		
Type													R/W			

TC YEAR The year initial value for the time counter. The range of its value is: 0-127. (2000-2127)

0x810c_0030 RTC second alarm setting register

RTC AL SEC

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									1		42		AL_S	ECOND		
Type									TL				F	R/W		

AL_SECOND The second value of the alarm counter setting. The range of its value is: 0-59.

0x810c 0034 RTC minute alarm setting register

RTC_AL_MIN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	14									M			AL_M	INUTE		
Type										1.11			R/	W		

AL_MINUTE The minute value of the alarm counter setting. The range of its value is: 0-59.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 248 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕDIЛТЕК

0x810c_0038 RTC hour alarm setting register

RTC AL HOU

									1 6		e	15	3 1	01	
0x81	0c_0	038	RTC	hour	alarr	n settinç	g regist	er	11 1				RTC	_AL _	_HOU
Bit	15	14	13	12	11	10 9	9 8	7	6	5	4	3	2	1	0
Name												Α	L_HOL	JR	
Type					M		5 -						R/W		

AL HOUR The hour value of the alarm counter setting. The range of its value is: 0-23.

0x810c_003C RTC day-of-month alarm setting register

RTC_AL_DOM

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								1.1					<u> </u>	L_DOI	/	
Type									,					R/W		

AL DOM The day-of-month value of the alarm counter setting. The day-of-month maximum value depends on the leap year condition, i.e. 2 LSB of year time counter are zeros.

0x810c_0040 RTC day-of-week alarm setting register

RTC_AL_DOW

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														A	L_DOV	N
Type															R/W	

AL DOW The day-of-week value of the alarm counter setting. The range of its value is: 1-7.

0x810c_0044 RTC month alarm setting register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1 0
Name														AL_MONTH
Type											•	14	A	R/W

AL MONTH The month value of the alarm counter setting. The range of its value is: 1-12.

0x810c 0048 RTC year alarm setting register

RTC AL YEA

Bit	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											Α	L_YEA	R		
Type												R/W			

The year value of the alarm counter setting. The range of its value is: 0-127. (2000-2127)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 249 of 508

0x810c_004C XOSC bias current control register

RTC_XOSCCAI

Bit	15	14	13	12	11	10 9	8	7	6	5	4	3	2	1	0
Name							71					X	OSCCA	LI	
Type													WO		

The function is only active when RTC_POWERKEY1 & RTC_POWERKEY2 match the correct values. **XOSCCALI** This register controls the XOSC32 bias current.

0x810c_0050 RTC_POWERKEY1 register

RTC_POWERK

EY1

Bit	15	14	13	12	11	10 9 8	7	6	5	4	3	2	1	0
Name						RTC_POV	VERKE	Υ1						
Type						R/	W							

0x810c_0054 RTC_POWERKEY2 register

RTC_POWERK

EY2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							RT	C_POV	VERKE	Y2						
Type								R/	W							

These register sets are used to determine if the real time clock has been programmed by software; i.e. the time value in real time clock is correct. When the real time clock is first powered on, the register contents are all undefined, therefore the time values shown are incorrect. Software needs to know if the real time clock has been programmed. Hence, these two registers are defined to solve this power-on issue. After software programs the correct value, these two register sets do not need to be updated. In addition to programming the correct time value, when the contents of these register sets are wrong, the interrupt is not generated. Therefore, the real time clock does not generate the interrupts before the software programs the registers; unwanted interrupt due to wrong time value do not occur. The correct values of these two register sets are:

RTC_POWERKEY1 A357h RTC POWERKEY2 67D2h

0x810c 0058 PDN1

RTC_PDN1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	IIII	F	RTC_PE	N1[7:0)]		
Type									14			R/	W			

MediaTek Confidential

© 2011 MediaTek Inc.

Page 250 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛТЕК

RTC_PDN1[3:1] is for reset de-bounce mechanism. When RTC_POWERKEY1 & RTC_POWERKEY2 do not match the correct values, RTC_PDN1[3:1] is set to 3 (011 in binary). Confider

- 2ms
- 8ms 1
- 32ms
- 128ms
- 256ms
- 512ms
- 1024ms
- 2048ms

RTC_PDN1[7:4] & RTC_PDN1[0] is the spare register for software to keep power on and power off state information.

0x810c_005C PDN2

RTC PDN2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											F	TC_PE	N2[7:0]		
Type												R/	W			

RTC_PDN2 The spare register for software to keep power on and power off state information.

0x810c_0064 Spare register for specific purpose

RTC SPAR1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RTC_S	PAR1							
Type								R/	W							

RTC_SPAR1 This register is reserved for specific purpose.

0x810c 0068 Lock / unlock scheme to prevent RTC miswriting

RTC PROT

Bit	15	14	13	12	11	10 9	8	7 6	5	4	3	2	1	0
Name							RTC	PROT						
Type							F	R/W						

RTC_PROTThe RTC write interface is protected by RTC_PROT. Whether the RTC writing interface is enabled or not is decided by RTC_PROT contents. When RTC_POWERKEY1 & RTC_POWERKEY2 are not equal to the correct values, the RTC writing interface is always enabled. But when they match, users have to perform Unlock flow to enable the writing interface.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 251 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Unlock flow: Step1: *RTC_PROT=0x586a;

Step2: *RTC_WRTRG=1;

Step3: while(*RTC_BBPU & 0x40) {}; // Timeout period: 120usec

Step4: *RTC_PROT=0x9136;

Step5: *RTC_WRTRG=1; Step6: while(*RTC_BBPU & 0x40) {}; // Timeout period: 120usec Step1: *RTC_PROT=0x0; Step2: *RTC_WRTRG=1;

Lock flow:

Step3: while(*RTC_BBPU & 0x40) {}; // Timeout period: 120usec

Once the normal RTC content writing is complete, it is suggested to perform Lock flow to turn off the interface to avoid accident writing.

The RTC_PROT contents will be corrupt when reset

0x810c 006c One-time calibration offset

RTC DIFF

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										RTC_	DIFF					
Type										R/	W					

The function is only active when RTC_POWERKEY1 & RTC_POWERKEY2 match the correct values.

RTC DIFF These registers are used to adjust the internal counter of RTC. It effects once and returns to zero in done.

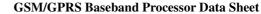
In some cases, you observe the RTC is faster or slower than the standard. To change RTC_TC_SEC is coarse and may cause alarm problem. RTC_DIFF provides a finer time unit. An internal 15-bit counter accumulates in each 32768-HZ clock. Entering a non-zero value into the RTC_DIFF causes the internal RTC counter increases or decreases RTC_DIFF when RTC_DIFF changes to zero again. RTC_DIFF represents as 2's completement form.

For example, if you fill in 0xfff into RTC_DIFF, the internal counter decreases 1 when RTC_DIFF returns to zero. In other words, you can only use RTC_DIFF continuously if RTC_DIFF is equal to zero now.

Note: RTC_DIFF ranges from 0x800 (-2048) to 0x7fd (2045). 0x7ff & 0x7fe are forbid to use.

0x810c_0070 Repeat calibration offset

RTC CALI


Bit 15	 10	12	11	10	J	0	/	Ь	3	4	<u>ა</u>	 l l	U
Name							14			R	TC_CA		

MediaTek Confidential

🔊 2011 MediaTek Inc.

Page 252 of 508

Confidential A

Ty	/ре					R/W

The function is only active when RTC_POWERKEY1 & RTC_POWERKEY2 match the correct values.

RTC_CALI These registers provide a repeat calibration scheme. RTC_CALI provides 7-bit calibration capability in 8-second duration; in other words, 5-bit calibration capability in each second. RTC_CALI represents in 2's complement form, such that you can adjust RTC increasing or decreasing.

Due to RTC_CALI is revealed in 8 seconds, the resolution is less than a 1/32768 clock.

Avg. resolution: 1/32768/8=3.81us

Avg. adjust range: -0.244~0.240ms/sec in 2's complement: -0x40~0x3f (-64~63)

0x810c 0074 Enable the transfers from core to RTC in the queue **RTC WRTGR**

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																WRTG R
Туре																WO

WRTGR This register enables the transfers from core to RTC. After you modify all the RTC registers you'd like to change, you must write RTC_WRTGR to 1 to trigger the transfer. The prior writing operations are queued at core power domain. The pending data will not be transferred to RTC domain until WRTGR=1. After WRTGR=1, the pending data is transferred to RTC domain sequentially in order of register address, from low to high. For example: RTC_BBPU -> RTC_IRQ_EN -> RTC_CII_EN -> RTC_AL_MASK -> RTC TC SEC -> etc. The CBUSY in RTC BBPU is equal to 1 in writing process. You can observe CBUSY to tial Release fr determine when the transmission completes.

Auxiliary ADC Unit 4.8

The auxiliary ADC unit is used to monitor the status of the battery and charger, to identify the plugged peripheral, and to perform temperature measurement. Seven input channels allow diverse applications in this unit.

MediaTek Confidential

© 2011 MediaTek Inc.

ion MC

Page 253 of 508

Confidential A

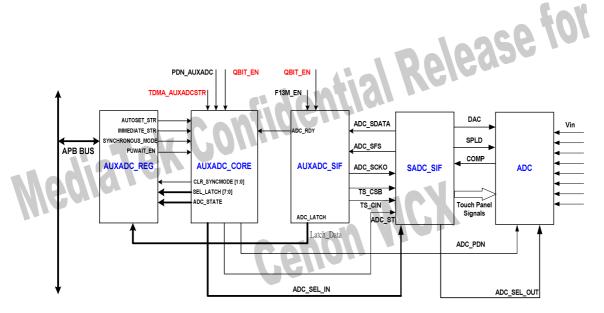


Figure 36 Auxadc Architecture

Each channel can operate in one of two modes: immediate mode and timer-triggered mode. The mode of each channel can be individually selected through register AUXADC_CON0. For example, if the flag SYN0 in the register AUXADC_CON0 is set, the channel 0 is set in timer-triggered mode. Otherwise, the channel operates in immediate mode.

In immediate mode, the A/D converter samples the value once only when the flag in the AUXADC_CON1 register has been set. For example, if the flag IMM0 in AUXADC_CON1 is set, the A/D converter samples the data for channel 0. The IMM flags must be cleared and set again to initialize another sampling.

The value sampled for channel 0 is stored in register AUXADC_DAT0, the value for channel 1 is stored in register AUXADC_DAT1, etc.

If the AUTOSET flag in the register AUXADC_CON3 is set, the auto-sample function is enabled. The A/D converter samples the data for the channel in which the corresponding data register has been read. For example, in the case where the SYN1 flag is not set, the AUTOSET flag is set, when the data register AUXADC_DAT0 has been read, the A/D converter samples the next value for channel 1 immediately.

If multiple channels are selected at the same time, the task is performed sequentially on every selected channel. For example, if AUXADC_CON1 is set to 0x7f, that is, all 7 channels are selected, the state machine in the unit starts sampling from channel 6 to channel 0, and saves the values of each input channel in the respective registers. The same process also applies in timer-triggered mode.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 254 of 508

In timer-triggered mode, the A/D converter samples the value for the channels in which the corresponding SYN flags are set when the TDMA timer counts to the value specified in the register TDMA AUXEV1, which is placed in the TDMA timer. For example, if AUXADC CON0 is set to 0x7f, all 7 channels are selected to be in timer-triggered mode. The state machine samples all 7 channels sequentially and save the values in registers from AUXADC_DAT0 to AUXADC_DAT6, as it does in immediate mode.

There is a dedicated timer-triggered scheme for channel 0. This scheme is enabled by setting the SYN7 flag in the register AUXADC CON2. The timing offset for this event is stored in the register TDMA_AUXEV0 in the TDMA timer. The sampled data triggered by this specific event is stored in the register AUXADC DAT7. It is used to separate the results of two individual software routines that perform actions on the auxiliary ADC unit.

The AUTOCLRn in the register AUXADC_CON3 is set when it is intended to sample only once after setting timer-triggered mode. If AUTOCLR1 flag has been set, after the data for the channels in timer-triggered mode has been stored, the SYNn flags in the register AUXADC_CON0 are cleared. If AUTOCLR0 flag has been set, after the data for the channel 0 has been stored in the register AUXADC_DAT7, the SYN7 flag in the register AUXADC_CON2 is cleared.

The usage of the immediate mode and timer-triggered mode are mutually exclusive in terms of individual channels.

The PUWAIT EN bit in the registers AUXADC CON3 is used to power up the analog port in advance. This ensures that the power has ramped up to the stable state before A/D converter starts the conversion. The analog part is automatically powered down after the conversion is completed.

There are only two external pins (channel 4~5) for voltage detection. The other channels (0~3) are for battery voltage, battery current, and charger, respectively.

Touch Panel:

MediaTek Confidential Release for non WCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 255 of 508

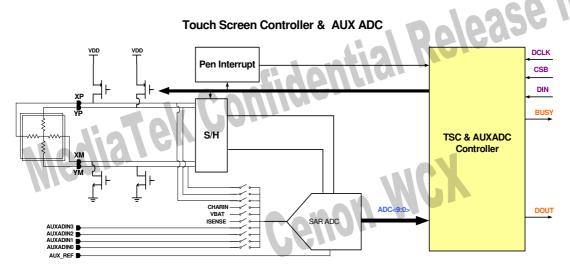


Figure 37 Touch Panel Circuit Structure

Besides the normal sampling of external input voltage, auxadc includes the sampling of the touch panel function. For the specified axis, SW should program AUX_TS_CMD first, and then trigger touch panel's sample in the register AUX_TS_CON. The touch panel sampling waveform is shown as follows. After SW polls status bit in the register AUXADC_CON3 to know that the touch panel sample is finished. SW can read back the specified axis value from the register AUX_TS_DAT0.

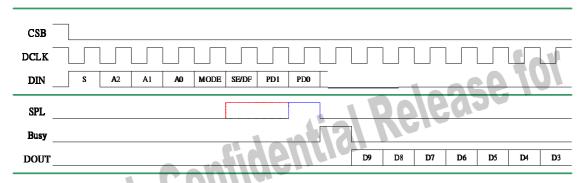


Figure 38 Touch Panel Sampling Waveform

S: Start bit

A2~A0: Addressing bits

Mode: 10bit or 8bit

MediaTek Confidential

© 2011 MediaTek Inc.

on W

Page 256 of 508

SE/DF: Single End or Differential mode

PD1~0: Power Down Command

following to? These values are defined in the register AUX_TS_CMD. In the following table, it shows the relationship between AUX_TS_CMD and touch panel control signals.

-							
SE/DFB	A2	A1	A0	X/Y Driver	X/Y Pass	SEL< 3:0 >	NOTE
0	0	0	0	ALL OFF	ALL OFF		TBD
0	0	0	1	X+ / X- off Y+ / Y- on	X+/X-off Y+/Y-on	1000	Y Position
0	0	1	0	ALL OFF	ALL OFF	0011	IN3
0	0	1	1	X+ / Y- off Y+ / X- on	X+ / Y- off Y+ / X- on	1000	Z ₁ Position
0	1	0	0	X+ / Y- off Y+ / X- on	X+ / Y- off Y+ / X- on	1010	Z ₂ Position
0	1	0	1	X+ / X- on Y+ / Y- off	X+ / X · on Y+ / Y · off	1001	X Position
0	1	1	0	ALL OFF	ALL OFF	0100	IN4
0	1	1	1	ALL OFF	ALL OFF		TBD
1	0	0	0	ALL OFF	ALL OFF		TBD
1	0	0	1	X+ / X- off Y+ / Y- on	ALL OFF	1000	Y Position
1	0	1	0	ALL OFF	ALL OFF	0011	IN3
1	0	1	1	X+ / Y- off Y+ / X- on	ALL OFF	1000	Z ₁ Position
1	1	0	0	X+ / Y- off Y+ / X- on	ALL OFF	1010	Z ₂ Position
1	1	0	1	X+ / X- on Y+ / Y- off	ALL OFF	1001	X Position
1	1	1	0	ALL OFF	ALL OFF	0100	IN4
1	1	1	1	ALL OFF	ALL OFF		TBD

Table 52 Relationship between commands and touch panel control signals

Register Definitions 4.8.1

1	ween commands and touch panel control signals r Definitions	se for
Register Address	Register Function	Acronym
0x82050000	Auxiliary ADC control register 0	AUXADC_CON0
0x82050004	Auxiliary ADC control register 1	AUXADC_CON1
0x82050008	Auxiliary ADC control register 2	AUXADC_CON2
0x82050010	Auxiliary ADC channel 0 data register	AUXADC_DAT0
0x82050014	Auxiliary ADC channel 1 data register	AUXADC_DAT1
0x82050018	Auxiliary ADC channel 2 data register	AUXADC_DAT2
0x8205001C	Auxiliary ADC channel 3 data register	AUXADC_DAT3

MediaTek Confidential

© 2011 MediaTek Inc.

Page 257 of 508

0x82050020	Auxiliary ADC channel 4 data register	AUXADC_DAT4
0x82050024	Auxiliary ADC channel 5 data register	AUXADC_DAT5
0x82050028	Auxiliary ADC channel 6 data register	AUXADC_DAT6
0x8205002C	Auxiliary ADC channel 0 data register for TDMA event 0	AUXADC_DAT7
0x82050030	Touch Screen Debounce Time	AUX_TS_DEBT
0x82050034	Touch Screen Sample Command	AUX_TS_CMD
0x82050038	Touch Screen Control	AUX_TS_CON

Table 53 Auxadc Registers

0x82050000 Auxiliary ADC control register 0

AUXADC CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										SYN6	SYN5	SYN4	SYN3	SYN2	SYN1	SYN0
Type										R/W						
Reset										0	0	0	0	0	0	0

SYNn These 7 bits define whether the corresponding channel is sampled or not in timer-triggered mode. It is associated with timing offset register TDMA_AUXEV1. It supports multiple flags. The flags can be automatically cleared after those channel have been sampled if AUTOCLR1 in the register AUXADC_CON3 is set. To monitor ISENSE and BATSNS, ISENSE_OUT_EN & VBAT_OUT_EN in the register PMIC_CONG (Analog Front End functional spec) must be set to 1 in advanced.

- The channel is not selected.
- The channel is selected.

0x82050004 Auxiliary ADC control register 1

AUXADC_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									7	IMM6	IMM5	TMM4	IMM3	IMM2	IMM1	IMMO
Type							RY	7//		R/W						
Reset						7	I , Γ			0	0	0	0	0	0	0

MM*n* These 7 bits are set individually to sample the data for the corresponding channel. It supports multiple flags.

- The channel is not selected.
- 1 The channel is selected.

0x82050008 Auxiliary ADC control register 2

AUXADC CON2

	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
--	-----	----	----	----	----	----	----	---	---	---	---	---	---	---	---	---	---

MediaTek Confidential

© 2011 MediaTek Inc.

Page 258 of 508

Name							IN			SYN7
Type						1.7	17	A		R/W
Reset					47.					0

SYN7 This bit is used only for channel 0 and is to be associated with timing offset register TDMA_AUXEV0 in the TDMA timer in timer-triggered mode. The flag can be automatically cleared after channel 0 has been sampled if AUTOCLR0 in the register AUXADC_CON3 is set.

- The channel is not selected.
- 1 The channel is selected.

0x8205000C Auxiliary ADC control register 3

AUXADC CON3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	AUTO SET				PUW AIT_E N		AUTO CLR1									STA
Type	R/W				R/W		R/W	R/W								RO
Reset					0	•	0	0								0

AUTOSET This field defines the auto-sample mode of the module. In auto-sample mode, each channel with its sample register being read can start sampling immediately without configuring the control register AUXADC_CON1 again.

PUWAIT_EN Thus field enables the power warm-up period to ensure power stability before the SAR process takes place. It is recommended to activate this field.

- The mode is not enabled.
- 1 The mode is enabled.

AUTOCLR1 The field defines the auto-clear mode of the module for event 1. In auto-clear mode, each timer-triggered channel gets samples of the specified channels once the SYNn bit in the register AUXADC_CON0 has been set. The SYNn bits are automatically cleared and the channel is not enabled again by the timer event except when the SYNn flags are set again.

- **0** The automatic clear mode is not enabled.
- 1 The automatic clear mode is enabled.

AUTOCLR0 The field defines the auto-clear mode of the module for event 0. In auto-clear mode, the timer-triggered channel 0 gets the sample once the SYN7 bit in the register AUXADC_CON2 has been set. The SYN7 bit is automatically cleared and the channel is not enabled again by the timer event 0 except when the SYN7 flag is set again.

- The automatic clear mode is not enabled.
- 1 The automatic clear mode is enabled.

STA The field defines the state of the module.

This module is idle.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 259 of 508

1 This module is busy.

0x82050010 Auxiliary ADC channel 0 register

Release IUI AUXADC_DATO

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						107					DA	AT				
Type						111					R	0				
Reset					J						()				

The register stores the sampled data for the channel 0. There are 8 registers of the same type for the corresponding channel . The overall register definition is listed in **Table 54**.

Register Address	Register Function	Acronym
0x82050010	Auxiliary ADC channel 0 data register	AUXADC_DAT0
0x82050014	Auxiliary ADC channel 1 data register	AUXADC_DAT1
0x82050018	Auxiliary ADC channel 2 data register	AUXADC_DAT2
0x8205001C	Auxiliary ADC channel 3 data register	AUXADC_DAT3
0x82050020	Auxiliary ADC channel 4 data register	AUXADC_DAT4
0x82050024	Auxiliary ADC channel 5 data register	AUXADC_DAT5
0x82050028	Auxiliary ADC channel 6 data register	AUXADC_DAT6
0x8205002C	Auxiliary ADC channel 0 data register for TDMA event 0	AUXADC_DAT7

Table 54 Auxiliary ADC data register list

0x82050030 Touch Screen Debounce Time

AUX TS DEBT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1 0
Name								DI	BOUN	ICE TIN	1E			
Type									R/	W			14.	
Reset									()				

DEBOUNCE TIME While the analog touch screen irq signal is from high to low level, auxadc will issue an interrupt after the debounce time.

0x82050034 Touch Screen Sample Command

AUX_TS_CMD

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	1.71	L								A	DDRES	S	MODE	SE/DF	P	D
Type										R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset									\ \	0	0	0	0	0	0	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 260 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

MEDIATEK

confidential Release for **ADDRESS** Define which x or y or z data will be sampled.

001 Y Position

011 Z1 Position

100 **Z2** Position

101 X Position

Others Reserved

MODE Select the sample resolution

10-bit resolution

8-bit resolution

SE/DF Mode selection

Differential mode

Single-end mode

PD Power down control for analog IRQ signal and touch screen sample control signal

00 Turn on Y- drive signal and PDN sh ref

01 Turn on PDN_IRQ and PDN_sh_ref

10 Reserved

11 Turn on PDN_IRQ

0x82050038 **Touch Screen Control**

AUX TS CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															ST	SPL
Type															R	R/W
Reset															0	0

- **SPL** Touch Screen Sample Trigger
 - No Action
 - While SW writes 1'b1, auxadc will trigger the touch screen process. After the sample process of touch screen finishes, this bit will be disserted.
- ST **Touch Screen Status**
 - Touch Screen is idle.
 - Touch Screen is touched.

Touch Screen Sample DATA 0x8205003C

AUX TS DATO

Bit	15	14	13	12	11	10	9	8	7	6	M	5	4	3	2	1	0
Name									8		I,	D	ΑT				

MediaTek Confidential

© 2011 MediaTek Inc.

Page 261 of 508

Confidential A

Туре				RO
Reset				

This register stores the touch screen sample data.

4.9 I2C / SCCB Controller

4.9.1 General Description

I2C (Inter-IC) /SCCB (Serial Camera Control Bus) is a two-wire serial interface. The two signals are SCL and SDA. SCL is a clock signal that is driven by the master. SDA is a bi-directional data signal that can be driven by either the master or the slave. This generic controller supports the master role and conforms to the I2C specification.

4.9.1.1 Feature Support

I2C compliant master mode operation

Adjustable clock speed for LS/FS mode operation.

7bit/10 bit addressing support.

High Speed mode support.

Slave Clock Extension support.

START/STOP/REPEATED START condition

Manual/DMA Transfer Mode

Multi write per transfer (up to 8 data bytes for non dma mode and 255 data bytes for dma mode)

Multi read per transfer (up to 8 data bytes for non dma mode and 255 data bytes for dma mode)

Multi transfer per transaction (up to 256 write transfers or 256 read transfers with dma mode)

DMA mode with Fifo Flow Control and bus signal holding

Combined format transfer with length change capability.

Active drive / wired-and I/O configuration

MediaTek Confidential

© 2011 MediaTek Inc.

on WCX

Page 262 of 508

4.9.1.2 Manual/DMA Transfer Mode

The controller offers 2 types of transfer mode, Manual and DMA.

I Release When Manual mode is selected, in addition to the slave address register, the controller has a built-in 8byte deep FIFO which allows mcu to prepare up to 8 bytes of data for a write transfer, or read up to 8 bytes of data for a read transfer.

When DMA mode is enabled, the data to and from the FIFO is controlled via DMA transfer and can therefore support up to 255 bytes of consecutive read or write, with the data read from or write to another memory space. When DMA mode is enabled, flow control mechanism is also implemented to hold the bus clk when FIFO underflow or overflow condition is encountered.

4.9.1.3

Transfer format support This controller has been designed to be as generic as possible in order to support a wide range of devices that may utilize different combinations of transfer formats. Here are the transfer format types that can be supported through different software configuration:

(Wording convention note:

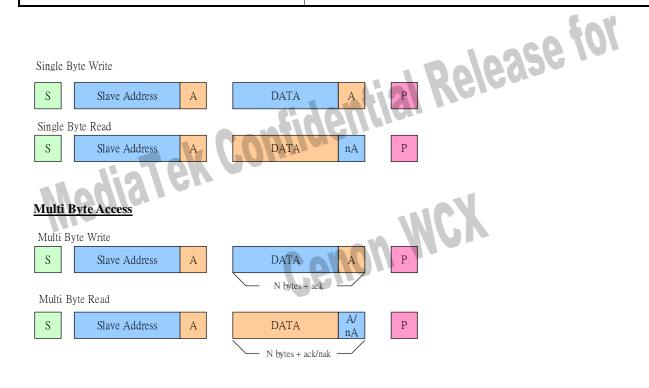
transfer = anything encapsulated within a Start and Stop or Repeated Start.

transfer length = the number of bytes within the transfer.

transaction = this is the top unit. Everything combined equals 1 transaction.

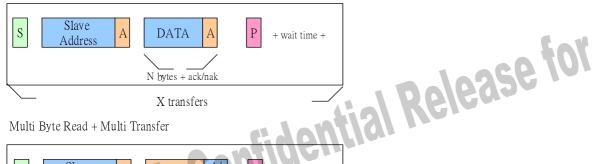
Transaction length = the number of transfers to be conducted.

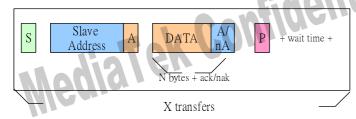
Single Byte Access


MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

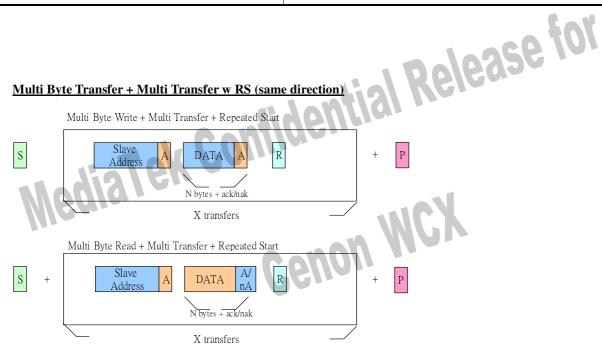

Page 263 of 508



Multi Byte Transfer + Multi Transfer (same direction)

Multi Byte Write + Multi Transfer

Multi Byte Read + Multi Transfer


MediaTek Confidential

© 2011 MediaTek Inc.

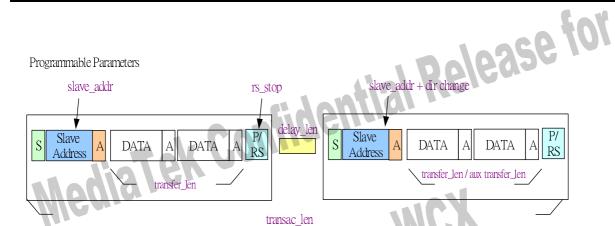
Page 264 of 508

Multi Byte Transfer + Multi Transfer w RS (same direction)

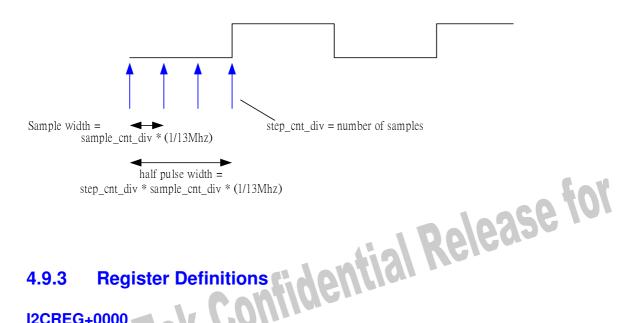
Combined Write/Read with Repeated Start (direction change)

(Note: Only supports Write and then Read sequence. Read and then Write is not supported)

Combined Multi Byte Write + Multi Byte Read


Programming Examples 4.9.2

Common Transfer Programmable Parameters


MediaTek Confidential

non WCX © 2011 MediaTek Inc.

Page 265 of 508

Output Waveform Timing Programmable Parameters

Register Definitions 4.9.3

I2CREG+0000 **Data Port Register**

DATA_PORT

Bit	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									T T		FIFO	DATA			
Type									II/II		R/	W			
Reset								4			()			

MediaTek Confidential

© 2011 MediaTek Inc.

Page 266 of 508

Confidential A

This is the FIFO access port. During master write sequences (slave addr[0] = 0), this DATA_PORT[7:0] port can be written by APB, and during master read sequences (slave_addr[0] = 1), this port can be read by APB.

Slave_addr must be set correctly before accessing the fifo.

(DEBUG ONLY) If the fifo_apb_debug bit is set, then the FIFO can be read and write by the

APB

Slave Address Register

SLAVE ADDR

h		Mo	Slave	e Ado	Iress	Regi	ster			- 41	A		SLA	VE_A	ADDR
Bit	15	14	13	12	11	10	9	8	7	6	5 4	3	2	1	0
Name											SLAVE	_ADDF	7		
Type								'. \ \			R	/W			
Reset									1	<u> </u>	•	0	<u> </u>		

SLAVE ADDR [7:0] This specifies the slave address of the device to be accessed. Bit 0 is defined by the I2C protocol as a bit that indicates the direction of transfer. 1 = master read, 0 = master write.

I2CREG+0008

Interrupt Mask Register

INTR MASK

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name													DEBU G	HS_N ACKE R	ACKE RR	TRAN SAC_ COM P
Type													R.W	R/W	R/W	R/W
Reset													1	1	1	1

This register provides masks for the corresponding interrupt sources as indicated in intr_stat register.

1 = allow interrupt

0 = disable interrupt

Note: while disabled, the corresponding interrupt will not be asserted, however the intr_stat will still be updated with the status. Ie. mask does not affect intr_stat register values.

12CREG+000C

Interrupt Status Register

INTR STAT

Bit 15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Dit 10 11					_				Ū	•	U	_		U

MediaTek Confidential

© 2011 MediaTek Inc.

Page 267 of 508

Name				12	6	60	9	HS_N ACKE RR	ACKE RR	TRAN SAC_ COM P
Type				17L				W1C	W1C	W1C
Reset			10 11		•	•		0	0	0

When an interrupt is issued by i2c controller, this register will need to be read by mcu to determine the cause for the interrupt. After this status has been read and appropriate actions are taken, the corresponding interrupt source will need to be write 1 cleared.

HS_NACKERR This status is asserted if hs master code nack error detection is enabled. If enabled, hs master code nack err will cause transaction to end and stop will be issued.

ACKERR This status is asserted if ACK error detection is enabled. If enabled, ackerr will cause transaction to end and stop will be issued.

TRANSAC_COMP This status is asserted when a transaction has completed successfully.

I2CREG+0010 Control Register

CONTROL

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										TRAN SFER _LEN _CHA _NGE	ACKE RR_D ET_E N	DIR_C HANG E	CLK_ EXT EN	DMA_ EN	RS_S TOP	
Туре										R/W	R/W	RW	RW	RW	RW	R/W
Reset										0	0	0	0	0	0	0

TRANSFER_LEN_CHANGE This options specifies whether or not to change the transfer length after the fist transfer completes. If enabled, the transfers after the first transfer will use the transfer_len_aux parameter.

ACKERR_DET_EN

This option enables slave ack error detection. When enabled, if slave ack error is detected, the master shall terminate the transaction by issuing a STOP condition and then asserts ackerr interrupt. Mcu shall handle this case appropriately and then resets the fifo address before reissuing transaction again. If this option is disabled, the controller will ignore slave ack error and keep on scheduled transaction.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 268 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

- 0 disable
- enable

DIR CHANGE

tial Release for This option is used for combined transfer format, where the direction of transfer is to be changed from write to read after the FIRST RS condition. Note: when set to 1, the transfers after the direction change will be based on the transfer_len_aux parameter.

- disable
- enable

CLK_EXT_EN

I2C spec allows slaves to hold the SCL line low if it is not yet ready for further processing. Therefore, if this bit is set to 1, master controller will enter a high wait state until the slave releases the SCL line.

DMA EN

By default, this is disabled, and fifo data shall be manually prepared by mcu. This default setting should be used for transfer sizes of less than 8 data bytes and no multiple transfer is configured. When enabled, dma requests are turned on, and the fifo data should be prepared in memory.

RS STOP

In LS/FS mode, this bit affects multi-transfer transaction only. It controls whether or not REPEATED-START condition is used between transfers. The last ending transfer always USE REPEATED-START ends with a STOP.

In HS mode, this bit must be set to 1.

- 0

I2CR	EG+0	014	Tran	sfer L	_engt	h Reg	jister	(Nun	nber	of By	rtespe	r	•	TRAN	ISFE	R_LE	
h	10,		Trans	sfer)					4							N	
Bit	15	14	13	12	11	10	9	88	7	6	5	4	3	2	1	0	l

MediaTek Confidential

© 2011 MediaTek Inc.

Page 269 of 508

Name		TRANSFER_LEN_AUX			TRANSF	ER_LEN		
Type		R/W		- 110		A		R/W
Reset		'h1						ʻh1

TRANSFER_LEN_AUX[4:0] This field is valid only when dir_change is set to 1. This indicates the number of DATA BYTES to be transferred in 1 transfer unit (excluding slave address byte) for the transfers following the direction change. I.e., if dir_change =1, then the first write transfer length depends on transfer_len, while the second read transfer length depend on transfer len aux. Dir change is always after the first transfer.

(NOTE) The value must be set greater than 1, otherwise no transfer will take place.

TRANSFER_LEN[7:0] This indicates the number of DATA BYTES to be transferred in 1 transfer unit (excluding slave address byte)

(NOTE) The value must be set greater than 1, otherwise no transfer will take place.

I2CREG+0018 Transaction Length Register (Number of Transfers

per Transaction)

TRANSAC_LEN

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name									TRANSAC_LEN								
Type																R/W	
Reset																ʻh1	

TRANSAC LEN[7:0] This indicates the number of TRANSFERS to be transferred in 1 transaction

(NOTE) The value must be set greater than 1, otherwise no transfer will take place.

ion MCX

I2CREG+001C

h

Inter Delay Length Register

DELAY_LEN

Bit	15	14	13	12	11	10	9	8	7	6		5	4	3	2	1	0
Name								- 10	IA		77		DELA	Y_LEN			
Type						7	. T						R	/W			
Reset							101	41					'ł	า2	•		

DELAY_LEN[3:0] This sets the wait delay between consecutive transfers when RS_STOP bit is set to 0. (the unit is same as the half pulse width)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 270 of 508

МЕДІЛІТЕК

Timing Control Register

TIMING

								-10	26	38	4	10	
l2CR h	EG+002	0 Timi	ng Co	ntrol	Register	fia		Kelt	ja			TIN	IING
Bit	15 1	4 13	12	11	10 9 8	7	6	5	4 (3	2	1	0
	DATA READ DA ADJ	TA_REAI			-	STE	P_CN1	יום_ח	v				
Type	R/W	R/W	377		R/W					R/W			
Reset	Reset 'h0 'h1 'h3 'h3 'h3												

LS/FS only. This register is used to control the output waveform timing. Each half pulse width (ie. each high or low pulse) is equal to = step_cnt_div * (sample_cnt_div * 1/13Mhz)

SAMPLE CNT DIV[2:0] Used for LS/FS only. This adjusts the width of each sample. (sample width = sample cnt div * 1/13Mhz)

STEP CNT DIV[5:0] This specifies the number of samples per half pulse width (ie. each high or low pulse)

DATA READ ADJ When set to 1, data latch in sampling time during master reads are adjusted according to DATA_READ_TIME value. Otherwise, by default, data is latched in at half of the high pulse width point. This value must be set to less or equal to half the high pulse width.

DATA_READ_TIME[2:0] This value is valid only when DATA_READ_ADJ is set to 1. This can be used to adjust so that data is latched in at earlier sampling points (assuming data is settled by then)

Start Register

START

											1		c	19	10	
I2CR h	EG+(0024	Start	Regi	ster				40		C	180			S	TART
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							101	311								STAR T
Type																R/W
Reset			76													0

START

This register starts the transaction on the bus. It is auto deasserted at the end of the ion MCX transaction.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 271 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛІТЕК

Fifo Status Register

FIFO_STAT

I2CR	EG+0	030	Fifo S	Statu	s Re	gister			1 7		163	15	}	ON IFO	STAT
h				otata	3 110,	giotoi		TP					•		JIA.
Bit	15 14 13 12				11	10 9	8	7	6	5	4	3	2	1	0
Name	RD_ADDR				71	WR_ADDR	A.	F	IFO_0	OFFSET	Γ			WR_F ULL	RD_E MPTY
Type		F	RO			RO			F	RO				RO	RO
Reset			0			0				0		0	0	0	0

RD ADDR[3:0] The current rd address pointer. (only bit [2:0] has physical meaning)

WR ADDR[3:0] The current wr address pointer. (only bit [2:0] has physical meaning)

FIFO_OFFSET[3:0] wr_addr[3:0] - rd_addr[3:0]

WR_FULL This indicates that the fifo is ful

RD_EMPTY This indicates that the fifo is empty.

I2CREG+0034

Fifo Thresh Register

FIFO_THRESH

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						TX_TF	RIG_TH	RESH						RX_T	RIG_TI	IRESH
Type							RW								R/W	
Reset							ʻh7								ʻh0	

DEBUG ONLY.

By default, these values do not need to be adjusted. Note! for RX, no timeout mechanism is implemented. Therefore, RX_trig_thresh must be left at 0, or there would be data left in the fifo that is not fetched by DMA controller.

TX_TRIG_THRESH[2:0] When tx fifo level is below this value, tx dma request is asserted.

RX TRIG THRESH[2:0] When rx fifo level is above this value, rx dma request is asserted.

I2CREG+0038

h

Fifo Address Clear Register

FIFO ADDR CL

Bit	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	64/3														FIFO_ ADDR _CR
Туре								1	III						WO
Reset									111	ידט					0

MediaTek Confidential

2011 MediaTek Inc.

Page 272 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛІТЕК

When written with a 1'b1, a 1 pulse fifo_addr_clr is generated to clear the fifo address to FIFO ADDR CLR dential back to 0.

I2CREG+0040

IO Config Register

IO CONFIG

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	9		114										IDLE_ OE_E N		SDA_I O_CO NFIG	O_CO
Type										$\Pi\Pi$			R/W	R/W	R/W	R/W
Reset									,		\Box		0	0	0	0

This register is used to configure the I/O for the sda and scl lines to select between normal i/o mode, or open-drain mode to support wired-and bus.

IDLE OE EN don't drive bus in idle state

drive bus in idle state

IO SYNC EN DEBUG ONLY: When set to 1, scl and sda inputs will be first dual synced by bclk_ck.

This should not be needed. Only reserved for debugging.

SDA_IO_CONFIG normal tristate io mode 0

> 1 open-drain mode

SCL_IO_CONFIG normal tristate io mode

I2CREG+0044

DEBUG

SCL_I	IO_COI	NFIG	U	потп	iai irisi	ate io i	node							_		
			1	open	ı-drain	mode								. \$1	16	
ISCE	EG+0	044							10	1 6	Re	183	15	3 1	U 1	
h	LG+U	044	RESI	ERVE	D DE	BUG	Regi	ster							DE	BUG
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name																
Туре														R/W	R/W	R/W
	-															

NOTE: This register is for DEBUG ONLY. The bits are R/W, do not change the values from the default value.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 273 of 508

I2CREG+0048

High Speed Mode Register

												05	ase	1	10	
l2CR h	EG+(0048	High	Spee	ed Mo	de Re	egist	er	12		16					HS
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		HS_S	AMPLE DIV	CNT	Co	HS_ST	EP_CN	NT_DIV		MAS	TER_0	CODE			HS_N ACKE RR_D ET_E N	HS_E N
Type		111.	R/W				R/W				R/W				R/W	R/W
Reset	17	7.	0				1				0				1	0

This register contains options for supporting high speed operation features

Each HS half pulse width (ie. each high or low pulse) is equal to = step_cnt_div * (sample_cnt_div * 1/13Mhz)

HS_SAMPLE_CNT_DIV[2:0] When high speed mode is entered after the master code transfer has been completed, the sample width becomes dependent on this parameter.

HS_STEP_CNT_DIV[2:0] When high speed mode is entered after the master code transfer has been completed, the number of samples per half pulse width becomes dependent on this value.

MASTER CODE[2:0] This is the 3 bit programmable value for the master code to be transmitted.

HS NACKERR DET EN This enables NACKERR detection during the master code transmission. When enabled, if NACK is not received after master code has been transmitted, the transaction will terminated with a STOP condition.

HS EN This enables the high speed transaction. (note: rs_stop must be set to 1 as well)

I2CREG+0050

Soft Reset Register

SOFTRESET

I2CR h	EG+0	0050	Soft	Rese	t Reg	ister			lio	1 5	le!	163	158	sc	ON PETR	ESET
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		. 1	70	M	Co		IA	9.								SOFT _RES ET
Туре		10		217												WO
Reset		NY														0

SOFT_RESET

When written with a 1'b1, a 1 pulse soft reset is used as synchronous reset to reset the I2C internal hardware circuits.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 274 of 508

I2CREG+0064

Debug Status Register

DEBUGSTAT

1000												02	15	15	Ol	
l2CR h	EG+(JU64	Debu	ıg Sta	atus F	Regis	ter	10	59		16	16.		DE	BUG	STAT
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				1	Co	W	In	G.		BUS_ BUSY	MAST ER_W RITE	MAST ER_R EAD	N	IASTE	R_STA	TE
Type			M							RO	RO	RO			RO	
Reset		IV.		7.1-						0	1	0			0	

BUS BUSY

DEBUG ONLY: valid when bus detect en is 1. bus busy = 1 indicates a start transaction has been detected and no stop condition has been detected yet.

MASTER WRITE

DEBUG ONLY: 1 = current transfer is in the master write dir

MASTER READ

DEBUG ONLY: 1 = current transfer is in the master read dir

MASTER_STATE[3:0]

DEBUG ONLY: reads back the current master state.

0: idle state;

1: i2c master is preparing sending out the start bit, SCL=1, SDA=1;

2: i2c master is sending out the start bit, SCL=1, SDA=0;

3: i2c master/slave is preparing transmitting data bit, SCL=0, SDA=data bit (data bit can be changed when SCL=0);

4: i2c master/slave is transmitting data bit, SCL=1, SDA=data bit (data bit is stable when SCL=1);

5: i2c master/slave is preparing transmitting ack bit, SCL=0, SDA=ack (ack bit can be changed when SCL=0);

6: i2c master/slave is transmitting ack bit, SCL=1, SDA=0 (ack bit is stable when SCL=1);

7: i2c master is preparing sending out stop bit or repeated-start bit, SCL=0, SDA=0/1 (0: means stop bit; 1: means repeated-start bit);

8: i2c master is sending out stop bit or repeated-start bit, SCL=1, SDA=1/0 (1: means stop bit; 0: means repeated-start bit);

9: i2c master is in delay start between two transfers, SCL=1, SDA=1;

10: i2c master is in fifo wait state; For writing transaction, it means fifo is empty and i2c master is waiting for dma controller writing data into fifo; For reading transaction, it

MediaTek Confidential

© 2011 MediaTek Inc.

Page 275 of 508

means fifo is full and i2c master is waiting for dma controller reading data from fifo, SCL=0. SDA=don't care:

12: i2c master is preparing sending out data bit of master code. This state is used only in high-speed transaction, SCL=0, SDA=data bit of master code (data bit of master code can be changed when SCL=0);

14: i2c master/slave is preparing transmitting nack bit, SCL=0, SDA=nack bit (nack bit can be changed when SCL=0); This state is used only in high-speed transaction;

15: i2c master/slave is transmitting nack bit, SCL=1, SDA=1; This state is used only in high-speed transaction;

I2CREG+0068 Debug Control Register

DEBUGCTRL

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															APB_ DEBU G_RD	FIFO_ APB_ DEBU G
Туре															WO	R/W
Reset															0	0

APB DEBUG RD

This bit is only valid when fifo_apb_debug is set to 1. Writing to this register will generate a 1 pulsed fifo apb rd signal for reading the fifo data.

FIFO_APB_DEBUG This is used for trace32 debug purposes. When using trace32, and the memory map is shown, turning this bit on will block the normal apb read access. Apb read access to the fifo is then enabled by writing to apb_debug_rd.

non WCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 276 of 508

USB Device Controller 4.10

4.10.1 **General Description**

ial Release fo This chip provides a USB function interface that is in compliance with Universal Serial Bus Specification Rev 1.1. The USB device controller supports only full-speed (12Mbps) operation. The Bluetooth chip can make use of this widely available USB interfaces to transmit/receive data with USB hosts, typically PC/laptop.

There provides 6 endpoints in the USB device controller besides the mandatory control endpoint, where among them, 4 endpoints are for IN transactions and 2 endpoints are for OUT transactions. Word, half-word, and byte access are all allowed for loading and unloading the FIFO. The controller features 4 DMA channels to accelerate the data transfer for ACL and SCO data streams. The features of the endpoints are as follows:

- 1. Endpoint 0: The control endpoint feature 64 bytes FIFO and accommodates maximum packet size of up to 64 bytes. DMA transfer is not supported.
- 2. IN endpoint 1: It features 64 bytes FIFO and accommodates maximum packet size of up to 64 bytes. GDMA Channel 4 Write Transfer is supported.
- 3. IN endpoint 2: It features 64 bytes FIFO and accommodates maximum packet size of up to 64 bytes. GDMA Channel 6 Write Transfer is supported.
- 4. IN endpoint 3: It features 16-byte FIFO and accommodates maximum packet size of 16 bytes. GDMA Transfer is not supported.
- 5. IN endpoint 4: It features 16-byte FIFO and accommodates maximum packet size of 16 bytes. GDMA Transfer is not supported.
- 6. OUT endpoint 1: It features 64 bytes FIFO and accommodates maximum packet size of 64 bytes. GDMA Channel 5 Read Transfer is supported.
- 7. OUT endpoint 2: It features 64 bytes FIFO and accommodates maximum packet size of 64 bytes. GDMA Channel 7 Read Transfer is supported.

For each endpoint except the control endpoint, when the packet size is smaller than half the size of the FIFO, at most 2 packets can be buffered.

This unit is highly software configurable. All endpoints except the control endpoint can be configured to be a bulk, interrupt or isochronous endpoints. Composite device is also supported. The IN endpoint 1 and the OUT endpoint 1 shares the same endpoint number but they can be use separately. So is the situation as the endpoint 2

MediaTek Confidential

© 2011 MediaTek Inc.

Page 277 of 508

The USB device uses cable-powered feature for the transceiver but only drains little current. An internal pull-up resistor has been integrated across Vbus and D+ signal. The switch on/off of the pull-up resistor can configured through the internal register. Two additional external serial resistors might be needed to place on the output of D+ and D- signals to make the output impedance equivalent to 28~44Ohm.

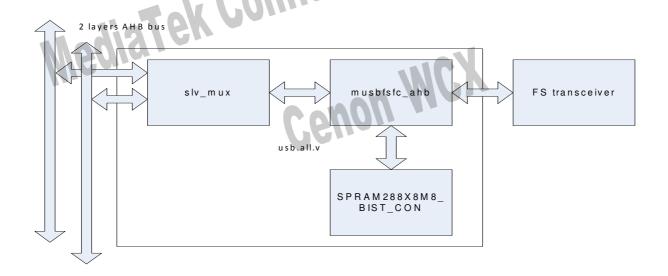


Figure 1. USB11 controller system diagram 1

4.10.2 Register Definitions

USB+0000h USB function address register

Bit	7	6	5	4	3	2	1	0
Name	UPD			4 40	FADDR			
Type	RO		4		R/W			
Reset	0		- 40		0			

This is an 8-bit register that should be written with the function's 7-bit address (received through a SET_ADDRESS description). It is then used for decoding the function address in subsequent token packets.

UPD Set when FADDR is written. It's cleared when the new address takes effect (at the end of the current transfer). **FADDR** The function address of the device.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 278 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

USB+0001h

USB-	+0001h	USB powe	er control i	register	1 5	19/9/	Seusi	B POWER
Bit	7	6	5	4	3	2	1	0
Name	ISO_UP		2	SWRSTENA B	RESET	RESUME	SUSPMODE	SUSPENAB
Type	R/W		BANI	R/W	RO	R/W	RO	R/W
Reset	0			0	0	0	0	0

ISO UP When set by the MCU, the core will wait for an SOF token from the time INPKTRDY is set before sending the packet.

SWRSTENAB Set by the MCU to enable the mode in which the device can only be reset by the software after detecting reset signals on the bus. In case the software is delayed by other high-priority process and can't make it to read the command from the buffer before the hardware reset the device after detecting the reset signal on the bus, the command will be lost. That's why the software-reset mode is effective. When the flag is enabled, the hardware state machine can't reset by itself, but rather can be reset by the software. In that sense, the software and the hardware can keep synchronous on detecting the reset signal.

RESET The read-only bit is set when **Reset** signaling is present on the bus.

RESUME Set by the MCU to generate **Resume** signaling when the function is in suspend mode. The MCU should clear this bit after 10 ms (a maximum of 15 ms) to end Resume signaling.

SUSPMODE Set by the USB core when Suspend mode is entered. It is cleared when sets the Resume bit of this register.

SUSPENAB Set by the MCU to enable device into Suspend mode when Suspend signaling is received on the bus.

USB+0002h **USB IN endpoints interrupt register**

USB INTRIN

Bit	7	6	5	4	3	2	1 _	0
Name				EP4	EP3	EP2	EP1	EP0
Type				RC	RC	RC	RC	RC
Reset				0	0	0	0	0

This is a read-only register that indicates which of the interrupts for IN endpoints 0 to 4 are currently active. It must set be setting after USB_INTRINE has been set .All active interrupts will be cleared when this register is read.

EP4 IN endpoint #4 interrupt.

EP3 IN endpoint #3 interrupt.

EP2 IN endpoint #2 interrupt.

EP₁ IN endpoint #1 interrupt.

EP0 IN endpoint #0 interrupt.

USB OUT endpoints interrupt register USB+0004h

USB INTROUT

Bit	7	6	5	4	1	3	2	1	0
Name				5	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		EP2	EP1	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 279 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

MEDIATEK

Type			RC	RC	
Reset			0	0	

This is a read-only register that indicates which of the interrupts for OUT endpoints 1, and 2 are currently active.

It must set be setting after USB_INTROUTE has been set. All active interrupts will be cleared when this register is read.

EP2 OUT endpoint #2 interrupt.

EP₁ OUT endpoint #1 interrupt.

USB+0006h USB general interrupt register

USB_INTRUSB

Bit	7	6	5	4	3	2	1	0
Name					SOF	RESET	RESUME	SUSP
Type					RC	RC	RC	RC
Reset				0101	0	0	0	0

- 41

This is a read-only register that indicates which USB interrupts are currently active. It must set be setting after

USB_INTRUSBE has been set. All active interrupts will be cleared when this register is read.

SOF Set at the start of each frame.

RESET Set when **Reset** signaling is detected on the bus.

RESUME Set when Resume signaling is detected on the bus while the USB core is in suspend mode.

SUSP Set when Suspend signaling is detected on the bus.

USB IN endpoints interrupt enable register USB+0007h

USB_INTRINE

Bit	7	6	5	4	3	2	1	0
Name				EP4	EP3	EP2	EP1	EP0
Type				R/W	R/W	R/W	R/W	R/W
Reset				1	1	1	1	1

ne bits corres This register provides interrupt enable bits for the interrupts in USB_INTRIN. On reset, the bits corresponding to endpoint 0 and all IN endpoints are set to 1.

EP4 IN endpoint 4 interrupt enable.

EP3 IN endpoint 3 interrupt enable.

EP2 IN endpoint 2 interrupt enable.

EP1 IN endpoint 1 interrupt enable.

EP0 IN endpoint 0 interrupt enable.

USB INTROUT

Е

Bit	7	6	5	4	3	2	1	0
Name					W WI	EP2	EP1	
Type				10.		R/W	R/W	

USB OUT endpoints interrupt enable register

MediaTek Confidential

USB+0009h

© 2011 MediaTek Inc.

Page 280 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

				CL	3 \	V •
Reset			1		1	

This register provides interrupt enable bits for the interrupts in USB_INTROUT. On reset, the bits corresponding to all OUT endpoints are set to 1.

OUT endpoint 2 interrupt enable. EP2

МЕДІЛІТЕК

EP₁ OUT endpoint 1 interrupt enable.

USB+000Bh **USB** general interrupt enable register

USB INTRUSB

Bit	7	6	5	4	3	2	1	0
Name					SOF	RESET	RESUME	SUSP
Type					R/W	R/W	R/W	R/W
Reset					0	1	1	0

This register provides interrupt enable bits for each of the interrupts for USB_INTRUSB.

SOF SOF interrupt enable **RESET** Reset interrupt enable **RESUME** Resume interrupt enable **SUSP** Suspend interrupt enable

USB+000Ch **USB** frame count #1 register

USB FRAME1

Bit	7	6 5 4 3 2 1								
Name	NUML									
Type		RO								
Reset	0									

The register holds the lower 8 bits of the last received frame number.

NUML The lower 8 bits of the frame number.

USB frame count #2 register USB+000Dh

Release to **USB FRAME2**

Bit	7	6	5 4	3	2	1	0
Name						NUMH	
Type						RO	
Reset	1					0	

The register holds the upper 3 bits of the last received frame number. on WC

NUMH The upper 3 bits of the frame number.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 281 of 508

USB endpoint register index USB+000Eh

USB INDEX

Bit	7	6	5	4	3	2	1	0
Name						IND	EX	
Type						R/	W	
Reset						()	·

The register determines which endpoint control/status registers are to be accessed at addresses USB+10h to USB+17h. Each IN endpoint and each OUT endpoint have their own set of control/status registers. Only one set of IN control/status and one set of OUT control/status registers appear in the memory map at any one time. Before accessing an endpoint's control/status registers, the endpoint number should be written to the USB_INDEX register to ensure that the correct control/status registers appear in the memory map.

INDEX The index of the endpoint.

USB+000Fh **USB** reset control

USB RSTCTRL

Bit	7	6	5	4	3	2	1	0			
Name	SWRST				RSTCNTR						
Type	R/W				R/W						
Reset	0				0						

The register is used to control the reset process when the device detects the reset command issued from the host.

SWRST

If the flag SWRSTENAB in the register USB POWER is set to be 1, the software enable mode is enabled, and the device can be reset by writing this flag to be 1.

RSTCNTR The field signifies the duration for the reset operation to take place after detecting reset signal on the bus. It's only enabled when software reset is not enabled. If the value is equal to zero, the duration is 2.5us. Otherwise, the duration is equal to this value multiplied by 341 and then added by 2.5 in unit of us. The range consequently starts from 2.5us to 5122.5 us.

USB control/status register for endpoint 0 USB+0011h

Bit	7	6	5	4	3	2	1	0
Name	SSETUPEND	SOUTPKTRD Y	SENDSTALL	SETUPEND	DATAEND	SENTSTALL	INPKTRDY	OUTPKTRD Y
Type	R/WS	R/WS	R/WS	RO	R/WS	R/WC	R/WS	RO
Reset	0	0	0	0	0	0	0	0

The register is used for all control/status of endpoint 0. The register is active when USB_INDEX register is set to 0.

SSETUPEND

The MCU writes a 1 to this bit to clear the SETUPEND bit. It's cleared automatically. Only active when a transaction has been started.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 282 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

MEDIATEK

SOUTPKTRDY

The MCU writes a 1 to this bit to clear the OUTPKTRDY bit. It's cleared automatically. Only active when an OUT transaction has been started.

SENDSTALL

The MCU writes a 1 to this bit to terminate the current transaction. The STALL handshake will be transmitted and then this bit will be cleared automatically.

SETUPEND

This bit will be set when a control transaction ends before the DATAEND bit has been set. An interrupt will be generated and FIFO flushed at this time. The bit is cleared by the MCU writing a 1 to the SSETUPEND bit.

DATAEND

The MCU sets this bit:

- 1. When setting INPKTRDY for the last data packet.
- 2. When clearing OUTPKTRDY after unloading the last data packet.
- 3. When setting INPKTRDY for a zero length data packet.

It's cleared automatically

SENTSTALL

writing a 0.

This bit is set when a STALL handshake is transmitted. The MCU should clear this bit by

INPKTRDY

The MCU sets this bit after loading a data packet into the FIFO. It is cleared automatically when the data packet has been transmitted. An interrupt is generated when this bit is set.

OUTPKTRDY

This bit is set when a data packet has been received. An interrupt is generated when this bit is set. The MCU clears this bit by setting the SOUTPKTRDY bit.

USB+0016h USB byte count register

USB_EP0_COU

NT

Bit	7	6	5	4	3	2	1	0					
Name			COUNT										
Type			RO										
Reset		0											

The register indicates the number of received data bytes in the endpoint 0. The value returned is valid while OUTPKTRDY bit of USB_EP0_CSR register is set. The register is active when USB_INDEX register is set to 0.

COUNTThe number of received data bytes in the endpoint 0.

USB+0010h USB maximum packet size register for IN endpoint

USB_EP_INMA

XP

Bit	7	6	5	4	3	2	1	0			
Name				MA	XP						
Type	Salle			R/	W						
Reset	0										
-	CONON MON										

MediaTek Confidential

© 2011 MediaTek Inc.

Page 283 of 508

The register holds the maximum packet size for transactions through the currently selected IN endpoint – in units of one byte. In setting the value, the programmer should note the constraints placed by the USB Specification on packet size for bulk interrupt, and isochronous transactions in full-speed operations. There is an INMAXP register for each IN endpoint except endpoint 0. The registers are active when USB_INDEX register is set to 1, 2, 3, and 4 respectively.

The value written to this register should match the *wMaxPacketSize* field of the standard endpoint descriptor for the associated endpoint. A mismatch could cause unexpected results. If a value greater than the configured IN FIFO size for the endpoint is written to the register, the value will be automatically changed to the IN FIFO size. If the value written to the register is less than, or equal to, half the IN FIFO size, two IN packets can be buffered. The configured IN FIFO size for the endpoint 1, 2, and 3, are 16 bytes, 64 bytes, and 64 bytes, respectively.

The register is reset to 0. If the register is changed after packets have been sent from the endpoint, the endpoint IN FIFO should be completely flushed after writing the new value to the register.

MAXP The maximum packet size in units of one byte.

USB+0011h USB control/status register #1 for IN endpoint 1~4

USB_EP_INCSR

Bit	7	6	5	4	3	2	1	0
Name	ABORTPKT_ EN	CLRDATATO G	SENTSTALL	SENDSTALL	FLUSHFIFO	UNDERRUN	FIFONOTEM PTY	INPKTRDY
Type	R/W	WO	R/WC	R/W	WO	R/WC	RO	R/WS
Reset	0	0	0	0	0	0	0	0

The register provides control and status bits for IN transactions through the currently selected endpoint. There is an INCSR1 register for each IN endpoint except endpoint 0. The registers are active when USB_INDEX register is set to 1, 2, and 3, respectively.

ABORTPKT_EN When MCU write ABORTPKT_EN as 1, FLUSHFIFO switch to abort packet function. This bit should be enabled before FLUSHFIFO is set. If FLUSHFIFO is set and ABORTPKT_EN is enabled the data loaded into FIFO will be discarded. After aborting packet, EP will issue an interrupt. Programmer should wait for this interrupt to make sure the packet is aborted.

CLRDATATOG

The MCU writes a 1 to this bit to reset the endpoint IN data toggle to 0.

SENTSTALL

The bit is set when a STALL handshake is transmitted. The FIFO is flushed and the INPKTRDY bit is cleared. The MCU should clear this bit by writing a 0 to this bit.

SENDSTALL

The MCU writes a 1 to this bit to issue a STALL handshake to an IN token. The MCU clears this bit to terminate the stall condition.

FLUSHFIFO

The MCU writes a 1 to this bit to flush the next packet to be transmitted from the endpoint IN FIFO. The FIFO pointer is reset and the INPKTRDY bit is cleared. If the FIFO contains two packets,

MediaTek Confidential

© 2011 MediaTek Inc.

Page 284 of 508

FLUSHFIFO will need to be set twice to completely clear the FIFO. FLUSHFIFO should only be used when INPKTRDY is set. At other times, it may cause data to be corrupted.

If ABORTPKT_EN is enabled and this bit is set, the function of this bit becomes ABORTPKT to abort the next packet to be transmitted from the endpoint IN FIFO and doesn't need to set INPKTRDY. The same with FLUSHFIFO function, this bit is only active when endpoint is idle.

UNDERRUN

In isochronous mode, this bit is set when a zero length data packet is sent after receiving an IN token with the INPKTRDY bit not set. In Bulk/Interrupt mode, this bit is set when a NAK is returned in response to an IN token. The MCU should clear this bit by writing a 0 to this bit.

FIFONOTEMPTY
INPKTRDY The I

This bit is set when there is at least 1 packet in the IN FIFO.

The MCU sets this bit after loading a data packet into the FIFO. Only active when an IN transaction has been started. It is cleared automatically when a data packet has been transmitted. An interrupt is generated (if enabled) when the bit is cleared.

USB+0012h USB control/status register #2 for IN endpoint 1~4

USB_EP_INCSR

.

Bit	7	6	5	4	3	2	1	0
Name	AUTOSET	ISO	MODE	DMAENAB	RFCDATATO G			
Туре	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0			

The register provides further control bits for IN transactions through the currently selected endpoint. There is an INCSR2 register for each IN endpoint except endpoint 0. The registers are active when USB_INDEX register is set to 1, 2, and 3, respectively.

AUTOSET

If the MCU sets the bit, INPKTRDY will be automatically set when data of the maximum packet size (value in INMAXP) is loaded into the IN FIFO. If a packet of less than the maximum packet size is loaded, then INPKTRDY will have to be set manually. When 2 packets are in the IN FIFO then INPKTRDY will also be automatically set when the first packet has been sent, if the second packet is the maximum packet size.

ISO

The MCU sets this bit to enable the IN endpoint for isochronous transfer, and clears it to enable the IN endpoint for bulk/interrupt transfers.

MODE

The MCU sets this bit to enable the endpoint direction as IN, and clears it to enable the endpoint direction as OUT. It's valid only where the same endpoint FIFO is used for both IN and OUT transaction.

DMAENAB

The MCU sets this bit to enable the DMA request for the IN endpoint.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 285 of 508

FRCDATATOG

The MCU sets this bit to force the endpoint's IN data toggle to switch after each data packet is sent regardless of whether an ACK was received. This can be used by interrupt IN endpoints which are used to communicate rate feedback for isochronous endpoints.

USB+0013h

USB maximum packet size register for OUT endpoint USB_EP_OUTM **AXP**

Bit	7	6	6			5	4	3	2	1	0
Name		YI					MA	XP			
Type	R/W										
Reset			•				(•	·

This register holds the maximum packet size for transactions through the currently selected OUT endpoint – in units of one byte. In setting this value, the programmer should note the constraints placed by the USB specification on packet sizes for bulk, interrupt, and isochronous transactions in full speed operations. There is an OUTMAXP register for each OUT endpoint except endpoint 0. The registers are active when USB_INDEX register is set to 1 and 2 respectively.

The value written to this register should match the wMaxPacketSize field of the standard endpoint descriptor for the associated endpoint. A mismatch could cause unexpected results. The total amount of data represented by the value written to this register must not exceed the FIFO size for the OUT endpoint, and should not exceed half the FIFO size if double buffering is required. If a value greater than the configured OUT FIFO size for the endpoint is written to the register, the value will be automatically changed to the OUT FIFO size. If the value written to the register is less than, or equal to, half the OUT FIFO size, two OUT packets can be buffered. The configured IN FIFO size for the endpoint 1, 2, and 3 are both 16, 64, and 64 bytes, respectively.

MAXP The maximum packet size in units of one byte.

USB EP OUTC USB control/status register #1 for OUT endpoint 1~2 USB+0014h

Bit	7	6	5	4	3	2	7	0
Name	CLRDATATO G	SENTSTALL	SENDSTALL	FLUSHFIFO	DATAERRO R	OVERRUN	FIFOFULL	OUTPKTRD Y
Type	WO	R/WC	R/W	WO	RO	R/WC	RO	R/WC
Reset	0	0	0	0	0	0	0	0

The register provides control status bits for OUT transactions through the currently selected endpoint. The registers are active when USB_INDEX register is set to 1 and 2 respectively.

CLRDATATOG

The MCU writes a 1 to this bit to reset the endpoint data toggle to 0.

SENTSTALL

The bit is set when a STALL handshake is transmitted. The MCU should clear this bit by writing

a 0.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 286 of 508

SR₁

SENDSTALL The MCU writes a 1 to this bit to issue a STALL handshake. The MCU clears this bit to

terminate the stall condition. This bit has no effect if the OUT endpoint is in isochronous mode.

FLUSHFIFO The MCU writes a 1 to this bit to flush the next packet to be read from the endpoint OUT FIFO.

If the FIFO contains two packets, **FLUSHFIFO** will need to be set twice to completely clear the FIFO. **FLUSHFIFO** should only be used when **OUTPKTRDY** is set. At other times, it may cause data to be

corrupted.

DATAERROR The bit is set when OUTPKTRDY is set if the data packet has a CRC or bit-stuff error. It is

cleared when OUTPKTRDY is cleared. This bit is only valid in isochronous mode.

OVERRUN The bit is set if an OUT packet cannot be loaded into the OUT FIFO. The MCU should clear the bit by

writing a zero. This bit is only valid in isochronous mode.

FIFOFULL This bit is set when no more packets can be loaded into the OUT FIFO.

OUTPKTRDY The bit is set when a data packet has been received. The MCU should clear (write a 0 to) the bit when

the packet has been unloaded from the OUT FIFO. An interrupt is generated when the bit is set. When

receiving null packet, OUTPKTRDY has been set after USB_INTROUT[1] is high.

USB+0015h USB control/status register #2 for OUT endpoint 1~2

USB_EP_OUTC SR2

Bit	7	6	5	4	3	2	1	0
Name	AUTOCLEA R	ISO	DMAENAB	DMAMODE				
Type	R/W	R/W	R/W	R/W				
Reset	0	0	0	0				

The register provides further control bits for OUT transactions through the currently selected endpoint. The registers are active when USB_INDEX register is set to 1 and 2 respectively.

AUTOCLEAR If the MCU sets this bit then the OUTPKTRDY bit will be automatically cleared when a packet of

OUTMAXP bytes has been unloaded from the OUT FIFO. When packets of less then the maximum

packet size are unloaded, OUTPKTRDY will have to be cleared manually.

The MCU sets this bit to enable the OUT endpoint for isochronous transfers, and clears it to enable the

OUT endpoint for bulk/interrupt transfers.

DMAENAB The MCU sets this bit to enable the DMA request for the OUT endpoint.

DMAMODE Two modes of DMA operation are supported: DMA mode 0 in which a DMA request is generated for

all received packets, together with an interrupt (if enabled); and DMA mode 1 in which a DMA request (but no interrupt) is generated for OUT packets of size OUTMAXP bytes and an interrupt (but no DMA request) is generated for OUT packets of any other size. The MCU sets the bit to select DMA

mode 1 and clears this bit to select DMA mode 0.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 287 of 508

USB+0016h USB OUT endpoint byte counter register LSB part for USB_EP_COUN endpoint 1~2

Bit	7	6	5	47	4	3	2	1	0
Name				111	NUML				
Type					RO				
Reset		FOV	UU		0	•	•	•	

The register holds the lower 8 bits of the number of received data bytes in the packet in the FIFO associated with the currently selected OUT endpoint. The value returned is valid while OUTPKTRDY in the register USB_OUTCSR1 is set. The registers are active when USB_INDEX register is set to 1 and 2 respectively.

NUML The lower 8 bits of the number of received data bytes for the OUT endpoint.

USB+0017h USB OUT endpoint byte counter register MSB part for USB_EP_COUN endpoint 1~2

Bit	7	6	5	4	3	2	1	0					
Name						NUMH							
Туре						RO							
Reset							0						

The register holds the upper 3 bits of the number of received data bytes in the packet in the FIFO associated with the currently selected OUT endpoint. The value returned is valid while OUTPKTRDY in the register USB_EP_OUTCSR1 is set. The registers are active when USB_INDEX register is set to 1 and 2 respectively.

NUMH The upper 8 bits of the number of received data bytes for the OUT endpoint.

USB+0020h USB endpoint 0 FIFO access register

USB EP0 FIFO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	DB3								DB2							
Type		R/W							R/W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	DB1						DB0									
Type		R/W						7///	M I			R	W			

The register provides MCU access to the FIFO for the endpoint 0. Writing to this register loads data into the FIFO for the endpoint 0. Reading from this register unloads data from the FIFO for the endpoint 0.

The register provides word, half-word, and byte mode access. If word or half-word accesses are performed, the less significant byte corresponds to the prior byte to load in or unload from the FIFO.

DB0 The first byte to be loaded into or unloaded from the FIFO.

DB1 The second byte to be loaded into or unloaded from the FIFO.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 288 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

DB2 The third byte to be loaded into or unloaded from the FIFO.

DB3 The forth byte to be loaded into or unloaded from the FIFO.

USB+0024h USB endpoint 1 FIFO access register

Release IVI
USB EP1 FIFO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DE	33							DI	32			
Type				R/	W							R/	W			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		M		DE	31						[DI	30			
Type	トン			R/	W							R/	W			

The register provides MCU access to the IN FIFO and the OUT FIFO for the endpoint 1. Writing to the register loads data into the IN FIFO for the endpoint 1. Reading from the register unloads data from the OUT FIFO for the endpoint 1.

The register provides word, half-word, and byte mode access. If word or half-word accesses are performed, the less significant byte corresponds to the prior byte to load in the IN FIFO or unload from the OUT FIFO.

DB0 The first byte to be loaded in the IN FIFO or unloaded from the OUT FIFO.

DB1 The second byte to be loaded in the IN FIFO or unloaded from the OUT FIFO.

DB2 The third byte to be loaded in the IN FIFO or unloaded from the OUT FIFO.

DB3 The forth byte to be loaded in the IN FIFO or unloaded from the OUT FIFO.

USB+0028h USB endpoint 2 FIFO access register

USB EP2 FIFO

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DI	33							DI	32			
Type				R/	W							R/	W			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				DI	31							DI	30		- 1	
Type				R/	W							R/	W		~ / ()	

The register provides MCU access to the IN FIFO and the OUT FIFO for the endpoint 2. Writing to the register loads data into the IN FIFO for the endpoint 2. Reading from the register unloads data from the OUT FIFO for the endpoint 2.

The register provides word, half-word, and byte mode access. If word or half-word accesses are performed, the less significant byte corresponds to the prior byte to load in the IN FIFO or unload from the OUT FIFO.

DBO The first byte to be loaded into the IN FIFO or unloaded from the OUT FIFO.

DB1 The second byte to be loaded into the IN FIFO or unloaded from the OUT FIFO.

DB2 The third byte to be loaded into the IN FIFO or unloaded from the OUT FIFO.

DB3 The forth byte to be loaded into the IN FIFO or unloaded from the OUT FIFO.

USB+002Ch USB endpoint 3 FIFO access register

USB EP3 FIFO

Bit 31 30 29 28 27 26 25 24 23 22 21 20		17 16
---	--	---------

MediaTek Confidential

© 2011 MediaTek Inc.

Page 289 of 508

Name				DE	33								DI	32	V		
Туре				R/	W							- 77	R/	W			
Bit	15	14	13	12	11	10	9	8	7	6	Λ	5	4	3	2	1	0
Name				DE	31				VIV				DI	30			
Type				R/	W								R/	W			

The register provides MCU access to the IN FIFO and the OUT FIFO for the endpoint 3. Writing to the register loads data into the IN FIFO for the endpoint 3. Reading from the register unloads data from the OUT FIFO for the endpoint 3.

The register provides word, half-word, and byte mode access. If word or half-word accesses are performed, the less significant byte corresponds to the prior byte to load in the IN FIFO or unload from the OUT FIFO.

DB0 The first byte to be loaded into the IN FIFO or unloaded from the OUT FIFO.

DB₁ The second byte to be loaded into the IN FIFO or unloaded from the OUT FIFO.

DB₂ The third byte to be loaded into the IN FIFO or unload from the OUT FIFO.

DB₃ The forth byte to be loaded into the IN FIFO or unload from the OUT FIFO.

USB+0240h **USB PHY control**

USB_CON

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											NULL PKT_ FIX				DMPU LLUP	DPPU LLUP
Type											R/W				R/W	R/W
Reset											1	0	0	0	0	0

DPPULLUP Pull-up enable pin. Enable the pull up 1.5KOhm pull up on D+ pin as a full speed device by setting it

Pull-up enable pin. Enable the pull up 1.5KOhm pull up on D- pin as a full speed device by setting it to **DMPULLUP**

NULLPKT_FIX If NULLPKT_FIX is setting as "1", USB controller will not issue a DMAreq when receive a null

System integration guide USB device configuration 4.10.3

4.10.3.1

The target audience of this section is the software engineer.

The USB device controller features one control endpoint and 6 other endpoints. The configuration of interfaces and endpoints can be accommodated by software for specific functions, basically supporting Bluetooth HCI, and device firmware upgrade.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 290 of 508

Bluetooth HCI transport layer defines the configuration of endpoints and interfaces.

✓ One voice channel with 16-bit encoding.

Endpoint	Endpoint type	Maximum packet size (Bytes)	Maximum bandwidth (Bytes/ms)	Minimum bandwidth (Bytes/ms)	Double buffer in controller	Generic DMA
Endpoint 0 (command)	Control	64			No	No
Endpoint 1 IN	Bulk (IN)	64		1024	No	Yes
Endpoint 2 OUT	Bulk (OUT)	64	111	1024	No	Yes
Endpoint 2 IN	Bulk (IN)	64	1024	Ai.	No	Yes
Endpoint 2 OUT	Bulk (OUT)	64	1024		No	Yes
Endpoint 3 IN	Interrupt (IN)	16		16	No	No
Endpoint 4 IN	Interrupt (IN)	16		16	No	No

^{*}When the maximum packet size is less than one half of the device FIFO size (64 Bytes), the double buffer will be automatically enabled by hardware

The pull-up resister on USB transceiver is initially disconnected when boot-up. No external resistor is required. Software should enable it after performing the configuration of USB device controller.

4.10.3.2 System infrastructure configuration

The clock, interrupt, and DMA are defined as the system infrastructure. It requires several steps to bring up USB. Those tial Release for steps should be done in sequence to prevent from malfunction.

Power on:

- Enable USB PLL. 1.
- Enable USB clock after USB PLL is settled. 2.
- Unmask the USB interrupt in the interrupt controller. 3.
- 4. Enable the pull-up resistor.

USB device controller can generate the interrupt when conditions are met as defined in USB_INTRINE, USB_INTROUTE, and USB_INTRUSBE.

The generic DMA controller is used to move data from or to the USB device controller. The USB device controller will use at most 4 DMA channels for ACL and SCO. The user should use half channel DMA since only the half channel DMA has the hardware flow control.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 291 of 508

Confidential A

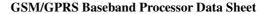
The USB FIFO provides byte and word accesses to the read/write port of USB_EP0_FIFO, USB_EP1_FIFO, USB EP2 FIFO, USB EP3 FIFO, and USB EP4 FIFO. If the data buffer allocated in memory is word aligned, the user can enable word transfer in DMA controller. If the data buffer allocated in memory is not word aligned, the user should set to byte aligned and set B2W in DMAx_CON to 1 to enable fast byte-to-word transfer. Please refer to DMA section foe more detail.

4.10.3.3 Power on/off USB PHY and Controller Sequence

- Power on sequence after plug-in.
 - Turn on Vusb(PHY 3.3v power) the control register is in PMIC document.
 - Turn on USB AHB clock(78MHz) the control register is in config document. 1.2
 - 1.3 Turn on internal 48MHz PLL – the control register is in clock document.
 - 1.4 Wait 50 usec. (PHY 3.3v power stable time)
 - Turn on USB PHY BIAS Current control → reg[USB+08C1h] bit3 = 1. (RG_USB11_FSLS_ENBGRI). 1.5
 - 1.6 Wait 10 usec.
 - 1.7 Setting D+ pull up register for connecting Host \rightarrow reg[USB+0240h] bit 0 =1(PUB)
- Power off sequence after plug-out.
 - Release D+ pull up register for disconnecting Host \rightarrow Setting reg[USB+0240h] bit 0 =0 (PUB) 2.1
 - 2.2 Turn off USB PHY BIAS Current control → reg[USB+08C1h] bit3 = 0. (RG_USB11_FSLS_ENBGRI).
 - 2.3 Turn off Vusb(PHY 3.3v power) – the control register is in PMIC document

SD/MMC Memory Card Controller 4.11

4.11.1 Introduction


The controller fully supports the SD Memory Card bus protocol as defined in SD Memory Card Specification Part 1 Physical Layer Specification version 2.0 as well as the MultiMediaCard (MMC) bus protocol as defined in MMC system specification version 4.1. Since SD Memory Card bus protocol is backward compatible to MMC bus protocol, the

MediaTek Confidential

© 2011 MediaTek Inc.

Page 292 of 508

Confidential A

МЕДІЛІТЕК

controller is capable of working well as the host on MMC bus under control of proper firmware. Hereafter, the controller is also abbreviated as SD/MMC controller. The following are the main features of the controller.

- Interface with MCU by APB bus
- 16/32-bit access on APB bus
- 16/32-bit access for control registers
- 32-bit access for FIFO
- Shared pins for Memory Stick and SD/MMC Memory Card
- Built-in 32 bytes FIFO buffers for transmit and receive, FIFO is shared for transmit and receive
- Built-in CRC circuit
- CRC generation can be disabled
- DMA supported
- Interrupt capabilities
- Automatic command execution capability when an interrupt from Memory Stick
- Data rate up to 26 Mbps in serial mode, 26x4 Mbps (26x8 Mbps if 8-bit data line for SD/MMC card is configured) in parallel model, the module is targeted at 26 MHz operating clock
- Serial clock rate on SD/MMC bus is programmable
- Card detection capabilities during sleep mode
- Controllability of power for memory card
- fidential Release for Not support SPI mode for SD/MMC Memory Card
- Not support multiple SD Memory Cards

4.11.2 Overview

4.11.2.1 **Pin Assignment**

Since the controller can only be configured as either the host of Memory Stick or the host of SD/MMC Memory Card at one time, pins for Memory Stick and SD/MMC Memory Card are shared in order to save pin counts. The following lists pins required for Memory Stick and SD/MMC Memory Card. Table 55 shows how they are shared. In Table 55, all I/O pads have embedded both pull up and pull down resistor because they are shared by both the Memory Stick and SD/MMC Memory Card. Pins 2,4,5,8 are only useful for SD/MMC Memory Card. Pull down resistor for these pins can

MediaTek Confidential

© 2011 MediaTek Inc.

Page 293 of 508

be used for power saving. All embedded pull-up and pull-down resistors can be disabled by programming the corresponding control registers if optimal pull-up or pull-down resistors are required on the system board. The pin VDDPD is used for power saving. Power for Memory Stick or SD/MMC Memory Card can be shut down by programming the corresponding control register. The pin WP (Write Protection) is only valid when the controller is configured for SD/MMC Memory Card. It is used to detect the status of Write Protection Switch on SD/MMC Memory Card

No.	Name	Type	MMC	SD	MS	MSPRO	Description
1	SD_CLK	0	CLK	CLK	SCLK	SCLK	Clock
2	SD_DAT3	I/O/PP		CD/DAT3		DAT3	Data Line [Bit 3]
3	SD_DAT0	I/O/PP	DAT0	DAT0	SDIO	DAT0	Data Line [Bit 0]
4	SD_DAT1	I/O/PP		DAT1		DAT1	Data Line [Bit 1]
5	SD_DAT2	I/O/PP		DAT2		DAT2	Data Line [Bit 2]
6	SD_CMD	I/O/PP	CMD	CMD	BS	BS	Command Or Bus State
7	SD_PWRON	O					VDD ON/OFF
8	SD_WP	I					Write Protection Switch in SD
9	SD_INS	I	VSS2	VSS2	INS	INS	Card Detection

Table 55 Sharing of pins for Memory Stick and SD/MMC Memory Card Controller

4.11.2.2 Card Detection

For Memory Stick, the host or connector should provide a pull up resistor on the signal INS. Therefore, the signal INS will be logic high if no Memory Stick is on line. The scenario of card detection for Memory Stick is shown in **Figure 39**. Before Memory Stick is inserted or powered on, on host side SW1 shall be closed and SW2 shall be opened for card detection. It is the default setting when the controller is powered on. Upon insertion of Memory Stick, the signal INS will have a transition from high to low. Hereafter, if Memory Stick is removed then the signal INS will return to logic high. If card insertion is intended to not be supported, SW1 shall be opened and SW2 closed always.

For SD/MMC Memory Card, detection of card insertion/removal by hardware is also supported. Because a pull down resistor with about 470 K Ω resistance which is impractical to embed in an I/O pad is needed on the signal CD/DAT3, and it has to be capable of being connected or disconnected dynamically onto the signal CD during initialization period, an additional I/O pad is needed to switch on/off the pull down resistor on the system board. The scenario of card detection for SD/MMC Memory Card is shown in **Figure 40**. Before SD/MMC Memory Card is inserted or powered on, SW1 and SW2 shall be opened for card detection on the host side. Meanwhile, pull down resistor R_{CD} on system board shall attach onto the signal CD/DAT3 by the output signal RCDEN. In addition, SW3 on the card is default to be closed. Upon insertion of SD/MMC Memory Card, the signal CD/DAT3 will have a transition from low to high. If SD/MMC Memory Card is removed then the signal CD/DAT3 will return to logic low. After the card identification process, pull down resistor R_{CD} on system board shall disconnect with the signal CD/DAT3 and SW3 on the card shall be opened for normal operation.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 294 of 508

Since the scheme above needs a mechanical switch such as a relay on system board, it is not ideal enough. Thus, a dedicated pin "INS" is used to perform card insertion and removal for SD/MMC. The pin "INS" will connect to the pin "VSS2" of a SD/MMC connector. It is shown in Figure 39.

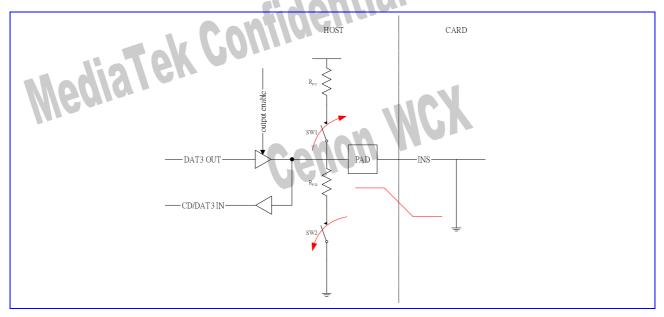


Figure 39 Card detection for Memory Stick

MediaTek Confidential

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Confidential A

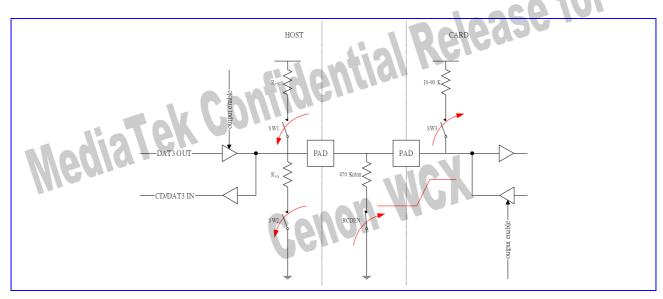


Figure 40 Card detection for SD/MMC Memory Card

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Register Definitions 4.11.3

		Connuc
1.3 Register De For MT6252, MSDC base	La REIV	ase for
REGISTER ADDRESS	REGISTER NAME	SYNONYM
MSDC + 0000h	MS/SD Memory Card Controller Configuration Register	MSDC_CFG
MSDC + 0004h	MS/SD Memory Card Controller Status Register	MSDC_STA
MSDC + 0008h	MS/SD Memory Card Controller Interrupt Register	MSDC_INT
MSDC + 000Ch	MS/SD Memory Card Controller Data Register	MSDC_DAT
MSDC + 00010h	MS/SD Memory Card Pin Status Register	MSDC_PS
MSDC + 00014h	MS/SD Memory Card Controller IO Control Register	MSDC_IOCON
MSDC + 0020h	SD Memory Card Controller Configuration Register	SDC_CFG
MSDC + 0024h	SD Memory Card Controller Command Register	SDC_CMD
MSDC + 0028h	SD Memory Card Controller Argument Register	SDC_ARG
MSDC + 002Ch	SD Memory Card Controller Status Register	SDC_STA
MSDC + 0030h	SD Memory Card Controller Response Register 0	SDC_RESP0
MSDC + 0034h	SD Memory Card Controller Response Register 1	SDC_RESP1
MSDC + 0038h	SD Memory Card Controller Response Register 2	SDC_RESP2
MSDC + 003Ch	SD Memory Card Controller Response Register 3	SDC_RESP3
MSDC + 0040h	SD Memory Card Controller Command Status Register	SDC_CMDSTA
MSDC + 0044h	SD Memory Card Controller Data Status Register	SDC_DATSTA
MSDC + 0048h	SD Memory Card Status Register	SDC_CSTA
MSDC + 004Ch	SD Memory Card IRQ Mask Register 0	SDC_IRQMASK0
MSDC + 0050h	SD Memory Card IRQ Mask Register 1	SDC_IRQMASK1
MSDC + 0054h	SDIO Configuration Register	SDIO_CFG
MSDC + 0058h	SDIO Status Register	SDIO_STA

Table 56 MS/SD Controller Register Map

Global Register Definitions

MSDC+000	nh.	MS/S	D Me	emory	Card	d Cor	ntroller Co	onfigu	ration			M	SDC	CEG	
WISDC+000	UII	Regis	ster									IVI	טטט_	_CI G	
Bit 31	30	29	28	27	26	25	24 23	22	21	20	19	18	17	16	1

MediaTek Confidential

© 2011 MediaTek Inc.

Page 297 of 508

Name		FIFO	THD		PRC	FG2	PRCFG1	PRC	FG0	VDDP D	RCDE N	DIRQ EN	PINE N	DMAE N	INTE N
Type	R/W R/W						R/W	R	W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0001 01 0						01	1	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9 8	7	6	5	4	3	2	1	0
Name				SCI	LKF		Ida.	SCLK ON	CRED	STDB Y	CLKS RC	RST	NOCR C		MSDC
Type			76	R/	W		•	R/W	R/W	R/W	R/W	W	R/W		R/W
Reset				0000	0000			0	0	1	0	0	0		0

The register is for general configuration of the MS/SD controller. Note that MSDC_CFG[31:16] can be accessed by 16-bit APB bus access.

- **MSDC** The register bit is used to configure the controller as SD/MMC Memory card mode. CLK/CMD/DAT line is pull low when SD/MMC memory card mode is disable..
 - O SD/MMC Memory card disable.
 - 1 SD/MMC Memory card enable.
- NOCRC CRC Disable. A '1' indicates that data transfer without CRC is desired. For write data block, data will be transmitted without CRC. For read data block, CRC will not be checked. It is for testing purpose.
 - **0** Data transfer with CRC is desired.
 - 1 Data transfer without CRC is desired.
- RST Software Reset. Writing a '1' to the register bit will cause internal synchronous reset of MS/SD controller, but does not reset register settings.
 - Otherwise
 - 1 Reset MS/SD controller
- **CLKSRC** The register bit specifies which clock is used as source clock of memory card. If MUC clock is used, the fastest clock rate for memory card is 104/4=26MHz. If MCPLL clock is used, the fastest clock rate for memory card is 48/2 =24MHz.
 - **0** Use MCU clock as source clock of memory card.
 - 1 Use MCPLL clock as source clock of memory card.
- STDBYStandby Mode. If the module is powered down, operating clock to the module will be stopped. At the same time, clock to card detection circuitry will also be stopped. If detection of memory card insertion and removal is desired, write '1' to the register bit. If interrupt for detection of memory card insertion and removal is enabled, interrupt will take place whenever memory is inserted or removed.
 - O Standby mode is disabled.
 - 1 Standby mode is enabled.
- RED Rise Edge Data. The register bit is used to determine that serial data input is latched at the falling edge or the rising edge of serial clock. The default setting is at the rising edge. If serial data has worse timing, set the register bit to '1'. When memory card has worse timing on return read data, set the register bit to '1'.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 298 of 508

Release fo

- **0** Serial data input is latched at the rising edge of serial clock.
- 1 Serial data input is latched at the falling edge of serial clock
- **SCLKON** Serial Clock Always On. It is for debugging purpose.
 - O Not to have serial clock always on.
 - 1 To have serial clock always on.
- SCLKF The register field controls clock frequency of serial clock on MS/SD bus. Denote clock frequency of MS/SD bus serial clock as f_{slave} and clock frequency of the MS/SD controller as f_{host} which is 104 or 52 MHz. Then the value of the register field is as follows. Note that the allowable maximum frequency of f_{slave} is 26MHz. While changing clock rate, it needs "1T clock period before change + 1T clock period after change" for HW signal to re-synchronize.

```
\begin{array}{ll} \textbf{00000000b} & f_{slave} = (1/2) * f_{host} \\ \textbf{00000001b} & f_{slave} = (1/(4*1)) * f_{host} \\ \textbf{000000010b} & f_{slave} = (1/(4*2)) * f_{host} \\ \textbf{000000011b} & f_{slave} = (1/(4*3)) * f_{host} \\ \dots & \\ \textbf{00010000b} & f_{slave} = (1/(4*16)) * f_{host} \\ \dots & \\ \textbf{11111111b} & f_{slave} = (1/(4*255)) * f_{host} \\ \end{array}
```

- **INTEN** Interrupt Enable. Note that if interrupt capability is disabled then application software must poll the status of the register MSDC_STA to check for any interrupt request.
 - Interrupt induced by various conditions is disabled, no matter the controller is configured as the host of either SD/MMC Memory Card or Memory Stick.
 - 1 Interrupt induced by various conditions is enabled, no matter the controller is configured as the host of either SD/MMC Memory Card or Memory Stick.
- **DMAEN** DMA Enable. Note that if DMA capability is disabled then application software must poll the status of the register MSDC_STA for checking any data transfer request. If DMA is desired, the register bit must be set before command register is written.
 - O DMA request induced by various conditions is disabled, no matter the controller is configured as the host of either SD/MMC Memory Card or Memory Stick.
 - 1 DMA request induced by various conditions is enabled, no matter the controller is configured as the host of either SD/MMC Memory Card or Memory Stick.
- **PINEN** Pin Interrupt Enable. The register bit is used to control if the pin for card detection is used as an interrupt source.
 - O The pin for card detection is not used as an interrupt source.
 - 1 The pin for card detection is used as an interrupt source.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 299 of 508

DIRQEN Data Request Interrupt Enable. The register bit is used to control if data request is used as an interrupt source.

- **0** Data request is not used as an interrupt source.
- 1 Data request is used as an interrupt source.

RCDENThe register bit controls the output pin RCDEN that is used for card identification process when the controller is for SD/MMC Memory Card. Its output will control the pull down resistor on the system board to connect or disconnect with the signal CD/DAT3.

- The output pin RCDEN will output logic low.
- 1 The output pin RCDEN will output logic high.

VDDPD The register bit controls the output pin VDDPD that is used for power saving. The output pin VDDPD will control power for memory card.

- 0 The output pin VDDPD will output logic low. The power for memory card will be turned off.
- 1 The output pin VDDPD will output logic high. The power for memory card will be turned on.

PRCFG0 Pull Up/Down Register Configuration for the pin WP. The default value is 10.

- **00** Pull up resistor and pull down resistor in the I/O pad of the pin WP are all disabled.
- **01** Pull down resistor in the I/O pad of the pin WP is enabled.
- 10 Pull up resistor in the I/O pad of the pin WP is enabled.
- 11 Use keeper of IO pad.

PRCFG1 Pull Up/Down Register Value for the pins CMD/BS. The default value is 0b01. Note that pull up configuration for the pins CMD/BS with the register bit MCCPUPD in ACIF CON3 setting to 1. Pull down configuration for the pins CMD/BS with the register bit MCCPUPD in ACIF CON3(0x8001070c) setting to 0.

- **00** Pull up resistor and pull down resistor in the I/O pad of the pin CMD/BS are all disabled.
- **01** Pull up/down resistor in the I/O pad of the pin CMD/BS value is 47k.
- 10 Pull up/down resistor in the I/O pad of the pin CMD/BS value is 47k.
- 11 Pull up/down resistor in the I/O pad of the pin CMD/BS value is 23.5k.

PRCFG2 Pull Up/Down Register Value for the pins DAT0, DAT1, DAT2, DAT3. The default value is 0b01. Note that pull up configuration for the pins DAT0, DAT1, DAT2, DAT3 with the register bit MCDPUPD in ACIF_CON3 setting to 1. Pull down configuration for the pins DAT0, DAT1, DAT2, DAT3 with the register bit MCDPUPD in ACIF_CON3(0x8001070c) setting to 0. And DAT pin enable configuration from DAT0 to DAT3 is the register bit from GPIO71 to GPIO68 in GPIO_PULLSEL5(0x80020090).

- 00 Pull up resistor and pull down resistor in the I/O pad of the pin DAT are all disabled.
- **01** Pull up/down resistor in the I/O pad of the pin DAT value is 47k.
- 10 Pull up/down resistor in the I/O pad of the pin DAT value is 47k.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 300 of 508

11 Pull up/down resistor in the I/O pad of the pin DAT value is 23.5k.

FIFO Threshold. The register field determines when to issue a DMA request. For write transactions, DMA FIFOTHD requests will be asserted if the number of free entries in FIFO are larger than or equal to the value in the register field. For read transactions, DMA requests will be asserted if the number of valid entries in FIFO are larger than or equal to the value in the register field. The register field must be set according to the setting of data transfer count in DMA burst mode. If single mode for DMA transfer is used, the register field shall be set to 0b0001.

0000 Invalid.

0001 Threshold value is 1.

Threshold value is 2. 0010

1000 Threshold value is 8.

others Invalid

senon MCX MSDC+0004h MS/SD Memory Card Controller Status Register

MSDC STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BUSY	FIFOC LR								FIFC	CNT		INT	DRQ	BE	BF
Type	R	W								R	0		RO	RO	RO	RO
Reset	0	-								00	00		0	0	0	0

The register contains the status of FIFO, interrupts and data requests.

- **BF** The register bit indicates if FIFO in MS/SD controller is full.
 - FIFO in MS/SD controller is not full.
 - FIFO in MS/SD controller is full.
- BE The register bit indicates if FIFO in MS/SD controller is empty.
 - FIFO in MS/SD controller is not empty.
 - FIFO in MS/SD controller is empty.
- **DRQ** The register bit indicates if any data transfer is required. While any data transfer is required, the register bit still will be active even if the register bit DIRQEN in the register MSDC_CFG is disabled. Data transfer can be achieved by DMA channel alleviating MCU loading, or by polling the register bit to check if any data transfer is requested. While the register bit DIRQEN in the register MSDC_CFG is disabled, the second method is used.
 - No DMA request exists.
 - DMA request exists.
- The register bit indicates if any interrupt exists. While any interrupt exists, the register bit still will be active even if the register bit INTEN in the register MSDC_CFG is disabled. MS/SD controller can interrupt MCU by issuing interrupt request to Interrupt Controller, or software/application polls the register endlessly to check if any interrupt request exists in MS/SD controller. While the register bit INTEN in the register MSDC_CFG is

MediaTek Confidential

© 2011 MediaTek Inc.

Page 301 of 508

disabled, the second method is used. For read commands, it is possible that timeout error takes place. Software can read the status register to check if timeout error takes place without OS time tick support or data request is asserted. Note that the register bit will be cleared when reading the register MSDC_INT.

- **0** No interrupt request exists.
- 1 Interrupt request exists.

FIFO Count. The register field shows how many valid entries are in FIFO.

0000 There is 0 valid entry in FIFO.

0001 There is 1 valid entry in FIFO.

0010 There are 2 valid entries in FIFO.

...

1000 There are 8 valid entries in FIFO.

others Invalid

FIFOCLR Clear FIFO. Writing '1' to the register bit will cause the content of FIFO clear and reset the status of FIFO controller.

- No effect on FIFO.
- 1 Clear the content of FIFO clear and reset the status of FIFO controller.

BUSY Status of the controller. If the controller is in busy state, the register bit will be '1'. Otherwise '0'.

- The controller is in busy state.
- 1 The controller is in idle state.

MSDC+0008h MS/SD Memory Card Controller Interrupt Register

MSDC INT

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									SDIOI RQ	SDR1 BIRQ		SDMC IRQ	SDDA TIRQ	SDCM DIRQ	PINIR Q	DIRQ
Type									RC	RC		RC	RC	RC	RC	RC
Reset									0	0		0	0	0	0	0

The register contains the status of interrupts. Note that the register still show status of interrupt even though interrupt is disabled, that is, the register bit INTEN of the register MSDC_CFG is set to '0. It implies that software interrupt can be implemented by polling the register bit INT of the register MSDC_STA and this register. However, if hardware interrupt is desired, remember to clear the register before setting the register bit INTEN of the register MSDC_CFG to '1'. Or undesired hardware interrupt arisen from previous interrupt status may take place.

DIRQ Data Request Interrupt. The register bit indicates if any interrupt for data request exists. Whenever data request exists and data request as an interrupt source is enabled, i.e., the register bit DIRQEN in the register MSDC_CFG is set to '1', the register bit will be active. It will be reset when reading it. For software, data requests can be recognized by polling the register bit DRQ or by data request interrupt. Data request interrupts will be generated every FIFOTHD data transfers.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 302 of 508

- No Data Request Interrupt.
- Data Request Interrupt occurs.
- lease fo **PINIRQ** Pin Change Interrupt. The register bit indicates if any interrupt for memory card insertion/removal exists. Whenever memory card is inserted or removed and card detection interrupt is enabled, i.e., the register bit PINEN in the register MSDC_CFG is set to '1', the register bit will be set to '1'. It will be reset when the register is read.
 - Otherwise.
 - Card is inserted or removed.
- SDCMDIRQ SD Bus CMD Interrupt. The register bit indicates if any interrupt for SD CMD line exists. Whenever interrupt for SD CMD line exists, i.e., any bit in the register SDC CMDSTA is active, the register bit will be set to '1' if interrupt is enabled. It will be reset when the register is read.
 - No SD CMD line interrupt.
 - SD CMD line interrupt exists.
- SDDATIRQ SD Bus DAT Interrupt. The register bit indicates if any interrupt for SD DAT line exists. Whenever interrupt for SD DAT line exists, i.e., any bit in the register SDC_ DATSTA is active, the register bit will be set to '1' if interrupt is enabled. It will be reset when the register is read.
 - No SD DAT line interrupt.
 - SD DAT line interrupt exists.
- SDMCIRQSD Memory Card Interrupt. The register bit indicates if any interrupt for SD Memory Card exists. Whenever interrupt for SD Memory Card exists, i.e., any bit in the register SDC CSTA is active, the register bit will be set to '1' if interrupt is enabled. It will be reset when the register is read.
 - No SD Memory Card interrupt.
 - SD Memory Card interrupt exists.
- SDR1BIRQ SD/MMC R1b Response Interrupt. The register bit will be active when a SD/MMC command with R1b response finishes and the DAT0 line has transition from busy to idle state. Single block write commands with R1b response will cause the interrupt when the command completes no matter successfully or with CRC error. However, multi-block write commands with R1b response do not cause the interrupt because multi-block write commands are always stopped by STOP_TRANS commands. STOP_TRANS commands (with R1b response) behind multi-block write commands will cause the interrupt. Single block read command with R1b response will cause the interrupt when the command completes but multi-block read commands do not. Note that STOP_TRANS commands (with R1b response) behind multi-block read commands will cause the interrupt.
 - No interrupt for SD/MMC R1b response.
 - Interrupt for SD/MMC R1b response exists.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 303 of 508

MSDC+000Ch MS/SD Memory Card Controller Data Register

MSDC DAT

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								DATA	[31:16]							
Type						100		R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			4					DATA	[15:0]							
Type								R/	W							

The register is used to read/write data from/to FIFO inside MS/SD controller. Data access is in unit of 32 bits.

MSDC+0010h MS/SD Memory Card Pin Status Register

MSDC_PS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								CMD				D	ΔT			
Type								RO				R	0			
Reset								-								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	(DDEB	OUNCE									PINC HG	PIN0	POEN 0	PIEN0	CDEN
Type		R'	W									RC	RO	R/W	R/W	R/W
Reset		00	00									0	1	0	0	0

The register is used for card detection. When the memory card controller is powered on, and the system is powered on, the power for the memory card is still off unless power has been supplied by the PMIC. Meanwhile, pad for card detection defaults to pull down when the system is powered on. The scheme of card detection for MS is the same as that for SD/MMC.

For detecting card insertion, first pull up INS pin, and then enable card detection and input pin at the same time. After 32 cycles of controller clock, status of pin changes will emerge. For detecting card removal, just keep enabling card detection and input pin.

CDEN Card Detection Enable. The register bit is used to enable or disable card detection.

- Card detection is disabled.
- 1 Card detection is enabled.

PIENO The register bit is used to control input pin for card detection.

- **0** Input pin for card detection is disabled.
- 1 Input pin for card detection is enabled.

POENO The register bit is used to control output of input pin for card detection.

- Output of input pin for card detection is disabled.
- Output of input pin for card detection is enabled.

PINO The register shows the value of input pin for card detection

MediaTek Confidential

© 2011 MediaTek Inc.

Page 304 of 508

ease

- O The value of input pin for card detection is logic low.
- 1 The value of input pin for card detection is logic high.

PINCHG Pin Change. The register bit indicates the status of card insertion/removal. If memory card is inserted or removed, the register bit will be set to '1' no matter pin change interrupt is enabled or not. It will be cleared when the register is read.

- Otherwise.
- 1 Card is inserted or removed.

CDDEBOUNCE The register field specifies the time interval for card detection de-bounce. Its default value is 0. It means that de-bounce interval is 32 cycle time of 32KHz. The interval will extend one cycle time of 32KHz by increasing the counter by 1.

DAT Memory Card Data Lines.

CMD Memory Card Command Lines.

MSDC+0014h MS/SD Memory Card Controller IO Control Register MSDC IOCON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				DI	т_Т							CRCDI S	CMDS EL	INT	'LH	DSW
Type				R/	W							R/W	R/W	R/	W	R/W
Reset				0000	0010							0	0	()	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	CMDR E						PRC	FG3	SRCF G1	SRCF G0		ODCCF	G1	0	DCCFC	0£
Type	R/W						R/	W	R/W	R/W		R/W			R/W	
Reset	0						1	0	1	1		000			011	

The register specifies **Output Driving Capability** and **Slew Rate** of IO pads for MSDC. The reset value is suggestion setting. If output driving capability of the pins DAT0, DAT1, DAT2 and DAT3 is too large, it's possible to arise ground bounce and thus result in glitch on SCLK. The actual driving current will depend on the PAD type selected for the chip.

ODCCFG0 Output driving capability the pins CMD/BS and SCLK

000 4mA

010 12mA

100 8mA

110 16mA

ODCCFG1 Output driving capability the pins DAT0, DAT1, DAT2 and DAT3

000 4mA

010 12mA

100 8mA

MediaTek Confidential

© 2011 MediaTek Inc.

Page 305 of 508

Release for

110 16mA

SRCFG0 Output driving capability the pins CMD/BS and SCLK

- O Fast Slew Rate
- 1 Slow Slew Rate

SRCFG1 Output driving capability the pins DAT0, DAT1, DAT2 and DAT3

- O Fast Slew Rate
- 1 Slow Slew Rate

PRCFG3 Pull Up/Down Register Configuration for the pin INS. The default value is 10.

- OO Pull up resistor and pull down resistor in the I/O pad of the pin INS are all disabled.
- **01** Pull down resistor in the I/O pad of the pin INS is enabled.
- 10 Pull up resistor in the I/O pad of the pin INS is enabled.
- 11 Use keeper of IO pad.

CMDRE The register bit is used to determine whether the host should latch response token (which is sent from card on CMD line) at rising edge or falling edge of serial clock.

- **0** Host latches response at rising edge of serial clock
- 1 Host latches response at falling edge of serial clock

DSW The register bit is used to determine whether the host should latch data with 1-T delay or not. For SD/MMC card, this bit is suggest to be 0.

- O Host latches the data with 1-T delay
- 1 Host latches the data without 1-T delay

INTLH This field is used to select the latch timing for SDIO multi-block read interrupt. Note that, SDIO is not support in MT6252.

- Host latches INT at the second backend clock after the end bit of current data block from card is received. (This is the default setting)
- 01 Host latches INT at the first backend clock after the end bit of current data block from card is received.
- 10 Host latches INT at the second backend clock after the end bit of current data block from card is received.
- 11 Host latches INT at the third backend clock after the end bit of current data block from card is received.

CMDSEL The register bit is used to determine whether the host should delay 1-T to latch response from card.

- O Host latches response without 1-T delay.
- 1 Host latches response with 1-T delay.

CRCDIS The register bit is used to switch-off the data CRC check for SD/MMC read data.

- O CRC Check is on.
- 1 CRC Check is off.

MediaTek Confidential

© 2011 MediaTek Inc.

ion MC

Page 306 of 508

DLT Data Latch Timing. The register is used for SW to select the latch timing on data line.

Figure 41 illustrates the data line latch timing. sclk_out is the serial clock output to card. div_clk is the internal clock used for generating divided clock. The number "1 2 1 2" means the current sclk_out is divided from div_clk by a ratio of 2. data_in is the output data from card, and latched_data(r)/(f) is the rising/falling edge latched data inside the host (configured by RED in MSDC_CFG). In this example, SCLKF(in MSDC_CFG) is set to 8'b0 which means the division ratio is 2, and DLT is set to 1. Note that the value of DLT CANNOT be set as 0 and its value should not exceed the division ratio (in the example, the division ratio is 2). Also note that, the latching time will be one div_clk later than the indicated DLT value and the falling edge is always half div_clk ahead from rising edge. The default value of DLT is set to 8'b2.

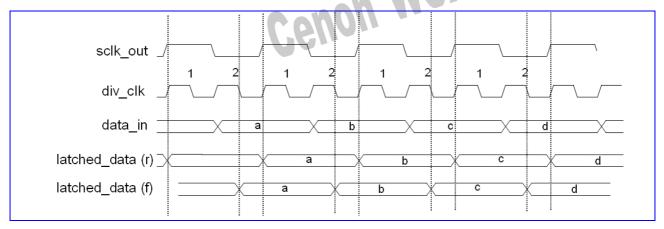


Figure 41 Illustration of data line latch timing

4.11.3.2 SD Memory Card Controller Register Definitions

MSDC+0020h SD Memory Card Controller Configuration Register

	_	•	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
	IJ			u.
•		•	•	

Bit	31	30	29	28	_27_	26	25	24	23	22	21	20	19	18	17	16
Name				DT	ос					WD	OD		SDIO		MDLE N	SIEN
Type				R	W					R	W		R/W		R/W	R/W
Reset		IV		0000	0000					00	00		0		0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		BSY	DLY							BLK	LEN					
Type		R/	W							R	W					
Reset		10	00						1/2	000000	000000					

MediaTek Confidential

© 2011 MediaTek Inc.

Page 307 of 508

The register is used for configuring the MS/SD Memory Card Controller when it is configured as the host of SD Memory Card. If the controller is configured as the host of Memory Stick, the contents of the register have no impact on the operation of the controller. Note that SDC_CFG[31:16] can be accessed by 16-bit APB bus access.

BLKLEN It refers to Block Length. The register field is used to define the length of one block in unit of byte in a data transaction. The maximal value of block length is 2048 bytes.

00000000000 Reserved.

000000000001 Block length is 1 byte. 000000000010 Block length is 2 bytes.

0111111111111 Block length is 2047 bytes. 10000000000 Block length is 2048 bytes.

BSYDLY The register field is only valid for the commands with R1b response. If the command has a response of R1b type, MS/SD controller must monitor the data line 0 for card busy status from the bit time that is two serial clock cycles after the command end bit to check if operations in SD/MMC Memory Card have finished. The register field is used to expand the time between the command end bit and end of detection period to detect card busy status. If time is up and there is no card busy status on data line 0, then the controller will abandon the detection.

0000 No extend.

0001 Extend one more serial clock cycle.

0010 Extend two more serial clock cycles.

. . .

1111 Extend fifteen more serial clock cycle.

elease for SIEN Serial Interface Enable. It should be enabled as soon as possible before any command.

- Serial interface for SD/MMC is disabled.
- Serial interface for SD/MMC is enabled.

SDIO SDIO Enable. Note that, SDIO is not support in MT6252.

- 0 SDIO mode is disabled
- SDIO mode is enabled

MDLENMultiple Data Line Enable. The register can be enabled only when SD Memory Card is applied and detected by software application. It is the responsibility of the application to program the bit correctly when an MultiMediaCard is applied. If an MultiMediaCard is applied and 4-bit data line is enabled, then 4 bits will be output every serial clock. Therefore, data integrity will fail. Note that, Only 1-bit mode could be supported in MT6252.

- 4-bit Data line is disabled.
- 4-bit Data line is enabled.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 308 of 508

WDOD Write Data Output Delay. The period from finish of the response for the initial host write command or the last write data block in a multiple block write operation to the start bit of the next write data block requires at least two serial clock cycles. The register field is used to extend the period (Write Data Output Delay) in unit of one serial clock.

0000 No extend.

0001 Extend one more serial clock cycle.

0010 Extend two more serial clock cycles.

Extend fifteen more serial clock cycle.

DTOC Data Timeout Counter. The period from finish of the initial host read command or the last read data block in a multiple block read operation to the start bit of the next read data block requires at least two serial clock cycles. The counter is used to extend the period (Read Data Access Time) in unit of 65,536 serial clock. See the register field description of the register bit RDINT for reference.

00000000 Extend 65,536 more serial clock cycle.
00000001 Extend 65,536x2 more serial clock cycle.
00000010 Extend 65,536x3 more serial clock cycle.

. . .

Extend 65,536x 256 more serial clock cycle.

MSDC+0024h SD Memory Card Controller Command Register

SDC_CMD

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				СТ	ОС											CMDF AIL
Type				R/	W											R/W
Reset				0100	0000										-11	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	INTC	STOP	RW	DT	/PE	IDRT	F	RSPTYI	•	BREA K		6	CN	MD	9.	
Type	R/W	R/W	R/W	R/	W	R/W		R/W		R/W			R/	W		
Reset	0	0	0	0	0	0		000	47.	0			000	000		•

The register defines a SD Memory Card command and its attribute. Before MS/SD controller issues a transaction onto SD bus, application shall specify other relative setting such as argument for command. After application writes the register, MS/SD controller will issue the corresponding transaction onto SD serial bus. If the command is GO IDLE STATE, the controller will have serial clock on SD/MMC bus run 128 cycles before issuing the command.

CMD SD Memory Card command. It is totally 6 bits.

BREAK Abort a pending MMC GO_IRQ_MODE command. It is only valid for a pending GO_IRQ_MODE command waiting for MMC interrupt response.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 309 of 508

- Other fields are valid.
- Break a pending MMC GO_IRQ_MODE command in the controller. Other fields are invalid.
- **RSPTYP** The register field defines response type for the command. For commands with R1 and R1b response, the register SDC_CSTA (not SDC_STA) will update after response token is received. This register SDC_CSTA contains the status of the SD/MMC and it will be used as response interrupt sources. Note that if CMD7 is used with all 0's RCA then RSPTYP must be "000". And the command "GO_TO_IDLE" also have RSPTYP='000'.
 - **000** There is no response for the command. For instance, broadcast command without response and GO_INACTIVE_STATE command.
 - **001** The command has R1 response. R1 response token is 48-bit.
 - **010** The command has R2 response. R2 response token is 136-bit.
 - **011** The command has R3 response. Even though R3 is 48-bit response, but it does not contain CRC checksum.
 - 100 The command has R4 response. R4 response token is 48-bit. (Only for MMC)
 - **101** The command has R5 response. R5 response token is 48-bit. (Only for MMC)
 - 110 The command has R6 response. R6 response token is 48-bit.
 - 111 The command has R1b response. If the command has a response of R1b type, MS/SD controller must monitor the data line 0 for card busy status from the bit time that is two or four serial clock cycles after the command end bit to check if operations in SD/MMC Memory Card have finished. There are two cases for detection of card busy status. The first case is that the host stops the data transmission during an active write data transfer. The card will assert busy signal after the stop transmission command end bit followed by four serial clock cycles. The second case is that the card is in idle state or under a scenario of receiving a stop transmission command between data blocks when multiple block write command is in progress. The register bit is valid only when the command has a response token.
- IDRT Identification Response Time. The register bit indicates if the command has a response with N_{ID} (that is, 5 serial clock cycles as defined in SD Memory Card Specification Part 1 Physical Layer Specification version 1.0) response time. The register bit is valid only when the command has a response token. Thus the register bit must be set to '1' for CMD2 (ALL_SEND_CID) and ACMD41 (SD_APP_OP_CMD).
 - Otherwise.
 - The command has a response with N_{ID} response time.
- **DTYPE** The register field defines data token type for the command.
 - 00 No data token for the command
 - **01** Single block transaction
 - 10 Multiple block transaction. That is, the command is a multiple block read or write command.
 - 11 Stream operation. It only shall be used when an MultiMediaCard is applied.
- The register bit defines the command is a read command or write command. The register bit is valid only when the command will cause a transaction with data token.
 - **0** The command is a read command.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 310 of 508

lease fo

1 The command is a write command.

STOP The register bit indicates if the command is a stop transmission command.

- **0** The command is not a stop transmission command.
- 1 The command is a stop transmission command.
- **INTC** The register bit indicates if the command is GO_IRQ_STATE. If the command is GO_IRQ_STATE, the period between command token and response token will not be limited.
 - The command is not GO_IRQ_STATE.
 - 1 The command is GO_IRQ_STATE.

MSDC+0028h SD Memory Card Controller Argument Register

SDC_ARG

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								ARG [31:16]							
Type							R.	R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								ARG	[15:0]							
Type								R/	W							

The register contains the argument of the SD/MMC Memory Card command.

MSDC+002Ch SD Memory Card Controller Status Register

SDC_STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												FEDA	FECM	BEDA	BECM	BESD
Name	WP											TBUS	DBUS	TBUS	DBUS	CBUS
												Y	Y	Y	Y	Y
Type	R											RO	RO	RO	RO	RO
Reset	_											Λ	0	Λ	Λ	0

The register contains various status of MS/SD controller as the controller is configured as the host of SD Memory Card.

BESDCBUSY The register field indicates if MS/SD controller is busy, that is, any transmission is going on CMD or DAT line on SD bus. This bit shows backend controller's SDC busy state. The busy state is sync from card clock domain to bus clock domain.

- **0** Backend MS/SD controller is idle.
- 1 Backend MS/SD controller is busy.

BECMDBUSY The register field indicates if any transmission is going on CMD line on SD bus. This bit shows backend controller's CMD busy state. The busy state is sync from card clock domain to bus clock domain.

- Backend MS/SDC Controller gets the info that no transmission is going on CMD line on SD bus.
- 1 Backend MS/SDC Controller gets the info that there exists transmission going on CMD line on SD bus.

BEDATBUSY The register field indicates if any transmission is going on DAT line on SD bus.

O Backend MS/SDC Controller gets the info that no transmission is going on DAT line on SD bus.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 311 of 508

1 Backend MS/SDC Controller gets the info that there exists transmission going on DAT line on SD bus.

FECCMDBUSY The register field indicates if any transmission is going on CMD line on SD bus. This bit indicates directly the CMD line at card clock domain.

- No transmission is going on CMD line on SD bus.
- 1 There exists transmission going on CMD line on SD bus.

FEDATBUSY The register field indicates if any transmission is going on DAT line on SD bus. This bit indicates directly the CMD line at card clock domain. For those commands without data but still involving DAT line, the register bit is useless. For example, if an Erase command is issued, then checking if the register bit is '0' before issuing next command with data would not guarantee that the controller is idle. In this situation, use the register bit BESDCBUSY.

- **0** No transmission is going on DAT line on SD bus.
- There exists transmission going on DAT line on SD bus.
- WP It is used to detect the status of Write Protection Switch on SD Memory Card. The register bit shows the status of Write Protection Switch on SD Memory Card. There is no default reset value. The pin WP (Write Protection) is also only useful while the controller is configured for SD Memory Card. Note that, write protection feature is not support in MT6252.
 - 1 Write Protection Switch ON. It means that memory card is desired to be write-protected.
 - Write Protection Switch OFF. It means that memory card is writable.

CTOC Command Timeout Counter. The period between an end bit of command and a start bit of response except CMD2 and ACMD41. The unit of the counter is one serial clock cycle.

MSDC+0030h SD Memory Card Controller Response Register 0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RESP	[31:16]					7.11		
Type								R	0				74			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RESP	[15:0]		1.7					
Type							_	R	0115							

The register contains parts of the last SD/MMC Memory Card bus response. See description for the register field SDC_RESP3.

MSDC+0034h SD Memory Card Controller Response Register 1

SDC RESP1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RESP	[63:48]	TTT						
Type								R	0 \	$I \cup I$						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 312 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Name	RESP [47:32]	A CIGNATO
Type	RO	DOIGO:

The register contains parts of the last SD/MMC Memory Card bus response. See description for the register field SDC_RESP3.

MSDC+0038h SD Memory Card Controller Response Register 2

0.	-			-
SI	и.	н	- 5	יים:
UL	-		-	-

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								RESP	[95:80]							
Type	7							R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RESP	[79:64]							
Type								R	0							

The register contains parts of the last SD/MMC Memory Card bus response. See description for the register field SDC RESP3.

MSDC+003Ch SD Memory Card Controller Response Register 3

SDC_RESP3

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							F	RESP [1	127:112	2]						
Type								R	0							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								RESP [111:96]							
Type								R	0							

The register contains parts of the last SD/MMC Memory Card bus response. The register fields SDC_RESP0, SDC_RESP1, SDC_RESP2 and SDC_RESP3 compose the last SD/MMC Memory card bus response. For response of type R2, that is, response of the command ALL_SEND_CID, SEND_CSD and SEND_CID, only bit 127 to 0 of response token is stored in the register field SDC_RESP0, SDC_RESP1, SDC_RESP2 and SDC_RESP3. For response of other types, only bit 39 to 8 of response token is stored in the register field SDC_RESP0.

MSDC+0040h

SD Memory Card Controller Command Status Register

SDC_CMDSTA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	2	10	T	W	9								MMCI RQ	RSPC RCER R	CMDT O	CMD RDY
Type	13	111											RC	RC	RC	RC
Reset									1	111			0	0	0	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 313 of 508

The register contains the status of MS/SD controller during command execution and that of MS/SD bus protocol after command execution when MS/SD controller is configured as the host of SD/MMC Memory Card. The register will also be used as interrupt sources. The register will be cleared when reading the register. Meanwhile, if interrupt is enabled and thus interrupt caused by the register is generated, reading the register will deassert the interrupt.

CMDRDY For command without response, the register bit will be '1' once the command completes on SD/MMC bus. For command with response, the register bit will be '1' whenever the command is issued onto SD/MMC bus and its corresponding response is received **without CRC error**.

- Otherwise.
- Command with/without response finish successfully without CRC error.

CMDTO Timeout on CMD detected. A '1' indicates that MS/SD controller detected a timeout condition while waiting for a response on the CMD line.

- Otherwise.
- 1 MS/SD controller detected a timeout condition while waiting for a response on the CMD line.

RSPCRCERR CRC error on CMD detected. A '1' indicates that MS/SD controller detected a CRC error **after reading** a **response from the CMD line.**

- Otherwise.
- 1 MS/SD controller detected a CRC error after reading a response from the CMD line.

MMCIRQ MMC requests an interrupt. A '1' indicates that a MMC supporting command class 9 issued an interrupt request.

- Otherwise.
- 1 A '1' indicates that a MMC supporting command class 9 issued an interrupt request.

MSDC+0044h SD Memory Card Controller Data Status Register

SDC DATSTA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												O?		DATC RCER R	DATT O	BLKD ONE
Type											17			RC	RC	RC
Reset									1L					0	0	0

The register contains the status of MS/SD controller during data transfer on DAT line(s) when MS/SD controller is configured as the host of SD/MMC Memory Card. The register also will be used as interrupt sources. The register will be cleared when reading the register. Meanwhile, if interrupt is enabled and thus interrupt caused by the register is generated, reading the register will deassert the interrupt.

BLKDONE The register bit indicates the status of data block transfer.

- Otherwise.
- 1 A data block was successfully transferred.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 314 of 508

- **DATTO** Timeout on DAT detected. A '1' indicates that MS/SD controller detected a timeout condition while waiting for data token on the DAT line.
 - Otherwise.
 - 1 MS/SD controller detected a timeout condition while waiting for data token on the DAT line.
- **DATCRCERR** CRC error on DAT detected. A '1' indicates that MS/SD controller detected a CRC error after reading a block of data from the DAT line or SD/MMC signaled a CRC error after writing a block of data to the DAT line.
 - Otherwise.
 - MS/SD controller detected a CRC error after reading a block of data from the DAT line or SD/MMC signaled a CRC error after writing a block of data to the DAT line.

MSDC+0048h SD Memory Card Status Register

SDC_CSTA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								CSTA	[31:16]							
Type								R	C							
Reset							000	00000	000000	00						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								CSTA	[15:0]							
Type								R	C							
Reset							000	000000	000000	00						

After commands with R1 and R1b response this register contains the status of the SD/MMC card and it will be used as response interrupt sources. In all register fields, logic high indicates error and logic low indicates no error. The register will be cleared when reading the register. Meanwhile, if interrupt is enabled and thus interrupt caused by the register is generated, reading the register will deassert the interrupt.

- **CSTA31 OUT_OF_RANGE**. The command's argument was out of the allowed range for this card.
- **CSTA30 ADDRESS_ERROR**. A misaligned address that did not match the block length was used in the command.
- **CSTA29 BLOCK_LEN_ERROR**. The transferred block length is not allowed for this card, or the number of transferred bytes does not match the block length.
- **CSTA28 ERASE_SEQ_ERROR**. An error in the sequence of erase commands occurred.
- **CSTA27 ERASE_PARAM.** An invalid selection of write-blocks for erase occurred.
- **CSTA26 WP_VIOLATION**. Attempt to program a write-protected block.
- **CSTA25** Reserved. Return zero.
- **CSTA24 LOCK_UNLOCK_FAILED**. Set when a sequence or password error has been detected in lock/unlock card command or if there was an attempt to access a locked card.
- **CSTA23 COM_CRC_ERROR**. The CRC check of the previous command failed.
- **CSTA22 ILLEGAL_COMMAND**. Command not legal for the card state.
- **CSTA21 CARD_ECC_FAILED.** Card internal ECC was applied but failed to correct the data.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 315 of 508

2358

CSTA20 CC_ERROR. Internal card controller error.

CSTA19 ERROR. A general or an unknown error occurred during the operation.

CSTA18 UNDERRUN. The card could not sustain data transfer in stream read mode.

CSTA17 OVERRUN. The card could not sustain data programming in stream write mode.

CSTA16 CID/CSD_OVERWRITE. It can be either one of the following errors: 1. The CID register has been already written and cannot be overwritten 2. The read only section of the CSD does not match the card. 3. An attempt to reverse the copy (set as original) or permanent WP (unprotected) bits was made.

CSTA[15:4] Reserved. Return zero.

CSTA3 AKE SEQ ERROR. Error in the sequence of authentication process

CSTA[2:0] Reserved. Return zero.

MSDC+004Ch SD Memory Card IRQ Mask Register 0

SDC_IRQMASK

C

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							IR	QMAS	K [31:1	6]						
Type								R/	W							
Reset							000	000000	000000	000						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							IF	RQMAS	K [15:	0]						
Type								R/	W							
Reset		•	•		•	•	000	000000	000000	000					•	

The register contains parts of SD Memory Card Interrupt Mask Register. See the register description of the register SDC_IRQMASK1 for reference. The register will mask interrupt sources from the register SDC_CMDSTA and SDC_DATSTA. IRQMASK[15:0] is for SDC_CMDSTA and IRQMASK[31:16] for SDC_DATSTA. A '1' in some bit of the register will mask the corresponding interrupt source with the same bit position. For example, if IRQMASK[0] is '1' then interrupt source from the register field CMDRDY of the register SDC_CMDSTA will be masked. A '0' in some bit will not cause interrupt mask on the corresponding interrupt source from the register SDC_CMDSTA and SDC_DATSTA.

MSDC+0050h SD Memory Card IRQ Mask Register 1

SDC IRQMASK

4

Bit	31	30 ¶	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							IR	QMAS	K [63:	48]						
Type		\V.						R/	W							
Reset							000	000000	00000	0000						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							IR	QMAS	K [47:	32]						
Type				•	•		•	R/					•	•	•	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 316 of 508

The register contains parts of SD Memory Card Interrupt Mask Register. The registers SDC_IRQMASK1 and SDC_IRQMASK0 compose the SD Memory Card Interrupt Mask Register. The register will mask interrupt sources from the register SDC_CSTA. A '1' in some bit of the register will mask the corresponding interrupt source with the same bit position. For example, if IRQMASK[63] is '1' then interrupt source from the register field OUT_OF_RANGE of the register SDC_ CSTA will be masked. A '0' in some bit will not cause interrupt mask on the corresponding interrupt source from the register SDC_ CSTA.

MSDC+0054h SDIO Configuration Register

SDIO CFG

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								1.10								
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name														DSBS EL	INTSE L	INTE N
Type														R/W	R/W	R/W
Reset														0	0	0

The register is used to configure functionality for SDIO. Note that, SDIO is not support in MT6252.

INTEN Interrupt enable for SDIO.

- 0 Disable
- 1 Enable

INTSELInterrupt Signal Selection

- Use data line 1 as interrupt signal
- 1 Use data line 5 as interrupt signal

DSBSEL Data Block Start Bit Selection.

- **0** Use data line 0 as start bit of data block and other data lines are ignored.
- 1 Start bit of a data block is received only when data line 0-3 all become low.

MSDC+0058h SDIO Status Register

SDIO STA

Bit	31	30	29	_ 28	27	26	25	24	23	22	21	20	19	18	17	16
Name					F 1	117										
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	14	A														IRQ
Type										17.1	1					RO
Reset									10							0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 317 of 508

Application Notes 4.11.4

al Release for 4.11.4.1 **Initialization Procedures After Power On**

Disable power down control for MSDC module

senon WCX Remember to power on MSDC module before starting any operation to it.

4.11.4.2 **Card Detection Procedures**

The pseudo code is as follows:

```
MSDC\_CFG.PRCFG0 = 2'b10
MSDC PS = 2'b11
MSDC\_CFG.VDDPD = 1
if(MSDC_PS.PINCHG) { // card is inserted
```

The pseudo code segment perform the following tasks:

- 1. First pull up CD/DAT3 (INS) pin.
- Enable card detection and input pin at the same time.
- Turn on power for memory card.
- Detect insertion of memory card.

4.11.4.3 **Notes on Commands**

For MS, check if MSC_STA.RDY is '1' before issuing any command.

Release for For SD/MMC, if the command desired to be issued involves data line, for example, commands with data transfer or R1b response, check if SDC_STA.SDCBUSY is '0' before issuing. If the command desired to be issued does not involve data line, only check if SDC_STA.CMDBUSY is '0' before issuing.

4.11.4.4 **Notes on Data Transfer**

- For SD/MMC, if multiple-block-write command is issued then only issue STOP_TRANS command inter-blocks instead of intra-blocks.
- Once SW decides to issue STOP_TRANS commands, no more data transfer from or to the controller.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 318 of 508

Release for

4.11.4.5 **Notes on Frequency Change**

ease Before changing the frequency of serial clock on MS/SD/MMC bus, it is necessary to disable serial interface of the controller. That is, set the register bit SIEN of the register SDC CFG to '0' for SD/MMC controller, and set the register bit SIEN of the register MSC CFG to '0' for Memory Stick controller. Serial interface of the controller needs to be enabled again before starting any operation to the memory card.

Notes on Response Timeout 4.11.4.6

If a read command doest not receive response, that is, it terminates with a timeout, then register SDC_DATSTA needs to be cleared by reading it. The register bit "DATTO" should be active. However, it may take a while before the register bit becomes active. The alternative is to send the STOP_TRANS command. However, this method will receive response with illegal-command information. Also, remember to check if the register bit SDC_STA.CMDBUSY is active before issuing the STOP_TRANS command. The procedure is as follows:

- 1. Read command => response time out
- Issue STOP_TRANS command => Get Response
- Read register SDC_DATSTA to clear it

4.11.4.7 Source or Destination Address is not word-aligned

It is possible that the source address is not word-aligned when data move from memory to MSDC. Similarly, destination address may be not word-aligned when data move from MSDC to memory. This can be solved by setting DMA byte-to-word functionality.

- 1. DMAn CON.SIZE=0
- 2. DMAn_CON.BTW=1
- 3. DMAn CON.BURST=2 (or 4)
- DMAn_COUNT=byte number instead of word number
- fifo threshold setting must be 1 (or 2), depending on DMAn_CON.BURST

Note $n=4 \sim 11$

Miscellaneous notes 4.11.4.8

Siemens MMC card: When a write command is issued and followed by a STOP TRANS command, Siemens MMC card will de-assert busy status even though flash programming has not yet finished. Software must use "Get Status" command to make sure that flash programming finishes.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 319 of 508

Confidential A

MediaTek Confidential Release for Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 320 of 508

Multi-Media Subsystem 5

Release fo MT6252 is specially designed to support multi-media terminals. It integrates several hardware based accelerators, like advanced LCD display controller, camera interface, hardware image Resizer and Rotator. This chapter describes those functional blocks in detail.

LCD Interface

General Description 5.1.1

MT6252H contains a versatile LCD controller which is optimized for multimedia applications. This controller supports many types of LCD modules and contains a rich feature set to enhance the functionality. These features are:

MCX

- Up to 240 x 320 resolution
- The internal frame buffer supports 8bpp indexed color, RGB 565, RGB 888, ARGB 8888, PARGB 8888 and YUYV422 format.
- Supports 8-bpp (RGB332), 12-bpp (RGB444), 16-bpp (RGB565), 18-bpp (RGB666) and 24-bpp (RGB888) LCD
- 4 Layers Overlay with individual color depth, window size, vertical and horizontal offset, source key, alpha value and display rotation control(90°,180°, 270°, mirror and mirror then 90°, 180° and 270°)

For parallel LCD modules, the LCD controller can reuse external memory interface or use dedicated 8/9-bit parallel interface to access them and 8080 type interface is supported. It can transfer the display data from the internal SRAM or external SRAM/Flash Memory to the off-chip LCD modules. Additionally, when used with page-mode pSRAM, the LCM may be connected to the EMI to share pins. The LCD controller can be set to update pixel data to this interface.

For serial LCD modules, this interface performs parallel to serial conversion and supports 8, 9, 16, 18, 24 and 32 bit interfaces. The serial interface may use four pins - LSCE#, LSDA, LSCK and LSA0 or three pins - LSCE#, LSDA, LSCK to enter commands and data. In 3 wire mode, an extra bit representing the LSA0 pin is transferred before the MSB of each transaction

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 321 of 508

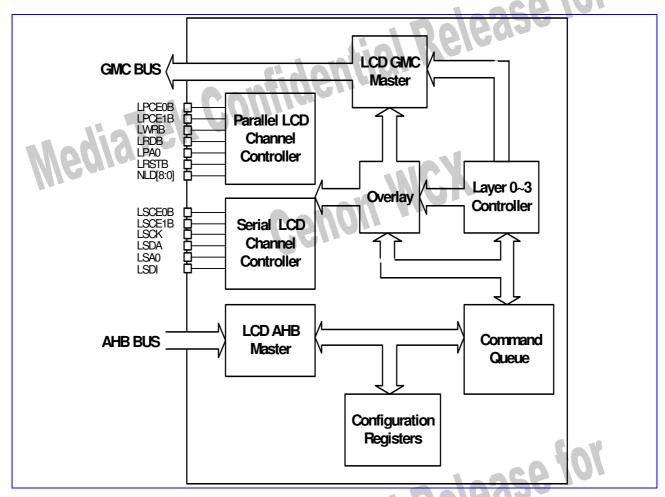


Figure 42 LCD Interface Block Diagram

$LCD = 0x9000_0000$

Address	Register Function	Width	Acronym
9000_0000h	LCD Interface Status Register	16	LCD_STA
9000_0004h	LCD Interface Interrupt Enable Register	16	LCD_INTEN
9000_0008h	LCD Interface Interrupt Status Register	16	LCD_INTSTA
9000_000Ch	LCD Interface Frame Transfer Register	16	LCD_START
9000_0010h	LCD Parallel/Serial LCM Reset Register	16	LCD_RSTB

MediaTek Confidential

© 2011 MediaTek Inc.

Page 322 of 508

			CC IA,
9000_0020h	LCD Serial Interface Write Timing Register	32	LCD_SCNF_WR
9000_0024h	LCD Serial Interface Read Timing Register	32	LCD_SCNF_RD
9000_0028h	LCD Serial Interface Configuration Register	32	LCD_SCNF
9000_002Ch	LCD Serial Interface Chip Select Register	32	LCD_SCNF_CS
9000_0030h	LCD Parallel Interface 0 Configuration Register	32	LCD_PCNF0
9000_0034h	LCD Parallel Interface 1 Configuration Register	32	LCD_PCNF1
9000_003Ch	LCD Parallel Interface Size Configuration Register	16	LCD_PDW
9000_0050h	LCD Tearing Control Register	32	LCD_TECON
9000_0054h	LCD GMC Port Throttle Register	32	LCD_GMCCON
9000_0060h	LCD ROI Window Write to Memory Address Register	32	LCD_WROI_W2MADD
9000_0064h	LCD Calculation HTT Counter Register	32	LCD_CALC_HTT
9000_0068h	LCD Sync LCM Size Register	32	LCD_SYNC_LCM_SIZE
9000_006ch	LCD Sync Counter Register	32	LCD_SYNC_CNT
9000_0070h	LCD ROI Window Write to Memory Pitch Register	16	LCD_W2M_PITCH
9000_0074h	LCD ROI Window Write to Memory Offset Register	32	LCD_WROI_W2MOFS
9000_0078h	LCD ROI Window Write to Memory Control Register	16	LCD_WROI_W2MCON
9000_007Ch	LCD Palette Address Register	32	LCD_PAL_ADD
9000_0080h	LCD ROI Window Control Register	32	LCD_WROICON
9000_0084h	LCD ROI Window Offset Register	32	LCD_WROIOFS
9000_0088h	LCD ROI Window Command Address Register	16	LCD_WROICADD
9000_008ch	LCD ROI Window Data Address Register	16	LCD_WROIDADD
9000_0090h	LCD ROI Window Size Register	32	LCD_WROISIZE
9000_009Ch	LCD ROI Window Background Color Register	32	LCD_WROI_BGCLR

MediaTek Confidential

© 2011 MediaTek Inc.

Page 323 of 508

MEDIATEK

			acd IV
9000_00A0h	LCD Write to LCM Continuous Count	32	LCD_WROI_CONTI
9000_00B0h	LCD Layer 0 Window Control Register	32	LCD_L0WINCON
9000_00B4h	LCD Layer 0 Color Key Register	32	LCD_L0WINKEY
9000_00B8h	LCD Layer 0 Window Display Offset Register	32	LCD_L0WINOFS
9000_00BCh	LCD Layer 0 Window Display Start Address Register	32	LCD_L0WINADD
9000_00C0h	LCD Layer 0 Window Size	32	LCD_L0WINSIZE
9000_00C4h	LCD Layer 0 Scroll Start Offset	32	LCD_L0WINSCRL
9000_00C8h	LCD Layer 0 Memory Offset	32	LCD_L0WINMOFS
9000_00CCh	LCD Layer 0 Memory Pitch	16	LCD_L0WINPITCH
9000_00E0h	LCD Layer 1 Window Control Register	32	LCD_L1WINCON
9000_00E4h	LCD Layer 1 Color Key Register	32	LCD_L1WINKEY
9000_00E8h	LCD Layer 1 Window Display Offset Register	32	LCD_L1WINOFS
9000_00ECh	LCD Layer 1 Window Display Start Address Register	32	LCD_L1WINADD
9000_00F0h	LCD Layer 1 Window Size	32	LCD_L1WINSIZE
9000_00F4h	LCD Layer 1 Scroll Start Offset	32	LCD_L1WINSCRL
9000_00F8h	LCD Layer 1 Memory Offset	32	LCD_L1WINMOFS
9000_00FCh	LCD Layer 1 Memory Pitch	16	LCD_L1WINPITCH
9000_0110h	LCD Layer 2 Window Control Register	32	LCD_L2WINCON
9000_0114h	LCD Layer 2 Color Key Register	32	LCD_L2WINKEY
9000_0118h	LCD Layer 2 Window Display Offset Register	32	LCD_L2WINOFS
9000_011Ch	LCD Layer 2 Window Display Start Address Register	32	LCD_L2WINADD
9000_0120h	LCD Layer 2 Window Size	32	LCD_L2WINSIZE
9000_0124h	LCD Layer 2 Scroll Start Offset	32	LCD_L2WINSCRL
9000_0128h	LCD Layer 2 Memory Offset	32	LCD_L2WINMOFS
9000_012Ch	LCD Layer 2 Memory Pitch	16	LCD_L2WINPITCH
9000_0140h	LCD Layer 3 Window Control Register	32	LCD_L3WINCON
9000_0144h	LCD Layer 3 Color Key Register	32	LCD_L3WINKEY
9000_0148h	LCD Layer 3 Window Display Offset	32	LCD_L3WINOFS

MediaTek Confidential

© 2011 MediaTek Inc.

Page 324 of 508

			CD IVI
	Register	Aall	142A
9000_014Ch	LCD Layer 3 Window Display Start Address Register	32	LCD_L3WINADD
9000_0150h	LCD Layer 3 Window Size	32	LCD_L3WINSIZE
9000_0154h	LCD Layer 3 Scroll Start Offset	32	LCD_L3WINSCRL
9000_0158h	LCD Layer 3 Memory Offset	32	LCD_L3WINMOFS
9000_015Ch	LCD Layer 3 Memory Pitch	16	LCD_L3WINPITCH
9000_0170h	LCD Dither Control Register	32	LCD_DITHER_CON
9000_01F0h	LCD Addcon Debug Register	32	LCD_DB_ADDCON
9000_01F4h	LCD Maincon Debug Register	32	LCD_DB_MCON
9000_01F8h	LCD W2mcon Debug Register	32	LCD_DB_W2MCON
9000_01FCh	LCD Frame Counter Debug Register	32	LCD_DB_COUNT
9000_4000h	LCD Parallel Interface 0 Command	32	LCD_PCMD0
9000_4010h	LCD Parallel IF 0 Command Sync 0	32	LCD_PCMD0_SYNC0
9000_4020h	LCD Parallel IF 0 Command Sync 1	32	LCD_PCMD0_SYNC1
9000_4030h	LCD Parallel IF 0 Command HTT	32	LCD_PCMD0_HTT
9000_4100h	LCD Parallel Interface 0 Data	32	LCD_PDAT0
9000_4110h	LCD Parallel IF 0 Data Sync 0	32	LCD_PDAT0_SYNC0
9000_4120h	LCD Parallel IF 0 Data Sync 1	32	LCD_PDAT0_SYNC1
9000_4130h	LCD Parallel IF 0 Data HTT	32	LCD_PDAT0_HTT
9000_5000h	LCD Parallel Interface 1 Command	32	LCD_PCMD1
9000_5010h	LCD Parallel IF 1 Command Sync 0	32	LCD_PCMD1_SYNC0
9000_5020h	LCD Parallel IF 1 Command Sync 1	32	LCD_PCMD1_SYNC1
9000_5030h	LCD Parallel IF 1 Command HTT	32	LCD_PCMD1_HTT
9000_5100h	LCD Parallel Interface 1 Data	32	LCD_PDAT1
9000_5110h	LCD Parallel IF 1 Data Sync 0	32	LCD_PDAT1_SYNC0
9000_5120h	LCD Parallel IF 1 Data Sync 1	32	LCD_PDAT1_SYNC1
9000_5130h	LCD Parallel IF 1 Data HTT	32	LCD_PDAT1_HTT
9000_8000h	LCD Serial Interface Command	32	LCD_SCMD
9000_8010h	LCD Serial IF Command Sync 0	32	LCD_SCMD_SYNC0
9000_8020h	LCD Serial IF Command Sync 1	32	LCD_SCMD_SYNC1
9000_8030h	LCD Serial IF Command HTT	32	LCD_SCMD_HTT

© 2011 MediaTek Inc.

Page 325 of 508

9000_8100h	LCD Serial Interface Data	32	LCD_SDAT
9000_8110h	LCD Serial IF Data Sync 0	32	LCD_SDAT_SYNC0
9000_8120h	LCD Serial IF Data Sync 1	32	LCD_SDAT_SYNC1
9000_8130h	LCD Serial IF Data HTT	32	LCD_SDAT_HTT
9000_C000h ~ 9000_C07Fh	LCD Interface Command/Parameter	32	LCD_COMD

Table 57 Memory map of LCD Interface

5.1.2 Register Definitions

The base address of LCD is 0x9000_0000. Note: All reserved fields in LCD registers should be set to 0.

9000_0000h LCD Interface Status Register

LCD_STA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											BUSY	WAIT _SYN C	WAIT _HTT	GMC	WAIT _CMD Q	RUN
Type											R	R	R	R	R	R
Reset											0	0	0	0	0	0

RUN LCD Interface start transfer commands and/or pixels.

WAIT_CMDQ LCD is waiting for command queue transfer to complete.

GMC LCD is processing a GMC request

WAIT_HTT LCD is waiting LCD_CALC_HTT.COUNT to reach LCD_CALC_HTT.TIMEOUT.
WAIT_SYNC LCD is waiting for LCM tearing-free sync signal or is counting the set TE delay.

BUSY LCD Interface is busy. If read as 1, this means the LCD may be in the process of waiting for a

hardware trigger signal, waiting for tearing signal, sending commands to command queue, or writing

- 41

pixels to memory/LCM.

9000	_0004	4h	LCD	Inter	iace I	nterr	upt E	nable	Reg	ister				L	CD_IN	ITEN
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 326 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Name					10	IF	SYNC	нтт	15	CMD Q_CP L	REG_ CPL	CPL
Type			- 4		474	18	R/W	R/W		R/W	R/W	R/W
Reset		_	4	T T	171		0	0		0	0	0

LCD interrupt is at interrupt number 16.

Enable the interrupt when LCD frame transfer completes.

Enable the interrupt when LCD has entered transfer command/pixel state. REG CPL

CMDQ CPL Enable the interrupt when LCD command transfer completes.

HTT Enable the interrupt when LCD_CALC_HTT.COUNT reaches LCD_CALC_HTT.TIMEOUT.

SYNC Enable the interrupt when LCM tearing-free sync signal arrives and LCD has finished the set TE delay.

LCD Interface Interrupt Status Register 9000 0008h

LCD_INTSTA

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											SYNC	нтт		CMD Q_CP L	REG_ CPL	CPL
Type											R	R		R	R	R
Reset											0	0		0	0	0

CPL Interrupt of LCD frame transfer completion occurs.

REG CPL Interrupt when LCD has entered transfer command/pixel state.

CMDQ CPL Interrupt when LCD command transfer completes.

Interrupt when LCD_CALC_HTT.COUNT reaches LCD_CALC_HTT.TIMEOUT. HTT

LCD has finished the Confidential Relationships the Confidenti **SYNC** Interrupt of the arrival of LCM tearing-free sync signal occurs and LCD has finished the set TE delay

MediaTek Confidential

non WCX © 2011 MediaTek Inc.

Page 327 of 508

Confidential A

LCD Operating States

Below is a state diagram detailing the various states of the LCD controller. State transitions depend on the current hardware trigger and tearing settings. Please consult the table below for detailed explanations.

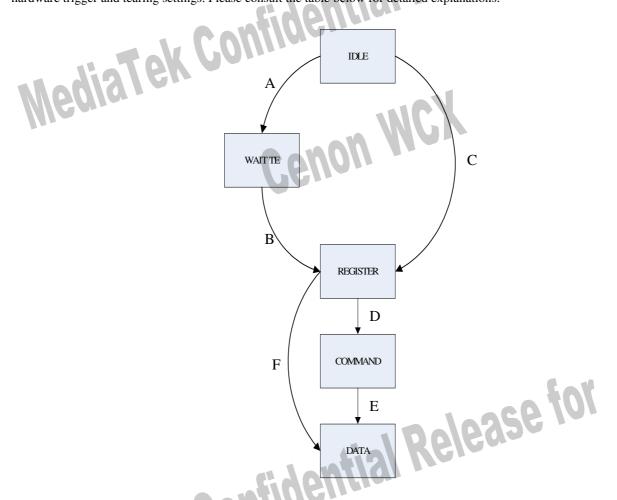


Figure 43 **LCD State Transitions**

State	Action	Exit State	Exit Condition	IRQ	LCD_STA
IDLE	LCD is idle	If te_en = 1, then A;	LCD_START.START	No IRQ	0x00
141		Else C;	has been changed to		
		0 - 10	0 from 1.		

MediaTek Confidential

© 2011 MediaTek Inc.

Page 328 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

MEDIATEK

WAIT TE	If $sync_mode = 0$,	Always B	If $sync_mode = 0$,	SYNC	0x30
	then LCD is		then LCD must	Con	
	waiting for a	- 1 - 1	receive a tearing		
	tearing edge;	Shiz	edge and must wait		
		VULINA	for a period of time;		
	If $sync_mode = 1$,	701111			
	then LCD is		If sync $_$ mode = 1,		
MON	waiting for SW to		then SW must read	1	
Mea	read the scanline		the X_SYNC1		
44-	port.		scanline port		
REGISTER	LCD is setting up	If command queue is	LCD will transition	REG_CPL	0x20
	register values for	enabled then D;	in 1T		
	use	Else F;			
COMMAND	LCD is transferring	Always E	After LCD has	CMDQ_CPL	0x27
	command queue		finished transferring		
	data to the LCM		all command queue		
			data.		
DATA	LCD is transferring	If te_repeat = 1, then	After LCD has	CPL	0x25
	ROI data to the	WAIT_TE;	finished transferring		
	LCM	Else IDLE;	all ROI data to the		
			LCM.		

9000_000Ch LCD Interface Frame Transfer Register

LCD START

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	STAR T										(3)	121				INT_R ESET
Туре	R/W							- 10	44	/ =						R/W
Reset	0					—	TI		171							0

START Start Control of LCD Frame Transfer. After LCD is started, please to not write to any other register because LCD does not have double registers. Only the SW_TE bit may be changed

INT_RESET Internal reset

Not reset.

1 Reset.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 329 of 508

lease LCD Parallel/Serial Interface Reset Register 9000_0010h

LCD RSTB

Bit	15	14	13	12	11	10	9	8	7 6	5	4	3	2	1	0
Name						107	1101	71							RSTB
Type						711									R/W
Reset					J										1

Parallel/Serial LCD Module Reset Control. It directly control the LRSTB pin.

9000 0020h

LCD Serial Interface Write Timing Configuration Register

LCD SCNF WR

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						,				SC	L_LOV	/_COU	NT			
Type							R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset							0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							SCL HIGH COUNT									
Type							R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset							0	0	0	0	0	0	0	0	0	0

SCL_HIGH_COUNT Number of clocks plus one to hold the SCL high for every bit transferred during a write cycle. **SCL_LOW_COUNT** Number of clocks plus one to hold the SCL low for every bit transferred during a write cycle.

9000 0024h

LCD Serial Interface Read Timing Configuration Register

.CD SCNF RD

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name									1	SC	L_LOW	COU	NT			
Type							R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset							0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	_11	10	9	8	7	6	5	4	3	2	1	0
Name			-						-	SC	L_HIGH	I_COU	NT	-	-	-
Type					6	117	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset							0	0	0	0	0	0	0	0	0	0

SCL_HIGH_COUNT Number of clocks plus one to hold the SCL high for every bit transferred during a read cycle SCL_LOW_COUNT Number of clocks plus one to hold the SCL low for every bit transferred during a read cycle

MediaTek Confidential

© 2011 MediaTek Inc.

Page 330 of 508

LCD Serial Interface Configuration Register 9000_0028h

Confidential A

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		SDI	3-WIR E				7.7	311	HIG	7.4						
Туре		R/W	R/W		7.0	1.1		9								
Reset		0	0		FI	111										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TU	IF_SIZE					-								
Type		R/W	R/W	R/W												
Reset	7	0	0	0						41						

3-WIRE Enable 3 wire mode. Serial interface will transfer an A0 bit before transferring the MSB of each transaction.

SDI Set to 1 to read data from LSDI pin, otherwise LCD will use the bi-directional LSDA pin.

IF_SIZE Interface size of Serial Interface. Each transaction will transmit this many bits

000 8 bits

001 9 bits

010 16 bits

011 18 bits

100 24 bits

101 32 bits

9000 002Ch

LCD Serial Interface Chip Select Configuration Register

											_					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name									1		17					
Type							1		TL							
Reset								7/1								
Bit	15	14	13	12	_11	10	9	8	7	6	5	4	3	2	1	0
Name															CS1	CS0
Type				MA		117									R/W	R/W
Reset															1	1

Set Chip Select 0 level. This bit directly controls the LSCE0 pin

Set Chip Select 1 level. This bit directly controls the LSCE1 pin

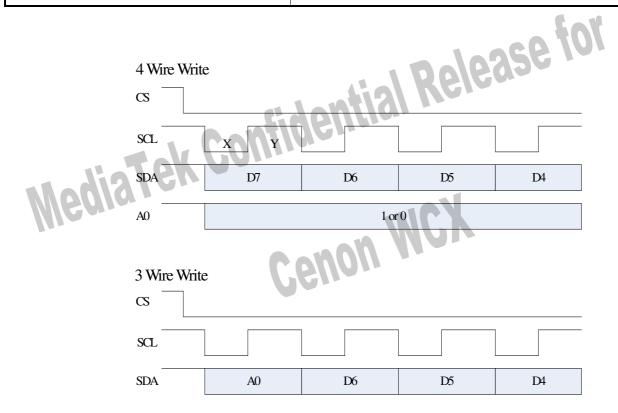
MediaTek Confidential

© 2011 MediaTek Inc.

Page 331 of 508

The serial interface can support 4 wire mode or 3 wire mode as shown below. In 3 wire mode, the A0 bit is transferred as part of the data before the MSB. The write and read timing registers can be used to set the timing of the interface. In the diagram below, $X = SCL_LOW_COUNT+1$ clock cycles and $Y = SCL_HIGH_COUNT+1$ clock cycles. When a read needs to be done, a write should be sent to the serial interface. Then (without changing CS) a read is performed by reading the serial interface. Notice the write and read may use different timing. The CS pin is controlled by software by writing to the LCD_SCNF_CS register. The LCD 104Mhz clock MUST BE ENABLED to use the Serial Interface.

Cenon MCX


MediaTek Confidential Release for conon WCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 332 of 508

Confidential A

Read (Need to send read command, then read interface)

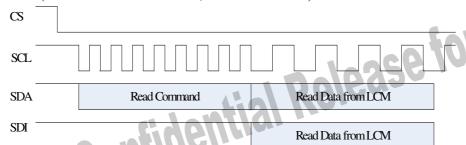


Figure 44 Serial interface timing diagram

9000_0030h LCD Parallel Interface Configuration Register 0 LCD_PCNF0 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Name C2RH C2RS RLT

MediaTek Confidential

© 2011 MediaTek Inc.

Page 333 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛІТЕК

Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			C2	WH		C2	WS	71/	AY.	/ 1			W	ST		
Name Type	R/W	R/W	C2'	WH R/W	R/W	C2'		R/W	R/W	R/W	R/W	R/W	W:	ST R/W	R/W	R/W

WST Write Wait State Time, see Figure 45.

C2WS Chip Select (LPCEB0) to Write Strobe (LWRB) Setup Time, see Figure 45. C2WS must <= WST.

C2WH Chip Select (LPCEB0) to Write Strobe (LWRB) Hold Time, see Figure 45.

RLT Read Latency Time. See Figure 46.

C2RS Chip Select (LPCEB0) to Read Strobe (LRDB) Setup Time, see Figure 46. C2RS must <= RLT.

C2RH Chip Select (LPCEB0) to Read Strobe (LRDB) Hold Time, see Figure 46.

9000 0034h **LCD Parallel Interface Configuration Register 1**

LCD PCNF1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					C2	RS				RLT						
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		C2WH C2WS										W	ST			
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

WST Write Wait State Time, see Figure 45.

C2WS Chip Select (LPCEB1) to Write Strobe (LWRB) Setup Time, see Figure 45. C2WS must <= WST.

C2WH Chip Select (LPCEB1) to Write Strobe (LWRB) Hold Time, see Figure 45.

RLT Read Latency Time. See Figure 46.

Chip Select (LPCEB1) to Read Strobe (LRDB) Setup Time, see Figure 46. C2RS must <= R1 C2RS

MediaTek Confidenti **C2RH** Chip Select (LPCEB1) to Read Strobe (LRDB) Hold Time, see Figure 46.

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 334 of 508

Parallel Interface Write timing C2WS=2, WST=3, C2WH=0, LCD_WROICON.PERIOD=0, C2WS must <= WST

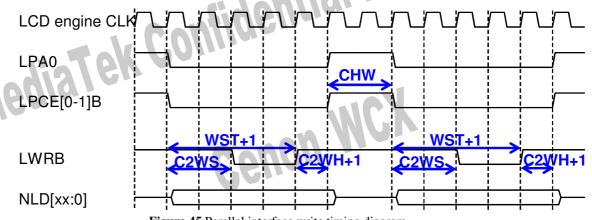


Figure 45 Parallel interface write timing diagram

The time between transactions is CHW = (PERIOD>C2WH)? PERIOD+1-C2WH: 1.

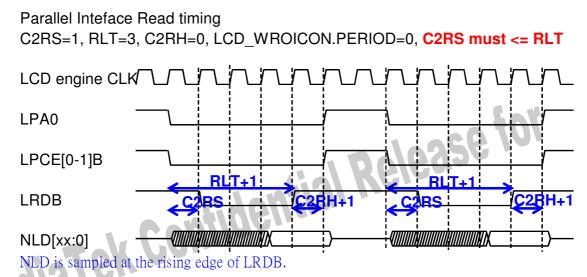


Figure 46 Parallel interface read timing diagram

MediaTek Confidential

© 2011 MediaTek Inc.

Page 335 of 508

Confidential A

9000 003Ch

LCD Parallel Interface Data Width Configuration Register

LCD PDW

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							101				P1_DW	1			P0_DW	1
Type			1			111				R/W	R/W	R/W		R/W	R/W	R/W
Reset										0	0	0		0	0	0

PO DW Data width of parallel interface 0

000 8 bit

001

010

others Reserved

Data width of parallel interface 1

8 bit
9 bit
16 '' P1_DW

000

001

010 16 bit

others Reserved

LCD GPIO Table

	IO Name	Aux Function	LCD Function	
	KCOL7	4	LSCK	
	KROW6	4	LSDA	tol
	KROW3	4	LSA0	ee Tui
	KROW2	4	LSCK	
	KROW1	4	LSDA	
	KROW0	4	LSDI	
Toil	SD_PWREN	3	LSCE1B	
Media	URXD1	2	LSCK	
Min	UTXD1	2	LSDA	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 336 of 508

				10105
	UCTS1_B	3	NLD13	se tui
	URTS1_B	3	NLD14	
	MCINS	3	NLD15	
	EA24	3	LPCE0B	
Sinotta	EA23	3	LSCE0B	
MediaT	EA15	1	NLD12	
	EA14	1	NLD12	
	EA13	18114	NLD10	
	EA12	1	NLD9	
	EA11	1	NLD8	
	EA10	1	NLD7	
	EA9	1	NLD6	
	EA8	1	NLD5	
	EA7	1	NLD4	
	EA6	1	NLD3	6.4
	EA5	1	NLD2	se for
	EA4	1	NLDI	20.
	EA3	11001	NLD0	
	EA2	Meire	LWR_B	
11.4	EA1	1	LRD_B	
Modla	EA0	1	LPA0	
MediaT	EA6	2	LSDI	
				Į.

© 2011 MediaTek Inc.

Page 337 of 508

				IUI as
	EA5	2	LSDA	se 701
	EA4	2	LSA0	
	EA3	2	LSCK	
	ECS3_B	2	LPCE1_B	
Shotta	ECS3_B	3	LSCE1_B	
MediaT	ECS2_B	1	CORE_ECS2_B	
	ECS2_B	2	LPCE0_B	
	ECS2_B	3	LSCE0_B	
	ED7	3	LPCE1_B	
	ED6	3	LSCE1_B	
	LPTE	1	LPTE	
	LRSTB	1	LRSTB	
	CMDAT1	2	LSDA	
	CMPDN	2	LSCK	
	SCK	2	LSCK	t av
	SWP	2	LSA0	se for
	SHOLD	2	LSCE0_B	20.
	SCS	2	LSCE1_B	
	SIN A	2	LSDI	
11. 4	SOUT	2	LSDA	
MediaT	C.	l	- 11	l
Mean		1	M.DIM	
		~ 10	MAA	

TE Signal Polarity

MediaTek Confidential

non WCX © 2011 MediaTek Inc.

Page 338 of 508

1358

TE_EDGE_SEL can be used to select TE polarity for TE signal detection.

TE_EDGE_SEL value TE signal detection

Detect a TE signal at its rising edge. This setting is for active high TE signal.

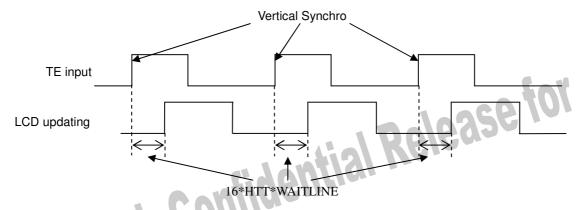

Detect a TE signal at its falling edge. This setting if for active low TE signal.

Table 58 TE Signal Polarity

Sync Mode 0

In sync mode = 0, LCD will update TE after counting a set number of horizontal sync lines. Each horizontal sync line is set by LCD_SYNC_LCM_SIZE.HTT. After receive a TE edge, LCD will count LCD_SYNC_CNT.WAITLINE number of lines and then begin updating the new frame to the LCM. To use this mode, please follow these steps:

- 1. Set LCD_TECON.SYNC_MODE = 0
- 2. Set LCD_SYNC_LCM_SIZE.HTT to the correct size. See below for more information on this.
- 3. Set LCD_SYNC_CNT.WAITLINE to the number of lines you wish to wait before updating the LCM.
- 4. Set other registers (ROI, Layer, etc.) and start the LCD controller by setting LCD_START.START = 1 (from 0).

Figure 47 SYNC_MODE = 0

Sync Mode 1

In sync mode 1, LCD will not use the TE pin to detect the LCM scan line position. Instead, software must read the LCM scan line from the LCM register. When software reads a specified port, LCD will interpret this and automatically

MediaTek Confidential

© 2011 MediaTek Inc.

Page 339 of 508

begin its internal TE counter at the read LCM scan line position. Scan line 0 indicates the beginning of VSYNC as shown in the figure below. The LCD ROI begins during the V active region (vact).

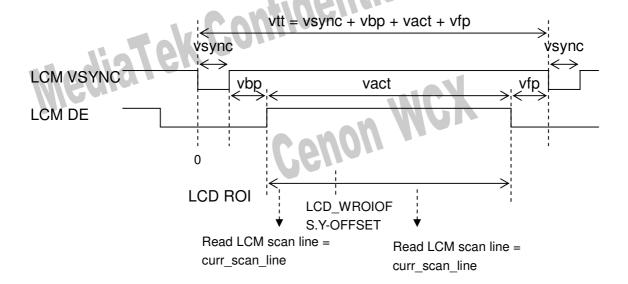


Figure 48 LCM Scan Line Timing

Typically, the scan line register is divided into 2 parameters and 1 dummy read. To read the current LCM scan line, software uses the following steps: (assume the LCM is on Parallel CS0)

- 1. Set LCD_SYNC_LCM.VTT size to the number of LCM scan lines including blanking.
- 2. Set LCD_SYNC_LCM.HTT to the correct timing parameter. See below for more information on this.
- 3. Set LCD_SYNC_CNT.WAITLINE to the LCM scan line you wish to start updating the frame.
- 4. Start the LCD by setting LCD_START.START = 1 (from 0).
- 5. Write Scan line command to port 0x4000 or 0x4100.
- 6. If the LCM needs a dummy read, then read port 0x4000 or 0x4100. This step can be skipped if no dummy read is required.
- 7. Read port 0x4010 or 0x4110 to latch the first parameter into the LCM internal counter.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 340 of 508

- 8. Read port 0x4020 or 0x4120 to latch the second parameter into the LCM internal counter and begin the TE counter. SW must use an 8 bit read for this parameter or else the top byte will be covered. If the IF size is greater then 8/9 bits and there is only 1 parameter to read, the SW may skip step 6 and only use step 7. In this case, SW may use a 16 or 32 bit read to this port.
- 9. If you need to read another port then substitute the port number for the "4" in 0x4XXX. All ports can support this feature except the LCM on EMI port (0x6XXX). The "1" in 0x4100 indicates the A0 bit will be 1 when the read/write transaction is issued. Please confirm with the LCM datasheet to determine which port is appropriate.

In the figure below, the LCM has 240 total horizontal lines including blanking. Assume we want LCD to begin updating at Point A because the partial update begins at this point. In this case, we should set VTT = 240 and WAITLINE = 3. When SW takes steps 6 and 7 above, assume the returned value is Point B. This means the TE internal counter will count up to Line 239 and loop back to 0. The counter will count until Point A is reached and then begin updating the LCM. Note that Line 0 is typically not within the active LCM region.

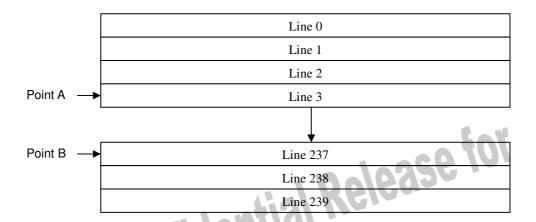


Figure 49 TE Scan Line Example

Name	Function
X_SYNC0	Latches the first parameter of the LCM scan line into the TE counter.
X_SYNC1	Latches the second parameter of the LCM scan line into the TE counter and begin the

MediaTek Confidential

© 2011 MediaTek Inc.

Page 341 of 508

	counter.
X_HTT	Read once to begin HTT calculation. Read again to stop the calculation. This can only be
	used when LCD is idle.

Table 59 LCD TE Ports

HTT Calibration

The HTT parameter can be calculated from the LCM datasheet. However, if SW wants a more automatic method to calculate HTT, then SW can use the LCD TE counters. The steps are as follows:

- 1. Make sure LCD is in the IDLE state (LCD_START.START = 0 and LCD_STA = 0).
- 2. Set HTT = 256.
- 3. Set LCD CALC HTT.TIMEOUT to 128.
- 4. Enable the HTT calculation interrupt LCD_INTEN.HTT
- 5. To start the calculation, read the port 0x4030 or 0x4130 (depending on desired A0, assuming Parallel CS0). Note this will immediately start the calculation, so if there are many parameters to read, this port must be read last.
- 6. LCD will begin counting cycles. When LCD_CALC_HTT.COUNT reaches TIMEOUT, LCD will issue an interrupt. Software should read port 0x4030 or 0x4130 to stop the TE counters. Again, this port should be read last if there are many parameters to read.
- 7. Assume the first scan line read is SE0 and the second is SE1. Then the correct HTT value is:

HTT = (COUNT*256) / (SE1 - SE0)

9000 0050h LCD Tearing Control Register

LCD TECON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											19					
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11_	10	9	8	7	6	5	4	3	2	1	0
Name	SW_T		70	K	6								TE_R EPEA T	SYNC _MOD E	_	SYNC _EN
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SYNC_EN Enable sync control. LCD controller will synchronize to LCM refresh timing.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 342 of 508

TE EDGE SELSelect TE edge.

- Rising edge
- Falling edge

SYNC_MODE Sync control mode.

- tial Release fo 0 TE signaling mode. LCD starts to update LCM after receiving TE edge and plus a delay specified by LCD_working_clock_cycle_time*16*LCD_SYNC_CNT.HTT*LCD_SYNC_CNT.LINES in unit of ns. LCD working clock cycle time is 19.2ns.
- Read LCM current scan line mode. LCD starts to update LCM after LCD_START.START is set to 1 from 0 and plus a delay specified by

LCD_working_clock_cycle_time*16*LCD_SYNC_CNT.HTT*LCD_SYNC_CNT.LINES in unit of ns. LCD_working_clock_cycle_time is 19.2ns.

TE REPEAT Repeat mode.

- update LCM once every TE signal coming
- repeat updating LCM after TE signal coming.

SW TE Software emulated TE signal. Write this bit from 0 to 1 will let LCD act like a TE signal received.

9000 0054h **LCD GMC Port Control Register**

LCD GMCCON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name							THE	ROTTLI	E_PER	IOD						
Type	R/W R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												THRO TTLE _EN		MA	X_BUF	IST
Type												R/W		R/W	R/W	R/W
Reset								·				0	14:	0	1	0

MAX BURST Specify the maximum burst length of GMC request.

000 Single 4 bytes access

010 Burst 4 beats access and one beat is 4 bytes. Total data amount is 16 bytes per access.

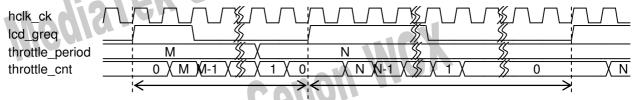
011 Burst 8 beats access and one beat is 4 bytes. Total data amount is 32 bytes per access.

Others Burst 4 beats access and one beat is 4 bytes. Total data amount is 16 bytes per access.

THROTTLE EN Enable GMC port throttling.

THROTTLE_PERIOD Throttle down LCD GMC port access speed. It specifies how many AHB bus cycles between two GMC requests. There is a down counter, throttle_cnt, to count down for the interval between two

MediaTek Confidential


© 2011 MediaTek Inc.

Page 343 of 508

GMC requests. It counts from THROTTLE_PERIOD when lcd_greq rising to zero, and the next GMC request is allowed to issue when throttle_cnt=0. Please see Figure 50. The maximum GMC bandwidth is limited to

 $\frac{bytes_per_GMC_access \times 1000}{throttle_period \times AHB_cycle_time(ns)} = \frac{bytes_per_GMC_access \times 1000}{throttle_period \times 19.2(ns)} MBytes/sec$

Bytes_per_GMC_access is specified by MAX_BURST.

If a GMC access time < M+1 hclk_ck cycles, If a GMC access time > N+1 hclk_ck cycles, there are at least M+1 hclk_ck cycles the next lcd_greq can be issued immediately. from one lcd_greq to the next lcd_greq.

Figure 50 GMC throttle mechanism

9000_0060h Region of Interest Window Write to Memory Address LCD_WROI_W2 FB Register MADD

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								W2M_	ADDR							
Type								R/	W						-40	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								W2M_	ADDR							
Type															-	

W2M_ADDR

Write to memory address (byte address) for Frame Buffer, please see Figure 52. The address must be aligned according to the table below. Note: If the buffer is Page-size byte aligned, LCD will benefit from a ~2-3% bandwidth increase. For example, if the page size of the memory is 16bytes, then a 16byte alignment address will increase bandwidth.

LCD_WROI_W2MCON.W2MFORMAT	Color format	ADDR alignment
00	RGB565	2 bytes alignment
01	RGB888	no alignment constraint

MediaTek Confidential

© 2011 MediaTek Inc.

Page 344 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

10	Constant A + RGB	4 bytes alignment
11	Pixel A + RGB	4 bytes alignment

9000_0064h LCD Calculation HTT Counter Register

LCD_CALC_HT

т

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										COL	JNT					
Type	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										TIME	OUT					
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W									
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

COUNT will begin counting when the port X_HTT is read. Reading this port indicates software want

to calibrate for HTT. Reading this port again will stop COUNT.

TIMEOUT Specify the time interval from timeout counter starting to timeout interrupt issuing. When COUNT

reaches this number, LCD will issue an interrupt. This is only used for HTT calculation. TIMEOUT

must be >0.

900A_0068h LCD Sync LCM Size Register

LCD_SYNC_LC
M SIZE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name										VI	T					
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						4	T	111	777		HI	Т				
Type	R/W															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

The total number of horizontal lines on the LCM including blanking lines. VTT must be >0

Indicates how long a LCM horizontal sync is in units of 16*T, where T is the cycle time. Cycle time is 19.2 ns. HTT must be >0.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 345 of 508

9000 006Ch **LCD Sync Counter Register**

9000	_006	Ch	LCD	Sync	Cou	nter F	Regis	ter	10	IF	le	63	158	CD_	SYNC	CN T	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name						SCANLINE											
Type	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name		NY			WAITLINE												
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	

SCANLINE WAITLINE

Indicates the current TE counter value.

SCANLINE will count until it reaches this value, a TE interrupt will be issued (if enabled) and LCD will begin updating the new frame. In TE SYNC MODE 0, this value is the number of lines to delay LCD update. In TE SYNC MODE1, this value is the scan line SW wishes LCD to update the frame.

WAITLINE must be >0.

9000 0070h

Region of Interest Window Write to Memory Pitch Register

LCD W2M PIT

CH

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		PITCH														
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PITCH Write to memory pitch in unit of byte, please see Figure 52. The pitch divided by the write to memory bpp must be equal or greater then the ROI width. If the write to memory bpp is 4, then the pitch must be divisible by 4. If the write to memory bpp is 2, then the pitch must be divisible by 2. If the write to memory bpp is 3 (RGB888), then the pitch may be any number greater then the ROI width * 3.

9000 0074h

Region of Interest Window Write to Memory Offset Register

LCD WROI W2 **MOFS**

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	-11					Y-OFFSET										
Type	5					R/W										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						X-OFFSET										

MediaTek Confidential

2011 MediaTek Inc.

Page 346 of 508

Confidential A

Туре			R/W

This control register is used to specify the offset of the ROI window from the LCD_WROI_W2MADDR when writing the ROI window's content to memory.

X-OFFSET the x offset of ROI window in the destination memory, please see Figure 52.

Y-OFFSET the y offset of ROI window in the destination memory, please see Figure 52.

9000_0078h Region of Interest Window Write to Memory Control LCD_WROI_W2 Register MCON

											_					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name									,							
Type						1										
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									EMI2L		WR_U LTR	ADDI NC_DI SABL E	RD_U LTRA		FORM T	W2LC M
Type				R/	W				R/	W	R/W	R/W	R/W	R	/W	R/W
Reset				0>	cff .				()	0	0	0		0	0

This control register is effective only when the W2M bit is set in LCD_WROICON register.

W2LCM Write to LCM simultaneously. It is effective only when LCD WROICON.W2M=1.

- **0** Not output to LCM, only write to memory.
- 1 Output to LCM and write to memory.

LCD_WROICON.W2M, LCD_WROI_W2MCON.W2LCM possible combinations

0x only output LCM

10 only output memory

11 output LCM and memory

W2M_FORMAT Write to memory format.

00 RGB565

01 RGB888

10 ARGB8888, alpha value is a constant specified by OUTPUT_ALPHA

MediaTek Confidential

© 2011 MediaTek Inc.

Page 347 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

11 ARGB8888, alpha value is calculated by blending equation. When using this mode, all layers enabled must have color depth ARGB8888/PARGB8888

ADDINC_DISABLE Disable address increasing when writing to memory. Always write to the same address.

Enable LCD issue ultra GMC request for layer frame buffer read. **RD ULTRA**

WR ULTRA Enable LCD issue ultra GMC request for LCM on EMI write only. LCD does not issue

ultra GMC request for W2M requests

EMI2LCM BANK Choose the bank number that the LCM is connected to on EMI. Only used for LCM on

> EMI interface. Value 2'b00 represents CS0, 2'b01 is CS1 and so on. The LCM is typically placed on CS2 (2'b10). When using this interface, the interface size is set at

LCD WROICON.

When the LCM is placed on the EMI bus, software must access EMI to direct access LCM (not 0x9000 6000). The access location is as follows:

Address	EMI Bank	Action	
0x0000_0000	Bank 0	Access Bank 0 with A0 = 0	
0x0000_0002	Bank 0	Access Bank 0 with A0 = 1	
0x0800_0000	Bank 1	Access Bank 1 with A0 = 0	
0x0800_0002	Bank 1	Access Bank 1 with A0 = 1	
0x1000_0000	Bank 2	Access Bank 2 with A0 = 0	
0x1000_0002	Bank 2	Access Bank 2 with A0 = 1	
0x1800_0000	Bank 3	Access Bank 3 with A0 = 0	6 - 10
0x1800_0002	Bank 3	Access Bank 3 with A0 = 1	104
		a Release	
LCD Palette Add	aress Register	101	.CD_PAL

LCD Palette Address Register 9000 007Ch

LCD PAL ADD

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						1,1	11.	PAL	ADDR							
Type								F	R/W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		TL		4 L				PAL	ADDR							
Type								F	R/W							
	(e)						3.5	'n	ne	W	G					

MediaTek Confidential

© 2011 MediaTek Inc.

Page 348 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

PAL ADDR

Address of palette placed in memory used for 8bpp indexed color. The palette should have 256 RGB565 entries and the address should be 2 byte aligned.

9000_0080h Region of Interest Window Control Register

LCD_WROICO

N

Bit	31 🖠	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name	ENO	EN1	EN2	EN3		FCNT		SEND _RES _MOD		116	N	PER	IOD				
Type	R/W	R/W	R/W	R/W		R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	ENC	W2M			C	AMMC	ND O					FOR	MAT				
Type	R/W	R/W				R/W			R/W								

FORMAT LCD Module Data Format, see Table 60.

Bit 0 : Sequence

O BGR sequence.

1 RGB sequence.

Bit 1 : Significance.

Bit 2: Padding.

• Padding bits on LSBs.

1 Padding bits on MSBs.

Bit 5-3: Color format

000 for RGB332, 001 for RGB444, 010 for RGB565, 011 for RGB666, 100 for RGB888.

Bit 7-6: Interface width

00 for 8-bit interface, 01 for 16-bit interface, 10 for 9-bit interface, 11 for 18-bit interface.

COMMAND Number of Commands to be sent to LCD module. Maximum is 31.

W2M Enable Write to Memory. ROI column and/or row size cannot be 0 if write to memory is enabled.

ENC Command Transfer Enable Control.

- Only send pixel data to LCM, not send commands in command queue.
- Send commands in command queue first, and then send pixel data to LCM. The number of commands to be sent is specified by COMMAND, and the command queue to be sent is specified by COM_SEL.

PERIOD Waiting period between two consecutive transfers, effective for both data and command.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 349 of 508

SEND RES MOD

Send the residue odd pixel method. When the output throughput is 2pixels/3cycles, if ROI width is odd, the last pixel of a line is not in any two-pixel-pair; If ROI height is also odd, the last pixel of a frame is not in any two-pixel-pair. This field is used to select the method to transmit the residue odd pixel of a line or of a frame.

Send the residue odd pixel per line. In this mode, the last pixel of a line is combined with an extra byte, and sent to LCM. LCD driver should not care this extra byte.

For example, if the ROI's width x height is 3 x 2. The output sequence is

```
R_0G_0 --- pixel 0 of line 0
                                        Mong
B_0R_1
G_1B_1
R_2G_2
B_2R_1 --- LCD driver should not care this R_1
R_0G_0 --- pixel 0 of line 1
B_0R_1
G_1B_1
R_2G_2
B_2R_1 --- LCD driver should not care this R_1
```

Send the residue odd pixel per frame. In this mode, the last pixel of a line is combined with the first pixel of the next line as a two-pixel-pair, and is sent to LCM.

For example, if the ROI's width x height is 3 x 3. The output sequence is

```
Confidential Release for
R_0G_0 --- pixel 0 of line 0
B_0R_1
G_1B_1
R_2G_2
B_2R_0 --- pixel 0 of line 1
G_0B_0
R_1G_1
B_1R_2
G_2B_2
                                   non WCX
R_0G_0 --- pixel 0 of line 2
B_0R_1
G_1B_1
R_2G_2
```

MediaTek Confidential

© 2011 MediaTek Inc.

Page 350 of 508

ease

 B_2R_1 --- LCD driver should not care this R_1

FCNT Enable frame update counter. Counter starts when LCD leaves the IDLE state and stops when it returns to IDLE.

ENn Layer Window Enable Control.

Note: If there are two pixels in one row, Blue color indicates the prior pixel in scan direction, and black color means the later pixel. The scan direction is from left-top to right-bottom, horizontal scan first. The skin color means the dummy bit of 9 bit interface.

format	I/F width	padding	significance	sedneuce	throughput (pixel/cycle)	seduence
D C D 222	8	X	Х	0	1pixel/1cycle	$R_2R_1R_0G_2G_1G_0B_1B_0$
RGB332		X	X	1	1pixel/1cycle	$B_1B_0G_2G_1G_0R_2R_1R_0$
	9	X	X	0	1pixel/1cycle	$B_0R_2R_1R_0G_2G_1G_0B_1B_0$
		X	X	1	1pixel/1cycle	$R_0B_1B_0G_2G_1G_0R_2R_1R_0$
	16	X	0	0	2pixel/1cycle	$R_2R_1R_0G_2G_1G_0B_1B_0R_2R_1R_0G_2G_1G_0B_1B_0$
		X	0	1	2pixel/1cycle	$B_{1}B_{0}G_{2}G_{1}G_{0}R_{2}R_{1}R_{0}B_{1}B_{0}G_{2}G_{1}G_{0}R_{2}R_{1}R_{0}$
RGB332		X	1	0	2pixel/1cycle	$R_2R_1R_0G_2G_1G_0B_1B_0R_2R_1R_0G_2G_1G_0B_1B_0$
		X	1	1	2pixel/1cycle	$B_{1}B_{0}G_{2}G_{1}G_{0}R_{2}R_{1}R_{0}B_{1}B_{0}G_{2}G_{1}G_{0}R_{2}R_{1}R_{0}$
	18	X	0	0	2pixel/1cycle	$xxR_2R_1R_0G_2G_1G_0B_1B_0R_2R_1R_0G_2G_1G_0B_1B_0$
		X	0	1	2pixel/1cycle	$xxB_{1}B_{0}G_{2}G_{1}G_{0}R_{2}R_{1}R_{0}B_{1}B_{0}G_{2}G_{1}G_{0}R_{2}R_{1}R_{0}$
		X	1	0	2pixel/1cycle	$xxR_2R_1R_0G_2G_1G_0B_1B_0R_2R_1R_0G_2G_1G_0B_1B_0$
		X	1	1	2pixel/1cycle	$xxB_{1}B_{0}G_{2}G_{1}G_{0}R_{2}R_{1}R_{0}B_{1}B_{0}G_{2}G_{1}G_{0}R_{2}R_{1}R_{0}$
	8		7		(60)	$R_3R_2R_1R_0G_3G_2G_1G_0$
RGB444		X	0	0	2pixel/3cycle	$B_3B_2B_1B_0R_3R_2R_1R_0$
	7		7			$G_3G_2G_1G_0B_3B_2B_1B_0$
141.						\N\\ . \N

MediaTek Confidential

© 2011 MediaTek Inc.

Page 351 of 508

format	I/F width	padding	significance	sednence	throughput (pixel/cycle)	output sequence
		,		1	C_0	$B_3B_2B_1B_0G_3G_2G_1G_0$
		X	0	1	2pixel/3cycle	$R_3R_2R_1R_0B_3B_2B_1B_0$
ANG	70					$G_3G_2G_1G_0R_3R_2R_1R_0$
1/4/						$G_3G_2G_1G_0B_3B_2B_1B_0$
		X	1	0	2pixel/3cycle	$B_3B_2B_1B_0R_3R_2R_1R_0$
						$R_3R_2R_1R_0G_3G_2G_1G_0$
						$G_3G_2G_1G_0R_3R_2R_1R_0$
		X	1	1	2pixel/3cycle	$R_3R_2R_1R_0B_3B_2B_1B_0$
						$B_3B_2B_1B_0G_3G_2G_1G_0$
						$G_0R_3R_2R_1R_0G_3G_2G_1G_0$
		X	0	0	2pixel/3cycle	$R_0B_3B_2B_1B_0R_3R_2R_1R_0$
						${\color{red} B_0 G_3 G_2 G_1 G_0 B_3 B_2 B_1 B_0}$
	9					$G_0B_3B_2B_1B_0G_3G_2G_1G_0$
		X	0	1	2pixel/3cycle	$\frac{\mathbf{B}_{0}\mathbf{R}_{3}\mathbf{R}_{2}\mathbf{R}_{1}\mathbf{R}_{0}\mathbf{B}_{3}\mathbf{B}_{2}\mathbf{B}_{1}\mathbf{B}_{0}}{\mathbf{B}_{0}\mathbf{B}_{1}\mathbf{B}_{0}}$
						$R_0G_3G_2G_1G_0R_3R_2R_1R_0$
						${\bf B}_0{\bf G}_3{\bf G}_2{\bf G}_1{\bf G}_0{\bf B}_3{\bf B}_2{\bf B}_1{\bf B}_0$
		X	1	0	2pixel/3cycle	$R_0B_3B_2B_1B_0R_3R_2R_1R_0$
						$\begin{array}{c} B_0G_3G_2G_1G_0B_3B_2B_1B_0 \\ R_0B_3B_2B_1B_0R_3R_2R_1R_0 \\ G_0R_3R_2R_1R_0G_3G_2G_1G_0 \end{array}$
						$\mathbf{R}_0 \mathbf{G}_3 \mathbf{G}_2 \mathbf{G}_1 \mathbf{G}_0 \mathbf{K}_3 \mathbf{K}_2 \mathbf{K}_1 \mathbf{K}_0$
	9	X	1	1	2pixel/3cycle	$\mathbf{B}_0 \mathbf{R}_3 \mathbf{R}_2 \mathbf{R}_1 \mathbf{R}_0 \mathbf{B}_3 \mathbf{B}_2 \mathbf{B}_1 \mathbf{B}_0$
RGB444	- 1					$G_0B_3B_2B_1B_0G_3G_2G_1G_0$
	16	0	х	0	1pixel/1cycle	$R_3R_2R_1R_0G_3G_2G_1G_0B_3B_2B_1B_0xxxx$
	7	0	X	1	1pixel/1cycle	$B_3B_2B_1B_0G_3G_2G_1G_0R_3R_2R_1R_0xxxx$
144		1	X	0	1pixel/1cycle	$xxxxR_3R_2R_1R_0G_3G_2G_1G_0B_3B_2B_1B_0$

© 2011 MediaTek Inc.

Page 352 of 508

	1						1 ACP 19
format	I/F width	padding	significance	ednence	throughput	(pixel/cycle)	ontial Release
		1	X	1	1pix	el/1cycle	$xxxxB_3B_2B_1B_0G_3G_2G_1G_0R_3R_2R_1R_0$
	18	0	X	0	1pix	el/1cycle	$xxR_3R_2R_1R_0G_3G_2G_1G_0B_3B_2B_1B_0xxxx$
	70	0	X	1	1pix	el/1cycle	$xxB_3B_2B_1B_0G_3G_2G_1G_0R_3R_2R_1R_0xxxx$
141		1	X	0	1pix	el/1cycle	$xxxxxxR_3R_2R_1R_0G_3G_2G_1G_0B_3B_2B_1B_0$
		1	X	1	1pix	el/1cycle	$xxxxxxB_3B_2B_1B_0G_3G_2G_1G_0R_3R_2R_1R_0$
			0	0	1	el/2cycle	$R_4R_3R_2R_1R_0G_5G_4G_3$
		X	U	U	тріх	el/2cycle	$G_2G_1G_0B_4B_3B_2B_1B_0$
	8	X	0	1	1niv	el/2cycle	$B_4B_3B_2B_1B_0G_5G_4G_3$
		Λ	U	1	тріх	ch zeyele	$G_2G_1G_0R_4R_3R_2R_1R_0$
		X	1	0	1nix	el/2cycle	$G_2G_1G_0B_4B_3B_2B_1B_0$
		A	•		ТРІЛ		$R_4R_3R_2R_1R_0G_5G_4G_3$
		X	1	1	1pix	el/2cycle	$G_2G_1G_0R_4R_3R_2R_1R_0$
					F		$B_4B_3B_2B_1B_0G_5G_4G_3$
D GD # (#		X	0	0	1pix	el/2cycle	$G_3R_4R_3R_2R_1R_0G_5G_4G_3$
RGB565					1		${}^{\mathbf{B}_{0}}\mathbf{G}_{2}\mathbf{G}_{1}\mathbf{G}_{0}\mathbf{B}_{4}\mathbf{B}_{3}\mathbf{B}_{2}\mathbf{B}_{1}\mathbf{B}_{0}$
	9	X	0	1	1pix	el/2cycle	$G_3B_4B_3B_2B_1B_0G_5G_4G_3$
							$R_0G_2G_1G_0R_4R_3R_2R_1R_0$
		X	1	0	1pix	el/2cycle	${\bf B}_0{\bf G}_2{\bf G}_1{\bf G}_0{\bf B}_4{\bf B}_3{\bf B}_2{\bf B}_1{\bf B}_0$
							$G_3R_4R_3R_2R_1R_0G_5G_4G_3$
		X,	1	1	1pix	el/2cycle	$R_0G_2G_1G_0R_4R_3R_2R_1R_0$
						4	G ₃ B ₄ B ₃ B ₂ B ₁ B ₀ G ₅ G ₄ G ₃
MA	16	X	X				$R_4R_3R_2R_1R_0G_5G_4G_3G_2G_1G_0B_4B_3B_2B_1B_0$
141		X	X		-	•	$B_4B_3B_2B_1B_0G_5G_4G_3G_2G_1G_0R_4R_3R_2R_1R_0 \\$
	18	X	X	0	1pix	el/1cycle	$xxR_4R_3R_2R_1R_0G_5G_4G_3G_2G_1G_0B_4B_3B_2B_1B_0$

© 2011 MediaTek Inc.

Page 353 of 508

					1		1-056 14
format	I/F width	padding	significance	edneuce	throughput	(pixel/cycle)	sequence Sequence
		X	X	1	1pixe	el/1cycle	$xxB_4B_3B_2B_1B_0G_5G_4G_3G_2G_1G_0R_4R_3R_2R_1R_0$
	7	10		13			$R_5R_4R_3R_2R_1R_0xx$
MAG	70	0	0	0	1pixe	el/3cycle	$G_5G_4G_3G_2G_1G_0xx$
1/47							$B_5B_4B_3B_2B_1B_0xx$
							$B_5B_4B_3B_2B_1B_0xx$
		0	0	1	1pixe	el/3cycle	$G_5G_4G_3G_2G_1G_0xx$
							$R_5R_4R_3R_2R_1R_0xx$
	8						$B_5B_4B_3B_2B_1B_0xx$
	J	0	1	0	1pixe	el/3cycle	$G_5G_4G_3G_2G_1G_0xx$
							$R_5R_4R_3R_2R_1R_0xx$
							$R_5R_4R_3R_2R_1R_0xx$
RGB666		0	1	1	1pixe	el/3cycle	$G_5G_4G_3G_2G_1G_0xx$
							$B_5B_4B_3B_2B_1B_0xx$
							$xxR_5R_4R_3R_2R_1R_0$
		1	0	0	1pixe	el/3cycle	$xxG_5G_4G_3G_2G_1G_0$
							$xxB_5B_4B_3B_2B_1B_0$
							$xxB_5B_4B_3B_2B_1B_0 \\ xxG_5G_4G_3G_2G_1G_0$
		1	0	1	1pixe	el/3cycle	$xxG_5G_4G_3G_2G_1G_0$
							$xxR_5R_4R_3R_2R_1R_0$
						10	$xxB_5B_4B_3B_2B_1B_0$
		1	1	0	1pixe	el/3cycle	$xxG_5G_4G_3G_2G_1G_0$
		V		5			$xxR_5R_4R_3R_2R_1R_0$
M	30						Cenon MC
							Cellair
MediaTek	Con	fident	tial				© 2011 MediaTek Inc. Pag

Page 354 of 508

			1	I		1.056
format	I/F width	padding	significance	sednence	throughput (pixel/cycle)	output sequence
					1KO	$xxR_5R_4R_3R_2R_1R_0$
		1	1	1	1pixel/3cycle	$xxG_5G_4G_3G_2G_1G_0$
MA						$xxB_5B_4B_3B_2B_1B_0$
		х	0	0	1pixel/2cycle	$R_5R_4R_3R_2R_1R_0G_5G_4G_3$ $G_2G_1G_0B_5B_4B_3B_2B_1B_0$
	9					$B_5B_4B_3B_2B_1B_0G_5G_4G_3$
		X	0	1	1pixel/2cycle	$G_2G_1G_0R_5R_4R_3R_2R_1R_0$
						$G_2G_1G_0B_5B_4B_3B_2B_1B_0$
		X	1	0	1pixel/2cycle	$R_5R_4R_3R_2R_1R_0G_5G_4G_3$
						$G_2G_1G_0R_3R_4R_3R_2R_1R_0$
		X	1	1	1pixel/2cycle	$B_5B_4B_3B_2B_1B_0G_5G_4G_3$
						$R_5R_4R_3R_2R_1R_0G_5G_4G_3G_2G_1G_0xxxx$
		0	0	0	2pixel/3cycle	$B_5B_4B_3B_2B_1B_0R_5R_4R_3R_2R_1R_0xxxx$
	16					$G_5G_4G_3G_2G_1G_0B_5B_4B_3B_2B_1B_0xxxx$
						$B_5B_4B_3B_2B_1B_0G_5G_4G_3G_2G_1G_0xxxx$
		0	0	1	2pixel/3cycle	$R_5R_4R_3R_2R_1R_0B_5B_4B_3B_2B_1B_0xxxx$
						$G_5G_4G_3G_2G_1G_0R_5R_4R_3R_2R_1R_0xxxx$
RGB666						$G_5G_4G_3G_2G_1G_0B_5B_4B_3B_2B_1B_0xxxx$
		0	1	0	2pixel/3cycle	$B_5B_4B_3B_2B_1B_0R_5R_4R_3R_2R_1R_0xxxx$
					601	$R_5R_4R_3R_2R_1R_0G_5G_4G_3G_2G_1G_0xxxx$
		,	7		(60	$G_5G_4G_3G_2G_1G_0R_5R_4R_3R_2R_1R_0xxxx$
		0	1	G	2pixel/3cycle	$R_5R_4R_3R_2R_1R_0B_5B_4B_3B_2B_1B_0xxxx$
	31		_			$B_5B_4B_3B_2B_1B_0G_5G_4G_3G_2G_1G_0xxxx$
144.						\NII - N

© 2011 MediaTek Inc.

Page 355 of 508

format	I/F width	padding	significance	sedneuce	throughput	(pixel/cycle)	sednence sednence
				1		KO	$xxxxR_5R_4R_3R_2R_1R_0G_5G_4G_3G_2G_1G_0$
		4	0	0	2pix	el/3cycle	$xxxxB_5B_4B_3B_2B_1B_0R_5R_4R_3R_2R_1R_0$
ARG							$xxxxG_5G_4G_3G_2G_1G_0B_5B_4B_3B_2B_1B_0$
1/11/		1	0	1	2niv.	al/3evela	$xxxxB_5B_4B_3B_2B_1B_0G_5G_4G_3G_2G_1G_0$ $xxxxR_5R_4R_3R_2R_1R_0B_5B_4B_3B_2B_1B_0$
		1	0	1	2pix	ch scycle	$xxxxG_5G_4G_3G_2G_1G_0R_5R_4R_3R_2R_1R_0$
							$xxxxG_5G_4G_3G_2G_1G_0B_5B_4B_3B_2B_1B_0$
		1	1	0	2pix	el/3cvcle	$xxxxB_5B_4B_3B_2B_1B_0R_5R_4R_3R_2R_1R_0$
		•	1	O	2pin	cu se yete	$xxxxR_5R_4R_3R_2R_1R_0G_5G_4G_3G_2G_1G_0$
							$xxxxG_5G_4G_3G_2G_1G_0R_5R_4R_3R_2R_1R_0$
		1	1	1	2pix	el/3cycle	$xxxxR_5R_4R_3R_2R_1R_0B_5B_4B_3B_2B_1B_0$
						·	$xxxxB_5B_4B_3B_2B_1B_0G_5G_4G_3G_2G_1G_0$
	18	Х	Х	0	1pix	el/1cycle	$R_5R_4R_3R_2R_1R_0G_5G_4G_3G_2G_1G_0B_5B_4B_3B_2B_1B_0$
		Х	Х	1	1pix	el/1cycle	$B_{5}B_{4}B_{3}B_{2}B_{1}B_{0}G_{5}G_{4}G_{3}G_{2}G_{1}G_{0}R_{5}R_{4}R_{3}R_{2}R_{1}R_{0}\\$
							$R_7R_6R_5R_4R_3R_2R_1R_0$
RGB888	8	X	0	0	1pix	el/3cycle	$G_7G_6G_5G_4G_3G_2G_1G_0$
							$G_7G_6G_5G_4G_3G_2G_1G_0$ $B_7B_6B_5B_4B_3B_2B_1B_0$
							$B_7B_6B_5B_4B_3B_2B_1B_0$
	8	X	0	1	1pix	el/3cycle	$G_7G_6G_3G_4G_3G_2G_1G_0$
	0					201	$R_7R_6R_5R_4R_3R_2R_1R_0$
RGB888	-	,	7			50	$B_7B_6B_5B_4B_3B_2B_1B_0$
	A	x	1	0	1pix	el/3cycle	$G_7G_6G_5G_4G_3G_2G_1G_0$
		110					$R_7R_6R_5R_4R_3R_2R_1R_0$
144							1811 - 1

© 2011 MediaTek Inc.

Page 356 of 508

						1.456.19
format	I/F width	padding	significance	sedneuce	throughput (pixel/cycle)	sequence Sequence
				1	(0.7)	$R_7R_6R_5R_4R_3R_2R_1R_0$
		X	1	1	1pixel/3cycle	$G_7G_6G_5G_4G_3G_2G_1G_0$
AMO						$B_7B_6B_5B_4B_3B_2B_1B_0$
1/1/1			0	0	1 ' 1/0 1	$\mathbf{R}_0 \mathbf{R}_7 \mathbf{R}_6 \mathbf{R}_5 \mathbf{R}_4 \mathbf{R}_3 \mathbf{R}_2 \mathbf{R}_1 \mathbf{R}_0$
		X	0	0	1pixel/3cycle	$G_0G_7G_6G_5G_4G_3G_2G_1G_0$
						$B_0B_7B_6B_5B_4B_3B_2B_1B_0$
	9		0	1	1 : 1/2 1 -	$B_0B_7B_6B_5B_4B_3B_2B_1B_0$
	9	X	0	1	1pixel/3cycle	$G_0G_7G_6G_5G_4G_3G_2G_1G_0$
						$R_0R_7R_6R_5R_4R_3R_2R_1R_0$
			1	0	1 1/2 1 -	$B_0B_7B_6B_5B_4B_3B_2B_1B_0$
		X	1	U	i pixel/3cycle	$G_0G_7G_6G_5G_4G_3G_2G_1G_0$
						$R_0R_7R_6R_5R_4R_3R_2R_1R_0$
			1	1	1 1/2 1 -	$R_0R_7R_6R_5R_4R_3R_2R_1R_0$
		X	1	1	i pixel/3cycle	$G_0G_7G_6G_5G_4G_3G_2G_1G_0$
						$B_0B_7B_6B_5B_4B_3B_2B_1B_0$
			0	0	Omirral/2 arrala	$R_7R_6R_5R_4R_3R_2R_1R_0G_7G_6G_5G_4G_3G_2G_1G_0$
		X	0	U	zpixel/3cycle	$B_7B_6B_5B_4B_3B_2B_1B_0R_7R_6R_5R_4R_3R_2R_1R_0$
	16					$G_7G_6G_5G_4G_3G_2G_1G_0B_7B_6B_5B_4B_3B_2B_1B_0$
	10		0	1	Omirral/2 avala	$B_7B_6B_5B_4B_3B_2B_1B_0G_7G_6G_5G_4G_3G_2G_1G_0$
		X	U	1	zpixel/scycle	$R_7R_6R_5R_4R_3R_2R_1R_0B_7B_6B_5B_4B_3B_2B_1B_0$
			7		100	G ₇ G ₆ G ₅ G ₄ G ₃ G ₂ G ₁ G ₀ R ₇ R ₆ R ₅ R ₄ R ₃ R ₂ R ₁ R ₀
11	A	\K		5	Onival/2 avala	$G_7G_6G_5G_4G_3G_2G_1G_0B_7B_6B_5B_4B_3B_2B_1B_0$
	37	Х	1	0	zpixel/scycle	$B_7B_6B_5B_4B_3B_2B_1B_0R_7R_6R_5R_4R_3R_2R_1R_0$
						$R_7 R_6 R_5 R_4 R_3 R_2 R_1 R_0 G_7 G_6 G_5 G_4 G_3 G_2 G_1 G_0$

© 2011 MediaTek Inc.

Page 357 of 508

					ı	1.358
format	I/F width	padding	significance	sednence	throughput (pixel/cycle)	output sequence
					160	$G_7G_6G_5G_4G_3G_2G_1G_0R_7R_6R_5R_4R_3R_2R_1R_0$
	16	X	1	1	2pixel/3cycle	$R_7R_6R_5R_4R_3R_2R_1R_0B_7B_6B_5B_4B_3B_2B_1B_0$
MA		17				$B_7B_6B_5B_4B_3B_2B_1B_0G_7G_5G_5G_4G_3G_2G_1G_0$
Mil						$xxR_7R_6R_5R_4R_3R_2R_1R_0G_7G_6G_5G_4G_3G_2G_1G_0$
		X	0	0	2pixel/3cycle	$xxB_7B_6B_5B_4B_3B_2B_1B_0R_7R_6R_5R_4R_3R_2R_1R_0$
						$xxG_7G_6G_5G_4G_3G_2G_1G_0B_7B_6B_5B_4B_3B_2B_1B_0$
						$xxB_7B_6B_5B_4B_3B_2B_1B_0G_7G_6G_5G_4G_3G_2G_1G_0$
RGB888	18	X	0	1	2pixel/3cycle	$xxR_7R_6R_5R_4R_3R_2R_1R_0B_7B_6B_5B_4B_3B_2B_1B_0$
KUDooo						$xxG_7G_6G_5G_4G_3G_2G_1G_0R_7R_6R_5R_4R_3R_2R_1R_0$
						$xxG_7G_6G_5G_4G_3G_2G_1G_0B_7B_6B_5B_4B_3B_2B_1B_0$
		X	1	0	2pixel/3cycle	$xxB_7B_6B_5B_4B_3B_2B_1B_0R_7R_6R_5R_4R_3R_2R_1R_0$
						$xxR_7R_6R_5R_4R_3R_2R_1R_0G_7G_6G_5G_4G_3G_2G_1G_0$
						$xxG_7G_6G_5G_4G_3G_2G_1G_0R_7R_6R_5R_4R_3R_2R_1R_0$
		X	1	1	2pixel/3cycle	$xxR_7R_6R_5R_4R_3R_2R_1R_0B_7B_6B_5B_4B_3B_2B_1B_0$
						$xxB_7B_6B_5B_4B_3B_2B_1B_0G_7G_5G_5G_4G_3G_2G_1G_0$

Table 60 WROICON.FORMAT List

9000_0084h Region of Interest Window Offset Register

LCD WROIOFS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						7	7 V	- 11	111	Y	-OFFSE	Т				
Type						197					R/W					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										X	-OFFSE	Т				
Type			II.								R/W	·				

X-OFFSET ROI Window Column Offset, please see Figure 51. **Y-OFFSET** ROI Window Row Offset, please see Figure 51.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 358 of 508

9000_0088h Region of Interest Window Command Address Register

LCD_WROICAD

D

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						III		AD	DR							
Type					7			R/	W							

ADDR ROI Window Command Address. Specify the address that the commands will be sent to. Only eight possible values are allowed.

4000h Commands are sent to LCD parallel interface 0 and LPA0 will be set to 0.

5000h Commands are sent to LCD parallel interface 1 and LPA0 will be set to 0.

6000h Commands are sent to LCD on EMI interface and LPA0 will be set to 0.

8000h Commands are sent to LCD serial interface and LPA0 will be set to 0.

4100h Commands are sent to LCD parallel interface 0 and LPA0 will be set to 1.

5100h Commands are sent to LCD parallel interface 1 and LPA0 will be set to 1.

6100h Commands are sent to LCD on EMI interface and LPA0 will be set to 1.

8100h Commands are sent to LCD serial interface and LPA0 will be set to 1.

Note: In order to access port 6000 directly, software should access the EMI memory location instead. For example, if the LCM is connected to CS2 on the EMI, then address bit [28:27] = 10. Address bit [1] represents the LCM A0 bit. So if we want to write to the LCM with A0=1, then we write to address $0x1000_0002$.

9000_008Ch Region of Interest Window Data Address Register

LCD_WROIDAD

Bit	15	14	13	12	11	10	9	8	7		6	5	4	3	2	1	0
Name									DR	II							
Type								R	/W	11							

ADDR ROI Window Data Address. Specify the address that the data will be sent to. Only eight possible values are allowed.

4000h Data are sent to LCD parallel interface 0 and LPA0 will be set to 0.

5000h Data are sent to LCD parallel interface 1 and LPA0 will be set to 0.

6000h Data are sent to LCD on EMI interface and LPA0 will be set to 0.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 359 of 508

8000h Data are sent to LCD serial interface and LPA0 will be set to 0.

4100h Data are sent to LCD parallel interface 0 and LPA0 will be set to 1.

5100h Data are sent to LCD parallel interface 1 and LPA0 will be set to 1.

6100h Data are sent to LCD on EMI interface and LPA0 will be set to 1.

8100h Data are sent to LCD serial interface and LPA0 will be set to 1.

9000 0090h Region of Interest Window Size Register

LCD WROISIZE

Bit	31	30	29	28	27	26	25	24	23	22 21	20	19	18	17	16	
Name						ROW										
Type						R/W										
Bit	15	14	13	12	11	10	9	8	7	6 5	4	3	2	1	0	
Name						COLUMN										
Type							<u>n</u> ,			R/W						

COLUMN ROI Window Column Size in unit of pixel, please see Figure 51.

ROW ROI Window Row Size in unit of pixel, please see Figure 51.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 360 of 508

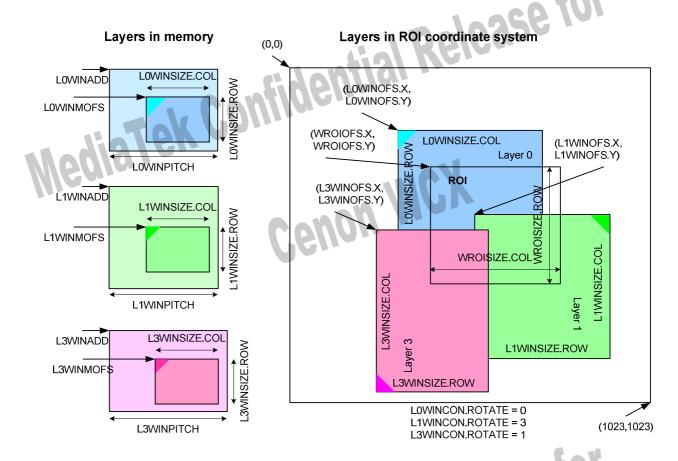


Figure 51 Layers and ROI setting

IEDINTEK

MediaTek Confidential Release for non WCX MediaTek Confidential © 2011 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

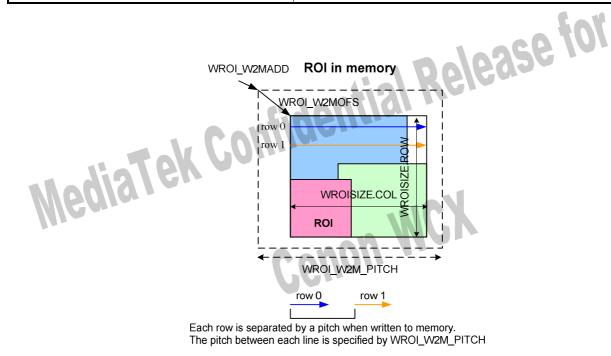


Figure 52 ROI write to memory setting

9000_009C Region of Interest Background Color Register

LCD_WROI_BG CLR

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				ALPH	A[7:0]							RED	[7:0]	4	- 1	
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	me GREEN[7:0]										1.7	BLUE	[7:0]			
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	110	1	1	1	1	1	1	1

BLUE Blue component of ROI window's background color GREENGreen component of ROI window's background color RED Red component of ROI window's background color ALPHA Alpha component of ROI window's background color

MediaTek Confidential

© 2011 MediaTek Inc.

Page 362 of 508

Region of Interest Window Write to LCM Continuous 9000_00A0h 1 stial Count NTI

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							1101	27				WROI_	CONTI			
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

WROI CONTI Continuous write to LCM count without chip select de-asserted.

- O Continuously write 1 pixel to LCM without chip select de-asserted.
- Continuously write 2 pixels to LCM without chip select de-asserted.
- Continuously write N+1 pixels to LCM without chip select de-asserted.

NOTE: IF LCD_WROICON.PERIOD != 0, this register won't take effect.

9000_00B0h **Layer 0 Window Control Register**

LCD_LOWINCO

Bit	31	30	29	28	27	26	25 24 23 22 21 20 19 18 17 16									16
Name						RGB_ SWP		DST_ KEYE N		C	CLRFM	т		DITHE R_EN	SCRL _EN	BYTE _SWP
Туре								R/W		R/W	R/W	R/W		R/W	R/W	R/W
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	SRC	SRC_ KEYE N	F	ROTAT	E			ALPH A_EN	H ALPHA							
Туре	R/W	R/W		R/W				R/W	R/W R/W							
ALPH ALPH	A_EN 0	Constar Enable A	Alpha l Alpha	olendin blendir	g 19			- 10	112		le	193	158	3 1	70	

Enable Alpha blending, and the blending equations are specified by CLRFMT

ROTATE Rotation Configuration

000 no rotation

001 90 degree rotation (counterclockwise, single request only)

010 180 degree rotation (counterclockwise)

011 270 degree rotation (counterclockwise, single request only)

100 Horizontal flip

101 Horizontal flip then 90 degree rotation (counterclockwise, single request only)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 363 of 508

110 Horizontal flip then 180 degree rotation (counterclockwise)

111 Horizontal flip then 270 degree rotation (counterclockwise, single request only)

SRC KEYEN Enable source color key. If the color format is YUYV422, this function is not supported.

Disable auto-increment of the source pixel address. It makes the value of each pixel is the same as the first pixel of this frame. Just for debug.

BYTE SWP Swap high byte and low byte of pixel data read from memory

SCRL EN Enable scroll effect.

МЕДІЛТЕК

Ceuon MCX DITHER EN Enable dithering. Please see LCD_DITERCON.

CLRFMT Color format

000 8bpp indexed color

001 RGB 565

010 YUYV422

011 RGB 888

100 ARGB 8888

101 PARGB8888


110 XRGB8888

Others Reserved

DST KEYEN Enable destination color key. If the color format is YUYV422, this function is not supported.

RGB SWP Swap RGB order of input pixel.

Note: SRC_KEYEN and DST_KEYEN are exclusive setting. They can't be enabled at the same time.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 364 of 508

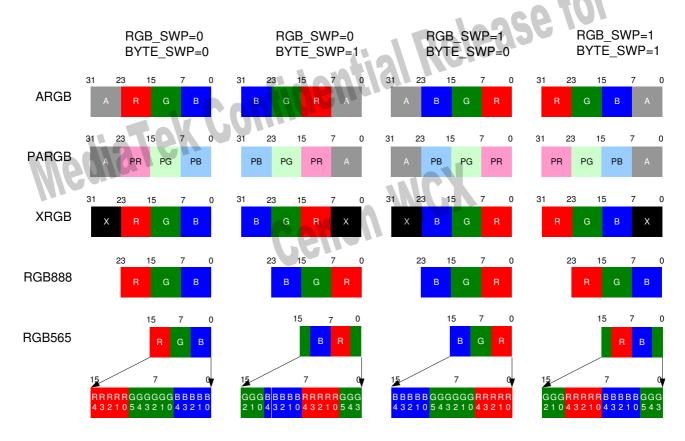


Figure 53 Layer source RGB format

The byte order in memory of YUYV422 is described in Figure 54 YUYV422 byte order in memory. Yo is the component of t Y component of the first pixel, P_0 . Y_1 is the Y component of the second pixel, P_1 .

MediaTek Confidential

non WCX © 2011 MediaTek Inc.

Page 365 of 508

 $\frac{3}{Y_1}$ $\frac{2}{V}$ $\frac{1}{Y_0}$ $\frac{0}{V}$ byte order in memory

 P_0 P_1 image of this layer

Figure 54 YUYV422 byte order in memory

Note: When use YUYV422 mode, the pitch of this layer (LCD_LxWINPITCH) must be even, and the base address (LCD_LxWINADD) of this layer also must be 4-byte aligned. Source color key and destination color key are NOT supported in YUYV422 mode.

Note: If color depth is YUYV422, the YUYV422 source will be translated to RGB domain and then overlaid. The YUV to RGB transformation is following the equations.

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} = \frac{1}{32} \times \begin{bmatrix} 32 & 0 & 45 \\ 32 & -11 & -23 \\ 32 & 57 & 0 \end{bmatrix} \bullet \begin{pmatrix} Y \\ U - 128 \\ V - 128 \end{pmatrix}$$

The alpha blending formula is selected by source color format automatically.

If source color format is RGB565, RGB888 or YUYV422 then the alpha blending formula is

dst.r = dst.r * (0xff - SCA) / 0xff + src.r * SCA / 0xff;

dst.g = dst.g * (0xff - SCA) / 0xff + src.g * SCA / 0xff;

dst.b = dst.b*(0xff - SCA)/0xff + src.b*SCA/0xff;

dst.a = dst.a * (0xff - SCA) / 0xff + SCA;

If source color format is **PARGB** then the alpha blending formula is

MediaTek Confidential

© 2011 MediaTek Inc.

Page 366 of 508


```
lase fo
  if (SCA != 0xff)
     dst.r = dst.r * (0xff - src.a * SCA / 0xff) / 0xff + src.r * SCA / 0xff;
     dst.g = dst.g * (0xff - src.a * SCA / 0xff) / 0xff + src.g * SCA / 0xff;
     dst.b = dst.b*(0xff - src.a*SCA/0xff)/0xff + src.b*SCA/0xff;
     dst.a = dst.a * (0xff - src.a * SCA / 0xff) / 0xff + src.a * SCA / 0xff;
   else \{ // SCA == 0xff \}
     dst.r = dst.r * (0xff - src.a) / 0xff + src.r;
     dst.g = dst.g * (0xff - src.a) / 0xff + src.g;
     dst.b = dst.b*(0xff - src.a)/0xff + src.b;
     dst.a = dst.a * (0xff - src.a) / 0xff + src.a
If source color format is ARGB then the alpha blending formula is
  if (SCA != 0xff)
     dst.r = dst.r * (0xff - src.a * SCA / 0xff) / 0xff + src.r * src.a / 0xff * SCA / 0xff;
     dst.g = dst.g * (0xff - src.a * SCA / 0xff) / 0xff + src.g * src.a / 0xff * SCA / 0xff;
     dst.b = dst.b*(0xff - src.a*SCA/0xff)/0xff + src.b*src.a/0xff*SCA/0xff;
     dst.a = dst.a * (0xff - src.a * SCA / 0xff) / 0xff + src.a * SCA / 0xff;
  else { // SCA == 0xff}
                                                                  lease for
     if SCA = 0xff
     dst.r = dst.r * (0xff - src.a) / 0xff + src.r * src.a / 0xff;
     dst.g = dst.g*(0xff - src.a) / 0xff + src.g*src.a / 0xff;
     dst.r = dst.b*(0xff - src.a) / 0xff + src.b*src.a / 0xff;
     dst.a = dst.a * (0xff - src.a) / 0xff + src.a;
src.r, src.g, src.b, and src.a are this layer's pixel value.
dst.r, dst.r, dst.b, and dst.a are the result of alpha blending of all lower layers.
```

Alpha blending hardware approximation:

MediaTek Confidential

© 2011 MediaTek Inc.

Page 367 of 508

This document contains information that is proprietary to MediaTek Inc.

Note: SCA is the source constant alpha specified by LCD_L0WINCON.ALPHA.

If source color format is **RGB565**, **RGB888** or **YUYV422** then the hardware implements the following equation to approximate the above equation of 8-bit index color, RGB565, RGB888 or YUYV422. Only list red channel, other channels are the same.

```
tmp.r = SCA \times (src.r - dst.r) + 255*dst.r + 128; \\ dst'.r = (tmp.r + tmp.r >> 8) >> 8; \\ tmp\_d.a = dst.a \times (255 - SCA) + 128 \\ tmp.a = (tmp\_d.a + tmp\_d.a >> 8) >> 8 \\ dst'.a = src.a + tmp.a
```

If source color format is **PARGB** then the hardware implements the following equation to approximate the above equation of PARGB. Only list red channel, others are the same.

```
if (SCA!=0xff) {
    tmp_s.a = src.a × SCA + 128
    src'.a = (tmp_s.a + tmp_s.a >> 8) >> 8
    tmp_s.r = src.r × SCA + 128
    src'.r = (tmp_s.r + tmp_s.r >> 8) >> 8
    tmp_d.r = dst.r × (255 - src'.a) + 128
    tmp.r = (tmp_d.r + tmp_d.r >> 8) >> 8
    dst'.r = src'.r + tmp.r
} else { // SCA == 0xff
    tmp_d.r = dst.r × (255 - src.a) + 128
    tmp_r = (tmp_d.r + tmp_d.r >> 8) >> 8
    dst'.r = src.r + tmp.r
}
```

If source color format is **ARGB** then the hardware implements the following equation to approximate the above equation of ARGB. Only list red and alpha channels, others are the same.

ion MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 368 of 508


```
if (SCA!=0xff) {
    tmp_s.a = src.a × SCA + 128;
    src'.a = (tmp_s.a + tmp_s.a >> 8) >> 8;
    tmp_d.a = dst.a × (255 - src'.a) + 128;
    tmp.a = (tmp_d.a + tmp_d.a >> 8) >> 8;
    dst'.a = src'.a + tmp.a;

tmp.r = src'.a × (src.r - dst.r) + 255 * dst.r + 128;
    dst'.r = (tmp.r + tmp.r >> 8) >> 8;
} else { // SCA == 0xff }
    tmp_d.a = dst.a × (255 - src.a) + 128;
    tmp.a = (tmp_d.a + tmp_d.a >> 8) >> 8;
    dst'.a = src.a + tmp.a;

tmp.r = src.a × (src.r - dst.r) + 255 * dst.r + 128;
    dst'.r = (tmp.r + tmp.r >> 8) >> 8;
}
```

Effect Ordering:

Each layer has many effects which can be turned on concurrently. The order the effects are applied are as follows:

- 1. Memory Offset and Pitch are first used to determine which part of the layer in memory to display.
- 2. If turned on, a scroll effect is then applied.
- 3. Rotation is applied to the layer.
- 4. Finally, swap and dither are applied in this order
- 5. The layer is alpha blended with previous layers and/or the ROI background.
- 6. If turned on, the gamma tables are applied to the final ROI output.
- 7. The ROI output is sent to the LCM and/or memory in the color format set by the corresponding register.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 369 of 508

Layer 0 Color Key Register 9000_00B4h

9000	_00E	34h	Laye	r 0 C	olor k	(ey R	egist	er	412	18	Re	163	15	LCD_	LOW	INKE Y
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						TAT		CLRKE	Y[31:16]						
Type						IIII		R	/W							
Bit	15	_ 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								CLRKE	Y[15:0]							
Type		NY			•	•		R	/W		1	•		•		•

CLRKEY The source color key or destination color key, which depends on LCD_LOWINCON.SRC_KEYEN or LCD_L0WINCON.DST_KEYEN.

9000 00B8h **Layer 0 Window Display Offset Register**

LCD LOWINOF

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name										Y-	OFFSE	Т					
Type											R/W						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name										X-	OFFSE	T					
Type						X-OFFSET R/W											

Y-OFFSET Layer 0 Window Row Offset in unit of pixel, please see Figure 51.

X-OFFSET Layer 0 Window Column Offset in unit of pixel, please see Figure 51.

9000_00BCh Layer 0 Window Display Start Address Register

Bit	31	30	29	28	27	26 25	24	23	22	21	20	19	18	17	16
Name						- TI A	AD	DR							
Type					70	1.11.	R/	W							
Bit	15	14	13	12	11	10 9	8	7	6	5	4	3	2	1	0
Name							AD	DR							
Type	1	T		π			R/	W							

Layer 0 source start address (byte address), please see Figure 51. The address must be aligned to layer color depth boundary as the following table. Note: If the buffer is Page-size byte aligned, LCD will

MediaTek Confidential

© 2011 MediaTek Inc.

Page 370 of 508

benefit from a ~2-3% bandwidth increase. For example, if the page size of the memory is 16bytes, then a 16byte alignment address will increase bandwidth.

LCD_L0WINCON.CLRFMT	Color format	ADDR alignment
000	8 bpp index	no alignment constraint
001	RGB565	2 bytes alignment
010	ARGB8888 or	4 bytes alignment
	PARGB8888	
011	RGB888	no alignment constraint
100	YUYV422	4 bytes alignment

SIZNOLIZ

9000_00C0h Layer 0 Window Size

LCD_LOWINSIZ

_

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											ROW					
Type											R/W					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										C	OLUM	N				
Type						COLUMN R/W										

ROW Layer 0 Window Row Size in unit of pixel, please see Figure 51.

COLUMN Layer 0 Window Column Size in unit of pixel, please see Figure 51.

9000_00C4h Layer 0 Scroll Start Offset

LCD_LOWINSC RL

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Name						7.	$I \circ I$	11		Υ-	OFFSE	T						
Type					RO	1.1					R/W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
Name				1		X-OFFSET												
Type	_	TL		777														

Y-OFFSET Layer 0 Scroll Y Offset in unit of pixel, its value must satisfy Y-OFFSET < LCD_L0WINSIZE.ROW

X-OFFSET Layer 0 Scroll X Offset in unit of pixel, its value must satisfy X-OFFSET < LCD_L0WINSIZE.COLUMN

MediaTek Confidential

© 2011 MediaTek Inc.

Page 371 of 508

9000 00C8h **Layer 0 Memory Offset**

LCD LOWINMO

												e ?	15	3 1	10				
9000	_00C	8h	Laye	r O M	emor	y Off	Offset LCD_L0WINMO FS 26 25 24 23 22 21 20 19 18 17 16												
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
Name										γ.	OFFSE	T							
Type	1										R/W								
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
Name		111					X-OFFSET												
Type	14						RW												

Y-OFFSET Layer 0 Memory Y Offset in unit of pixel, please see Figure 51. Y-OFFSET < LCD_L0WINSIZE.ROW + PICTURE ROW

X-OFFSET Layer 0 Memory X Offset in unit of pixel, please see Figure 51. X-OFFSET < LCD_L0WINSIZE.COLUMN + PICTURE COLUMN

PICTURE ROW and PICTURE COLUMN refer to the total size of the image in memory. See Figure 51 for clarification.

9000_00CCh Layer 0 Memory Pitch

LCD LOWINPIT

CH

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								PIT	CH							
Type	R/W															

PITCH Layer 0 Memory Pitch in unit of byte, please see Figure 51. This should be set to the total width of the image in memory (PICTURE COLUMN) times the number of bytes per pixel. For 4 bpp color depth settings, the pitch must be a multiple of 4. For 2 bpp color depth settings, the pitch must be a multiple of 2. For 3 bpp (RGB888) color depth settings, the pitch may be a multiple of any number.

Note: Every field of every register of layer 1~3 is the same as that in layer 0 configuration register.

LCD Dither Control Register 9000 0170h

LCD DITHER C

ON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

MediaTek Confidential

© 2011 MediaTek Inc.

Page 372 of 508

Name									L	FSR F	SEE			FSR C	SEE)
Type									R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		_FSR_E	S_SEE)			DB	_ R		/ 1	DB	_ G			DB	_ B
Type	R/W	R/W	R/W	R/W		7	R/W	R/W			R/W	R/W			R/W	R/W

Dither bit selection on blue channel

00 dither to bit 1, bit [0] of output data is 0.

01 dither to bit 2, bit [1:0] of output data are 0.

dither to bit 3, bit [2:0] of output data are 0.

11 dither to bit 4, bit [3:0] of output data are 0.

DB G Dither bit selection on green channel

00 dither to bit 1, bit [0] of output data is 0.

01 dither to bit 2, bit [1:0] of output data are 0.

10 dither to bit 3, bit [2:0] of output data are 0.

11 dither to bit 4, bit [3:0] of output data are 0.

DB R Dither bit selection on red channel

00 dither to bit 1, bit [0] of output data is 0.

01 dither to bit 2, bit [1:0] of output data are 0.

10 dither to bit 3, bit [2:0] of output data are 0.

11 dither to bit 4, bit [3:0] of output data are 0.

(e.g. RGB888 to RGB565, BD_R=2;BD_G=1;BD_B=2)

(e.g. RGB888 to RGB666, BD R=1;BD G=1;BD B=1)

LFSR B SEED Seeds (LSB 4-bit) of blue channel Linear Feedback Shift Register

LFSR G SEED Seeds (LSB 4-bit) of green channel Linear Feedback Shift Register

LFSR R SEED Seeds (LSB 4-bit) of red channel Linear Feedback Shift Register

MediaTek Confidentia Note: LFSR_*_SEED shouldn't be zero, otherwise the linear feedback shift register will always be zero.

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 373 of 508

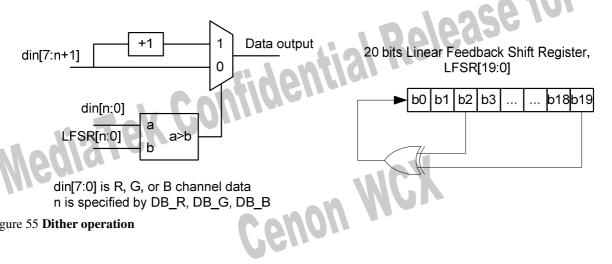


Figure 55 Dither operation

Addcon Debug Register 9000_01F0h

LCD DB ADDC

ON

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						Y-OFFSET										
Type						R										
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										X.	OFFSE	Т				
Type									•	•	R	•			•	

Y-OFFSET Current ROI pixel requesting from memory y offset.

X-OFFSET Current ROI pixel requesting from memory x offset.

9000 01F4h **Maincon Debug Register**

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								- 1/1		Y.	OFFSE	Т				
Type							T . V	11.			R					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						IIII				X.	OFFSE	T				
Type											R					

Y-OFFSET Current ROI pixel writing to LCM y offset.

X-OFFSET Current ROI pixel writing to LCM x offset.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 374 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

W2mcon Debug Register 9000 01F8h

9000	_01F	8h	W2m	icon	Debu	g Reç	gister		Ho.	18	Rel	19	35[.CD_I	OB_W	V2MC ON
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						187	1101			Y.	OFFSE	T				
Type				1		IIII					R					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				417						X.	-OFFSE	T				
Type		IV									R					
	12															

Y-OFFSET Current ROI pixel writing to memory y offset.

X-OFFSET Current ROI pixel writing to memory x offset.

9000_01FCh Frame Count Debug Register

LCD DB COUN

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name												F	COUN	T			
Type										R							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name								FCO	UNT								
Type				•	•			F	3			•					

FCOUNT LCD Update Time in cycles. The real time is FCOUNT*T, where T is the LCD working clock cycle time.

Below are registers which allow software to write/read directly to the DBI-B/DBI-C interface. The LCD allows software to issue consecutive writes/reads without delay. However on the last read/write, software should add a delay before writing to other memory location (non-LCD memory locations). Each port also has TE subports (ex. 0x4010, 0x5010, etc.) which adhere to the same rules as its master port. For example 0x4010 uses the same rules as 0x4000. However, these TE ports have special functions other then LCM write/read. Please refer to Table 59 for more information.

LCD Parallel 0 Interface Command Port 9000 4000h

LCD PCMD0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name				417				CMD[31:16]							
Type								R	/W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								CMD	[15:0]	III						
Type								R	/W							

MediaTek Confidential

© 2011 MediaTek Inc.

Page 375 of 508

CMD LCD parallel 0 command interface is mapped to this address. Read from/Write to this address will assert LCD parallel 0 chips select, and LPA0=0.

9000_4100h LCD Parallel 0 Interface Data Port

LCD_PDAT0

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name																
Type	R/W															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DATA	[15:0]	$I \cap I$						
Type								R/	W							

DATA LCD parallel 0 data interface is mapped to this address. Read from/Write to this address will assert LCD parallel 0 chips select, and LPA0=1.

9000 5000h LCD Parallel 1 Interface Command Port

LCD_PCMD1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name								CMD[31:16]							
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								CMD	[15:0]							
Type								R/	W							

CMD LCD parallel 1 command interface is mapped to this address. Read from/Write to this address will assert LCD parallel 1 chips select, and LPA0=0.

9000_5100h LCD Parallel 1 Interface Data Port

LCD PDAT1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name						$I \setminus I$		DATA	31:16]							
Type								R/	W							
Bit	15 _	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		T						DATA	[15:0]							
Type								R/	W		_					

MediaTek Confidential

© 2011 MediaTek Inc.

Page 376 of 508

DATA LCD parallel 1 data interface is mapped to this address. Read from/Write to this address will assert LCD parallel 1 chips select, and LPA0=1.

	T		
	Parallel I/F data	AHB write	
	width (bits)	transaction size	data sequence in parallel I/F
-1	width (bits)	(bits)	
Media	8	8	hwdata[7:0]
Mean		16	hwdata[7:0] hwdata[15:8]
		0 - 10	AM HIV
		COM	hwdata[7:0]
		32	hwdata[15:8]
			hwdata[23:16]
			hwdata[31:24]
		8	hwdata[8:0]
	9	16	hwdata[8:0]
		32	hwdata[8:0]
		32	hwdata[24:16]
		8	hwdata[15:0]
	16	16	hwdata[15:0]
		32	hwdata[15:0]
		32	hwdata[31:16]
		8	hwdata[17:0]
	18	16	hwdata[17:0]
	1.00	32	hwdata[17:0]

Table 61 Parallel interface transmission sequence when MCU writes to LCD_PDAT* or LCD_PCMD*

	2000	900		LCD	Caria	llete	ufo o o	Com		d Do	111	Y			1.4	on c	CMD
•	9000	_800	Uli	LCD	Seria	ıınıe	riace	Con	nmand	Por					L	CD_S	CIMID
	Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

MediaTek Confidential

© 2011 MediaTek Inc.

Page 377 of 508

												_					
Name								CME	0[31:16]			-7 Y	7		9		
Type									R/W		VI		5				
Bit	15	14	13	12	11	10	9	8	7	6		5	4	3	2	1	0
Name								CM	D[15:0]								
Type		·	<u> </u>			7	$I \cap \Gamma$		R/W							·	

LCD serial command interface is mapped to this address. Write to this address will assert LSA0=0 in 4-wire **CMD** mode or A0 bit=0 in 3-wire mode.

9000_8100h

LCD_SDAT

	131	Yie														
9000	_810	0h	LCD	Seria	l Inte	rface	Data	Port	10	W	OL			L	CD_S	SDAT
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		DATA[31:16]														
Type								R/	W							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								DATA	[15:0]							
Type								R/	W							

DATA LCD serial data interface is mapped to this address. Write to this address will assert LSA0=1 in 4-wire mode or A0 bit=1 in 3-wire mode.

LCD_SCNF.3_WIRE	LCD_SCNF.IF_SIZE	data sequence in serial I/F
	8	hwdata[7:0]
	9	hwdata[8:0]
0	16	hwdata[15:0]
U	18	hwdata[17:0]
. 601	24	hwdata[23:0]
TOK UU	32	hwdata[31:0]
IGW	8	{cmd_data, hwdata[7:0]}
1	9	{cmd_data, hwdata[8:0]}
	16	{cmd_data, hwdata[15:0]}

MediaTek Confidential

© 2011 MediaTek Inc.

Page 378 of 508

18	{cmd_data, hwdata[17:0]}
24	{cmd_data, hwdata[23:0]}
32	{cmd_data, hwdata[31:0]}

Table 62 Serial interface transmission sequence when MCU writes to LCD_SDAT, LCD_SCMD

Serial transmission starts from the MSB of "data sequence in serial I/F". "cmd_data" is the command/data indicator, 0 for command and 1 for data. If MCU writes the command port, cmd_data=0. If MCU writes the data port, cmd_data=1. To read a serial LCM, software must first write a read command to this interface. Next software, can read this interface to retrieve data. CS should be kept low while performing this operation. Please note that the AHB transaction size cannot be less then the LCD_SCNF.IF_SIZE or unknown data may be transferred to the LCM.

9000_C000h~C07F LCD Interface Command/Parameter Registers

LCD_COMD

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name									CO						COMN	[17:16
Туре									R/W						R/	W
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								COMN	I [15:0]							
Type			•					R/	W							

COMM Command and Parameter for LCD Module.

CO Command/data indicator.

- Write COMM[17:0] to ROI Data Address(LCD_WROIDADD).
- 1 Write COMM[17:0] to ROI Command Address (LCD_WROICADD).

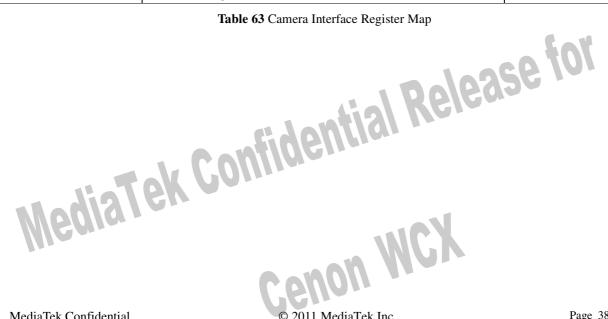
There are 16 entries in command queue 1. When LCD is in the busy state, software must not read/write to the command queue.

5.2 Camera Interface

MT6252 CAM support VGA Sensor YUV422/RGB565 interface. No other color process include in CAM.

MediaTek Confidential

© 2011 MediaTek Inc.


Page 379 of 508

5.2.1 **Register Table**

5.2.1 Registe CAM : 84020000h	er Table	Aential Reli	ease for
REGISTER ADDRESS	REGISTER NAME	USII	SYNONYM
CAM + 0000h	TG Phase Counter Registe	er	CAM_PHSCNT
CAM + 0004h	Sensor Size Configuration	n Register	CAM_CAMWIN
CAM + 0008h	TG Grab Range Start/End	Pixel Configuration Register	CAM_GRABCOL
CAM + 000Ch	TG Grab Range Start/End	Line Configuration Register	CAM_GRABROW
CAM + 0010h	Sensor Mode Configuration	on Register	CAM_CSMODE
CAM + 0018h	View Finder Mode Contro	ol Register	CAM_VFCON
CAM + 001Ch	Camera Module Interrupt	Enable Register	CAM_INTEN
CAM + 0020h	Camera Module Interrupt	Status Register	CAM_INTSTA
CAM + 0024h	Camera Module Path Con	fig Register	CAM_PATH
CAM + 0190h	Sensor Test Module Confi	iguration Register 1	CAM_MDLCFG1
CAM + 0194h	Sensor Test Module Confi	iguration Register 2	CAM_MDLCFG2
CAM + 01A0h	Camera to CRZ Control R	Register	CAMCRZ_CTRL
CAM + 01A4h	Camera to CRZ Status Re	gister	CAMCRZ_STA
CAM + 01D4h	TG Status Register		TG_STATUS
CAM + 01D8h	Cam Reset Register		CAM_RESET

Table 63 Camera Interface Register Map

MediaTek Confidential

© 2011 MediaTek Inc.

Page 380 of 508

5.2.1.1 **TG Register Definitions**

TG Phase Counter Register CAM+0000h

CAM PHSCNT

5.2.1	.1	TG R	legist	er De	efinitio	ons				1 6	elea	358	a f	10	
CAM	+000	0h	TG P	hase	Cour	nter F	Regis	ter	117					_PHS	CNT
Bit	31	30	29	28	27	26	25	24	23	22	21 20	19	18	17	16
Name	PCEN		CLKE N	CLKP OL	K	CLK	CNT			CL	(RS		CLI	KFL	
Туре	R/W		R/W	R/W		R/	W			R/	W		R	/W	
Reset	0		0	0		-	1			()			1	
Bit	15	14	13	12	11	10	9	8	7	6	5 4	3	2	1	0
Name	HVALI D_EN	CAM_ PCLK _INV		PXCL K_IN	CLKF L_PO L		TGCLK_SEL		1	PIX	CNT		DLA	тсн	
Type	R/W	R/W		R/W	R/W		R/W			R/	W		R	/W	
Reset	0	0		0	0			0		•	1			1	

PCEN TG phase counter enable control

CLKEN Enable sensor master clock (mclk) output to sensor.

CLKPOL Sensor master clock polarity control

CLKCNT Sensor master clock frequency divider control.

Sensor master clock will be TGCLK_SEL/(CLKCNT+1)

CLKRS Sensor master clock rising edge control **CLKFL** Sensor master clock falling edge control

HVALID_EN Sensor hvalid or href enable CAM_PCLK_INV Pixel clock inverse in CAM.

PXCLK_IN Pixel clock sync enable. If sensor master based clock is from 48MHz, PXCLK IN must be

enabled.

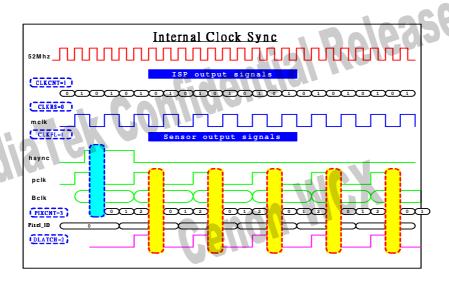
CLKFL_POL Sensor clock falling edge polarity

TGCLK_SEL Sensor master based clock selection (0: 52 Mhz, 1: 48MHz, 2: 104MHz)

PIXCNT Sensor data latch frequency control **DLATCH** Sensor data latch position control

MediaTek Col

Example waveform(CLKCNT=1,CLKRS=0,CLKFL=1,PIXCNT=3,DLATCH=2)


MediaTek Confidential

© 2011 MediaTek Inc.

ion MCX

Page 381 of 508

CAM+0004h **Sensor Size Configuration Register**

CAM_CAMWIN

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name						PIXELS											
Type						R/W											
Reset						1fffh											
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name										LIN	ES						
Type						R/W											
Reset						fffh											

PIXEL Total input pixel number LINE Total input line number

TG Grab Range Start/End Pixel Configuration

Register Bit 29 28 20 31 30 27 26 22 21 19 18 16 23 17 Name START Type R/W Reset Bit 14 13 12 10 6 0 **END** Name R/W Type 0 Reset

START Grab start pixel number (first pixel start from 0) **END** Grab end pixel number (first pixel start from 0)

MediaTek Confidential

CAM+0008h

© 2011 MediaTek Inc.

Page 382 of 508

CAM+000Ch TG Grab Range Start/End Line Configuration Register

CAM_GRABRO

V	٨

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
Name						START											
Type						R/W											
Reset			70			0											
Bit	15	14	13	12	11	11 10 9 8 7 6 5 4 3 2 1 0											
Name		174								EI	ND						
Type					R/W												
Reset					0												

START Grab start line number (first line start from 1, line 0 is inside VSYNC). Note that this number should

be set start from 1, set 0 to this parameter will cause memory output data uncompleted.

END Grab end line number (first line start from 1)

CAM+0010h Sensor Mode Configuration Register

CAM CSMODE

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											15					-
Type									1 A							
Reset						4	4 1		171							
Bit	15	14	13	12	11_	10	9	8	7	6	5	4	3	2	1	0
Name					K				VSPO L	HSPO L	PWR ON	RST	AUTO			EN
Type									R/W	R/W	R/W	R/W	R/W			R/W
Reset		IV							0	0	0	0	0			0

VSPOL Sensor Vsync input polarity
HSPOL Sensor Hsync input polarity

AUTO Auto lock sensor input horizontal pixel numbers enable

MediaTek Confidential

© 2011 MediaTek Inc.

Page 383 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

CAM+0018h

CAM VFCON

EN	stial Release												15	3 1	0			
CAM+0018h View Finder Mode Control Register																/FC	CON	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	'	16	
Name		VD_IN T_PO L	70		6	AV_SYNC_LINENO[11:0]												
Type	R/W	R/W								R/	W							
Reset	0	0									3							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		0	
Name					SP_DELAY[2:0] SP_M TAKE ODE PIC FR_COM										ON			
Type							R/W		R/W	R/W					R/V	٧		
Reset							0	111	0	0					0			

AV SYNC SEL Av_sync start point selection

> 0 Start from AV_SYNC_LINENO

Start from vsync

VD_INT_POL Vsync interrupt polarity

> 0 Vsync rising edge

Vsync Falling edge

AV_SYNC_LINENO Av_sync desired line counts

SP_DELAY[2:0] Still Picture Mode Frame Delay. When SP_DELAY is nonzero, TAKE_PIC will start to trigger

after SP_DELAY Vsync singal.

SP_MODE Still Picture Mode

> 0 Preview mode, ISP will process every frame sensor send

Capture mode, ISP will only process first frame sensor send after TAKE_PIC is se 1

TAKE_PIC Take Picture Request

FR_CON Frame Sampling Rate Control

> 000 Every frame is sampled

001 One frame is sampled every 2 frames 010 One frame is sampled every 3 frames 011 One frame is sampled every 4 frames 100 One frame is sampled every 5 frames 101 One frame is sampled every 6 frames

One frame is sampled every 7 frames 111 One frame is sampled every 8 frames

MediaTek Confidential

© 2011 MediaTek Inc.

Page 384 of 508

MediaTek Confidential Release for

Camera Module Interrupt Enable Registe CAM+001Ch

CAM INTEN

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name	VSYN C_INT _EN						95	110								INT_ WCL R_EN
Type	R/W															R/W
Reset	0															0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name								AV_S YNC_I NT	FLAS H_INT			ISPD ONE	IDLE		REZO VRUN	EXPD O
Туре								R/W	R/W			R/W	R/W		R/W	R/W
Reset								0	0			0	0		0	0

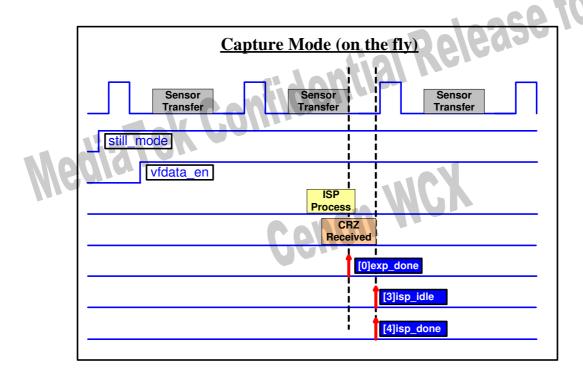
VSYNC_INT_EN Vsync interrupt and Flash interrupt switch

> 0 Flash interrupt Vsync interrupt

INT_WCLR_EN interrupt write clear enable **PCA INT** PCA interrupt enable **FLK INT EN** Flicker interrupt enable **AV SYNC INT** AV sync interrupt enable

Release for Flash interrupt enable, note that **VSYNC_INT_EN** switch flash and vsync interrupt FLASH_INT

AEDONE AE done interrupt enable **ISPDONE** ISP done interrupt enable

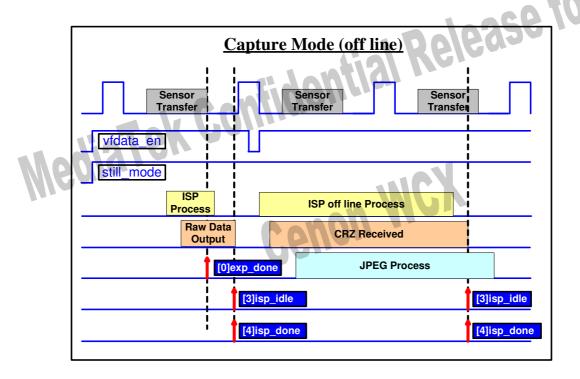

IDLE Returning idle state interrupt enable REZOVRUN CRZ overrun interrupt enable **EXPDO** Exposure done interrupt enable

Interrupt Condition Cha

MediaTek Confidential

© 2011 MediaTek Inc.

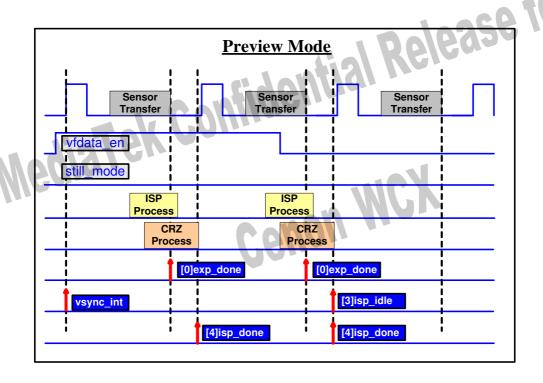
Page 385 of 508



MediaTek Confidential

© 2011 MediaTek Inc.

Page 386 of 508



MediaTek Confidential

© 2011 MediaTek Inc.

Page 387 of 508

CAM+0020h Camera Module Interrupt Status Register

CAM_INTSTA

Bit	31	30	29	28	27	26	25	24	23	22	21_	20	19	18	17	16
Name										4						
Type											1.	17	Ya			
Reset											15					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					20		0	AV_S YNC_I NT	FLAS H_INT			ISPD ONE	IDLE		REZO VRUN	EXPD O
Type		1		V	D	111		R	R			R	R		R	R
Reset				1/4				0	0			0	0		0	0

This register show the status of corresponding bit of CAM_INTEN. Note that default interrupt status is read clear. If CAM_INTEN[16] is set 1, then interrupt status is write clear.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 388 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

AV_SYNC_INT AV sync interrupt status, occurred when desired line count equal AV_SYNC_LINENO in

CAM VFCON(CAM+0018h)

FLASH_INTTG interrupt status, occurred when flash light pulse is done

ISPDONE
ISP done interrupt status, occurred when ISP finish full frame process

Returning idle state interrupt status, occurred when ISP is in IDLE state

REZOVRUN
Resizer over run interrupt status, occurred when ISP to CRZ buffer is overrun

EXPDO Exposure done interrupt status, occurred when sensor send full frame

CAM+0024h Camera Module Path Config Register

CAM_PATH

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name									3							
Type																
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			SWAP _Y	SWAP _CBC R		INT	YPE_S	EL								
Type			R/W	R/W			R/W									
Reset	,		0	0			0									

SWAP_Y YCbCr in Swap Y, note that INTYPE_SEL should be set to 001 or 101

SWAP_CBCR YCbCr in Swap Cb Cr, note that **INTYPE_SEL** should be set to 001 or 101

INTYPE_SEL Input type selection

000 Reserved

001 YUV422 Format
 101 YCbCr422 Format
 010 RGB565 Format

Others Reserved

CAM+0190h Sensor Test Model Configuration Register 1

CAM MDI CFG

Bit	31	30	29	28	27	26	25	24	\23	22	21 20	19	18	17	16
Name				VS	/NC	1	AV		MI		IDLE_PIXEL	_PER_	LINE		
Type				R/	W	10	101	41			R/	W			
Reset)						()			
Bit	15	14	13	12	11	10	9	8	7	6	5 4	3	2	1	0
Name	LINEC FULL HG_E_RAN N GE						ON	RST	STILL	PATT ERN	PIXEL_SEL		CLK	_DIV	
Type	14	A	R/W	R/W			R/W	R/W	R/W	R/W	R/W	R/W			
Reset			0	0			0	0	0	0	0 0				

VSYNC

VSYNC high duration in line unit(IDLE_PIXEL_PER_LINE + PIXEL)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 389 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

IDLE_PIXEL_PER_LINE HSYNC low duration in pixel unit LINECHG EN Pattern 0 2 lines change mode enable

ease fo **FULL RANGE** Sensor Model Full Range Enable. When full range is enable, pattern data value will

increase

progressively every line output.

ON Enable Sensor Model. **RST** Reset Sensor Model

Still picture Mode. Set 1 will generate fix pattern.

PATTERN Sensor Model Test Pattern Selection **PIXEL SEL** Sensor Model output pixel selection

> All pixels 01 01 pixel **10** 10 pixel 11 00 and 11 pixels

CLK DIV Pixel_Clock/System_Clock Ratio

CAM +0194h Sensor Test Model Configuration Register 2

CAM_MDLCFG2

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name											LINE			- T		
Type											R/W		74			
Reset										_	0	VAV		9		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							_		TL		PIXEL					
Type								21/1	III		R/W					
Reset						- 7	$T_{\bullet}V$		IJI		0					

LINE Sensor Model Line Number

PIXEL Sensor Model Pixel Number (HSYNC high duration in pixel unit)

Camera to CRZ Control Register

CAMCRZ CTRL

22 21 20 19 18 17 16

MediaTek Confidential

© 2011 MediaTek Inc.

Page 390 of 508

													14		<u> </u>	
Name				CAMC RZ_IN IT_EN		CRZ_INI	T_PE	RIOD	Sir			REZ_ OVRU N_FLI MIT_E N	REZ_	OVRUN	I_FLIM	IT_NO
Туре				R/W		R/V	/					R/W		R/	W	
Reset				0		10						0		()	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				774												
Type		IV														
Reset	1-71															

CAMCRZ INIT EN Camera to CRZ frame initialization scheme enable. In frame initialization,

camera will block signal to CRZ and assert initial signal to CRZ when pixel

dropped.

CAMCRZ INIT PERIOD REZ_OVRUN_FLIMIT_EN Camera to CRZ initialization signal active period

Camera to CRZ interface overrun frame count limit enable. When enabled, if

REZ_OVRUN_FCOUNT (CAM+01A4[19:16]) equal

REZ_OVRUN_FLIMIT_NO,REZOVRUN (CAM+0020[1]) will be asserted.

REZ OVRUN FLIMIT NO Camera to CRZ interface overrun frame count limit number.

CAM +01A4h Camera to CRZ Status Register

CAMCRZ STA

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18 17	16	
Name				CA	MCRZ_	FIFOC	NT						REZ	OVRUN_FCC	TNUC	
Type					F	3								R		
Reset																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1	0	
Name																
Type						1-460 14										
Reset																

CAMCRZ_FIFOCNT

Camera to CRZ FIFO Count. There are 48 pixels buffer in Camera.

REZ OVRUN FCOUNT

Camera to Resizer interface over run frame count. This frame count is for capture mode. REZ_OVRUN_FCOUNT will be reset every time TAKE_PIC (CAM _ 0018 [6]) is set to 0, will be add 1 when REZOVRUN occurred in a frame.

CAM+01D4h TG Status Register

TG_STATUS

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name		CAM_ BUSY	CAPT URE_ BUSY	SYN_ VF_D ATA_ EN				n ()	LIN	E_COU	NT[11	:0]				

MediaTek Confidential

© 2011 MediaTek Inc.

Page 391 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛІТЕК

Type		R	R	R	R
Reset					
Bit	15	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0
Name					PIXEL_COUNT[12:0]
Type					R
Reset					

CAM busy flag CAM_BUSY

CAPTURE_BUSY Capture busy flag

non WCX **SYN_VF_DATA_EN** View finder double buffer register status

LINE COUNT Input frame line counter

Input frame pixel counter PIXEL_COUNT

CAM +01D8h CAM RESET Register

CAM RESET

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Name					CA	M_CS[5:0]									SW_ RES ET
Type						R										RW
Reset						1										0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			CAM_	FRAME	E_COU	NT[7:0]									40	HAR D_R ESE T
Type					R											RW
Reset					0											0
CAM_	CS 1 2 4 8	car pre pre	AM statem_idle view_icview_projective points AM statem idle	dle process vait	C(id	en	il3	R	6	63				

16 capture_process

capture_done

Camera software reset. When software reset is enable, camera will automatically stop process including memory access and will assert hardware reset at suitable time. After reset is done, SW_RESET will be de-assert.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 392 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

MEDIATEK

CAM FRAME COUNT HARD RESET

CAM process frame count number

ISP reset. Note that reset should be assert longer than 100us to make sure GMC command

and be assert lon Cenon MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 393 of 508

Analog Front-end & Analog Blocks 6

General Description 6.1

To communicate with analog blocks, a common control interface for all analog blocks is implemented. In addition, there are some dedicated interfaces for data transfer. The common control interface translates APB bus write and read cycle for specific addresses related to analog front-end control. During writing or reading of any of these control registers, there is a latency associated with transferring of data to or from the analog front-end. Dedicated data interface of each analog block is implemented in the corresponding digital block. The Analog Blocks includes the following analog function for complete GSM/GPRS base-band signal processing:

- Base-band RX: For I/Q channels base-band A/D conversion
- 2. RF Control: One DAC for automatic power control (APC) is included. Its output is provided to external RF power amplifier.
- Auxiliary ADC: Providing an ADC for battery and other auxiliary analog function monitoring
- Audio mixed-signal blocks: It provides complete analog voice signal processing including microphone amplification, A/D conversion, D/A conversion, earphone driver, and etc. Besides, dedicated stereo D/A conversion and amplification for audio signals are included).
- *Clock Generation*: A clock squarer for shaping system clock, and three PLLs that provide clock signals to DSP, MCU, USB, and SFC units are included
- alease for XOSC32: It is a 32-KHz crystal oscillator circuit for RTC application Analog Block Descriptions

6.1.1 **BBRX**

6.1.1.1 **Block Descriptions**

The receiver (RX) performs base-band I/Q channels downlink analog-to-digital conversion:

- 3. Analog input multiplexer: For each channel, a 4-input multiplexer that supports offset calibration is included.
- 4. A/D converter: Two 14-bit sigma-delta ADCs perform I/Q digitization for further digital signal processing.

6.1.1.2 Functional Specifications

The functional specifications of the base-band downlink receiver are listed in the following table.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 394 of 508

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution	40	14		Bit
FC	Clock Rate	MIGI	26		MHz
FS	Output Sampling Rate		13/12		MSPS
Me	Input Swing When GAIN='00' When GAIN='01' When GAIN='10' When GAIN='11'	111	0.8*AVDD 0.4*AVDD 0.57*AVDD 0.33*AVDD		Vpk,diff
OE	Offset Error	-1A W	+/- 10		mV
FSE	Full Swing Error	011	+/- 30		mV
	I/Q Gain Mismatch			0.5	dB
SINAD	Signal to Noise and Distortion Ratio - 45kHz sine wave in [0:90] kHz bandwidth - 145kHz sine wave in [10:190] kHz bandwidth	65 65			dB dB
ICN	Idle channel noise - [0:90] kHz bandwidth - [10:190] kHz bandwidth			-74 -70	dB dB
DR	Dynamic Range - [0:90] kHz bandwidth - [10:190] kHz bandwidth	74 70	-109	se fo	dB dB
RIN	Input Resistance	75	RPIG	70	kΩ
DVDD	Digital Power Supply	1.08	1.2	1.32	V
AVDD	Analog Power Supply	2.52	2.8	3.08	V
T	Operating Temperature	-20		85	$^{\circ}\!$
Me	Current Consumption Power-up Power-Down		5 5		mA μA

Table 64 Base-band Downlink Specifications

MediaTek Confidential

© 2011 MediaTek Inc.

Page 395 of 508

6.1.2 **APC-DAC**

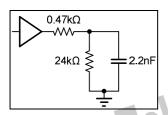
6.1.2.1 **Block Descriptions**

itomatic The APC-DAC is a 10-bits DAC with output buffer aimed for automatic power control. Here blow are its functional specification tables.

Function Specifications

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution	MUST	10		Bit
FS	Sampling Rate	11-		1.0833	MSPS
	99% Settling Time (Full Swing on Maximal Capacitance)			5	μS
	99% Settling Time (100 Code)			1/1.0833	μS
	Output Swing	0		AVDD	V
	Power-down Glitch* (After Serial Resistor)			10	mV
	Drive Capacitance		200		pF
	Drive Resistance		10		kΩ
DNL	Differential Nonlinearity		+/- 0.5		LSB
INL	Integral Nonlinearity		+/- 1.0		LSB
OE	Offset Error		+/- 30		mV
DVDD	Digital Power Supply	1.08	1.2	1.32	V
AVDD	Analog Power Supply	2.52	2.8	3.08	V
Т	Operating Temperature	-20	00	85	$^{\circ}$
	Current Consumption	100	649	9	
	Power-up	I KE	200		μΑ
	Power-Down		1		μΑ

Table 65 APC-DAC Specifications


* APCDAC power-down glitch reference load configuration:

MediaTek Confidential

non WCX © 2011 MediaTek Inc.

Page 396 of 508

Confidential Release for **Auxiliary ADC** 6.1.3

Block Descriptions

The auxiliary ADC includes the following functional blocks:

- 1. Analog Multiplexer: The analog multiplexer selects signal from one of the several auxiliary input pins. Real word message to be monitored, like temperature, should be transferred to the voltage domain.
- 10 bits A/D Converter: The ADC converts the multiplexed input signal to 10-bit digital data.

6.1.3.2 **Function Specifications**

The functional specifications of the auxiliary ADC are listed in the following table.

Symbol	Parameter	Min	Typical	Max	Unit
N	Resolution		10		Bit
FC	Clock Rate		1.0833		MHz
*FS	Sampling Rate @ N-Bit		1.0833/(N +1)	co 1	MSPS
	Input Range	0	2/5/0	AVDD	V
CIN	Input Capacitance Unselected Channel Selected Channel	131 1	Gio.	50 1.2	fF pF
RIN	Input Resistance Unselected Channel Selected Channel	10 1.8			ΜΩ ΜΩ
ANO	Clock Latency		11		1/FC
DNL	Differential Nonlinearity		+1.0/-1.0		LSB

MediaTek Confidential

© 2011 MediaTek Inc.

Page 397 of 508

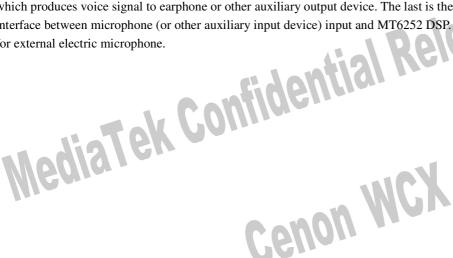

INL	Integral Nonlinearity	10	+1.0/-1.0	20.	LSB
OE	Offset Error		+/- 10		mV
**FSE	Full Swing Error	101	+/- 10		mV
SINAD	Signal to Noise and Distortion Ratio (10-KHz Full Swing Input & 1.0833-MHz Clock Rate)		50		dB
DVDD	Digital Power Supply	1.08	1.2	1.32	V
AVDD	Analog Power Supply	2.52	2.8	3.08	V
T	Operating Temperature	-20	N	85	$^{\circ}\!\mathbb{C}$
	Current Consumption Power-up Power-Down		150 1		μΑ μΑ

Table 66 The Functional specification of Auxiliary ADC

6.1.4 Audio mixed-signal blocks

6.1.4.1 Block Descriptions

Audio mixed-signal blocks (AMB) integrate complete voice uplink/downlink and audio playback functions. As shown in the following figure, it includes mainly three parts. The first consists of stereo audio DACs and headset amplifiers for audio playback and external radio playback. The second is the voice downlink path, including voice-band amplifiers, which produces voice signal to earphone or other auxiliary output device. The last is the voice uplink path, which is the interface between microphone (or other auxiliary input device) input and MT6252 DSP. A set of bias voltage is provided for external electric microphone.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 398 of 508

^{*} FS: Sampling rate can reach 1.0833/(N+1) MSPS with special software configuration

^{**} FSE: Full swing error compared with real time analog power supply of AUXADC (AVDD)

AU_VIN0_N

AU_VIN1_N

AU_VIN1_P

Stereo or Mono
Audio Amp-R

Audio Amp-R

Audio Amp-L

Audio Amp-L

Audio Amp-L

Audio Amp-L

Au_FMINR

FM/AM radio chip

Au_OUTO_P

Au_OUTO_P

Au_VINO_P

Figure 56 Block diagram of audio mixed-signal blocks.

Specifications

6.1.4.2 Functional Specifications

The following table gives functional specifications of voice-band uplink/downlink blocks.

Symbol	Parameter	Min	Typical	Max	Unit
FS	Sampling Rate		6500		KHz
CREF	Decoupling Cap Between AU_VCM and AGND28_AFE		111		uF
DVDD	Digital Power Supply	1.08	1.2	1.32	V

MediaTek Confidential

Voice Signal

© 2011 MediaTek Inc.

Page 399 of 508

AVDD	Analog Power Supply	2.52	2.8	3.08	V
T	Operating Temperature	-20	Kele	85	$^{\circ}\!\mathbb{C}$
IDC	Current Consumption	Har	5		mA
VMIC	Microphone Biasing Voltage		1.9	2.2	V
IMIC	Current Draw From Microphone Bias Pins			2	mA
Uplink Pat	$\mathbf{h}^{\mathbf{l}}$				
IDC	Current Consumption		1.5		mA
SINAD	Signal to Noise and Distortion Ratio Input Level: -40 dbm0 Input Level: 0 dbm0	29	69		dB dB
RIN	Input Impedance (Differential)	13	20	27	ΚΩ
ICN	Idle Channel Noise			-67	dBm0
XT	Crosstalk Level			-66	dBm0
Downlink	Path ²				
SINAD	Signal to Noise and Distortion Ratio Input Level: -40 dBm0 Input Level: 0 dBm0	29	69		dB dB
RLOAD	Output Resistor Load (Differential)	25.6			Ω
CLOAD	Output Capacitor Load			1000	pF
ICN	Idle Channel Noise of Transmit Path			-67	dBm0
XT	Crosstalk Level on Transmit Path			-66	dBm0

Table 67 Functional specifications of analog voice blocks

Functional specifications of the audio blocks are described in the following.

Symbol	Parameter	N N	Ain (Typical	Max	Unit
FCK	Clock Frequency	WHOCH		6.5		MHz

¹ For uplink-path, not all gain setting of VUPG meets the specification listed on table, especially for the several lowest gains. The minimum gain that meets the specification is to be determined.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 400 of 508

 $^{^2}$ For downlink-path, not all gain setting of VDPG meets the specification listed on table, especially for the several lowest gains. The minimum gain that meets the specification is to be determined.

Fs	Sampling Rate	32	44.1	48	KHz
AVDD	Power Supply	2.52	2.8	3.08	V
Т	Operating Temperature	-20		85	$^{\circ}$
IDC	Current Consumption		5		mA
PSNR	Peak Signal to Noise Ratio		80		dB
DR	Dynamic Range	- 11	80		dB
VOUT	Output Swing for 0dBFS Input Level	m W	0.7		Vrms
THD	Total Harmonic Distortion 22mW at 32 Ω Load			-60	dB
RLOAD	Output Resistor Load (Single-Ended)	32			Ω
CLOAD	Output Capacitor Load			200	pF
XT	L-R Channel Cross Talk Suppression	70			dB

Table 68 Functional specifications of the analog audio blocks

6.1.5 Clock Squarer

6.1.5.1 Block Descriptions

In MT6252MT6252, RF is integrated and 26MHz is provided internally. Therefore, there is no dedicated input pin for 26MHz clock. For DCXO in RF, the output clock waveform is sinusoidal with small amplitude (about several hundred mV). To make MT6252MT6252 digital circuits function well, clock squarer is designed to convert such a small signal to a rail-to-rail clock signal with excellent duty-cycle.

6.1.5.2 Function Specifications

The functional specification of clock squarer is shown in Table 69.

Symbol	Parameter	Min	Typical	Max	Unit
Fin	Input Clock Frequency		26		MHz
Fout	Output Clock Frequency		26		MHz
Iin	Input Signal Amplitude	W	75		uA

MediaTek Confidential

© 2011 MediaTek Inc.

Page 401 of 508

85

150

 $^{\circ}$ C

uA

DcycIN	Input Signal Duty Cycle		50	1920	%
DcycOUT	Output Signal Duty Cycle	DcycIN-5	KGI	DcycIN+5	%
TR	Rise Time on Pin CLKSQOUT	TIGI		5	ns/pF
TF	Fall Time on Pin CLKSQOUT	100		5	ns/pF
DVDD	Digital Power Supply	1.08	1.2	1.32	V
AVDD	Analog Power Supply	2.52	2.8	3.08	V

Table 69 The Functional Specification of Clock Squarer

-20

6.1.6 Phase Locked Loop

6.1.6.1 Block Descriptions

MT6252MT6252/E includes three PLLs: MCU PLL, SFC PLL, USB PLL. MCU PLL and SFC PLL are to provide 104MHz and 78MHz output clock while accepts 26MHz signal. USB PLL is designed to also accept 26MHz input clock signal and provides 48MHz, 78MHz, and 104MHz output clocks.

6.1.6.2 Function Specifications

The functional specification of MCU PLL is shown in the following table.

Operating Temperature

Current Consumption

Symbol	Parameter	Min	Typical	Max	Unit
Fin	Input Clock Frequency		26		MHz
Fout	Output Clock Frequency	98		104	MHz
	Min. output frequency step		0.5	1920	MHz
	Output Clock Cycle-to-Cycle Jitter (p-p)	40	Kei	200	ps
	Output Clock Duty Cycle	45	50	55	%
	Settling Time for power on For band switching		160 80	200 100	us
DVDD	Digital Power Supply	1.08	1.2	1.32	V
AVDD	Analog Power Supply	2.52	2.8	3.08	V
T	Operating Temperature	-20	GA	85	$^{\circ}$ C

MediaTek Confidential

© 2011 MediaTek Inc.

Page 402 of 508

	~		•				
(`റ	nt	11	ler	ıtı	al	Α
•	~,			101	ıuı	aı	

Current Consumption For AVDD For DVDD	ia	0.8	900	mA
Power Down Current Consumption For AVDD For DVDD	Flor		1	uA

Table 70 The Functional Specification of DSP/MCU PLL

The functional specification of SFC PLL is shown in the following table.

Symbol	Parameter	Min	Typical	Max	Unit
Fin	Input Clock Frequency	71.	26		MHz
Fout	Output Clock Frequency	72		78	MHz
	Min. output frequency step		0.5		MHz
	Output Clock Cycle-to-Cycle Jitter (p-p)			200	ps
	Output Clock Duty Cycle	45	50	55	%
	Settling Time for power on For band switching		160 80	200 100	us
DVDD	Digital Power Supply	1.08	1.2	1.32	V
AVDD	Analog Power Supply	2.52	2.8	3.08	V
T	Operating Temperature	-20		85	$^{\circ}\!\mathbb{C}$
	Current Consumption For AVDD For DVDD		0.8	256	mA
	Power Down Current Consumption For AVDD For DVDD	tial	Ken	1 2.5	uA

The functional specification of USB PLL is shown below.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 403 of 508

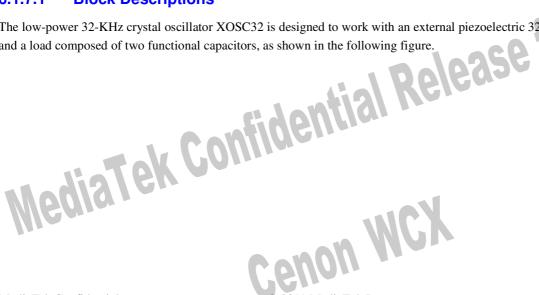

Symbol	Parameter	Min	Typical	Max	Unit
Fin	Input Clock Frequency	Lin	26		MHz
Fout	Output Clock Frequency	Har	48/78/104		MHz
	Output Clock Cycle-to-Cycle Jitter (p-p)			200	ps
	Output Clock Duty Cycle(78/104MHz)	45	50	55	%
	Settling Time		10	20	us
DVDD	Digital Power Supply	1.08	1.2	1.32	V
AVDD	Analog Power Supply	2.52	2.8	3.08	V
T	Operating Temperature	-20		85	$^{\circ}\!\mathbb{C}$
	Current Consumption For AVDD For DVDD	9**	1.2 0.25		mA
	Power Down Current Consumption For AVDD For DVDD			1 2.5	uA

Table 9 The Functional Specification of USB PLL

6.1.7 32-KHz Crystal Oscillator

6.1.7.1 **Block Descriptions**

The low-power 32-KHz crystal oscillator XOSC32 is designed to work with an external piezoelectric 32.768KHz crystal and a load composed of two functional capacitors, as shown in the following figure.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 404 of 508

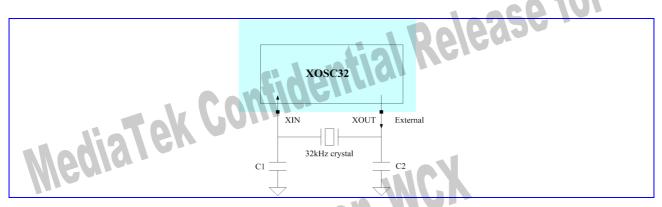


Figure 57 Block diagram of XOSC32

6.1.7.2 Functional specifications

The functional specification of XOSC32 is shown in the following table.

Symbol	Parameter	Min	Typical	Max	Unit
AVDDRTC	Analog power supply	1	2.8	3.0	V
Tosc	Start-up time			1	sec
Deye	Duty cycle	20	50	80	%
TR	Rise time on XOSCOUT		TBD		ns/pF
TF	Fall time on XOSCOUT		TBD		ns/pF
	Current consumption			5	μΑ
	Leakage current		1		μΑ
T	Operating temperature	-20		85	$^{\circ}$

Table 71 Functional Specification of XOSC32

Here below are a few recommendations for the crystal parameters for use with XOSC32.

Symbol	Parameter	Min	Typical	Max	Unit
F	Frequency range		32768		Hz
GL	Drive level			5	uW
$\Delta f/f$	Frequency tolerance		+/- 20		ppm
ESR	Series resistance		5	50	ΚΩ

MediaTek Confidential

© 2011 MediaTek Inc.

Page 405 of 508

C0	Static capacitance		100	1.6	pF
CL ³	Load capacitance	6		12.5	pF

Table 72 Recommended Parameters of the 32KHz crystal

6.2 ABB Register Definitions

ADDRESS	TITLE	DESCRIPTION
8301_000C	WR_PATH	Switch configuration path control register
8301_0100	ACIF_VOICE_CON0	VOICE control register 0
8301_0104	ACIF_VOICE_CON1	VOICE control register 1
8301_0108	ACIF_VOICE_CON2	VOICE control register 2
8301_010C	ACIF_VOICE_CON3	VOICE control register 3
8301_010C	ACIF_VOICE_CON3	VOICE control register 3
8301_0110	ACIF_VOICE_CON4	VOICE control register 4
8301_0200	ACIF_AUDIO_CON0	AUDIO control register 0
8301_0204	ACIF_AUDIO_CON1	AUDIO control register 1
8301_0208	ACIF_AUDIO_CON2	AUDIO control register 2
8301_0300	ACIF_BBRX_CON	BBRX control register
8301_0600	ACIF_APC_CON0	APC control register 0
8301_0604	ACIF_APC_CON1	APC control register 1
8301_0700	ACIF_AUX_CON0	AUX control register 0
8301_0704	ACIF_AUX_CON1	AUX control register 1

³ CL is the parallel combination of C1 and C2 in the block diagram. It should be adjusted according to PCB design to get a preferred frequency accuracy.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 406 of 508

6.2.1 Register setting path

6.2.1 8301000		egis wr_p		ettin	ıg pa	ıth			10	IR	el	63	58	fo	WR_	PAT H
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	CCI_ VSD M_P WD B	CCI_ ASD M_P WD	CCI_ ESD M_P WD B	CCI_ SIM LS_ PW DB	CCI_ APC _PW DB	CCI_ AUX _PW DB	V	ABB_ PRS T_M ODE	PMU _PRS T_M ODE	SIM_ PRS T_M ODE	CCI_ VTX 2AU_ SEL	CCI_ ACD _MO DE	PMI C_W R_P ATH	MO DEM _WR _PA TH	VBI _W R_ PA TH	ABI _W R_ PA TH
Type Reset	RW 1	RW 1	RW 1	RW 1	RW 1	RW		RW	RW 1	RW 0	RW 0	RW 0	RW 0	RW 0	R W	RW 0

WR PATH { PMIC WR PATH, MODEM WR PATH, VBI WR PATH, ABI WR PATH } The bit is to

facilitate ACD members for verifying purpose; the hardware supports write path switching, without being disturbed by existing MCU load. However, when with manually control, all registers addresses are offset by 0x1000. For example, MCU configures ACIF_AUDIO_CON0 through the address 0x8301_0200, while the manually control path take effect when configuring 0x8301 1200. Notice that before finishing manual control, the register must be reset to be 0. The modem part includes BBRX, BBTX, APC and AUX.

- switch the register setting to MCU side.
- switch the register setting to manually control by TRACE32 through JTAG.

ACD MODE The register bit decides the input/output path of the mixed-mode module. For ABI and VBI, it can be configured to feed the pattern from AFE or from GPIO (shared with A_FUNC_MODE). For APC and AUX, the input selection interface is divided at either MIXED_DIG or GPIO (also shared with A_FUNC_MODE). As for the BBRX, the output pattern can be bypass to GPIO with this register bit being true. The bit is for convenient debug-usage in normal mode, such that the data pattern can be observed or be feed-in by external device, while control register setting still comes from the chip internally(By use of JTAG). It should be notice that this special debug mode should be accompanied by proper setting of GPIO, which decides the PAD OE when in normal function.

- data pattern comes from chip internally, and the output data cannot be bypassed to GPIO.
- analog debug mode in normal function.

VTX2AU SEL The register bit select the input source to AUDIO DAC.

- 0 normal path
- loop-back path (select VOICE TX-ADC data)

ABIST_MODE The register bit control the GPIO as mixedsys monitor pins, shared with ABIST_MODE.

- 0 disbale
- enable

MediaTek Confidential

© 2011 MediaTek Inc.

Page 407 of 508

AUX_PWDB The register bit control the power-down of AUX at A_FUNC_MODE or ACD_MODE=1

0 power-down

power-up

APC_PWDB The register bit control the power-down of APC at A_FUNC_MODE or ACD_MODE=1

0 power-down

1 power-up

ESDM_PWDB The register bit control the power-down of BBRX at A_FUNC_MODE or ACD_MODE=1

0 power-down

1 power-up

ASDM_PWDB The register bit control the power-down of ASDM at A_FUNC_MODE or ACD_MODE=1

power-down

1 power-up

VSDM_PWDB The register bit control the power-down of VSDM at A_FUNC_MODE or ACD_MODE=1

0 power-down

1 power-up

NAME	A_FUNC_TEST	NAME	A_FUNC_TEST	NAME	A_FUNC_TEST
PWM	A_FUNC_ABB_RESETB	EA14	CCI_PMU_SDO	EA4	CCI_SIM_SDO
KCOL4	A_FUNC_ABB_DIN[9]	LPTE	CCI_PMU_SCLK	EA3	CCI_SIM_SCLK
KCOL3	A_FUNC_ABB_DIN[8]	SCK(L)/KROW6(E)	CCI_PMU_SFSI	EA2	CCI_SIM_SFSI
KCOL2	A_FUNC_ABB_DIN[7]	EINT1	CCI_PMU_SDI	EA1	CCI_SIM_SDI
KCOL1	A_FUNC_ABB_DIN[6]	ED4	A_FUNC_PMU_RESETB	EA0	A_FUNC_SIM_RESETB
KCOL0	A_FUNC_ABB_DIN[5]	EA15	A_FUNC_PMU_CK	ED3(E)/SWP(L)	A_FUNC_SIM_DOUT[1]
KROW4	A_FUNC_ABB_DIN[4]	EA13	A_FUNC_PMU_DIN	ED2(E)/SHOLD(L)	A_FUNC_SIM_DOUT[0]
KROW3	A_FUNC_ABB_DIN[3]	EA12	A_FUNC_PMU_DOUT[7]	BPI_BUS4	A_FUNC_SIM_DIN[6]
KROW2	A_FUNC_ABB_DIN[2]	EA11	A_FUNC_PMU_DOUT[6]	BPI_BUS3	A_FUNC_SIM_DIN[5]
KROW1	A_FUNC_ABB_DIN[1]	EA10	A_FUNC_PMU_DOUT[5]	BPI_BUS2	A_FUNC_SIM_DIN[4]
KROW0	A_FUNC_ABB_DIN[0]	EA9	A_FUNC_PMU_DOUT[4]	BPI_BUS1	A_FUNC_SIM_DIN[3]
DAICLK	A_FUNC_ABB_CK	EA8	A_FUNC_PMU_DOUT[3]	BPI_BUS0	A_FUNC_SIM_DIN[2]
DAIPCMOUT	CCI_ABB_SDO	EA7	A_FUNC_PMU_DOUT[2]	ED7	A_FUNC_SIM_DIN[1]
DAIPCMIN	CCI_ABB_SCLK	EA6	A_FUNC_PMU_DOUT[1]	ED6	A_FUNC_SIM_DIN[0]
DAIRST	CCI_ABB_SDI	EA5	A_FUNC_PMU_DOUT[0]	LRSTB	EXT_BBWAKEUP

MediaTek Confidential

© 2011 MediaTek Inc.

Page 408 of 508

GSM/GPRS Baseband Processor Data Sheet

				- ACU I	9.
DAISYNC	CCI_ABB_SFSI		100	5090	
MCINS	A_FUNC_ABB_DOUT[3]		ALC: NO		
MCCK	A_FUNC_ABB_DOUT[2]	Cido	Uffa.		
MCDA0	A_FUNC_ABB_DOUT[1]	William			
MCCM0	A_FUNC_ABB_DOUT[0]	911-			
KCOL6	A_FUNC_ABB_DOUT[7]				
KCOL5	A_FUNC_ABB_DOUT[6]		1110		
KROW5	A_FUNC_ABB_DOUT[5]		WOL		
SRCLKENAI	A_FUNC_ABB_DOUT[4]	601	1011		

6.2.2 **BBRX**

MCU APB bus registers for BBRX ADC are listed as followings.

8301030	0 0 h	ACI	F_BB	RX_CON										ACIF.	BBRX_	CON
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				RG_EDGE RFRX_DIT HERDIS	_	RG_EDGER FRX_QSEL		DGER SEL		_	DGER GAIN		RG_	EDGER	RFRX_C	ALI
Туре				RW	RW		R	W		R	W			RV	٧	
				· · · · · · · · · · · · · · · · · · ·			1						1		- 0	_

Set this register for BBRX analog circuit configuration controls.

RG_EDGERFRX_CALI[3:0]

The register field is for control of biasing current in BBRX mixed-signal module. Biasing current in BBRX mixed-signal module has impact on the performance of A/D conversion. The larger the value of the register field, the larger the biasing current in BBRX mixed-signal module, and the larger the SNR.

0100 8/4x 0011 7/4x 0010 6/4x 0001 5/4x x000 4/4x 1001 4/5x 1010 4/6x

MediaTek Confidential

© 2011 MediaTek Inc.

Page 409 of 508

1011 4/7x1100 4/8x

RG EDGERFRX GAIN[1:0]

ial Release for The register bits are for configuration of gain control of analog inputs in BBRX mixed-signal module.

- **00** Input range is 0.80X AVDD for analog inputs in GSM RX mixed-signal module.
- **01** Input range is 0.40X AVDD for analog inputs in GSM RX mixed-signal module.
- 10 Input range is 0.57X AVDD for analog inputs in GSM RX mixed-signal module.
- 11 Input range is 0.33X AVDD for analog inputs in GSM RX mixed-signal module.

RG EDGERFRX ISEL[1:0]

Input signal selection for I-channel in BBRX mixed-signal module.

- 00 Select QS_BDLAIP / QS_BDLAIN to ICH ADC
- 01 Select QS_BDLAIP / QS_BDLAIN to ICH ADC
- 10 Select OS BDLAOP / OS BDLAON to ICH ADC
- 11 Select VCM to ICH ADC for self-test

RG EDGERFRX QSEL[1:0]

Input signal selection for O-channel in BBRX mixed-signal module.

- 00 Select QS BDLAQP / QS BDLAQN to QCH ADC
- 01 Select QS_BDLAQP / QS_BDLAQN to QCH ADC
- 10 Select QS_BDLAIP / QS_BDLAIN to QCH ADC
- 11 Select VCM to QCH ADC for self-test

RG EDGERFRX DITHERDIS

Dither feature disable control register, which can effectively reduce the THD (total harmonic distortion) of the BBRX ADC. Release for

- 0 enable (default value)
- disable

6.2.3 **APC DAC**

MCU APB bus registers for APC DAC are listed as followings.

830106	0 0 h	ACIF_	APC_C	ONO	10		(A)								ACIF_	_APC_CON0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		10	10								1					RG_APC_ TGSEL
Туре										110						RW
Reset										11.1						0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 410 of 508

GSM/GPRS Baseband Processor Data Sheet

- **0** Trigger the signal at rising edge.
- Trigger the signal at falling edge.

														Con	fiden	uai A
	register for A C_TGSEL O Trigger Trigger	APC	C_TC gnal	3 trigg at risi	er edg ng ed	ge select.	ntrol	s.	ial	R	el	53	58	fo	7(
8301060	04h	ACI	F_AP	C_COI	N1									ACIF_	APC_C	ON1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	MIXEDSYS		5			MIXEDSYS										
Name	_APC_SET					_APC_SET				MIX	EDSYS	_APC_S	ETBUS			
140	EN					TG				/// 6						
Туре	RW					RW		<u> </u>				RW				
Reset	0					0						0				

Set this register for APC analog circuit manual controls.

MIXEDSYS_APC_SETEN manual APC set enable

MIXEDSYS_APC_SETTG manual APC set toggle

MIXEDSYS_APC_SETBUS manual APC 10bits input

6.2.4 **Auxiliary ADC**

MCU APB bus registers for AUX ADC are listed as followings.

8301070	JUN	ACIF_	AUX_CC	UNU										ACIF_	_AUX_CONU
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
Name									. 1	T) C		X	RG_TESTMO DE_PLL	RG_AUX_ CAL
Type							1		5					RW	RW
Reset														0	01

Set this register for AUX analog circuit configuration controls.

RG AUX CALI AUX ADC biasing current control

00 0.5x

2.0x

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 411 of 508

RG TESTMODE PLL pll testmode control

> 0: normal

tial Release for AUX_IN4/AUX_IN5 channels can not be selected

6.2.5 **Voice Front-end**

MCU APB bus registers for speech are listed as followings.

	3301010	JUN	ACIF.	_voic	E_COI	NU						1	ACIF_V	OICE_C	UNU		
E	3it	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RGS_ZC D_STATE (R)			(DCI_V	UPG	V	G		RG_\	/DPG		RG_VBIRX_ZC D_HYS_EN	RG_VBIRX_ ZCD_EN	RG_V X_ZCI AL	D_C
Туре	R				RV	٧				R	W		RW	RW	RW	٧
Reset	0				0						0		0	0	0	

Set this register for VOICE PGA gains analog circuit. CCI_VUPG is set for microphone input volume control. And RG_VDPG is set for output volume control.

RG ZCD STATE Indicates the ZCD current state,

0: ZCD is available for gain modification

1: ZCD is currently unavailable for gain modification

RG_VDPG Voice-band down-link PGA gain control bits.

VDPG [3:0]	Gain	VDPG [3:0]	Gain	VDPG [3:0]	Gain	VDPG [3:0]	Gain
1111	8dB	1011	0dB	0111	-8dB	0011	-16dB
1110	6dB	1010	-2dB	0110	-10dB	0010	N/A
1101	4dB	1001	-4dB	0101	-12dB	0001	N/A
1100	2dB	1000	-6dB	0100	-14dB	0000	N/A

Voice-band up-link PGA gain control bits. For VCFG[3] = 1, it is only valid for INPUT 1.VIN0/VIN1 input path

MediaTek Confidential

© 2011 MediaTek Inc.

Page 412 of 508

VUPG [5:0]	Gain	VUPG [5:0]	Gain	VUPG [5:0]	Gain	VUPG [5:0]	Gain
111111	49 dB	101111	33 dB	011111	17 dB	001111	1 dB
111110	48 dB	101110	32 dB	011110	16 dB	001110	N/A-
111101	47 dB	101101	31 dB	011101	15 dB	001101	N/A-
111100	46 dB	101100	30 dB	011100	14 dB	001100	N/A-
111011	45 dB	101011	29 dB	011011	13 dB	001011	N/A-
111010	44 dB	101010	28 dB	011010	12 dB	001010	N/A-
111001	43 dB	101001	27 dB	011001	11 dB	001001	N/A-
111000	42 dB	101000	26 dB	011000	10 dB	001000	N/A-
110111	41 dB	100111	25 dB	010111	9 dB	000111	N/A-
110110	40 dB	100110	24 dB	010110	8 dB	000110	N/A-
110101	39 dB	100101	23 dB	010101	7 dB	000101	N/A-
110100	38 dB	100100	22 dB	010100	6 dB	000100	N/A-
110011	37 dB	100011	21 dB	010011	5 dB	000011	N/A-
110010	36 dB	100010	20 dB	010010	4 dB	000010	N/A-
110001	35 dB	100001	19 dB	010001	3 dB	000001	N/A-
110000	34 dB	100000	18 dB	010000	2 dB	000000	N/A-
			FM in	put path		025	
VUPG [5:0]	Gain	VUPG [5:0]	Gain	VUPG [5:0]	Gain	VUPG [5:0]	Gain
111111	22 dB	101111	6 dB	011111	-10 dB	001111	-26 dB
111110	21 dB	101110	5 dB	011110	-11 dB	001110	N/A-
111101	20 dB	101101	4 dB	011101	-12 dB	001101	N/A-
111100	19 dB	101100	3 dB	011100	-13 dB	001100	N/A-
111011	18 dB	101011	2 dB	011011	-14 dB	001011	N/A-

MediaTek Confidential

© 2011 MediaTek Inc.

Page 413 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

						CL	
111010	17 dB	101010	1 dB	011010	-15 dB	001010	N/A-
111001	16 dB	101001	0 dB	011001	-16 dB	001001	N/A-
111000	15 dB	101000	-1 dB	011000	-17 dB	001000	N/A-
110111	14 dB	100111	-2 dB	010111	-18 dB	000111	N/A-
110110	13 dB	100110	-3 dB	010110	-19 dB	000110	N/A-
110101	12 dB	100101	-4 dB	010101	-20 dB	000101	N/A-
110100	11 dB	100100	-5 dB	010100	-21 dB	000100	N/A-
110011	10 dB	100011	-6 dB	010011	-22 dB	000011	N/A-
110010	9 dB	100010	-7 dB	010010	-23 dB	000010	N/A-
110001	8 dB	100001	-8 dB	010001	-24 dB	000001	N/A-
110000	7 dB	100000	-9 dB	010000	-25 dB	000000	N/A-

RG_VBIRX_ZCD_HYS_EN

Voice buffer zero-detection hysteresis enable

0: Disable 1: Enable

RG_VBIRX_ZCD_EN

Enable VBIRX Zero Detection Function

83010104h

	\	VO		CON
AL	JIF .	vu	UE.	CUN

		: Disal : Enab												•	1	
RG_VB	RG_VBIRX_ZCD_CALI Trim the hysterisis of ZDTC 00 : 13mV															
	00.10/11															
	01 : 26mV															
	10 : 40mV															
	1	1 : 56n	ηV				11:	AIII	7.1							
830101	04h	ACIF_	VOICE_	CON1	101		71.							ACIF_V	OICE_C	ON1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	30		RG_VI	RG_LO WGAIN RG VCFG RG GLB CALI						R	G_VCAL					
Туре			R\	RW RW RW RW												

MediaTek Confidential

© 2011 MediaTek Inc.

Page 414 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

								1 10-
Reset		0	0	0	134	$\mathcal{A}V$	0	0

Set this register for VOICE analog circuit configuration controls.

RG_VMIC_VREF Tuning the dc level of micbias

01: 2.0V 10: 2.1V

RG_LOWGAIN_EN lower PGA gain 6dB

0: normal

1: enable additional -6dB (based on VUPG gain setting)

RG_VCFG Set PGA's input selection, AC/DC coupled and GAIN/ATT mode

VCFG [3:0]	Configuration
0000	Select AU_VIN0 as input (Normal mode)
0001	Select AU_VIN1 as input (Normal mode)
001X	Select AU_FMR/L as input (Normal mode)
1001	PGA bypass mode and ADC is AC couple, Input channel is select as AU_VIN1 (Test mode)
1101	PGA bypass mode and ADC is DC couple, Input channel is select as AU_VIN1 (Test mode)

RG_GLB_CALl Set global bias current ratio

00:1X 01: 1.2X 10: 0.67X 11: 0.8X

RG_VCALI Set VBI bias current ratio

tial Release for 000: X1 (represents nominal 1.75uA current bias)

001: X4/5 010: X4/6 011: X4/7 100: X5/4

101: X6/4 110: X7/4 111: X8/4

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 415 of 508

МЕДІЛІТЕК

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

83010108h ACIF_VOICE_CON2

ACIF_VOICE_CON2

Bit	15 14 13 12 11 10				9 8 7 6					4	3	2	1	0		
Name		RG_W Bl/	_		C				RG_VBUF_FL OAT	2		RG_VADC_D VREF_CAL	RG_VAD C_DENB		RG_VAD CINMOD E	
Type RW RW RW RW RW															RW	
Reset																
RG_VB	0 0 1 1	0: 3X 1: 4X 0: 1X 1: 2X	Voice						anon			CX				
RG_VB	UF_FL	.OAT	VBI_I	DAC	BUF	Outp	out fl	oatir	ng during powe	er d	ow	n				

0: Output shorted during power down

1: Output floating during power down

RG_VADC_DVREF_CAL ADC Dither Reference Voltage Calibration

0: 2/15*AVDD 1: 3/15*AVDD

RG_VADC_DENB ADC Dither Enable

ACIF_VOICE_CON3 8301010Ch

ACIF_VOICE_CON3

	O: Englis																	
	0: Enable 1: Disable															f		
RG_VA	DCINM	ODE	AD	C inp	ut so	urce	sele	ection	า			-109	256		U			
	RG_VADCINMODE ADC input source selection 0: from LNA 1: from DAC (internal test path)																	
	1: from DAC (internal test path)																	
830 1010	4: 40H/lai																	
Bit	15	14	13	12	11													
									•	O	5	4	3	2	1	0		
Name	RG_V DEPO P	3					, 3 -		RG_VRE F24_EN	0	RG_VBI AS_PW DB	RG_VLN A_PWD B	RG_VA DC_PW DB	2	1	0 RG_VBU F_PWDB		
Name Type	DEPO	0					-			0	RG_VBI AS_PW	RG_VLN A_PWD	RG_VA DC_PW	2	1	RG_VBU		

MediaTek Confidential

© 2011 MediaTek Inc.

Page 416 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

ntial Release for

non MCX

Confidential A

RG_VDEPOP Anti-pop for buffer output enable

0:Disable 1:Enable

RG_VREF24_EN Enable 2.4V reference buffer

0: Disable 1: Enable

RG_VBIAS_PWDB Power-down bias

0: Power down 1: Active

RG_VLNA_PWDB Power down PGA and AGC

0: Power down 1: Active

RG_VADC_PWDB power down ADMOD

0: Power down 1: Active

RG VBUF PWDB Voice BUF Power down

0:Power down 1:Active

83010110h ACIF_VOICE_CON4

ACIF_VOICE_CON4

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										RG_VREF24_CO		RG_VCM14_P WD		RG_	RESV	
Туре										R'	W	RW	5	F	? RW	
Reset												0		1	100	

RG_VREF24_CON Reference Voltage Control (Necessary)

00: 2.40V 01: 2.27V 10: 2.15V 11: 2.03V

RG_VCM14_PWD Enable 1.4V common mode voltage (Necessary)

0: Enable 1: Disable

MediaTek Confidential

© 2011 MediaTek Inc.

Page 417 of 508

tial Release for

RG RESV Reserved

6.2.6 **Audio Front-end**

tial Release for MCU APB bus registers for audio are listed as followings.

830102 0	00h	ACIF	AUD	IO_C	ONO	91-								ACIF_AUDIO_CON0			
Bit	15	14	1 3	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	RG_DA CREF					RG_ASD M_CK_IN V	RG_A MUTE R	RG_A MUTE L		RG	_APGR	,		RG_A	PGL		
Туре	RW					RW	RW	RW			RW			RV	V		
Reset	0					0	0	0		•	111			11	1		

RG DACREF Select DAC reference as

0: VDD/GND (typically 2.8V)

1: REFP/REFN (Level is set by RG_VREF24_CON)

RG_ASDM_CK_INV Select ASDM clock inverse. 0: default phase; 1: inverse phase

RG_AMUTER Mute right channel

0: Normal

1: Mute

RG_AMUTEL Mute left channel

0: Normal 1: Mute

RG_APGR Audio right channel amplifier gain control

RG_APGL Audio left channel amplifier gain control

APGR/L [3:0]	Gain						
1111	N/A	1011	13dB	0111	-1dB	0011	-13dB
1110	N/A	1010	8dB	0110	-4dB	0010	-16dB
1101	17dB	1001	5dB	0101	-7dB	0001	-19dB

MediaTek Confidential

© 2011 MediaTek Inc.

Page 418 of 508

MT6252

GSM/GPRS Baseband Processor Data Sheet

Confidential A

1100	14dB	1000	2dB	0100	-10dB		0000	-22dB	
------	------	------	-----	------	-------	--	------	-------	--

MALLE 83010204h ACIF_AUDIO_CON1 ACIF_AUDIO_CON1

Bit	15	14	13	12	11	10 9 8	7	6	5	4	3	2	1	0
Name			,	RG_ADEPOP		RG_ABUFSELR		RG_ABU	SELL			RG_/	ACALI	
Туре				RW		RW		RW	1			R	:W	
Reset	177			1		0		0				1	0	
MIG				C	·	uration controls.	11	G						
00	000	X1				Maria		10.						
00	001	X5/4				LOUA								
00	010	X6/4				Aci								
00	011	X7/4												

00111 X8/4

10000 X1

10001 X4/5

10010 X4/6

10011 X4/7

10111 X4/8

OTHERS Prohibited

BIT3 Reserved

ABUFSELL Audio buffer L-channel input selection.

00Xaudio DAC L-channel output

ial Release for 100 external FM R/L-channel radio output, stereo to mono

101 external FM L-channel radio output

others reserved

ABUFSELR Audio buffer R-channel input selection.

00Xaudio DAC R-channel output

100 external FM R/L-channel radio output, stereo to mono

101 external FM R-channel radio output

others reserved

ADEPOP Audio de-pop noise control bit

disable

enable

MediaTek Confidential

© 2011 MediaTek Inc.

non WCX

Page 419 of 508

MEDIATEK

83010208h ACIF_AUDIO_CON2

Bit	15	14	1	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			C	RG_ ADA CCK _EN	RG_AB UFHAL FV_EN	RG_ADEP OPX_EN						RG_ ABIA S_P WDB	RG_AD ACR_P WDB	RG_AD ACL_P WDB	RG_AO UTR_P WDB	RG_A OUTL_ PWDB
Туре	77.5			RW	RW	RW						RW	RW	RW	RW	RW
Reset				1	0	0					$I_{I_{i}}$	0	0	0	0	0

Set this register for AUDIO analog circuit configuration controls.

RG_ADACCK_EN Gating the DAC clock (Necessary)0: Clock gated

1: Clock pass

RG_ABUFHALFV_EN Enable HalfV 1.4V common mode voltage (Necessary)

> 0: Disable 1: Enable

RG_ADEPOPX_EN Power on depop removal circuit

0: Disable 1: Enable

AOUTL_PWDB Power-down AUDIO L-channel output buffer.

o power-down

power-up 1

tial Release for **AOUTR_PWDB** Power-down AUDIO R-channel output buffer.

o power-down

power-up

ADACL_PWDB Power-down AUDIO L-channel DAC.

0 power-down

power-up

ADACR_PWDB Power-down AUDIO R-channel DAC.

0 power-down

power-up

ABIAS_PWDB Power-down AUDIO bias current circuit.

power-down

1 power-up

8301020Ch	ACIF AUDIO C	ON3
030 1020611	TACIF AUDIO C	UNJ

ACIF AUDIO CONS					
		A 1 1 F	NO.	\sim	10
	AUIT	AUL	י טונ	CUN	ю

Bit	15	14	13	12	11	10	9	8	7 6	5	4	3	2	1	0
Name						RG_ABUF	SPARE_A	RG_A	RG_ABU	SPARE_	RG_	AMUX	RG_A	DEPO	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 420 of 508

			_INSHOR	UDIO_CO	HFM	F_BIAS	AUDIO_	Yel	PX	
			Т	N3_9_	ODE		CON3_5			
				- 10	101	YIL	_			
Туре			RW	RW	RW	RW	RW	RW	RW	
Reset		1	0	0	0	0	0	0	10	

non WCX

Set this register for AUDIO analog circuit configuration controls.

AMUX Mux audio DAC output to FM R/L pins.

00 FM input

01 FM input

10 L-channel DAC Output

11 R-channel DAC Output

ABUF_BIAS Audio buffer quasi-current select bits.

00 1.0x (default)

01 1.33x

10 0.33x

11 0.67x

AHFMODE Audio hand-free mode enable bit.

0 normal mode

hand-free mode

ABUF_INSHORT Audio buffer input short enable (during voice mode)

0 disable

1 enable

RG_ADEPOPX Power on depop removal circuit resistor calibration

00: 8k

01:4k

10: 2k

11: 1k

6.2.7 Power Management Control

Power management unit, so called PMU, is integrated into analog part. To facilitate software control and interface design, PMU control share the CCI interface along with other analog parts, such as BBRX, VBI and ABI.

6.2.7.1 Low Dropout Regulators (LDOs)

The PMU Integrates 13 LDOs that are optimized for their given functions by balancing quiescent current, dropout voltage, line/load regulation, ripple rejection, and output noise.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 421 of 508

SP for

135E

RF LDO (Vrf)

The RF LDO is a linear regulator that could source 150mA (max) with 2.8V output voltage. It supplies the RF circuitry of the handset. The LDO is optimized for high performance and adequate quiescent current.

Digital Core LDO (Vcore)

The digital core regulator is a linear regulator that could source 200mA (max) with 0.8V to 1.35V (25mv/step) output voltage. It supplies the power for baseband circuitry of the SoC. The LDO is optimized for very low quiescent current.

Digital IO LDO (Vio)

The digital IO LDO is a linear regulator that could source 200mA (max) with 2.8V output voltage. It supplies the power for baseband circuitry of the SoC. The LDO is optimized for very low quiescent current and turns on automatically together with Va LDOs.

Analog LDO (Va)

The analog LDO is a linear regulator that could source 100mA (max) with 2.8V output voltage. It supplies the analog sections of the SoC. The LDO is optimized for low frequency ripple rejection in order to reject the ripple coming from the burst at 217Hz of RF power amplifier.

TCXO LDO (Vtcxo)

The TCXO LDO is a linear regulator that could source 40mA (max) with 2.8V output voltage. It supplies the temperature compensated crystal oscillator, which needs ultra low noise supply with very good ripple rejection.

Single-Step RTC LDO (Vrtc)

The single-step RTC LDO is a linear regulator that can charge up a capacitor-type backup coin cell to 2.8V, and also supply the RTC module even at the absence of the main battery. The single-step LDO features the reverse current protection and is optimized for ultra low quiescent current while sustaining the RTC function as long as possible.

Memory LDO (Vm)

The memory LDO is a linear regulator that could source 150mA (max) with 1.8V or 2.9V output voltage selection based on the supply specification of memory chips. It supplies the memory circuitry in the handset. The LDO is optimized for very low quiescent current with wide output loading range.

MediaTek Confidential

© 2011 MediaTek Inc.

ion MCX

Page 422 of 508

SIM LDO (Vsim)

1358 The SIM LDO is a linear regulator that could source 30mA (max) with 1.8V or 3.0V output voltage selection based on the supply specs of subscriber identity modules (SIM) card. It supplies the SIM card and SIM level shifter circuitry in the handset. The Vsim LDO is controlled independently by the register named RG_VSIM1_EN.

SIM2 LDO (Vsim2)

The SIM2 LDO is a linear regulator that could source 30mA (max) with 1.3V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V or 3.3V output voltage selection based on the supply specs of the 2nd subscriber identity modules (SIM) card. It supplies the 2nd SIM card and SIM level shifter circuitry in the handset. The Vsim2 LDO is controlled independently by the register named RG_VSIM2_EN.

USB LDO (Vusb)

The USB LDO is a linear regulator that could source 50mA (max) with 3.3V output dedicated for USB circuitry.

Camera Analog LDO (Vcama)

The Vcama LDO is a linear regulator that could source 150mA (max) with 1.5V, 1.8V, 2.5V or 2.8V output which is selected by the register named RG VCAMA VOSEL[1:0]. It supplies the analog power of the camera module. Vcama is controlled independently by the register named RG_VCAMA_EN.

Camera Digital LDO (Vcamd)

The Vcamd LDO is a linear regulator that could source 100mA (max) with 1.3V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V or 3.3V output which is selected by the register named RG_VCAMD_VOSEL[2:0]. It supplies the digital power of the camera module. Vcamd is controlled independently by the register named RG_VCAMD_EN.

VIBR LDO (Vibr)

The Vibr LDO is a linear regulator that could source 150mA (max) with 1.3V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V or 3.3V output voltage which is selected by the register named RG_VIBR_VOSEL[2:0]. It supplies the power of the vibrator module. Vibr is controlled independently by the register named RG_VIBR_EN.

6.2.7.2 SIM Card Interface

There are two SIM card interface modules to support two SIM cards simultaneously. The SIM card interface circuitry of PMU meets all ETSI and IMT-2000 SIM interface requirements. It provides level shifting needs for low voltage GSM controller to communicate with either 1.8V or 3V SIM cards. All SIM cards contain a clock input, a reset input, and a bi-directional data input/output. The clock and reset inputs to SIM cards are level shifted from the supply of digital

MediaTek Confidential

© 2011 MediaTek Inc.

Page 423 of 508

CORE (Vcore) of baseband to the SIM supply (Vsim). The bi-directional data bus is internal pull high to Vsim via $5K\Omega$ resistor.

The 2nd SIM card interface can be used for supporting another SIM card or mobile TV. The interface pins such as SIO2, SRST2, SCLK2, can be configured as GPIO when there is no need to use the 2nd SIM card interface.

All pins that connect to the SIM card (Vsim, SRST, SCLK, SIO) withstand over 2kV HBM (human body mode) ESD. In order to ensure proper ESD protection, careful board layout is required.

6.2.7.3 Keypad LED/Current Sink Drivers

Built-in open-drain output switches drive the Keypad LED in the handset. This driver is controlled by baseband with enable registers (RG_KPLED_EN), and the output is high impedance when disabled. It can sink 60mA. Four current controlled open drain drivers (Isink0~3) are also implemented to drive LCM backlight module and each provides 6 current level step up to 24mA..

6.2.7.4 Speaker Amplifier

The speaker amplifier is a class AB audio amplifier which is a highly integrated design with built-in output stages. The audio amplifier can provide good linearity and low EMI, also help to reduce the component cost. It has programmable gain setting from 0dB to 22.5dB with 1.5dB per step. Current limit circuit is also implemented to detect over current and shut down automatically so as to prevent devastation.

6.2.7.5 Power-on Sequence and Protection Logic

The PMU handles the powering ON and OFF of the handset. There are three ways to power-on the handset system:

1. Push PWRKEY (Pull the PWRKEY pin to the low level)

Pulling PWRKEY low is the typical way to turn on the handset. The Vcore LDO will be turned-on first, and then Vm and followed by Va/Vio LDOs turn-on in turn. The supplies for the baseband are ready and then the system reset ends at the moment when the Vcore/Va/Vio/Vm are fully turned-on to ensure the correct timing and function. After that, baseband would send the PWRBB signal back to PMU for acknowledgement. To successfully power-on the handset, PWRKEY should be kept low until PMU receives the PWRBB from baseband.

2. RTC module generate PWRBB to wakeup the system

If the RTC module is scheduled to wakeup the handset at some time, the PWRBB signal will directly send to the PMU. In this case, PWRBB becomes high at the specific moment and let PMU power-on just like the sequence described above. This is the case named RTC alarm.

3. Valid charger plug-in (CHRIN voltage is within the valid range)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 424 of 508

Charger plugging-in will also turn on the handset if the charger is valid (no OVP take place). However, if the battery voltage is too low to power-on the handset (UVLO state), the system won't be turned-on by any of these three ways. In this case, charger will charge the battery first and the handset will be powered-on automatically as long as the battery voltage is high enough.

Phone State	CHRON	UVLO	PWRKEY && (~PWRBB)	Vrtc	Vcore, Vio, Vm, Va	Vtexo, Vrf
No Battery or Vbat < 2.5V	X	Н	X	Off	Off	Off
2.5V < Vbat < 3.2V	L	Н	X	On	Off	Off
Pre-Charging	Н	Н	X	On	Off	Off
Charger-on (Vbat>3.2V)	Н	L	X	On	On	On
Switched off	L	L	Н	On	Off	Off
Stand-by	L	L	L	On	On	Off
Active	L	L	L	On	On	On

Table 13 States of mobile handset and regulator

Under-voltage Lockout (UVLO)

The UVLO state in the PMU prevents startup if the initial voltage of the main battery is below the 3.2V threshold. It ensures that the handset is powered-on with the battery in good condition. The UVLO function is performed by a hysteretic comparator which can ensure the smooth power-on sequence. In addition, when the battery voltage is getting lower and lower, it will enter UVLO state and the PMU will be turned-off by itself, except for Vrtc LDQ, to prevent further discharging. Once the PMU enters UVLO state, it draws low quiescent current. The RTC LDO is still working until the DDLO disables it.

Deep Discharge Lockout (DDLO)

PMU will enter to the deep discharge lockout (DDLO) state when the battery voltage drops below 2.5V. In this state, the Vrtc LDO will be shutdown. Otherwise, it draws very low quiescent current to prevent further discharging or even damage to the cells.

Reset

The PMU contains a reset control circuit which takes effect at both power-up and power-down. The RESETB pin is held at low in the beginning of power-up and returns to high after the pre-determined delay time. The delay time is controlled

MediaTek Confidential

© 2011 MediaTek Inc.

Page 425 of 508

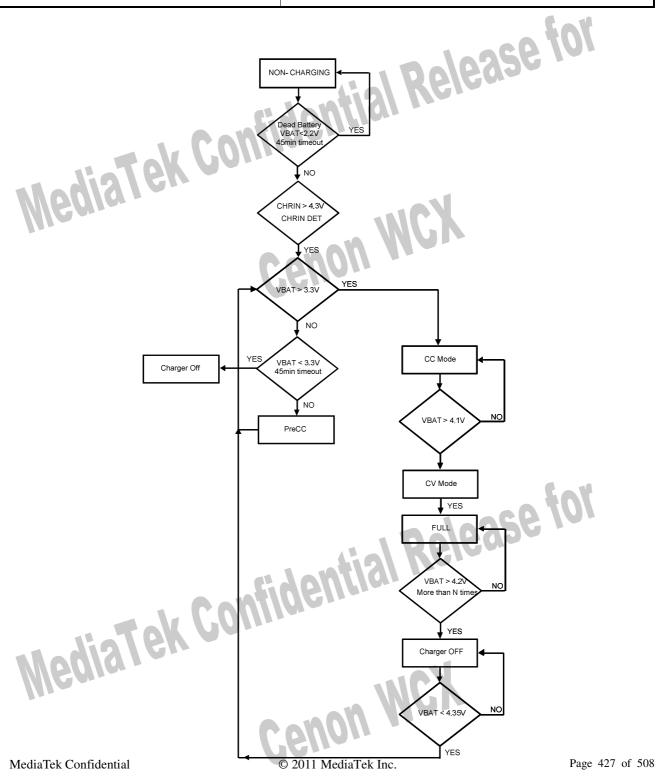
by a large counter, which use clock from internal ring-oscillator. At power-off, **RESETB** pin will return to low immediately without any delay.

Over-temperature Protection

If the die temperature of PMU exceeds 150°C, the PMU will automatically disable all the LDOs except the Vrtc. Once the over-temperature state is resolved, a new power on sequence is required to enable the LDOs.

6.2.7.6 Battery Charger

The battery charger is optimized for the Li-ion batteries. The typical charging procedure can be divided into three phases: pre-charging mode, the constant current charging mode, and the full voltage charging mode. Figure 2 shows the flow chart of the charging procedure. Most of the charger circuits are integrated in the PMU except for one PNP, NMOS and one accurate resistor for current sensing. These components should be applied externally.



MediaTek Confidential

© 2011 MediaTek Inc.

Page 426 of 508

МЕДІЛІЕК

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Release

Figure 2. Battery Charger Flow Chart

1. **Charge Detection**

elease fo The PMU charger block has a detection circuit that senses the charger plug-in/out and provides the correct information to the baseband. If CHRIN is over 4.3V, charger detection will be report to baseband and charger circuit will be enabled. If the CHRIN voltage is over 7V, charger will send an invalid signal to baseband for further indication. The stop of charging when CHRIN is over 7V could be achieved by external component.

2. Pre-Charging mode

When the battery voltage is below the CC threshold, the charging status is in the pre-charging mode. There are two steps in this mode. While the battery voltage is deeply discharged below 2.7V, a 50mA trickle current is used for charging the battery. This is the pre-CC1 state. When the battery voltage exceeds 2.7V, the self-calibrated pre-charge mode is enabled, which allows 20mV (typically) voltage drop across the external current sense resistor. This is the pre-CC2 state. The pre-charge current in this state can be calculated as:

$$I_{PRE_CC} = \frac{V_{SENSE}}{R_{SENSE}} = \frac{20mV}{R_{SENSE}}$$
 (2)

Typically, I_{CONST} =100mA with V_{SENSE} =20mV and R_{SEN} =0.2 Ω .

Constant Current Charging Mode

Once the battery voltage has exceeded the CC threshold, a constant current is used for periodical charging. With periodical charging, charger circuit could detect CHRIN state and battery state in non-charging period. This is called the constant current charging mode. An up-to-800mA constant charging current could be programmed via the register setting. The relation between the voltage drop across the external current sense resistor and the charging current is as follows,

$$I_{CONSTANT} = \frac{V_{SENSE}}{R_{SENSE}} \tag{3}$$

Typically, I_{CONST} =800mA with V_{SENSE} =160mV and R_{SEN} =0.2 Ω .

Before the battery voltage reaches 4.1V, the charger will be in the constant current charging mode.

Full/Constant Voltage Charging Mode 4.

While the battery voltage reaches 4.1V, a constant current with much shorter period is used for charging. It could allow more often full battery detection in non charging period. This is called full voltage charging mode or constant voltage charging mode in correspondence to a linear charger. While the battery voltage reaches 4.2V more than the pre-setting times within the limited charging cycles, the end-of-charging process starts. It may prolong the charging and detecting

MediaTek Confidential

© 2011 MediaTek Inc.

Page 428 of 508

period for getting the optimized the full charging volume. This end of charging process is fully controlled by the baseband and could be easily optimized for different battery pack.

Over-Voltage Protection

Once the battery voltage exceeds 4.35V, a hardware over voltage protection (OV) should be activated and turn off the charger immediately.

Watchdog Timer

An internal watchdog timer is used as a protection for charging period control. In the constant current charging mode or the full voltage charging mode, the baseband must refresh the timer periodically to keep the charging alive. Once, the watchdog timer out, charger will stop charging. This provides the time domain protection for charging control.

7. **CSDAC**

CSDAC is an 8-bit current DAC for current sink. Typically, the step for 1 LSB current sink is 55µA. Hence, the controlled charging current could be calculated as $I_{CHR} = \beta \times 55\mu A \times CSDAC_DATA[7:0]$.

Current Sense

A current sense circuit measures the voltage difference between VSEN and VBAT, which could be used as a feedback signal for CSDAC driving control.

6.2.7.7 **External Components Selection**

Input Capacitor Selection

For each of input pins (VBAT) of PMU, a local bypass capacitor is recommended. Use a 10µF, low ESR capacitor. MLCC capacitors provide the best combination of low ESR and small size. Using a 10µF Tantalum capacitor with a small (1µF or 2.2µF) ceramic in parallel is an alternative low cost solution.

For charger input pin (CHRIN), a bypass 1µF ceramic capacitor is recommended

LDO Capacitor Selection

The VCAMA, VRF, VIO LDOs require a 2.2µF capacitor, and the other LDOs require a 1µF capacitor. Large value capacitor may be used for desired noise or PSRR requirement. But the acceptable settling time should be taken into consideration. The MLCC X5R type capacitors must be used with VRF, VTCXO, VCAM A and VA LDOs for good system performance. For other LDOs, MLCC X5R type capacitors are also recommended to use.

Setting the Charge Current

PMU is capable of charging battery. The charging current is controlled with an external sense resistor, Rsense. It is calculated as the Eq.(3). If the charge current is pre-defined, Rsense can be determined.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 429 of 508

Accurate sense resistors are available from the following vendors: Vishay Dale, IRC, Panasonic.

Charger FET Selection

The PMOS FET selection used in charger should consider the minimum drain-source breakdown voltage (BVDS), the minimum turn-on threshold voltage (VGS), and heat-dissipating ability.

Cenon MCX

These specifications can be calculated as below:

$$V_{GS} = V_{CHRIN} - V_{GATEDRV}$$

$$V_{DS} = V_{CHRIN} - V_{DIODE} - V_{SENSE} - VBAT$$

$$R_{\rm DS(ON)} = \frac{V_{\rm DS}}{I_{\rm CHR}}$$

$$P_{DISS} = (V_{CHRIN}-V_{DIODE}-V_{SENSE}-VBAT) \times I_{CHR}$$

Appropriate PMOS FETs are available from the following vendors: Siliconix, IR, Fairchild.

Charger Diode Selection

The diode is used to prevent the battery from discharging through the PMOS's body diode into the charger's internal circuits. Choose a diode with sufficient current rating to handle the battery charging current and voltage rating greater than Vbat.

Layout Guideline

Use the general guidelines listed below to design the printed circuit boards:

- 1. Split battery connection to the AVDD43_SPK, VBAT_ANALOG, VBAT_RF and VBAT_DIGITAL pins for PMU. Place the input capacitor as close to the power pins as possible.
- 2. Va and Vtcxo capacitors should be returned to AGND. Vrf capacitor should be returned to AGND_RF.
- 3. Split the ground connection. Use separate traces or planes for the analog, digital, and power grounds (i.e. AGND, pin of PMU, respectively) and tie them together at a single point, preferably close to battery return.
- 4. Place a separate trace from the BATSNS pin to the battery input to prevent voltage drop error when sensing the battery voltage.
- Kelvin-connect the charge current sense resistor by placing separate traces to the BATSNS and ISENSE pins.
 Make sure that the traces are terminated as close to the resistor's body as possible.
- 6. Careful use of copper area, weight, and multi-layer construction will help to improve thermal performance.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 430 of 508

Functional Specification 6.2.7.8

6.2.7.8.1 **Electrical Characteristics**

sother - $VBAT=3\ V\sim4.3\ V,\ minimum\ loads\ applied\ on\ all\ outputs,\ unless\ other\ noted.\ Typical\ values\ are\ at\ T_A=25\ ^{\circ}C.$

Parameter	Conditions	Min.	Typical	Max.	Unit
Switch-Off Mode: Supply Current					
VBAT < 2.5 V	RTC LDO OFF	-01	TBD		μΑ
2.5 V < VBAT < 3.3 V	VBAT=3.3V		TBD		μΑ
3.3 V < VBAT	VBAT=4.2V	440	TBD		μΑ
Operation: Supply Current	Pelia				
All outputs on	VBAT=4.2V		TBD		μΑ
VSIM, VSIM2, VTXCO, VRF, VUSB,	VBAT=4.2V				
VCAM_A, VCAM_D, VBT off; all others on			TBD		μΑ
Under Voltage (UV)					
Under voltage falling threshold 1	UV_SEL[1:0] = 00	2.85	2.9	2.95	V
Under voltage falling threshold 2	UV_SEL[1:0] = 01	2.7	2.75	2.8	V
Under voltage falling threshold 3	UV_SEL[1:0] = 10	2.55	2.6	2.65	V
Under voltage falling threshold 4	UV_SEL[1:0] = 11	2.35	2.5	2.65	V
Under voltage rising threshold	UV_SEL[1:0] = XX	3.1	3.2	3.3	V
Reset Generator			100	11.92	71
Output High		V _{IO} -0.5	1150		V
Output Low	1 12	1 13		0.2	V
Output Current	CAOULIE		TBD		mA
Power Key Input/VMSEL Input	Mina	'			
High Voltage		0.7*VBAT			V
Low Voltage			1	0.3*VBAT	V
Thermal Shutdown		116		•	
Threshold	-10	MU	150		degree

MediaTek Confidential

© 2011 MediaTek Inc.

Page 431 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Hysteresis	1	Do	40	20.	degree
LDO Enable Response Time			250		μs

6.2.7.8.2 Regulator Output

Parameter	Conditions	Min.	Typical	Max.	Unit
Digital Core Voltage					
Output voltage (V_D)	Register VOSEL=00000	1.1	1.2	1.3	V
	Register VOSEL=00001	1.125	1.225	1.325	
	Register VOSEL=00010	1.15	1.25	1.35	
	Register VOSEL=00011	1.175	1.275	1.375	
	Register VOSEL=00100	1.2	1.3	1.4	
	Register VOSEL=00101	1.225	1.325	1.425	
	Register VOSEL=00110	1.25	1.35	1.45	
	Register VOSEL=10000	0.7	0.8	0.9	
	Register VOSEL=10001	0.725	0.825	0.925	
	Register VOSEL=10010	0.75	0.85	0.95	
	Register VOSEL=10011	0.775	0.875	0.975	
	Register VOSEL=10100	0.8	0.9	1.0	
	Register VOSEL=10101	0.825	0.925	1.025	
	Register VOSEL=10110	0.85	0.95	1.05	
	Register VOSEL=10111	0.875	0.975	1.075	
	Register VOSEL=11000	0.9	1	1.1	
	Register VOSEL=11001	0.925	1.025	1.125	
	Register VOSEL=11010	0.95	1.05	1.15	
	Register VOSEL=11011	0.975	1.075	1.175	
	Register VOSEL=11100	1.0	1.1	1.2	
	Register VOSEL=11101	1.025	1. 125	1.225	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 432 of 508

MEDIATEK

Line regulation 0.2 6/2			1	1-0	4.777	9 -
Dutput current (Id_max) 200 m.		Register VOSEL=11110	1.05	1.15	1.25	
Line regulation		Register VOSEL=11111	1.075	1. 175	1.275	
Digital IO Voltage	Output current (Id_max)	CAONII		200		mA
Digital IO Voltage Output voltage (V_IO) 2.7 2.8 2.9 V Output current (lio_max) 200 m.	Line regulation	William			0.2	%
Output voltage (V_IO) 2.7 2.8 2.9 V Output current (lio_max) 200 m. Line regulation 0.2 % Current limit 1.2x 5x Id_r RF Voltage 0utput voltage (V_RF) 2.7 2.8 2.9 V Output current (la_max) 150 m. m. Line regulation 0.2 % Output noise voltage f = 10Hz to 80 kHz 90 uVr g uVr Line regulation 65 dl dl current limit 1.2x 5x Id_r Line regulation m. uVr m. Line regulation 0.2 % V Output current (la_max) uVr n. UVr Ripple rejection 10 Hz < freq. < 3 kHz	Current limit	7111	1.2x		5x	Id_max
Output current (lio_max) 200 m. Line regulation 0.2 % Current limit 1.2x 5x Id_r RF Voltage Output voltage (V_RF) 2.7 2.8 2.9 V Output current (la_max) 150 m. Line regulation 0.2 % Output noise voltage f =10Hz to 80 kHz 90 uVr V 4	Digital IO Voltage			1	•	
Line regulation 0.2 9/8	Output voltage (V_IO)		2.7	2.8	2.9	V
Current limit 1.2x 5x Id_r RF Voltage Output voltage (V_RF) 2.7 2.8 2.9 V Output current (Ia_max) 150 m. Line regulation 0.2 % Output noise voltage f = 10Hz to 80 kHz 90 uVr Ripple rejection 10 Hz < freq. < 3 kHz	Output current (lio_max)		11/15	200		mA
No. No.	Line regulation		44		0.2	%
Output voltage (V_RF) 2.7 2.8 2.9 V Output current (la_max) 150 m. Line regulation 0.2 % Output noise voltage f = 10Hz to 80 kHz 90 uVr Ripple rejection 10 Hz < freq. < 3 kHz	Current limit	Chia	1.2x		5x	Id_max
Output current (la_max) 150 m. Line regulation 0.2 % Output noise voltage f = 10Hz to 80 kHz 90 uVr Ripple rejection 10 Hz < freq. < 3 kHz	RF Voltage					
Line regulation 0.2 % Output noise voltage $f = 10$ Hz to 80 kHz 90 uVr Ripple rejection 10 Hz < freq. < 3 kHz 65 dI Current limit 1.2x 5x Id_r Analog Voltage Output voltage (V_A) 2.7 2.8 2.9 V Output current (la_max) 100 m. Line regulation 0.2 % Output noise voltage $f = 10$ Hz to 80 kHz 90 uVr Ripple rejection 10 Hz < freq. < 3 kHz	Output voltage (V_RF)		2.7	2.8	2.9	V
Output noise voltage	Output current (la_max)			150		mA
Ripple rejection	Line regulation				0.2	%
Current limit $1.2x \qquad 5x \qquad \text{Id_r}$ Analog Voltage $0 \text{utput voltage (V_A)} \qquad 2.7 \qquad 2.8 \qquad 2.9 \qquad V$ Output current (la_max) $100 \qquad \text{m}$ Line regulation $0.2 \qquad \%$ Output noise voltage $f = 10 \text{ Hz to } 80 \text{ kHz} \qquad 90 \qquad \text{uVr}$ Ripple rejection $10 \text{ Hz} < \text{freq.} < 3 \text{ kHz} \qquad 65 \qquad \text{dl}$	Output noise voltage	f =10Hz to 80 kHz		90		uVrms
Current limit $1.2x$ $5x$ Id_{-r} Analog Voltage Output voltage (V_A) 2.7 2.8 2.9 V_{-r} Output current (la_max) 100 m_{-r} Line regulation 0.2 $\%$ Output noise voltage $f = 10 \text{ Hz}$ to 80 kHz 90 uVr Ripple rejection $10 \text{ Hz} < \text{freq.} < 3 \text{ kHz}$ 65 dl	Ripple rejection	10 Hz < freq. < 3 kHz				
				65		dB
	Current limit		1.2x		5x	Id_max
	Analog Voltage				2	14
Line regulation $0.2 \qquad \%$ Output noise voltage $f = 10 \text{ Hz to } 80 \text{ kHz} \qquad 90 \qquad \text{uVr}$ Ripple rejection $10 \text{ Hz} < \text{freq.} < 3 \text{ kHz} \qquad 65 \qquad \text{dl}$	Output voltage (V_A)		2.7	2.8	2.9	V
Output noise voltage $f = 10 \text{ Hz}$ to 80 kHz 90uVrRipple rejection $10 \text{ Hz} < \text{freq.} < 3 \text{ kHz}$ 65dl	Output current (la_max)		00	100	20	mA
Ripple rejection 10 Hz < freq. < 3 kHz 65 dl	Line regulation	1 0 10			0.2	%
	Output noise voltage	f = 10 Hz to 80 kHz		90		uVrms
	Ripple rejection	10 Hz < freq. < 3 kHz		65		dB
Current limit 1.2x 5x Id_r	Current limit	71	1.2x		5x	Id_max
VTCXO Voltage	VTCXO Voltage					
Output voltage (V_TCXO) 2.7 2.8 2.9 V	Output voltage (V_TCXO)		2.7	2.8	2.9	V
Output current (ltcxo_max) 40 m.	Output current (Itcxo_max)	40		40		mA

MediaTek Confidential

© 2011 MediaTek Inc.

Page 433 of 508

					91
Line regulation		100	1120	0.2	%
Output noise voltage	f = 10 Hz to 80 kHz	1 1/1/2	90		μVrms
Ripple rejection	10 Hz < freq. < 3 kHz		65		dB
Current limit	William	1.2x		5x	Id_max
RTC Voltage	JUI				
Output voltage(@5uA loading)		2.6	2.8	3.0	V
Output current (Irtc_max)		110	2		mA
Off reverse input current	- 10		1		μΑ
External Memory Voltage	ConOll				
Output voltage (V_M)	VMSEL=L	1.7	1.8	1.9	V
	VMSEL=H	2.8	2.9	3.0	V
Output current (Im_max)			150		mA
Line regulation				0.2	%
Current limit		1.2x		5x	Id_max
SIM Voltage					
Output voltage (V_SIM)	Register RG_VSIM_SEL=0	1.71	1.8	1.89	V
	Register RG_VSIM_SEL=1	2.85	3.0	3.15	V
Output current (Isim_max)			30		mA
Line regulation				0.2	%
Current limit		1.2x	100	5x	Id_max
SIM2 Voltage			1120		
Output voltage (V_SIM2)	Register	110			
	RG_VSIM2_V0SEL=000	1.235	1.3	1.365	V
z de C	Register RG_VSIM2_V0SEL=001	1.425	1.5	1.575	V
a dialen	RG_VSIM2_V0SEL=010	1.71	1.8	1.89	
Wishin.	RG_VSIM2_V0SEL=011	2.375	2.5	2.625	
1112	RG_VSIM2_V0SEL=100	2.66	2.8	2.94	
		412.	<u> </u>	<u> </u>	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 434 of 508

Confidential A

	1	1			9 -
	RG_VSIM2_V0SEL=101	2.85	3.0	3.15	
	RG_VSIM2_V0SEL=110	3.135	3.3	3.465	
Output current (Isim2_max)	GAONIIC		30		mA
Line regulation	William			0.2	%
Current limit	73.	1.2x		5x	Id_max
USB Voltage					
Output voltage (V_USB)		3.135	3.3	3.465	V
Output current (lusb_max)		MU	50		mA
Line regulation	0000	**		0.2	%
Current limit	Cen	1.2x		5x	Id_max
Digital Camera Voltage					
Output voltage (V_CAM_D)	Register				
	VCAM_D_V0SEL=000	1.235	1.3	1.365	V
	Register				
	VCAM_D_V0SEL=001	1.425	1.5	1.575	V
	Register				
	VCAM_D_V0SEL=010	1.71	1.8	1.89	V
	Register				
	VCAM_D_V0SEL=011	2.375	2.5	2.625	V
	Register			4	
	VCAM_D_V0SEL=100	2.66	2.8	2.94	V
	Register		160		
	VCAM_D_V0SEL=101	2.85	3.0	3.15	V
	Register				
	VCAM_D_V0SEL=110	3.135	3.3	3.465	V
Output current (Icamerd_max)			100		mA
Line regulation				0.2	%
Current limit		2x		8x	Id_max
Analog Camera Voltage	- 40	MU			
	MARIA A	417	l	1	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 435 of 508

		1 - 0		9 2
Register VCAM_A_SEL=00	1.425	1.5	1. 575	V
Register VCAM_A_SEL=01	1.71	1.8	1.89	V
Register VCAM_A_SEL=10	2.375	2.5	2.625	V
Register VCAM_A_SEL=11	2.66	2.8	2.94	V
		150		mA
Monag	440		0.2	%
Pella	1.2x		5x	Id_max
Von<0.5V	60			mA
Register VIBR_V0SEL=000	1.235	1.3	1.365	V
Register VIBR_V0SEL=001	1.425	1.5	1.575	V
Register VIBR_V0SEL=010	1.71	1.8	1.89	V
Register VIBR_V0SEL=011	2.375	2.5	2.625	V
Register VIBR_V0SEL=100	2.66	2.8	2.94	V
Register VIBR_V0SEL=101	2.85	3.0	3.15	V
Register VIBR_V0SEL=110	3.135	3.3	3.465	v
. =	DO	150		mA
1 2 2 1 2	11/1/2		0.2	%
GADIN	1.2x		5x	Id_max
	VCAM_A_SEL=00 Register VCAM_A_SEL=01 Register VCAM_A_SEL=10 Register VCAM_A_SEL=11 Von<0.5V Register VIBR_V0SEL=000 Register VIBR_V0SEL=011 Register VIBR_V0SEL=011 Register VIBR_V0SEL=100 Register VIBR_V0SEL=100 Register VIBR_V0SEL=100	VCAM_A_SEL=00 1.425 Register 1.71 VCAM_A_SEL=01 2.375 Register 2.66 VCAM_A_SEL=11 2.66 VON 60 Register VIBR_V0SEL=000 1.235 Register VIBR_V0SEL=001 1.425 Register VIBR_V0SEL=010 1.71 Register VIBR_V0SEL=011 2.375 Register VIBR_V0SEL=100 2.66 Register VIBR_V0SEL=101 2.85 Register VIBR_V0SEL=110 3.135	VCAM_A_SEL=00 1.425 1.5 Register VCAM_A_SEL=01 1.71 1.8 Register VCAM_A_SEL=10 2.375 2.5 Register VCAM_A_SEL=11 2.66 2.8 Von<0.5V	VCAM_A_SEL=00 1.425 1.5 1.575 Register VCAM_A_SEL=01 1.71 1.8 1.89 Register VCAM_A_SEL=10 2.375 2.5 2.625 Register VCAM_A_SEL=11 2.66 2.8 2.94 150 0.2 1.2x 5x Von<0.5V

6.2.7.8.3 SIM interface

Parameter	Conditions	Min.	Typical	Max.	Unit
Interface to 3 V SIM Card		116			
Volrst	Ι = 200 μΑ			0.36	V

MediaTek Confidential

© 2011 MediaTek Inc.

Page 436 of 508

Confidential A

					91
Vohrst	Ι = -200 μΑ	0.9*VSI M	69	30 -	V
Volclk	Ι = 100 μΑ			0.4	V
Vohclk	I = -200 μA	0.9*VSI M			V
Vihsio, Vohsio	$I = \pm 20 \mu A$	VSIM-0.4			V
iil On O	Vil = 0 V	- 31		-1	mA
Vol	Iol = 1 mA			0.4	V
Interface to 1.8 V SIM Card	Man	Ani			
Volrst2	Ι = 200 μΑ			0.2*VSI M	V
Vohrst	Ι = -200 μΑ	0.9*VSI M			V
Volclk	$I = 100 \mu A$			0.12*VSI M	V
Vohelk	Ι = -200 μΑ	0.9*VSI M			V
Vil				0.15*VSI M	V
Vihsio, Vohsio	$I = \pm 20 \mu A$	VSIM-0.4			V
Iil	Vil = 0 V			-1	mA
Vol	Iol = 1 mA	20	025	0.15*VSI M	v
SIM Card Interface Timing	46	KG	100		
SIO pull-up resistance to VSIM	e John a		5		kΩ
SRST, SIO rise/fall times	VSIM = 3, 1.8 V, load with 30 pF			1	μs
SCLK rise/fall times	VSIM = 3 V, CLK load with 30 pF			18	ns
Media	VSIM = 1.8 V, CLK load with 30 pF	164		50	ns
SCLK frequency	CLK load with 30 pF	MOL		5	MHz

MediaTek Confidential

© 2011 MediaTek Inc.

Page 437 of 508

ISCLK duty cycle	SIMCLK Duty = 50%, fsimclk = 5 MHz	47	60	53	%
SCLK propagation delay	e John C		30	50	ns

6.2.7.8.4 Charger Circuit

Parameter	Conditions	Min.	Typical	Max.	Unit
AC charger input voltage		4.2		8	V
AC charger detect on threshold (Vchg_on)	VBAT<3.2V	4.2		7	V
	VBAT>=3.2V	VBAT +120mV		7	V
Maximum charging current (AC charging)	VBAT>=3.2V		0.16 / R _{sense}		A
	VBAT<2.2V		50		mA
Pre-charging current	2.2V <vbat<3.3v (1)="" (2)="" charger<="" dedicated="" host="" td="" usb=""><td>TBD</td><td>70 200</td><td>TBD</td><td>mA</td></vbat<3.3v>	TBD	70 200	TBD	mA
Pre-charging off threshold			3.2		V
Pre-charging off hysteresis			0.3		V
CC mode to CV mode threshold		4.05	4.1	4.15	V
BAT_ON (Vih)		2.33	2.47	2.6	V
GATEDRV rising time (T _r)	BAT_ON, or OV	1	025	5	μs
Over voltage protection threshold (OV)	450	KG	4.35		V

6.2.7.8.5 Regulators and Drivers

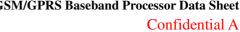
Item	LDO	Voltage	Current	Description
1	VCORE	0.8V~1.35V(25mv/step)	200 mA	Digital core
2	VIO	2.8V	200 mA	Digital IO
3	VRF	2.8V	150 mA	RF chip

MediaTek Confidential

© 2011 MediaTek Inc.

Page 438 of 508

				1 . 000			
4	VA		2.8V	100 mA	00 mA Analog baseband		
5	VRT	rC	2.8V	2 mA	Rea	l-time clock	
6	VM		1.8V / 2.9V	150 mA	Ext	ernal memory, selectable	
7	VSII	М	1.8V / 3.0V	30 mA	SIN	I card, selectable	
8	VTC	CXO	2.8V	40 mA	13/2	26 MHz reference clock	
9	VSII	M2	1.3V/1.5V/1.8V/2.5V/2.8 V/3.0V/3.3V	30 mA	SIM	12 card, selectable	
10	VUS	SB	3.3V	50 mA	USI	В	
11	VIB	R	1.3V/1.5V/1.8V/2.5V/2.8 V/3.0V/3.3V	150 mA	Vib	rator	
12	VCA	AM_A	1.5V / 1.8V / 2.5V / 2.8V	150 mA	Ana	alog camera power	
13	VCA	M_D	1.3V/1.5V/1.8V/2.5V/2.8 V/3.0V/3.3V	100 mA	Dig	ital camera power	
Driv	er		Type	Current	t	Description	
KPLED)	Open-dr	ain NMOS switch	60 mA		Drive the keypad LEDs	
ISINK0)	Open-dr	ain NMOS switch	Up tp 24m	ıΑ	Drive LCM backlight LED	
ISINK1		Open-dr	ain NMOS switch	Up tp 24mA		Drive LCM backlight LED	
ISINK2	,	Open-dr	ain NMOS switch	Up tp 24m	ıΑ	Drive LCM backlight LED	
ISINK3		Open-dr	ain NMOS switch	Up tp 24m	ıΑ	Drive LCM backlight LED	


6.2.7.8.6 Class AB Audio Amplifier

Parameter	Conditions	Min.	Typical	Max.	Unit
	4.3V, THD+N=1%	800			mW
Output Power (8 Ohm)	3.7V, THD+N=1%	700			mW
1 Sinolla	3.2V, THD+N=1%	500			mW
PSRR	VBAT=3.2/3.7/4.3V	16 Y			
TORK	Vin=200mVpp				

MediaTek Confidential

© 2011 MediaTek Inc.

Page 439 of 508

	Input AC to Ground				
	217Hz	50	67		dB
	1KHz	50	67		dB
	3KHz	50	67		dB
. #0	30KHz	50	53		dB
a diale	4.3V, 800mW, 1KHz, 25° C		0.02	1	%
THD+N (80hm)	3.7V, 700mW, 1KHz, 25° C	.01	0.02	1	%
Moss	3.2V, 500mW, 1KHz, 25° C		0.02	1	%
	VBAT=3.2V/4.3V	10.			
SNR	0.5W/0.8W, 8Ohm,				
	20Hz to 22KHz, A-weighted				
	3.2V, A-weighted	93			dB
	4.3V, A-wieghted	93			dB

PMU Registers Definition 6.3

ADDRESS	TITLE	DESCRIPTION
83010800	PMIC_VRF_CON0	
83010804	PMIC_VRF_CON1	tot
83010808	PMIC_VRF_CON2	-10256 Jul
83010810	PMIC_VTCXO_CON0	tial Release
83010814	PMIC_VTCXO_CON1	Ilai
83010818	PMIC_VTCXO_CON2	
83010820	PMIC_VA_CON0	4
83010824	PMIC_VA_CON1	MCX

MediaTek Confidential

© 2011 MediaTek Inc.

Page 440 of 508

Confidential A

PMIC_VA_CON2 83010828 83010830 PMIC_VCAMA_CON0 PMIC_VCAMA_CON1 83010834 83010838 PMIC_VCAMA_CON2 83010840 PMIC_VCAMD_CON0 83010844 PMIC VCAMD CON1 PMIC_VCAMD_CON2 83010848 PMIC_VIO_CON0 83010850 PMIC VIO CON1 83010854 PMIC_VIO_CON2 83010858 83010860 PMIC_VUSB_CON0 83010864 PMIC_VUSB_CON1 83010868 PMIC_VUSB_CON2 PMIC VSIM1 CON0 83010880 83010884 PMIC_VSIM1_CON1 83010888 PMIC_VSIM1_CON2 PMIC VSIM1 CON3 8301088C PMIC_VSIM2_CON0 83010890 PMIC_VSIM2_CON1 83010894

MediaTek Confidential

83010898

© 2011 MediaTek Inc.

Page 441 of 508

This document contains information that is proprietary to MediaTek Inc.

PMIC_VSIM2_CON2

		1 . 660 101
8301089C	PMIC_VSIM2_CON3	1 DO 6920
830108A0	PMIC_VRTC_CON0	4/3/
830108A4	PMIC_VRTC_CON1	
830108B0	PMIC_VIBR_CON0	
830108B4	PMIC_VIBR_CON1	-ueV
830108B8	PMIC_VIBR_CON2	w Mor
830108C0	PMIC_VM_CON0	
830108C4	PMIC_VM_CON1	
830108C8	PMIC_VM_CON2	
830108D0	PMIC_VCORE_CON0	
830108D4	PMIC_VCORE_CON1	
830108D8	PMIC_VCORE_CON2	
830108E0	PMIC_LDOS_CON	
830108F0	PMIC_INT_EN0	107
830108F4	PMIC_INT_EN1	12016326
830108F8	PMIC_OC_STATUS	High Meio
830108FC	PMIC_OC_FLAG	I die
83010900	PMIC_STARTUP_CON0	
83010904	PMIC_STARTUP_CON1	
83010908	PMIC_STARTUP_CON2	_ WGN

MediaTek Confidential

© 2011 MediaTek Inc.

Page 442 of 508

Confidential A

		1 ACD IVI
8301090C	PMIC_STARTUP_CON3	1 1 80/6920
83010980	PMIC_ISINK0_CON0	4/3/
83010984	PMIC_ISINK0_CON1	
83010988	PMIC_ISINK0_CON2	
83010990	PMIC_ISINK1_CON0	-ueV
830109A0	PMIC_ISINK2_CON0	w MOV
830109B0	PMIC_ISINK3_CON0	
830109C0	PMIC_KPLED_CON0	
830109D0	PMIC_CLASSAB_CON0	
830109D4	PMIC_CLASSAB_CON1	
83010A00	PMIC_CHR_CON0	
83010A04	PMIC_CHR_CON1	
83010A08	PMIC_CHR_CON2	
83010A0C	PMIC_CHR_CON3	1010
83010A10	PMIC_CHR_CON4	100/6926
83010A14	PMIC_CHR_CON5	413/ VC1
83010A18	PMIC_CHR_CON6	I diameter in the second secon
83010A1C	PMIC_CHR_CON7	
83010A20	PMIC_CHR_CON8	
83010A24	PMIC_CHR_CON9	- WGN

MediaTek Confidential

© 2011 MediaTek Inc.

Page 443 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

		1 000 101
83010A28	PMIC_CHR_CON10	1 DO 6920
83010A2C	PMIC_CHR_CON11	1/3/
83010A30	PMIC_CHR_CON12	
83010A34	PMIC_CHR_CON13	
83010A38	PMIC_CHR_CON14	-ueV
83010A3C	PMIC_CHR_CON15	w Mor
83010A40	PMIC_CHR_CON16	
83010F00	FMTR_CON0	
83010F04	FMTR_CON1	
83010F08	FMTR_DATA	
83010F10	MIXEDSYS_MON_CON0	
83010F14	MIXEDSYS_MON_CON1	
83010F18	MIXEDSYS_MON_CON2	
83010F20	ABB_MON_CON0	107
83010F30	SIM_MON_CON0	1 2016326 10
83010F80	ACIF_RES1_AC_CON0	HIST KEIN
83010F84	ACIF_RES1_AC_CON1	16100
83010F88	ACIF_RES1_STATUS	

6.3.1 PMU Register Setting

83010800h PMIC_VRF_CON0 PMIC_VRF_CON0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 444 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		VRF_OC_		CCI_VRF_OC_A		RG_VRF_PDN				1				RG_VRF_R	VRF_ON_	RG_VR
Name		FLAG(R)		UTO_OFF		MOS_EN								S_EN	SEL	F_EN
Type		R		RW		RW								RW	RW	RW
Reset		0		0		1								0	0	0

VRF_OC_FLAG(R) Deglitched signal for VRF_CL_STATUS

CCI_VRF_OC_AUTO_OFF Automatically turn off VRF LDO if VRF_OC_FLAG

RG_VRF_PDNMOS_EN Vrf output power down Enable

(1'b1: enable output powerdown; 1'b0: disable output powerdown)

RG_VRF_RS_EN Vrf remote sense Enable

(1'b1: enable; 1'b0: disable)

VRF_ON_SEL VRF on manual mode

0: auto mode, 1: manual mode

RG_VRF_EN Vrf Enable while VRF ON SEL =1

(1'b1: enable; 1'b0: disable)

8301080	04h	PMIC_	VRF_C	ON1										PMIC_\	/RF_CO	N1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										RG_VF	RF_CAL			50		
Туре										R	W					

RG_VRF_CAL Vrf Voltage Calibration

13

RG_VRF_CAL<3:0>	0000	0001	0010	0011	0100	0101	0110	0111
Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120mV	-140mV
RG_VRF_CAL<3:0>	1000	1001	1010	1011	1100	1101	1110	1111
Vout	+160mV	+140mV	+120mV	+100mV	+80mV	+60mV	+40mV	+20mV
83010808h PMIC_VRF	_CON2						PMIC	_VRF_CON2

MediaTek Confidential

Reset

Bit

© 2011 MediaTek Inc.

Page 445 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Name					CCI_VRF_STBTD	CCI_VRF_OC_GEAR		
Туре					RW	RW		
Reset					0	0		

CCI VRF STBTD : Delay time for STB after VRF_EN

00:213us

10: 610us

11: 823us

non WCX CCI_VRF_OC_GEAR: VRF OC Flag deglitch time

00:91us

01: 213us

10: 427us

11: 823us

83010810h PMIC_VTCXO_CON0

PMIC_VTCXO_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		VTCXO_OC		CCI_VTCXO_OC_A		RG_VTCXO_PD									VTCXO_ON	RG_VTCX
Ivallie		_FLAG(R)		UTO_OFF		NMOS_EN									SEL SEL	O_EN
Туре		R		RW		RW								11	RW	RW
Reset		0		0		1				7	L	1			0	0

VTCXO_OC_FLAG(R) Deglitched signal for VTCXO CL STATUS

CCI_VTCXO_OC_AUTO_OFF Automatically turn off VTCXO LDO if VTCXO_OC_FLAG

RG_VTCXO_PDNMOS_EN Vtcxo output power down Enable

(1'b1: enable output powerdown; 1'b0: disable output powerdown)

Vtcxo on manual mode

0: auto mode, 1: manual mode

MediaTek Confidential

© 2011 MediaTek Inc.

Page 446 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

RG_VT					le while		ON_S	SEL =1	12	R	el	69	se	fo	Y	
8301081	14h	PMIC_	vtcx0	_CON1		. 64	AC	711	llo				F	MIC_VI	cxo_c	ON1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				1	7					RG_VTC	XO_CA	L				
Туре		5								R	W					
Reset											0					

R	G_VTCXO_CAL Vtcxo V	oltage Cali	bration	- 10	MC				
	RG_VTCXO_CAL<3:0>	0000	0001	0010	0011	0100	0101	0110	0111
	Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120mV	-140mV
	RG_VTCXO_CAL<3:0>	1000	1001	1010	1011	1100	1101	1110	1111
	Vout	+160mV	+140mV	+120mV	+100mV	+80mV	+60mV	+40mV	+20mV

83010818h PMIC_VTCXO_CON2 PMIC_VTCXO_CON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									CCI_VTC>	(O_ST	CCI_VTC	XO_OC_			CCI_SR	
Name									BTD)	GEA	AR			CLKEN	
Туре									RW		RV			RW		
Reset									0		0				1	
CCI_VT	CXO_	STBTI	D : Del	ay tin	ne for S	тв а	fter	VTC	XO_EN						40	
	CI_VTCXO_STBTD : Delay time for STB after VTCXO_EN															
	00 : 213us 01: 427us 10: 610us															
	0	1: 427	'us								Dal	Pa	20			
									1		RG					
	1	0: 610	us					10	MITH	Q1						
	1	1: 823	lie			10	II									
	11. 02003															
CCL VI	CXO	OC G	FAR	. 1/-	TCYO (C EI	20 O	laalit	ch time							

CCI VTCXO_OC_GEAR VTCXO OC Flag deglitch time

00:91us

01: 213us

MediaTek Confidential

© 2011 MediaTek Inc.

ion MCX

Page 447 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

10: 427us

11: 823us

tial Release for CCI_SRCLKEN SRCLKEN to PMIC force enable control signal

disable (****controlled by sleep control module)

enable

83010820h PMIC_VA_CON0

PMIC_VA_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	9	VA_OC_FL		CCI_VA_OC_AUTO		RG_VA_PDNMOS		7						RG_VA_RS		RG_VA_E
Name		AG(R)		_OFF		EN			1					_EN		N
Туре		R		RW	5	RW								RW		RW
Reset		0		0	IK	1				•				0		1

Deglitched signal for VA_CL_STATUS VA_OC_FLAG(R)

CCI_VA_OC_AUTO_OFF Automatically turn off VA LDO if VA OC FLAG

RG_VA_PDNMOS_EN Va output power down Enable

(1'b1: enable output powerdown; 1'b0: disable output powerdown)

RG_VA_RS_ENVa remote sense Enable

(1'b1: enable; 1'b0: disable)

RG VA EN Va enable for testing

83010824h	PMIC_VA_CON1
OOU I OOL TII	

PM	C V	A C	ON1

KG_VA	_			Ŭ										t.	W	
	(1'b1: e	nable;	1'b0: c	disable)							- 0		M	
830108	3010824h PMIC_VA_CON1														C_VA_C	ON1
Bit	15	14	13	12	11	10	9	8 1	7	6	5	4	3	2	1	0
Name							10	107	14.1	RG_V	A_CAL					
Туре						7		IIL		R	:W					
Reset											0					

RG_VA_CAL Va Voltage Calibration

RG_VA_CAL<3:0>	0000	0001	0010	0011	0100	0101	0110	0111
Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120mV	-140mV

MediaTek Confidential

© 2011 MediaTek Inc.

Page 448 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

RG_VA_CAL<3:0>	1000	1001	1010	1011	1100	1101	1110	1111
Vout	+160mV	+140mV	+120mV	+100mV	+80mV	+60mV	+40mV	+20mV

83010828h PMIC_VA_CON2 PMIC_VA_CON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					5	V			CCI_V	/A_STBTD	CCI_VA_	OC_GEAR			QI_VA_LP_EN	
Type	AF		7							RW	F	₹W			RW	
Reset										0		0			0	
CCI_V	A_STBT	D :	Dela	ıy tin	ne fo	r ST	Ва	fter VA	_EN							
	00	: 213us	3						100	M I						
01: 427us								P.		J.,						

10: 610us

11: 823us

CCI_VA_OC_GEAR : VA OC Flag deglitch time

00:91us

01: 213us

10: 427us

PMIC_VCAMA_CON0 83010830h

		10: 42/us														
		11: 823us										\$nt				
QI_VA	LP_	EN Va low p	ower	mode enable		. 10			0	2	SE	10				
		(1'b1: low po	ower r	mode; 1'b0: typical	mode	e)		A	U							
830108	83010830h PMIC_VCAMA_CON0 PMIC_VCAMA_CON0															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		VCAMA_OC_	1	CCI_VCAMA_OC_A		RG_VCAMA_PDN					RG_V	CAMA_V				RG_VCA
Name		FLAG(R)		UTO_OFF		MOS_EN					OS	SEL				MA_EN
Туре		Ŕ	27	RW		RW		1			ľ	RW				RW
Reset	12	0		0		1						0				0

VCAMA_OC_FLAG(R)

Deglitched signal for VCAMA CL STATUS

MediaTek Confidential

© 2011 MediaTek Inc.

Page 449 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

GSM/GPRS Baseband Processor Data Sheet

Confidential A

CCI_VCAMA_OC_AUTO_OFF Automatically turn off VCAMA LDO if VCAMA_OC_FLAG

(1'b1: enable output powerdown; 1'b0: disable output powerdown)

RG_VCAMA_VOSEL Vcama Output Voltage Selection	00	01	10	11
Vout	1.5V	1.8V	2.5V	2.8V

RG_VCAMA_EN Vcama Enable

(1'b1: enable; 1'b0: disable)

83010834h PMIC_VCAMA_CON1 PMIC_VCAMA_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									F	RG_VCA	MA_CA	L				
Туре										R	W					
Reset										()					

RG_VCAMA_CAL Vcama Voltage Calibration

RG_VCAMA_CAL<3:0>	0000	0001	0010	0011	0100	0101	0110	0111
Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120mV	-140mV
RG_VCAMA_CAL<3:0>	1000	1001	1010	1011	1100	1101	1110	1111
Vout	+160mV	+140mV	+120mV	+100mV	+80mV	+60mV	+40mV	+20mV

83010838h PMIC_VCAMA_CON2 PMIC_VCAMA_CON2

Bit	15	14	13	12	11	10	9	8	7 6	5	4	3	2	1	0
Name			1				1	III	CCI_VCAMA_STBTD	CCI_VCAMA_	OC_GEAR				
Туре	1		1	7		5			RW	RW					
Reset		16		7					0	0	•				

CCI_VCAMA_STBTD: Delay time for STB after VCAMA_EN

MediaTek Confidential

© 2011 MediaTek Inc.

Page 450 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

00:213us

01: 427us

10: 610us

11: 823us

Confidential Release for Ceuon MCX CCI_VCAMA_OC_GEAR VCAMA OC Flag deglitch time

00:91us

01: 213us

10: 427us

11: 823us

83010840h PMIC_VCAMD_CON0

PMIC_VCAMD_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		VCAMD_OC		CCI_VCAMD_OC_A		RG_VCAMD_PDN				RG_\	/CAMI	O_VO				RG_VCAM
Name		_FLAG(R)		UTO_OFF		MOS_EN					SEL					D_EN
Туре		R		RW		RW					RW					RW
Reset		0		0		1					100					0

Deglitched signal for VCAMD_CL_STATUS VCAMD_OC_FLAG(R)

CCI_VCAMD_OC_AUTO_OFF Automatically turn off VCAMD LDO if VCAMD_OC_FLAG

RG_VCAMD_PDNMOS_EN VCAMD POWER DOWN NMOS Enable

(1'b1: enable; 1'b0: disable)

RG_VCAMD_VOSEL VCAMD output selection signal	000	001	010	011	100	101	110	111
Vout	1.3V	1.5V	1.8V	2.5V	2.8V	3.0V	3.3V	3.3V

RG VCAMD EN VCAMD Enable

MediaTek Confidential

(1'b1: enable; 1'b0: disable)

83010844h PMIC_VCAMD_CON1 PMIC_VCAMD_CON1

This document contains information that is proprietary to MediaTek Inc.

© 2011 MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Page 451 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Bit	15	14	13	12	11	10	9	8	7 6	5	4	3	2	1	0
Name								4.	RG_\	/CAMD_	CAL				
Туре							10			RW					
Reset						KI		IIF		0					

VCAMD Voltage Calibration RG_VCAMD_CAL

(Notes: when the output is 1.3V, the calibration range is -60mV \sim +160mV.)

RG_VCAMD_CAL<3:0>	0000	0001	0010	0011	0100	0101	0110	0111
Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120mV	-140mV
RG_VCAMD_CAL<3:0>	1000	1001	1010	1011	1100	1101	1110	1111
Vout	+160mV	+140mV	+120mV	+100mV	+80mV	+60mV	+40mV	+20mV

83010848h PMIC_VCAMD_CON2 PMIC_VCAMD_CON2 Bit 15 14 11 10 7 4 3 13 12 9 8 6 5 0 CCI_VCAMD_STBTD CCI_VCAMD_OC_GEAR Name Туре RW RW Reset 0

: Delay time for STB after VCAMD EN CCI_VCAMD_STBTD

00:213us

01: 427us

10: 610us

11: 823us

: VCAMD OC Flag deglitch time CCI_VCAMD_OC_GEAR

00:91us

01: 213us

<mark>10</mark>: 427us

11: 823us

MediaTek Confidential

non WCX © 2011 MediaTek Inc.

Page 452 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

83010850h PMIC_VIO_CON0

PMIC_VIO_CON0

830 10 8 5	iOh	PMIC_VIO_CO	ONO			201		2	3	3	4	0	1		міс	:_VIO_CON0
Bit	15	14	13	12	11 🛕	10	9	8	7	6	5	4	3	2	1	0
Name		VIO_OC_FL AG		CCI_VIO_OC_AUTO	211	RG_VIO_PDNMOS_E N	_	Γ	_		_		_		_	RG_VIO_E N
Туре		R		RW		RW										RW
Reset		0	\\ \	000		1										1

VIO_OC_FLAG(R) Deglitched signal for VIO_CL_STATUS

CCI_VIO_OC_AUTO_OFF Automatically turn off VIO LDO if VIO_OC_FLAG

VIO POWER DOWN NMOS Enable RG VIO PDNMOS EN

(1'b1: enable; 1'b0: disable)

RG_VIO_EN VIO enable for testing

(1'b1: enable; 1'b0: disable)

PMIC_VIO_CON1 83010854h

PM	C	V١	0	C	Ö	N	٠
		• •		-	_	• •	

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										RG_V	O_CAL					
Туре										R	W					
Reset										()					

RG_VIO_CAL VIO Voltage Calibration

RG_VIO_CAL<3:0>	0000	0001	0010	0011	0100	0101	0110	0111
Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120mV	-140mV
RG_VIO_CAL<3:0>	1000	1001	1010	1011	1100	1101	1110	1111
Vout	+160mV	+140mV	+120mV	+100mV	+80mV	+60mV	+40mV	+20mV

83010858h PMIC_VIO_CON2

PMIC_VIO_CON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	7										CCI_VIO_	OC_GEAR				
Type										//	R'	W				
Reset)				

MediaTek Confidential

© 2011 MediaTek Inc.

Page 453 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

mich time CCI_VIO_OC_GEAR : VIO OC Flag deglitch time

00:91us

01: 213us

10: 427us

11: 823us

PMIC_VUSB_CON0

PMIC_VUSB_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		VUSB_OC_F		CCI_VUSB_OC_AUTO		RG_VUSB_PDNMOS										RG_VUSB_
Name		LAG		_OFF		_EN										EN
Туре		R		RW		RW										RW
Reset		0		0		1										1

VUSB_OC_FLAG(R) Deglitched signal for VUSB CL STATUS

CCI_VUSB_OC_AUTO_OFF Automatically turn off VUSB LDO if VUSB_OC_FLAG

RG_VUSB_PDNMOS_EN VUSB output power down enable

RG_VUSB_EN Vusb enable for testing

(1'b1: enable; 1'b0: disable)

83010864h	PMIC VUSB	CON1

VUSB CON1

	1													- 11		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										RG_VU	SB_CAL	70				
Туре									1	R	W					
Reset							7/0				0					

RG_VUSB_CAL VUSB Voltage Calibration

F	RG_VUSB_CAL<3:0>	0000	0001	0010	0011	0100	0101	0110	0111
١	Vout Common of the Common of t	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120mV	-140mV
F	RG_VUSB_CAL<3:0>	1000	1001	1010	1011	1100	1101	1110	1111

MediaTek Confidential

© 2011 MediaTek Inc.

Page 454 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Vout	+160mV	+140mV	+120mV	+100mV	+80	ηV	+60mV	+40mV	+20mV
			1						

									1018	112	11/2						
8301086	88h	PMI	C_VUSE	_CO	12			17		Pian			PN	IIC_\	VUSE	3_CON2	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name	1		7				יינ		CCI_VU	SB_STBTD	CCI_VU	SB_OC_GEAR					
Туре				1						RW		RW					
Reset		11C								0		0					
CCI_VL	JSB_S	STBT	D : D	elay	time	for S	STB	after	VUSB_E	N.							
		00 : 2	213us						anl	on I	AA						
		01: 42	27us					V	Gin								

10: 610us

11: 823us

CCI_VUSB_OC_GEAR : VUSB OC Flag deglitch time

00:91us

01: 213us

10: 427us

11: 823us

83010880h PMIC_VSIM1_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nam		VSIM1_OC_F		CCI_VSIM1_OC_A	4	RG_VSIM1_PDN						CCI_VSIM1_V				CCI_VSI
е		LAG(R)		UTO_OFF		MOS_EN						OSEL				M1_EN
Туре		R	1	RW	7	RW						RW				RW
Rese		0	1	0		1						0				0
t		0	31,7			ļ						U				U

VSIM1_OC_FLAG(R) Deglitched signal for VSIM1_CL_STATUS

CCI_VSIM1_OC_AUTO_OFF Automatically turn off VSIM1 LDO if VSIM1_OC_FLAG

MediaTek Confidential

© 2011 MediaTek Inc.

Page 455 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Release for

RG_VSIM1_PDNMOS_EN VSIM1 output power down enable

CCI_VSIM1_VOSEL VSIM1 Output Voltage Selection Signal

==> only works at VSIM1_GPLDO_EN(@VSIM1_CON2) = 1

CCI_VSIM1_VOSEL	(60	1
Vout	1.8V	3.0V

CCI VSIM1 ENcci mode VSIM1 Enable

==> only works at VSIM1_GPLDO_EN(@VSIM1_CON2) = 1

(1'b1: enable; 1'b0: disable)

83010884h PMIC_VSIM1_CON1 PMIC_VSIM1_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										RG_VS	IM1_CAL	,				CCI_VSIM1_ CSTOP
Туре										F	RW					W
Reset											0					0

RG_VSIM1_CAL VSIM1 Voltage Calibration	0000	0001	0010	0011	0100	0101	0110	0111
Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120m V	-140m V
RG_VSIM1_CAL<3:0 >	1000	1001	1010	1011	1100	1101	1110	1111
Vout	+160mV	+140m V	+120m V	+100m V	+80mV	+60mV	+40m V	+20mV

83010888h PMIC VSIM1 CON2 PMIC_VSIM1_CON2 Bit 15 2 13 12 11 10 9 8 6 4 3 0

MediaTek Confidential

Name

© 2011 MediaTek Inc.

CCI_VSIM1

CCI_VSIM1

Page 456 of 508

VSIM1_G

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛІТЕК

						STBTD	OC_GEAR	2	PLDO_EN	
Туре					1	RW	RW		RW	
Reset				10	5	0	0		0	

n WCX

CCI_VSIM1_STBTD : Delay time for STB after VSIM1_EN

00:213us

01: 427us

10: 610us

11: 823us

: VSIM1 OC Flag deglitch time CCI_VSIM1_OC_GEAR

00:91us

01: 213us

10: 427us

11: 823us

VSIM1_GPLDO_EN The control selection of VSIM1 LDO enable & voltage, which is controlled by SIM controller circuit or VSIM1_CON0

- VSIM1 LDO is controlled by SIM controller
- VSIM1 LDO is controlled by VSIM_CON0

		•	
9304099Ch	DMIC VSIM4 CONS		

8301088	3Ch	PMIC_	VSIM1_	CON3										PMIC_V	VSIM1_C	ON3
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							_	SIM_SR P	RG_S	IM_SR N	RG_S	IM_BI S	RG_	SIMIO	_DRV	
Туре							F	RW	R	W	R	W		RW		
Reset								0	110)	1	0		0	•	

RG_SIM_SRP SIM SCLK slew rate control. PMOS path speed tuning

RG_SIM_SRP[1:0]	00 (default)	01	10	11
SCLK slew rate	1X	1.1X	0.9X	1X

RG_SIM_SRN SIM SCLK slew rate control. NMOS path speed tuning

MediaTek Confidential

© 2011 MediaTek Inc.

Page 457 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

RG_SIM_SRN[1:0]	00 (default)	01	D610P3	11
SCLK slew rate	1X	1.1X	0.9X	1X

RG_SIM_BIAS SIM slew rate control. Bias current adjustment bits

	CAMI	A.		
RG_SIM_BIAS[1:0]	00	01	10 (default)	11
Bias current	1X	1.2X	1.5X	2X

SIMIO DRV SIO input pull-up resistor adjustment

RG_SIMIO_DRV[2:0]	1XX	000	001	010	011
Pull up resistor (kohm)	disable	5	3.3	20	6.7

PMIC_VSIM2_CON0 83010890h

PMIC_VSIM2_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Na		VSIM2_OC_		CCI_VSIM2_OC		RG_VSIM2_PDNM				CCI_	VSIM2	_VOS				CCI_VSI
me		FLAG(R)		_AUTO_OFF		OS_EN					EL					M2_EN
Тур		R		RW		RW					RW					RW
е		IX		TVV		1744					1111					IXVV
Res		0		0		0					0					0
et		J		U		U					U					U

VSIM2_OC_FLAG(R) Deglitched signal for VSIM2_CL_STATUS

lease for CCI_VSIM2_OC_AUTO_OFF Automatically turn off VSIM2 LDO if VSIM2_OC_FLAG

RG_VSIM2_PDNMOS_EN VSIM2 output power down enable

CCI_VSIM2_VOSEL VSIM2 Output Voltage Selection Signal

==> only works at VSIM2 GPLDO EN(@VSIM2 CON2) = 1

RG_VSIM2_VOSEL<2:0>	000	001	010	011	100	101	110	111
Vout	1.3V	1.5V	1.8V	2.5V	2.8V	3.0V	3.3V	3.3V

CCI_VSIM2_ENcci mode VSIM2 Enable

=> only works at VSIM2_GPLDO_EN(@VSIM2_CON2) =

(1'b1: enable; 1'b0: disable)

83010894h PMIC_VSIM2_CON1 PMIC_VSIM2_CON1

MediaTek Confidential

© 2011 MediaTek Inc.

Page 458 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

MT6252 **GSM/GPRS** Baseband Processor Data Sheet

Confidential A

0

PMIC_VSIM2_CON2

												- 0				Q1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Nama								_ ^ \		DC VC	IMO CAL	9	4			CCI_VSIM2_
Name							10	10	141	RG_VS	IM2_CAL	-				CSTOP
Type						A H		711	71	F	RW					W

RG_VSIM2_CAL

Reset

83010898h

MEDIATEK

VSIM2 Voltage Calibration

(Notes: when the output is 1.3V, the calibration range is -60mV~+160mV.)

RG_VSIM2_CAL VSIM2 Voltage Calibration	0000	0001	0010	0011	0100	0101	0110	0111
Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120m V	-140m V
RG_VSIM2_CAL<3: 0>	1000	1001	1010	1011	1100	1101	1110	1111
Vout	+160mV	+140mV	+120m V	+100m V	+80mV	+60mV	+40m V	+20mV

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name									CCI_V	SIM2_	CCI_V	SIM2_	5		VSIM2_ GPLDO	

Name					CCI_V	SIM2_ BTD	CCI_V	SIM2_ SEAR	50	VSIM2_ GPLDO _EN	
Туре				1	R	W	R	W		RW	
Reset						0	()		0	

CCI_VSIM2_STBTD: Delay time for STB after VSIM2_EN

PMIC_VSIM2_CON2

MediaTek Confidential

non WCX © 2011 MediaTek Inc.

Page 459 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

10: 610us

11: 823us

tial Release fo : VSIM2 OC Flag deglitch time CCI_VSIM2_OC_GEAR

00:91us

01: 213us

10: 427us

11: 823us

VSIM2_GPLDO_EN The control selection of VSIM2 LDO enable & voltage, which is controlled by SIM controller circuit or VSIM2_CON0

VSIM2 LDO is controlled by SIM controller

VSIM2 LDO is controlled by VSIM2_CON0

8301089Ch PMIC_VSIM2_CON3 PMIC_VSIM2_CON3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name							RG_S	IM2_S	RG_S	IM2_S	RG_S	M2_BI	RG_	SIMIC	02_	RG_SIM
ivame							R	RP.	F	RN	Α	S		DRV		2_MODE
Туре							R	W	R	W	R	W		RW		RW
Reset							()		0	1	0		0		0

RG_SIM2_SRP SIM2 SCLK slew rate control. PMOS path speed tuning

				tow.
RG_SIM2_SRP[1:0]	00 (default)	01	10	11
				SP 1A:
SCLK2 slew rate	1X	1.1X	0.9X	1X

RG_SIM2_SRN SIM2 SCLK slew rate control. NMOS path speed tuning

RG_SIM2_SRN[1:0]	00 (default)	01	10	11
SCLK2 slew rate	1X	1.1X	0.9X	1X

as John Ch

RG_SIM2_BIAS SIM2 slew rate control. Bias current adjustment bits

//	lonia.		•	101	
\	RG_SIM2_BIAS[1:0]	00	01	10 (default)	11

MediaTek Confidential

© 2011 MediaTek Inc.

Page 460 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Bias current	1X	1.2X	1.5X 2X

RG SIMIO2 DRV SIO2 input pull-up resistor adjustment

	42.4	AMI	GI		
RG_SIMIO2_DRV[2:0]	1XX	000	001	010	011
Pull up resistor (kohm)	disable	5	3.3	20	6.7

RG SIM2 MODE Enable SIM2 GPIO mode

140_511	RG_SIWIZ_WODE Eliable SIWIZ GFIO Illoue															
		: SIM r : GPIC		•					1	M	G					
830108/	AOh	PMIC_	VRTC_	CON0					PMIC.	VRTC_CON0						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name															RG_VRTC_	
ivallie																EN
Туре															RW	
Reset															1	

RG_VRTC_EN Vrtc enable for testing

(1'b1: enable; 1'b0: disable)

830108A4h PMIC_VRTC_CON1 PMIC_VRTC_CON1

Bit	15	14	13	12	11	10	9	8	7	6	6 5 CAL		3	2	1	0
Name										RG_VR	TC_CAL					
Туре										R	W			Ca	1	
Reset										()					
RG_VRTC_CALVrtc Voltage Calibration																
PG VPTC CAL 2:05 0000 0001 0010 0011 0100 0101											011	Λ				

RG_VRTC_CAL<3:0>	0000	0001	0010	0011	0100	0101	0110	0111
Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120mV	-140mV
RG_VRTC_CAL<3:0>	1000	1001	1010	1011	1100	1101	1110	1111
Vout	+160mV	+140mV	+120mV	+100mV	+80mV	+60mV	+40mV	+20mV

PMIC_VIBR_CON0 830108B0h PMIC_VIBR_CON0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 461 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

15	14	13	12	11	10	9	8	7	6 5 4	3	2	1	0
	VIBR_OC _FLAG(R)		CCI_VIBR_O C_AUTO_OF F	. Ci	RG_VIBR_P DNMOS_EN	3		L)	RG_VIBR_ VOSEL				CCI_VIBR_EN
	R		RW		RW				RW				RW
	0		0		1				100				0

VIBR_OC_FLAG(R) Deglitched signal for VIBR_CL_STATUS

CCI_VIBR_OC_AUTO_OFF Automatically turn off VIBR LDO if VIBR_OC_FLAG

RG_VIBR_PDNMOS_EN VIBR POWER DOWN NMOS Enable

(1'b1: enable; 1'b0: disable)

RG_VIBR_VOSEL VIBR output selection signal

RG_VIBR_VOSEL<2:0>	000	001	010	011	100	101	110	111
Vout	1.3V	1.5V	1.8V	2.5V	2.8V	3.0V	3.3V	3.3V

CCI VIBR EN cci mode VIBR Enable

(1'b1: enable; 1'b0: disable)

830108B4b	DMIC VIRP CON1	

030100	54N	PMIC_	VIDK_C	UNI										PMIC_	VIBR_C	UNI
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										RG_VIE	BR_CAL			50		
Туре									RW							
Reset																

RG_VIBR_CAL VIBR Voltage Calibration

(Notes: when the output is 1.3V, the calibration range is -60mV~+160mV.)

RG_VIBR_CAL<3:0>	0000	0001	0010	0011	0100	0101	0110	0111
Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120mV	-140mV
RG_VIBR_CAL<3:0>	1000	1001	1010	1011	1100	1101	1110	1111
Vout	+160mV	+140mV	+120mV	+100mV	+80mV	+60mV	+40mV	+20mV

MediaTek Confidential

© 2011 MediaTek Inc.

Page 462 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

830108B8h PMIC_VIBR_CON2									atiol R	ele	358	10	70	PMIC_VI	BR_CON2
Bit	15	14	13	12	11	10 (9	8	7 6	5	4	3	2	1	0
Name						77	111		CCI_VIBR_STBTD	CCI_VIBI	R_OC_GEAR				
Туре							RW		RW						
Reset			12						0		0				

Cenon WCX CCI_VIBR_STBTD : Delay time for STB after VIBR_EN

00:213us

01: 427us

10: 610us

11: 823us

CCI_VIBR_OC_GEAR : VIBR OC Flag deglitch time

00:91us

01: 213us

10: 427us

11: 823us

830108C0 PMIC_VM_CON0 h

Bit	1 5	14	1 3	12	1	10	9	8	7	6	5	4	3	2	1	0
Nam		VM_OC_FL		CCI_VM_OC_AUTO_		RG_VM_PDNMOS										RG_VM_
е		AG		OFF	1	_EN							_			EN
Type		R		RW	2	RW										RW
Res						1										1
et			7	U		l										I

VM_OC_FLAG(R) Deglitched signal for VM_CL_STATUS

CCI_VM_OC_AUTO_OFF Automatically turn off VM LDO if VM_OC_FLAG

MediaTek Confidential

© 2011 MediaTek Inc.

Page 463 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

dential Release for VM POWER DOWN NMOS Enable RG_VM_PDNMOS_EN

(1'b1: enable; 1'b0: disable)

RG_VM_EN Vm enable for testing

830108C4h

(1'b1: enable; 1'b0: disable)

PMIC_VM_CON1

PMIC_VM_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		10								RG_VI	M_CAL					
Туре	5									R	W					
Reset										(0					

RG_VM_CAL VM Voltage Calibration

RG_VM_CAL<3:0>	0000	0001	0010	0011	0100	0101	0110	0111
Vout	±0	-20mV	-40mV	-60mV	-80mV	-100mV	-120mV	-140mV
RG_VM_CAL<3:0>	1000	1001	1010	1011	1100	1101	1110	1111
Vout	+160mV	+140mV	+120mV	+100mV	+80mV	+60mV	+40mV	+20mV

830108C8h PMIC_VM_CON2 PMIC_VM_CON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Name					CCI_VI	M_STBTD					CCI_VM_	OC_GEAR					
Туре					F	RW					R	:W		S	W		
Reset						0						0					
CCI_VI	1_STB1	ΓD	: De	lay tim	e for S	TB after \	/M_E	N				02	35				
	00	: 213	Bus			1			5	2	Ke	I Car					
	01	l: 427ı	us			nfil.		11	L	Oth							
	10	0: 610	us	V	60												
	1	: 823	us														

M_OC_GEAR : VM OC Flag deglitch time

00:91us

MediaTek Confidential

© 2011 MediaTek Inc.

ion MCX

Page 464 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

PMIC VCORE CONO 830108D0h

													Co	nfidential A		
		01: 213us					1	3 (16	X		se fo	10		
		10: 427us			1	sita										
		11: 823us		A anti		Silino										
8301080	00h	PMIC_VCORE	CON	10										PMIC_VC	OR	E_CONO
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	31	VCORE_OC _FLAG(R)		CCI_VCORE_O C_AUTO_OFF		RG_VCORE_PD NMOS_EN		RO		CORI SEL	E_V	/0	MUST BE	MUST BE 0		RG_V CORE _EN
Туре		R		RW		RW				RW			RW	RW		RW
Reset		0		0		1				0			0	0		1

VCORE_OC_FLAG(R)

Deglitched signal for VCORE_CL_STATUS

CCI_VCORE_OC_AUTO_OFF Automatically turn off VCORE LDO if VCORE_OC_FLAG

RG_VCORE_PDNMOS_EN VCORE POWER DOWN NMOS Enable

(1'b1: enable; 1'b0: disable)

RG_VCORE_VOSEL

RG_VCORE_VOSEL<4:0>	00000	00001	00010	00011	00100	00101	00110	10000
Vout	1.2V	1.225V	1.25V	1.275V	1.3V	1.325V	1.35V	V8.0
RG_VCORE_VOSEL<4:0>	10001	10010	10011	10100	10101	10110	10111	11000
Vout	0.825V	0.85V	0.875V	0.9V	0.925V	0.95V	0.975V	1V
RG_VCORE_VOSEL<4:0>	11001	11010	11011	11100	11101	11110	11111	
Vout	1.025V	1.05V	1.075V	1.1V	1.125V	1.15V	1.175V	

RG VCORE EN Vcore enable for testing

(1'b1: enable; 1'b0: disable)

(Note:RG_VCORE_EN=0 is only for test use. Vcore can't be disabled in system application.)

830108	D4h	PMIC_	VCORE	_CON1										P	MIC_VC	ORE_C	ON1
Bit	15	14	13	12	11	10	9	8	7	6		5	4	3	2	1	0
Name								R	S_VCOF	RE_VOS	SEL	SLE	ĒΡ				

MediaTek Confidential

© 2011 MediaTek Inc.

Page 465 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Type				RW
Reset				0

RG_VCORE_VOSEL_SLEEP Sleep mode VOSEL

PMIC_VCORE_CON2 830108D8h

PMIC_VCORE_CON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		13	10							CORE BTD	CCI_V	CORE GEAR				
Туре	5								R	W	R	W				
Reset										0)				

CCI_VCORE_STBTD: Delay time for STB after VCORE_EN

00:213us

01: 427us

10: 610us

11: 823us

: VCORE OC Flag deglitch time CCI_VCORE_OC_GEAR

00:91us

01: 213us

830108E0h PMIC_LDOS_CON

PMIC_LDOS_CON

	0	1: 213	us												-0	
	1	<mark>0</mark> : 427	us										00	16	N	
	1	1: 823	us						. 1	0		23	2			
830108	E0h	PMIC_	_LDOS_	CON						Λ	G			PMIC_	_LDOS_	CON
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						74	10/2	717			RO	G_LDOS	_RESE	7		
Type					H							RV	٧			
Reset		Ĭ										0				

RG_LDOS_RESER reserve for LDOS

RG_LD	OS_RI	ESER	reser	ve for	LDOS				- 41	AV					
830108	F0h	PMIC_	INT_EN	10										PMIC_IN	IT_EN0
Bit	15	14	13	12	11	10	9	8 7	6	5	4	3	2	1	0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 466 of 508

Confidential A

Name	CCI_ VA_ OC_ INT_ EN	CCI_ VM_ OC_ INT_ EN	CCI_ VIO_ OC_ INT_ EN	CCI_ VRF _OC _INT _EN	CCI_ VTC XO_ OC_ INT_ EN	U	6	CCI_V CAMA _OC_I NT_EN	CCI_ VCA MD_ OC_I NT_E N	CCI_ VUS B_O C_IN T_EN	CCI_V SIM1_ OC_IN T_EN	CCI_ VSIM 2_OC _INT_ EN	CCI_ VIBR _OC_ INT_ EN	CCI_ SPK_ OC_I NT_E N
Туре	RW	RW	RW	RW	RW			RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0			0	0	0	0	0	0	0

CCI_VA_OC_INT_EN Enable bit of VA over-current interrupt if the VA_OC_FLAG been asserted

CCI_VM_OC_INT_EN Enable bit of VM over-current interrupt if the VM_OC_FLAG been asserted CCI_VIO_OC_INT_EN Enable bit of VIO over-current interrupt if the VIO_OC_FLAG been asserted CCI_VRF_OC_INT_EN Enable bit of VRF over-current interrupt if the VRF_OC_FLAG been asserted CCI_VTCXO_OC_INT_EN Enable bit of VTCXO over-current interrupt if the VTCXO_OC_FLAG been asserted

CCI_VCAMA_OC_INT_EN Enable bit of VCAMA over-current interrupt if the VCAMA_OC_FLAG been asserted

CCI_VCAMD_OC_INT_EN Enable bit of VCAMD over-current interrupt if the VCAMD_OC_FLAG been asserted

CCI_VUSB_OC_INT_EN Enable bit of VUSB over-current interrupt if the VUSB_OC_FLAG been asserted CCI_VSIM1_OC_INT_EN Enable bit of VSIM1 over-current interrupt if the VSIM1_OC_FLAG been asserted CCI_VSIM2_OC_INT_EN Enable bit of VSIM2 over-current interrupt if the VSIM2_OC_FLAG been asserted Enable bit of VIBR over-current interrupt if the VIBR_OC_FLAG been asserted CCI_VIBR_OC_INT_EN Enable bit of SPK over-current interrupt if the SPK_OC_FLAG been asserted CCI_SPK_OC_INT_EN

MediaTek Confidential

© 2011 MediaTek Inc.

Page 467 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛІТЕК

830108F4h PMIC_INT_EN1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					RG	RG_	RG	RG	11	71				RG_		
				RG_BA	_C	BAT	_C	_c				RG_BA	RG_	BAT	RG_	BC C
				TON_U	HR	ON_	HR	HR				TON_U	CHR	ON_	CHR	RG_C HROV
Name		1		NDET2	DE	UND	LD	OV				NDET2	DET_	UND	LDO_	P INT
		10		_INT_I	T_I	ET_I	O _l	P_I				_INT_E	INT_	ET_I	INT_	EN
AR		110		NV	NT_	NT_I	NT_	NT_				N	EN	NT_E	EN	LIN
	5				INV	NV	INV	INV			T			N		
Туре				RW	RW	RW	RW	RW			I'I	RW	RW	RW	RW	RW
Reset				0	0	0	0	0	11			0	0	0	0	0

RG_BATON_UNDET2_INT_INV Inverse polarity of interrupt BATON_UNDET2

Inverse polarity of interrupt CHRDET RG_CHRDET_INT_INV

RG_BATON_UNDET_INT_INV Inverse polarity of interrupt BATON_UNDET

RG_CHRLDO_INT_INV Inverse polarity of interrupt CHRLDO

RG_CHROVP_INT_INV Inverse polarity of interrupt CHROVP

RG_BATON_UNDET2_INT_EN Enable of interrupt BATON_UNDET2

RG CHRDET INT EN **Enable of interrupt CHRDET**

Release for

Enable of interrupt CHRLDO RG CHRLDO INT EN

Enable of interruptCHROVP RG CHROVP INT EN

830108F8h	PMIC	OC STATUS

PMIC_OC_STATUS

L	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		VA_	VM_	VIO_	VRF	VTC	VCO	SPK	SPK	VCA	VCA	VUS		VSIM	VSIM	VIB	SPK_
	Name	OC_	OC_	OC_	_OC	XO_	RE_	_OC	_OC	MA_	MD_	B_O		1_OC	2_OC	R_	OC_
	•	STA	STA	STA	_ST	OC_	OC_	P_S	N_S	OC_	OC_	C_S		_STA	_STA	ОС	STAT

MediaTek Confidential

© 2011 MediaTek Inc.

Page 468 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

MEDIATEK

	TUS	TUS	TUS	ATU	STA	STA	TAT	TAT	STA	STA	TAT	TUS	TUS	_ST	US
				S	TUS	TUS	US	US	TUS	TUS	US			AT	
							10	MAT	14.1					US	
Туре	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

on WCX

ial Release for

VA OC STATUS VA over current flag

(1'b1: over current; 1'b0: no over current)

VM OC STATUS VM over current flag

(1'b1: over current; 1'b0: no over current)

VIO_OC_STATUS * VIO over current flag

(1'b1: over current; 1'b0: no over current)

VRF_OC_STATUS * VRF over current flag

(1'b1: over current; 1'b0: no over current)

VTCXO_OC_STATUS * VTCXO over current flag

(1'b1: over current; 1'b0: no over current)

VCORE_OC_STATUS VCORE over current flag

(1'b1: over current; 1'b0: no over current)

SPK OCP STATUS classAB PMOS over current flag

(1'b1: over current; 1'b0: no over current)

SPK OCN STATUS classAB NMOS over current flag

(1'b1: over current; 1'b0: no over current)

VCAMA_OC_STATUS * VCAMA over current flag

(1'b1: over current; 1'b0: no over current)

VCAMD OC STATUS * VCAMD over current flag

(1'b1: over current; 1'b0: no over current)

VUSB_OC_STATUS * VUSB over current flag

(1'b1: over current; 1'b0: no over current)

VSIM1 OC STATUS * VSIM1 over current flag

(1'b1: over current; 1'b0: no over current)

VSIM2_OC_STATUS * VSIM2 over current flag

MediaTek Confidential

© 2011 MediaTek Inc.

Page 469 of 508

This document contains information that is proprietary to MediaTek Inc.

ion MCX

GSM/GPRS Baseband Processor Data Sheet

Confidential A ntial Release for

(1'b1: over current; 1'b0: no over current)

VIBR_OC_STATUS * VIBR over current flag

(1'b1: over current; 1'b0: no over current)

SPK_OC_STATUS classAB over current flog

(1'b1: over current; 1'b0: no over current)

830108FCh PMIC_OC_FLAG PMIC_OC_FLAG

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	VA_ OC_ FLG	VM_ OC_ FLG	VIO_ OC_ FLG	VRF _OC _FL	VTC XO_ OC_	VCO RE_ OC_	e	10	VCA MA_ OC_	VCA MD_ OC_	VUS B_O C_F		VSIM 1_OC _FLG	VSI M2 _O C_F	VIB R_ OC _FL	SPK_ OC_F LG
				G	FLG	FLG			FLG	FLG	LG			LG	G	
Туре	RW	RW	RW	RW	RW	RW			RW	RW	RW		RW	RW	RW	RW
Reset	0	0	0	0	0	0			0	0	0		0	0	0	0

VA OC FLG R: Deglitched signal for VA_CL_STATUS

W: Clear VA OC FLG

VM_OC_FLG R : Deglitched signal for VM_CL_STATUS

W: Clear VM_OC_FLG

VIO_OC_FLG R: Deglitched signal for VIO_CL_STATUS

W: Clear VIO_OC_FLG

VRF_OC_FLG R: Deglitched signal for VRF CL STATUS

W: Clear VRF OC FLG

al Release for R: Deglitched signal for VTCXO_CL_STATUS VTCXO OC FLG

W: Clear VTCXO OC FLG

R: Deglitched signal for VCORE_CL_STATUS

W: Clear VCORE OC FLG

R: Deglitched signal for VCAMA_CL_STATUS VCAMA_OC_FLG

MediaTek Confidential

© 2011 MediaTek Inc.

Page 470 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

МЕДІЛІТЕК

R: Deglitched signal for VCAMD_CL_STATUS
W: Clear VCAMD_OC_FLG VCAMD OC FLG

R: Deglitched signal for VUSB CL STATUS VUSB OC FLG

W: Clear VUSB_OC_FLG

IM1_OC_FLG R: Deglitched signal for VSIM1 CL STATUS

W: Clear VSIM1_OC_FLG

R: Deglitched signal for VSIM2 CL STATUS VSIM2_OC_FLG

W: Clear VSIM2_OC_FLG

VIBR_OC_FLG R: Deglitched signal for VIBR_CL_STATUS

W: Clear VIBR OC FLG

SPK_OC_FLG R: Deglitched signal for SPK_OC_STATUS

W: Clear SPK OC FLG

83010900h PMIC_STARTUP_CON0

PMIC_STARTUP_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
Name	PW RKE Y_D EB(R)	PWR KEY_ VCO RE(R)	QI_TE ST_M ODE_P OR(R)		PMU_TH R_PWR OFF(R)	QI_	PMU_T ATUS(R	e	RG_ USB DL_E N	RG_T HR_H WPDN _EN	RG_TH ERMAL _DIS	RG_TH R_SEL
Туре	R	R	R		R		R					RW	RW	RW	RW
Reset	0	0	0		0		0					1	0	0	0

PWRKEY DEB(R) Debounced PWRKEY signal

PWRKEY_VCORE(R) PWRKEY signal before debounced

QI_TEST_MODE_POR(R) Test mode por signal

PMU THR PWROFF(R) PMU thermal power-off Indicator Normal operation

MediaTek Confidential

© 2011 MediaTek Inc.

Page 471 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Power-off

Startup monitor signal thermal status (no used) QI_PMU_THR_STATUS(R)

RG USBDL EN Reserved (no used)

RG THR HWPDN EN

0: Enable thermal hardware powerdown function 1: Disable thermal hardware powerdown function

RG_THERMAL_DIS Thermal shut-down disable control

0: enable thermal shutdown protection 1: disable thermal shutdown protection

RG_THR_SEL Thermal shut-down threshold fine tuning (Internal use)

00: Initial setting 01:+10oC 10:-20oC 11:-10oC

PMIC_STARTUP_CON1 83010904h

PMIC_STARTUP_CON1

Bit	15	14	1 3	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		RG_BIA S_GEN_ FORCE						RG_PMU_ LEV_UNG ATE			RG_R ST_D RVSE L	RG_S TRUP _TES T		RG_	VREF_E	3G
Туре		RW						RW			RW	RW			RW	
Reset		0						0			0	0			0	
_																
KG_PM		:v_UNGA	ΙE	use to	ungat	e PMU	rela	ated ievel si	nittei	rs, ac	ctive high	1				

0: Gated 1: Ungated

RG_RST_DRVSEL Reset pin output driving capability Selection

0: 7.5mA (default)

1: 15mA

Startup macro test clock enable signal

MediaTek Confidential

© 2011 MediaTek Inc.

Page 472 of 508

GSM/GPRS Baseband Processor Data Sheet

Release for

Confidential A

0: Normal clock source

1: Test clock source to speedup FT

RG_VREF_BG Reference voltage fine tuning according to VBG

000: initial setting 001: minus 1 step 010 : minus 2 step 011 : minus 3 step 100 : plus 4 step 101 : plus 3 step 110 : plus 2 step

8301090	5	101 : 110 : ¡ 111 : ¡	plus 2 olus 1	step step	ON2		MON	W	C		PMIC_START 6 5 4 3 2 G_TP_LED RG_IBIAS_1 RW RW					_co
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	N2
Name	QI_S	TRUP_	_FLAG_ R)	OUT(QI_PMU _RSTB(R)	QI_PMU _DCXO2 6M_ON(R)	QI_PMU_ DCXO26M _DLY	RG_TH RDET_ SEL		RG_TF	P_LED)	RG	G_IBIAS	S_TRI	M
Туре	R R				R	R	R	RW		R\	N			RW	1	
Reset	0 0			0	0	0	0		0				0			

QI_STRUP_FLAG_OUT(R)

Startup monitor siganls

QI_PMU_RSTB(R) System Reset Disable Signal

QI_PMU_DCXO26M_ON(R) enable signal for DCXO

QI_PMU_DCXO26M_DLY delayed enable signal for DCXO

RG_THRDET_SEL Thermal detection method:

lease for 1: 4-state polling (<110oC/110oC~130oC/110oC~150oC/>150oC)

0: 3-state hysteresis (<110oC/110oC~150oC/>150oC)

RG TP LED[3:0]: PMU test mode but need to set PAD PMU TESTMODE = VBAT RG TP LED

RG_TP_LED[2:0]	KP_LED	ISINK3	ISINK2	ISINK1	ISINK0
000	DISABLE STARTUP DEE	BUG MODE @ PMU_TEST	MODE=1	.	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 473 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

001	UVLO	DDLO	THERMAL	CHRDET	RTC_PWRBB
010	CLK75K	PWRKEY	PWRKEY_DEB	PWRON	BGR_READYB
011	DCXO26M_ON	DCXO26M_DLY	THR_STATUS[2]	THR_STATUS[1]	THR_STATUS[0]
100	VRF_PG_STATUS	VTCXO_PG_STATUS	VTHR_POL[2]	VTHR_POL[1]	VTHR_POL[0]
101	VCORE_PG_STATUS	VM_PG_STATUS	VIO_PG_STATUS	VA_PG_STATUS	GND
110	GND	GND	GND	GND	GND
111	GND	GND	GND	GND	GND

RG_TP_LED[3]: reserved

RG_IBIAS_TRIM V/I source bias triming

0000	+0%	1000	-50%	
0001	+6.25%	1001	-43.75%	
0010	+12.5%	1010	-37.5%	f - 1
0011	+18.75%	1011	-31.25%	10# 00
0100	+25%	1100	-25%	2010356
0101	+31.25%	1101	-18.75%	I Release Ivi
0110	+37.5%	1110	-12.5%	
0111	+43.75%	1111	-6.25%	

8301090Ch PMIC_STARTUP_CON3

PMIC_STARTUP_CO

N3

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RG_IBI	RG_T	RG_SV	RG_STRUP_	RG_S	STRUP	FLAC	G_SE	V		RG	_STR	UP_RS	·V		

MediaTek Confidential

© 2011 MediaTek Inc.

Page 474 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

	AS_TRI M_EN	HR_T MOD	12_TM ODE	FLAG_EN	L	86/6920
		E			1017001	
Туре	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0

RG_IBIAS_TRIM_EN

Reserve (Not used)

RG_THR_TMODE

0: Disable thermal threshould input from KP_LED

1: Enalbe thermal threshould input from KP_LED

RG_SV12_TMODE Startup internal 1.2v capless LDO test mode

0: disable test mode

1 : enable test mode to output 1.2v to KP_LED

RG_STRUP_FLAG_EN

0: Disable startup digital macro flag output function

1: Enable startup digital macro flag output function

RG_STRUP_FLAG_SEL Startup digital macro flag output selection control

RG_STRUP_FLAG_SEL[3:0]	STRUP_FLAG_OUT[3]	STRUP_FLAG_OUT[2]	STRUP_FLAG_OUT[1]	STRUP_FLAG_OUT[0]
0	PMU_DDLO	uvlo_deb	chrdet_deb	pmu_thr_pwroff
1	RTC_PWRBB	PMU_PWRKEY_DEB	PMU_PWRKEY	PMU_UVLO
2	mon_pmu_ck75k_pre	mon_pmu_ck75k	mon_pmu_ck256us	mon_pmu_ck1ms
3	PMU_TEST_CK	PCHR_CHRDET	0	0
4	vcore_pg_deb	vio18_pg_deb	va_pg_deb	0
5	PMU_DCXO26M_ON	PMU_DCXO26M_DLY	0	PMU_PWRON
6	PMU_THERMAL	PMU_THR_STATUS[2]	PMU_THR_STATUS[1]	PMU_THR_STATUS[0]
7	0	VTHR_POL[2]	VTHR_POL[1]	VTHR_POL[0]
8	0	vio28_pg_deb	vtcxo_pg_deb	vrf_pg_deb
9	0	0		0
10	VUSB_STB	VRF_STB	VTCXO_STB	VCORE_STB
11	VIO18_STB	VIO28_STB	VA_STB	0
12	PMU_TESTMODE	VCORE_PG_STATUS	VIO18_PG_STATUS	VIO28_PG_STATUS
13	VA_PG_STATUS	VRF_PG_STATUS	VTCXO_PG_STATUS	0
14	0		0	0
15	0	0	0	0

RG STRUP RSV Reserved

830109	80h	PMIC_	ISINKO	CON0											PMIC_ISINI	(O_CONO
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										RG ISINKO STEP					RG_ISIN	RG_ISI
Ivallie									-1	A NO.	ISHNINO_S				K0 MOD	NK0 E

MediaTek Confidential

© 2011 MediaTek Inc.

Page 475 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

						n	Y	E	N
Туре						RW		RW	RW
Reset					M	0		0	0

RG_ISINK0_STEP Coarse 6 step current level for ISINK CH0, 000:4mA ~ 101:24mA, 4mA per step

RG_ISINK0_STEP[2:0]	000	001	010	011	100	101	110	111
ISINK0 current (mA)	4	8	12	16	20	24	-	-

RG_ISINKO_MODE ISINKO PWM MODE SEL

1 : Register control mode (see the RG_ISINK0_EN to turn-on)

0 : PWM mode, (controlled by PWM3)

RG_ISINK0_EN Turn on ISINK Channel 0

8301098	34h	PMIC_	ISINKO	CON1										PMIC_IS	INKO_C	ON1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name					RG_ISINKS_VREF_CAL											
Туре						RW										
Reset						0										

RG_ISINKS_VREF_CAL Fine Tune reference voltage level for ISINK (0.0675V~0.13V,default [00000]=0.1V). 2.5mV per step.

VREF_CAL[4:0]	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100
Vref (mV)	100.0	102.5	105.0	107.5	110.0	112.5	115.0	117.5	120.0	122.5	125.0	127.5	130.0
VREF_CAL[4:0]	10011	10100	10101	10110	10111	11000	11001	11010	11011	11100	11101	11110	11111
Vref (mV)	67.5	70.0	72.5	75.0	77.5	80.0	82.5	85.0	87.5	90.0	92.5	95.0	97.5

83010988h PMIC_ISINKO_CON2 PMIC_ISINKO_CON2 Bit 13 12 10 5 4 3 2 RG_ISINKS_RSV Name RW Type Reset 0

RG_ISINKS_RSV

MediaTek Confidential

© 2011 MediaTek Inc.

Page 476 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

GSM/GPRS Baseband Processor Data Sheet

Confidential A

RG_ISINKS_RSV[0] : current trimming enable

0: normal operation, 1: bias trimming enable

Release for RG_ISINKS_RSV[2:1]: Reserved register for future use

RG ISINKS RSV[3]: ClassAB dis shoot through enable

0: enable dis shoot through, 1: normal operation

83010990h PMIC_ISINK1_CON0

PMIC_ISINK1_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name										DC	IQINIZ1	STEP			RG_ISINK	RG_ISIN
Name										KG_	ISHINKI,	SIEP			1_MODE	K1_EN
Туре								-	7		RW				RW	RW
Reset								77			0				0	0

RG_ISINK1_STEP Coarse 6 step current level for ISINK CH1, 000:4mA ~ 101:24mA, 4mA per step

RG_ISINK1_STEP[2:0]	000	001	010	011	100	101	110	111
ISINK1 current (mA)	4	8	12	16	20	24	-	-

RG_ISINK1_MODE ISINK1 PWM MODE SEL

1 : Register control mode (see the RG ISINK1 EN to turn-on)

0: PWM mode, (controlled by PWM3)

RG ISINK1 EN Turn on ISINK Channel 1

830109A0h PMIC_ISINK2_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						-1	. 1			RG_	ISINK2_	STEP	5		RG_ISINK 2_MODE	RG_ISIN K2_EN
Туре						M.	1	12	II	110	RW				RW	RW
Reset											0				0	0

RG ISINK2 STEP Coarse 6 step current level for ISINK CH2, 000:4mA ~ 101:24mA, 4mA per step

RG_ISINK2_STEP[2:0]	000	001	010	011	100	101	110	111
ISINK2 current (mA)	4	8	12	16	20	24	-	-

RG_ISINK2_MODE ISINK2 PWM MODE SEL

MediaTek Confidential

© 2011 MediaTek Inc.

Page 477 of 508

1 : Register control mode (see the RG_ISINK2_EN to turn-on)
0 : PWM mode, (controlled by PWM3)

RG_ISINK2_EN Turn on ISINK Channel 2

PMIC_ISINK3_CON0 830109B0h

PMIC_ISINK3_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		/a								RG_	ISINK3_	STEP			RG_ISINK 3_MODE	RG_ISIN K3_EN
Туре									1		RW				RW	RW
Reset								10			0				0	0

ntial

RG_ISINK3_STEP Coarse 6 step current level for ISINK CH3, 000:4mA ~ 101:24mA, 4mA per step

RG_ISINK3_STEP[2:0]	000	001	010	011	100	101	110	111
ISINK3 current (mA)	4	8	12	16	20	24	-	-

RG_ISINK3_MODE ISINK3 PWM MODE SEL

1 : Register control mode (see the RG_ISINK3_EN to turn-on)

0: PWM mode, (controlled by PWM3)

RG_ISINK3_EN Turn on ISINK Channel 3

830109C0h PMIC_KPLED_CON0

PMIC_KPLED_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2		0
						MUST							B		RG_KP	RG_
Name						BE 0	MUST	BE 0		RG_	KPLED_	SEL	7	5	LED_M	KPLE
						b		A 1				50			ODE	D_EN
Туре						RW	R'	W	Y .		RW				RW	RW
Reset						0					0				0	0

RG_KPLED_SEL 3 bits for KPLED current adjustment. 8 steps in total. The minimal current should be no less than 60mA at <111> step.

RG_KPLED_SEL[2:0]	000	001	010	011	100	101	110	111
KPLED current	1X	2X	3X	4X	5X	6X	7X	8X

RG KPLED MODE KPLED enable mode select

MediaTek Confidential

© 2011 MediaTek Inc.

Page 478 of 508

GSM/GPRS Baseband Processor Data Sheet

| Release fo

Confidential A

- pwm mode, controlled by hardware PWM1 output signal
- Register control mode (see the KPLED_EN to turn-on)

RG_KPLED_EN Turn on KeyPAD

830109D0h PMIC_CLASSAB_CON0

PMIC_CLASSAB_CON0

Bit	15	14	13	12	1	10	9	8	7	6	5	4	3	2	1	0
		10	173	17	RG_	RG_	RG_				RG_					
AN		10			SPK	SPK	SPK			RG_	SPK					DC
Name			RG_SF	PK_MI	_IN_	_IN_	_TE	RG_S	PK_O	SPK	_ou	r	ac env		RG_ SPK	
Name			NUS_0	GAIN	FLO	TIE_	STI	Bl	AS	_oc	TF	RG_SPK_VOL				EN
					AT_{-}	HIG	N_S		Λ,	LEN	LOA					EIN
					В	Н	EL	1011			T_B					
Туре			RV	N	RW	RW	RW	RW		RW	RW		RW			RW
Reset			0		0	0	0	0		0	0		0			0

RG SPK MINUS GAIN class AB minus gain enable

00: disable

01: -3dB gain

1011 -6dB gain

RG_SPK_IN_FLOAT_B Let OP's input floating when inactive

0: input floating

1: input may be tied H/L

Let OP's input tied to high when inactive(functional when FLOAT_B=1)

H RG_SPK_IN_TIE_HIGH

RG_SPK_IN_FLOAT_B=1)

0: input tie to H 1: input tie to L

Input source select RG_SPK_TESTIN_SEL

> 0 : normal path 1: test path

class AB mode output stage bias current select RG SPK OBIAS

00: 6mA

MediaTek Confidential

© 2011 MediaTek Inc.

Page 479 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

01:9mA 10:12mA 11:15mA

ial Release for RG_SPK_OC_EN class AB mode Over-current protection enable

0:disable

1:enable

RG_SPK_OUT_FLOAT_B class AB mode Output floating during power down

0:output floating 1:not floating, tie H

RG_SPK_VOL class AB volume control 1.5dB/step

RG_SPK_VOL[3:0]	Gain	RG_SPK_VOL[3:0]	Gain	RG_SPK_VOL[3:0]	Gain	RG_SPK_VOL[3:0]	Gain
	[dB]		[dB]		[dB]		[dB]
0000	0	0100	6	1000	12	1100	18
0001	1.5	0101	7.5	1001	13.5	1101	19.5
0010	3	0110	9	1010	15	1110	21
0011	4.5	0111	10.5	1011	16.5	1111	22.5

RG_SPK_EN SPKDRV Powering Up/Down Control

830109D4h PMIC_CLASSAB_CON1

110_01		sable nable		OWCIII	ig op					c P	\$0	1				
830109	D4h	PMIC	_CLA	SSAB_	CON1			100	ML		PM	C_CLAS	SAB_C	ON1		
Bit	15	14	1 3	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	SPK_O C_FLAG (R)	7		(30		Oc	7.1		CCI_SPK_O C_AUTO_O FF			SPK_OC_W SPK_OC ND TRG			
Туре	R	$\lambda \lambda$	V							RW			R	RV	V	
Reset	0	2								0			(0		

SPK_OC_FLAG The flag informs some SPK over current status have been asserted.

0 no over current status

MediaTek Confidential

© 2011 MediaTek Inc.

Page 480 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

MEDIATEK

1 some over current status

CCI_SPK_OC_AUTOFF Enable to power-off the SPK automatically if the SPK_OC_FLAG been asserted.

- 0 disable
- 1 enable

SPK_OC_WND Decision window setting for SPK over current status.

- 0 16uS
- 1 32uS
- **2** 64uS
- 3 128uS

SPK_OC_TRG Threshold setting in the decision window for SPK over current status.

- 4/8
- 1 3/8
- 2 2/8
- **3** 1/8

83010A00h PMIC_CHR_CON0

PM	_	\sim		~~	
PM	ш:		11		м

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	VCD T_H V_D ET(R)	VCD T_L V_D ET(R)	CHR DET (R)	CHR _EN	CSD AC_ EN	PCH R_A UTO	CHR _LD O_D ET	VCD T_H V_E N		VCDT_I	HV_VTH		\	/CDT_L	V_VTH	
Туре	R	R	R	RW	RW	RW	R	RW	RW				RV	V		
Reset	0	0	0	0	0	0	0	0	1011					10		

VCDT_HV_DET(R) ChargerIn high threshould detection (1: > vth, 0 < vth)

VCDT_LV_DET(R) ChargerIn low threshould detection (1: > vth, 0 < vth)

CHRDET(R) Charger detection output (1: detected, 0: not detected)

CHR_EN Enable current DAC & charger auto charing control

CSDAC_EN Current DAC driver enable

PCHR_AUTO Charger auto charging control

CHR_LDO_DET Charger LDO detection (1: detected, 0: not detected)

VCDT_HV_EN ChargerIn detection high threshold enable

MediaTek Confidential

© 2011 MediaTek Inc.

Page 481 of 508

VCDT_HV_VTHChargerIn detection high threshold

 $0000: 4.2 \text{V} \ / \ 0001: 4.25 \text{V} \ / \ 0010: 4.30 \text{V} \ / \ 0011: 4.35 \text{V} \ / \ 0100: 4.40 \text{V} \ / \ 0101: 4.45 \text{V} \ / \ 0110: 4.50 \text{V} \ / \ 0111: 4.55 \text{V}$

1000:4.60V / 1001:6.00V / 1010:6.50V / 1011:7.00V / 1100:7.50V / 1101:8.50V / 1110:9.50V / 1111:10.0V /

VCDT_LV_VTH ChargerIn detection low threshold

0000:4.2V / 0001:4.25V / 0010:4.30V / 0011:4.35V / 0100:4.40V / 0101:4.45V / 0110:4.50V / 0111:4.55V

1000:4.60V / 1001:6.00V / 1010:6.50V / 1011:7.00V / 1100:7.50V / 1101:8.50V / 1110:9.50V / 1111:10.0V /

83010A04h PMIC_CHR_CON1 PMIC_CHR_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	VBA	VBA					VBA	VBA											
	T_C	T_C							VDAT	CC V									
Name	C_D	V_D					T_C	T_C		_CC_V TH			VBA	T_CV_V	TH				
	ET(ET(C_E N	V_E N		П									
	R)	R)					IN	IN											
Туре	R	R					RW	RW	R	.W		RW							
Reset	0	0					1	0	1	0		0				-			

VBAT_CC_DET(R) Battery CC-voltage detection output (1: > vth, 0 < vth)

Battery CV-voltage detection output (1: > vth, 0 < vth) VBAT CV DET(R)

VBAT_CC_EN Battery CC detection enable

VBAT_CV_EN Battery CV detection enable

ek Confidential Release for VBAT_CC_VTH Battery CC detection threshold

00: 3.250V

01: 3.275V

10: 3.300V

Battery CV detection threshold

00000:4.000V; 00001:4.0125; 00010:4.0250V; 00011:4.0375; 00100:4.0500V

MediaTek Confidential

© 2011 MediaTek Inc.

Page 482 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

00110:4.0675V; 00111:4.0875; 01000:4.1000V; 01001:4.1125; 01010:4.1250V; 01011:4.1375

01100:4.1500V; 01101:4.1625; 01110:4.1750V; 01111:4.1875; 1X000:4.2000V; 1X001:4.2125

1X010:4.2250V; 1X011:4.2375; 1X100:4.2500V; 1X101:4.2625; 1X110:4.2750V; 1X111:4.2875

11111:2.2000V

83010A08h PMIC_CHR_CON2 PMIC_CHR_CON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	CS_ DET (R)			CS_ EN		6	CS_VTF	10		W	TOLTC			1	ОНТС	
Туре	R			RW			RW				RW				RW	
Reset	0			0			111				0				0	

CS_DET(R) Current sense comparator output (1: > Vth, 0 < Vth)

CS_EN Current sense enable

CS_VTH Current sense threshold.

000: 800mA; 001:700mA; 010:650mA; 011:550mA; 100:450mA; 101:400mA; 110:200mA; 111:70mA

TOLTC Charger control cycles for driving low

TOHTC Charger control cycles for driving high

	on an extensive species and	99	E a W
83010A0Ch	PMIC_CHR_CON3		PMIC_CHR_CON3

Bit	15	14	13	12	11	10	9	8	7	6	5 4	3	2	1	0
Name	BATO N_UN DET(R	VBAT_ OV_DE T(R)			VBA T_O V_D EG	BATO N_HT _EN	BAT ON_ EN	VBAT _OV_ EN		AT_OV VTH	CSDAC_DL Y			CSDA(
Туре	R	R			RW	RW	RW	RW	F	₹W	RW			RW	1
Reset	0	0			0	0	1	1		1	11			1	

BATON_UNDET(R) Battery-On undetected (1: not detected, 0: detected)

VBAT_OV_DET(R) Battery over-voltage detection output (1: > vth, 0 < vth)

VBAT_OV_DEG Battery over-voltag deglitch (1: enable, 0: disable)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 483 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Battery-On high temperature detection (1: enable, 0: disable) BATON HT EN

Battery-On detection for drving protection (1: enable, 0: disable) **BATON EN**

VBAT_OV_EN Battery over-voltag for driving protection (1: enable, 0: disable)

VBAT_OV_VTH Battery over-voltag detection threshold

OV_VTH_H: 00:4.325V; 01:4.350V; 10: 4.375V; 11:4.1150V

OV_VTH_L: 00:4.275V; 01:4.300V; 10: 4.325V; 11:4.0400V (Hysteresis

Current DAC output step timer CSDAC DLY

Current DAC output step CSDAC_STP

83010A10h PMIC_CHR_CON4

D 14			CO	N 4
PM	υп	IK.	LU	144

Bit	15 14 13 12 11 10 9 8									6	5	4	3	2	1	0
Name			(CSDAC_	_DAT									PCHR_ RST	CSDAC_ TEST	PCHR_ TEST
Туре		RW												RW	RW	RW
Reset	0													0	0	0

CSDAC_DAT Current DAC driver data

PCHR_RST Charger control reset

8301	0A14h	PN

MIC_CHR_CON5

CSDAC	_TEST (Currer	nt DA	AC driver	test	mode								50	Y	
PCHR_	TEST (Charg	er co	ontrol tes	t mo	de					1	20	SB	11)\	
83010A	14h	PMIC	_CHI	R_CON5							01	20		PMIC_	_CHR_C	ON5
Bit	15	14	1 3	12	1	10	9	8	7	6	5	4	3	2	1	0
Name	OTG_B VALID(R)	7		OTG_B VALID_ EN	0		a		PCHR_FL AG_EN							
Туре	R			RW					RW							
Reset	0			0	·				0							

OTG_BVALID(R)

OTG BValid detected (1: detected, 0: not detected)

MediaTek Confidential

© 2011 MediaTek Inc.

Page 484 of 508

МЕДІЛІТЕК

OTG BValid detection enable (1: enable, 0: disable)

Charger control debug_flag_en OTG_BVALID_EN

PCHR_FLAG_EN

83010A	18h	PMIC_	CHR_C	ON6				<u> </u>						PMIC_	CHR_C	ON6
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		15			5							CHRW DT_EN		CHRWE	DT_TD	
Type		15								40		RW		RV	٧	
Reset										110		1		0		

CHRWDT_EN Charger control watchdog enable

CHRWDT_TD Charger control watchdog delay

83010A	1Ch	PMI	C_CHF	R_CON7	,											PMIC_CHR_CON7
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	CHRWD														CHRWDT_F	CHRWDT_INT_EN
Name	T_OUT														LAG	CHRWDI_INI_EN
Туре	R														R	RW
Reset	0														0	0

CHRWDT_OUT Charger watchdog output

CHRWDT_FLAG Charger watchdog flag

CHRWDT_INT_EN Charger watchdog interrupt enable

83010A	20h	PMIC_	CHR_C	ON8									20	PMIC_	CHR_C	SON8
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name		ADC IN_V CHR _EN	ADC IN_V SEN _EN	ADC IN_V BAT _EN	USB DL_ SET	USB DL_ RST	UVLO	VTHL	13	K	BGR _UN CHO P	BGR _UN CHO P_P H		BG	iR_RSE	iL
Туре		RW	RW	RW	RW	RW	R	W			RW	RW			RW	
Reset		0	0	0	0	0	()			0	0			0	

ADCIN_VCHR_EN AUXADC input source enable for CHR (1: enable, 0: disable)

AUXADC input source enable for VSEN (1: enable, 0: disable) ADCIN_VSEN_EN

MediaTek Confidential

© 2011 MediaTek Inc.

Page 485 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

ADCIN_VBAT_EN AUXADC input source enable for VBAT (1: enable, 0: disable)

USBDL SET USBDL model set

USBDL_RST USBDL model reset

UVLO_VTHL UVLO low threshold selection

00:2.5V; 01:2.6V; 10:2.75V; 11:2.9V

BGR_UNCHOP BGR unchop mode (1: unchop, 0: chop)

BGR_UNCHOP_PH BGR unchop mode phase selection

BGR_RSEL BGR resistor selection

83010A24h PMIC_CHR_CON9 PMIC_CHR_CON9

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	RGS_BC11 _CMP_OUT (R)				_	C11_V C_EN	BC1 1_R ST	BC1 1_B B_C TRL	BC1 1_BI AS_ EN		11_IP _EN		1_IPD EN	BC1 ^r P_	I_CM EN	BC11_V REF_VT H
Туре	R				R	W	RW	RW	RW	F	WS	R	W.	R	W	RW
Reset	0				1	0	0	0	0		0		0	()	0

RGS_BC11_CMP_OUT(R) BC1.1 comparator output logical signal stored and can be monitored.

RG BC11 VSRC EN BB to CGR-BC1.1 signal, Enable bits of Voltage buffer of USB DP.USB DM.

BC11_RST BC 1.1 control reset signal (rising edge).

BB to CGR-BC1.1 signal. The control bit enable the BC1.1 circuit control from BB.

BC11_BIAS_EN BB to CGR-BC1.1 signal. The bit is to enable the bias circuits of BC1.1 circuit. 0:disable/1:enable.

BC11_IPU_EN BB to CGR-BC1.1 signal.

The bit is to enable the IPU10u current source of BC1.1 circuit. 0:disable/1:enable.

BC11_IPD_EN BB to CGR-BC1.1 signal.

The bit is to enable the IPD100u current source of BC1.1 circuit. 0:disable /1:enable.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 486 of 508

BC11_CMP_EN BB to CGR-BC1.1 signal.

ease fo The bit is to enable the comparator circuit of BC1.1 circuit. 0:disable /1:enable.

BC11_VREF_VTH BB to CGR-BC1.1 signal

The bit is to select the threshold voltage of BC1.1 comparator input. 0:0.330V / 1:1.146V.

83010A	28h	PMIC	_CHR_C	ON10										PMIC_0	CHR_CC	DN10
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	5							RESER	RVED							
Type								RV	V		71	4				
Reset		•	•	•	•			0				•	•	•		

RESERVED Reserved, do not write anything to this register

83010A	2Ch	PMIC_CHR_CON11 5												PMIC_C	CHR_CC	DN11
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name			PC	HR_FL/	AG_OUT	(R)					P	CHR_FL	AG_SEL	•		
Туре		R										RV	٧			
Reset		•)	•	•			•	•	0			•	

Charger digital controller internal state flags PCHR FLAG OUT(R)

PCHR_FLAG_SEL Charger control debug flag signal selection. Note: PCHR FLAG EN should be enabled

MediaTek Confidential

© 2011 MediaTek Inc.

Page 487 of 508

PCHR_FL AG_SEL	MON[3]	MON[2]	MON[1]	MON[0]
5'h00	QI_CS_DET	QI_VBAT_CV_DET	QI_VBAT_CC_DET	QI_VCDT_DET
5'h01	QI_DDLO_DET	QI_UVLO_DET	QI_BATON_UNDET	QI_VBAT_OV_DET
5'h02	CHRWDT_OUT	PCHR_STATE[2]	PCHR_STATE[1]	PCHR_STATE[0]
5'h03	QI_DRV_EN	SFSTR_EN	SFSTR_STATE[1]	SFSTR_STATE[0]
5'h04	BBCTL_FLAG	VBAT_CC_FLAG	VCDT_HV_FLAG	VCDT_LV_FLAG
5'h05	QI_CS_EN	QI_VCDT_EN	QI_VBAT_CV_EN	QI_VBAT_CC_EN
5'h06	DDLO_DEB	UVLO_DEB	BATON_UNDET_DEB	VBAT_OV_DEB
5'h07	1'b0	RGS_USBDL_MODE	QI_USBDL_MODE	USBDL_4scnt_out
5'h08	PCHR_RSTB	PCHR_CK1MS	PCHR_CK1US	PCHR_CK16US
5'h09	DDLO_CALI_DAT[3]	DDLO_CALI_DAT[2]	DDLO_CALI_DAT[1]	DDLO_CALI_DAT[0]
5'h0A	QI_DRV_D[7]	QI_DRV_D[6]	QI_DRV_D[5]	QI_DRV_D[4]
5'h0B	QI_DRV_D[3]	QI_DRV_D[2]	QI_DRV_D[1]	QI_DRV_D[0]
5'h0C	QI_VBAT_CV_VTH[4]	QI_CS_VTH[2]	QI_CS_VTH[1]	QI_CS_VTH[0]
5'h0D	QI_VBAT_CV_VTH[3]	QI_VBAT_CV_VTH[2]	QI_VBAT_CV_VTH[1]	QI_VBAT_CV_VTH[0]
5'h0E	DDLO_CALI_OK	VBAT_CV_FLAG	QI_VBAT_CC_VTH[1]	QI_VBAT_CC_VTH[0]
5'h0F	QI_VCDT_VTH[3]	QI_VCDT_VTH[2]	QI_VCDT_VTH[1]	QI_VCDT_VTH[0]
5'h10	mon_pchr_ckrtc	mon_bc11_rtc_ck1sec	bc11_rtc_rpen	bc11_rtc_timeout
5'h11	bc11_500ms_rpen	bc11_500ms_timeout	bc11_1M_rpen	bc11_1M_timeout
5'h12	v22_deb	bc11_rpen	bc11_charger_det	bc11_det_finish
5'h13	pchr_bc11_bias_en	pchr_bc11_vref_vth	usbldo_force_en	csdac_isusp
5'h14	pchr_bc11_ipd_en[1]	pchr_bc11_ipd_en[0]	pchr_bc11_ipu_en[1]	pchr_bc11_ipu_en[0]
5'h15	pchr_bc11_vsrc_en[1]	pchr_bc11_vsrc_en[0]	pchr_bc11_cmp_en[1]	pchr_bc11_cmp_en[0]
5'h16	bc11_rstb	mon_bc11_ck1us	dead_lat	QI_PCHR_BC11_CMP_OUT
5'h17	bc11_cnt[10]	bc11_cnt[9]	bc11_cnt[3]	bc11_cnt[2]
5'h18	bc11_500ms_rpcnt[9]	bc11_500ms_rpcnt[8]	bc11_500ms_rpcnt[1]	bc11_500ms_rpcnt[0]
5'h19	bc11_1024ms_rpcnt[9]	bc11_1024ms_rpcnt[8]	bc11_1024ms_rpcnt[1]	bc11_1024ms_rpcnt[0]
5'h1A	bc11_720sec_rpcnt[9]	bc11_720sec_rpcnt[8]	bc11_720sec_rpcnt[1]	bc11_720sec_rpcnt[0]
5'h1B	bc11_rtc_32768_rpcnt[14]	bc11_rtc_32768_rpcnt[13]	bc11_rtc_32768_rpcnt[1]	bc11_rtc_32768_rpcnt[0]
5'h1C	bc11_rtc_1500sec_rpcnt[10]	bc11_rtc_1500sec_rpcnt[9]	bc11_rtc_1500sec_rpcnt[1]	bc11_rtc_1500sec_rpcnt[0]
5'h1D	bc11_state[7]	bc11_state[6]	bc11_state[5]	bc11_state[4]
5'h1E	bc11_state[3]	bc11_state[2]	bc11_state[1]	bc11_state[0]
5'h1F	bc11_512ms_timeout	detect_stop	1'b1	1'b0

83010A	D10A30h PMIC_CHR_CON12 15 14 13 12 11 10 9													PMIC_0	CHR_CC	N12
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	BAT									///			Р	CHR_F	T_CTRL	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 488 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

	ON_ UND ET2(40	nt	13	R	6/	30	
	R)			$\preceq T$		411					
Туре	R										RW
Reset	0		5	111				·			0

BATON_UNDET2(R) Reserved read only bit of battery-on detection function.

PCHR_FT_CTRL Charger FT mode control bits

bit 2 extend the charger detection duration 10ms

bit 1 speed up detection, force TOH/TOL = 3ms/1ms

bit 0 always turn on charger detection (VCDT)

83010A34h PMIC_	CHR_CON13	U O ' F	PMIC_CHR_CON13
-----------------	-----------	---------	----------------

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	PC	HR_TRII	MDATA1	I(R)	PCI	HR_TRII	MDATA)(R)			_			-		
Туре		F	₹			F	₹			,	-			-		
Reset		()			()			()			0		

PCHR_TRIMDATA1(R) Reserved read only of trimmed data.

PCHR_TRIMDATA0(R) Reserved read only of trimmed data.

83010A40h PMIC_CHR_CON16 PMIC_CHR_CON16

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 1	0
Name			RG_D UI			RG_OV	P_TRIM				1	RG_PCH	HR_RV	11	11	
Туре			R	V		R'	W	A 1				RV	٧			
Reset						10	00	10			M.	0				

RG_DRV_ITUNE: IDAC 1LSB current resolution option. 00:1X, 01:0.5X, 10:0.5X, 11:1/3X

RG_OVP_TRIM[3:0]: 4bit OV trimming level selection. These registers mapping can calibrate -3.5%~4%

error.

RG_PCHR_RV Reserved for pchr

MediaTek Confidential

© 2011 MediaTek Inc.

non WC)

Page 489 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

83010F	00h	FMTR_C	ONO							8		02	se	71	FMTR_C	ONO
Bit	15	14	13	12	11	10	9	8 🐧	7	6	5	4	3	2	1	0
Name	FQMT	FQMT	_				10	TAT	IVI		OME	MINOET				
Name	R_EN	R_RST				7		<u> </u>			-QIVIT R	L_WINSET				
Туре	RW	RW			10				•		F	₹W	•	•		-
Reset	0	0	71		7							0				

FQMTR_EN Frequency-meter enable control signal

0 disable

1 enable

FQMTR RST Frequency-meter reset control signal

0 normal operation

MEDIATEK

reset

ion MCX **FQMTR_WINSET** Frequency-meter measurement window setting (= numbers of FIXED clock cycles)

83010F	04h	FMTR	_CON1												MTR_C	ON1
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												FQM				
Name												TR_	_	OMTD :	TOKSEL	
Name												FCK		QIVITIK_	TCKSEL	•
												SEL				
Туре												RW		R۷	٧	
Reset												0		0		

FQMTR FCKSEL Frequency-meter FIXED clock selection

O CLKSQ 13MHz clock

RTC XOSC 32KHz clock

fidential Release for FQMTR TCKSEL Frequency-meter TESTED clock selection

0 idle

- 1 CLKSQ 26MHz clock
- MPLL clock
- 3 UPLL 104M clock
- USB PHY 30MHz clock
- SPLL clock
- UPLL 78M cock
- RTC XOSC 32KHz clock
- USB clock
- 48M clock

MediaTek Confidential

non WCX © 2011 MediaTek Inc.

Page 490 of 508

10~15 reserved

83010F08h **FMTR DATA** FMTR_DATA Bit 13 5 0 15 14 12 **FQMTR** FQMTR_DATA Name BUSY Туре R Reset 0 vou MC

Set this register for Frequency-Meter Data registers.

FQMTR_BUSY Frequency-meter busy status

• FQMTR is ready

FQMTR is busy

FQMTR_DATA Frequency-meter measurement data

**** Frequency(TESTED clock) = Frequency(FIXED clock) * FQMTR DATA[11:0]/FQMTR WINSET[9:0]

83010F10h MIXEDSYS_MON_CON0

MIXEDSYS_MON_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									MIXEDSY			MIXEDSYS_MON_SEL				
Name									S_MON_C			MIXEDSYS_MON_SEL				
									FG			MIXEBOTO_MON_OZE				
Туре									RW			RW				
Reset									0			1Fh				

MIXEDSYS_MON_CFG monitor flags output mode select

- **0** Normal monitor signals output mode

MIXEDSYS_MON_SEL monitor flags output select

	 Normal monitor signs 	als output mode		tat
	1 MCU programmable	debug mode (output MIXEDS	SYS_MON_OUT[7:0])	~ \ TU\
MIXI	EDSYS_MON_SEL monit	or flags output select	= 102	56
X	MON[7]	MON[6]	MON[5]	MON[4]
00	0	0	0	MON_ESDM_CK
01	0		0	0
02	DA_AYDL[7]	DA_AYDL[6]	DA_AYDL[5]	DA_AYDL[4]
03	DA_AYDR[7]	DA_AYDR[6]	DA_AYDR[5]	DA_AYDR[4]
04	0	0	QI_EDGERFRX_PWDB	0
05	0	0		0

MediaTek Confidential

© 2011 MediaTek Inc.

Page 491 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

06	0	0	120/63	VBAT_OV_DET_TMUX
07	0	0	AUX_COMP_TMUX	AUX_PENIRQ_TMUX
08	0	0	RG_PCHR_AUTOMODE	NI_PCHR_TEST_CK
09	0	K0 10	OTG_BVALID_TMUX	RG_CSDAC_EN
10	DA_APC_BUS[7]	DA_APC_BUS[6]	DA_APC_BUS[5]	DA_APC_BUS[4]
11	AUX_ST	AUX_CS_B	AUX_DIN	NI_IRQ_PWDB
12	AUX_COMP_TMUX	AUX_PENIRQ_TMUX	NI_ADC_PWDB	MON_AUX_SCLK
13	GPIO_SRST2_IN	RG_VSIM1_EN	RG_VSIM1_VOSEL	QI_SIMRST
14	GPIO_SCLK2_IN	RG_VSIM2_EN	C2A_SIM2SEL	QI_SIMRST2_OUT
15	0	0	EN_VTCXO	EN_BB
16	0	0	0	0
17	PMU_THR_STATUS_TMUX[2]	PMU_THR_STATUS_TMUX[1]	PMU_THR_STATUS_TMUX[0]	VA_OC_STATUS_TMUX
18	VCAMA_OC_STATUS_TMUX	VCAMD_OC_STATUS_TMUX	VUSB_OC_STATUS_TMUX	VCORE_OC_STATUS_TMUX
19	C2A_INTERNAL_PWM	C2A_INTERNAL_PWM2	PMU_OC_INT	VA_OC_INT
20	VCAMA_OC_INT	VCAMD_OC_INT	VUSB_OC_INT	0
21	0	PWRKEY_VCORE_TMUX	PWRKEY_DEB_TMUX	TEST_MODE_POR_TMUX
22	0	0	0	0
23	0	0	QI_VCAMA_SOFT_STB	QI_VCAMD_SOFT_STB
24	0	0	MON_USB_CLK_INT	MON_FMCU_CK
25	0	0	0	0
26	0	0	0	0
27	STRUP_FLAG_OUT_TMUX[3]	STRUP_FLAG_OUT_TMUX[2]	STRUP_FLAG_OUT_TMUX[1]	STRUP_FLAG_OUT_TMUX[0]
28	RG_CHRWDT_WR	QI_UPLL_PWD	QI_VUPG[5]	QI_VUPG[4]
29	QI_VRF_EN	QI_VTCXO_EN	RG_VCAMA_EN	RG_VCAMD_EN

MediaTek Confidential

© 2011 MediaTek Inc.

Page 492 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

30	RG_MPLL_FBDIV[7]	RG_MPLL_FBDIV[6]	RG_MPLL_FBDIV[5]	RG_MPLL_FBDIV[4]
31	0	0	RG_ISINKS_CH0_EN	RG_ISINKS_CH1_EN
X	MON[3]	MON[2]	MON[1]	MON[0]
00	MON_VSDM_CK	MON_ASDM_CK	A2T_VTXSOUT	NI_ZCD_STATE_TMUX
01	13/6/12	0	DA_AYDL[8]	DA_AYDR[8]
02	DA_AYDL[3]	DA_AYDL[2]	DA_AYDL[1]	DA_AYDL[0]
03	DA_AYDR[3]	DA_AYDR[2]	DA_AYDR[1]	DA_AYDR[0]
04	A2T_EDGERFRX_BNI	A2T_EDGERFRX_BPI	A2T_EDGERFRX_BNQ	A2T_EDGERFRX_BPQ
05	CHRWDT_OUT_TMUX	CHRDET_TMUX	CHR_LDO_DET_TMUX	CHR_EN
06	VBAT_CV_DET_TMUX	VBAT_CC_DET_TMUX	VCDT_HV_DET_TMUX	VCDT_LV_DET_TMUX
07	AUX_ST	AUX_CS_B	CS_DET_TMUX	BATON_UNDET_TMUX
08	PCHR_FLAG_OUT_TMUX[3]	PCHR_FLAG_OUT_TMUX[2]	PCHR_FLAG_OUT_TMUX[1]	PCHR_FLAG_OUT_TMUX[0]
09	NI_APC_PWDB	NI_APC_TG	DA_APC_BUS[9]	DA_APC_BUS[8]
10	DA_APC_BUS[3]	DA_APC_BUS[2]	DA_APC_BUS[1]	DA_APC_BUS[0]
11	NI_SEL[3]	NI_SEL[2]	NI_SEL[1]	NI_SEL[0]
12	AUX_COMP_TMUX	AUX_PENIRQ_TMUX	A2T_AUX_SFSO	A2T_AUX_SDO
13	NI_SIMCLK	NI_SIMDATA_OE	A2C_SIMDATA_IN	NI_SIMDATA_OUT
14	NI_SIMCLK2_OUT	NI_SIMDATA2_OE	A2C_SIM2DATA_IN	NI_SIMDATA2_OUT
15	EN_EXT	DCXO_DELAY	PLL_PWDB	EN_DCXO
16	SPK_OCP_DET_TMUX	SPK_OCN_DET_TMUX	SPK_OC_DET_TMUX	PMU_THR_PWROFF
17	VM_OC_STATUS_TMUX	VIO_OC_STATUS_TMUX	VRF_OC_STATUS_TMUX	VTCXO_OC_STATUS_TMUX
18	VSIM1_OC_STATUS_TMUX	VSIM2_OC_STATUS_TMUX	VIBR_OC_STATUS_TMUX	SPK_OC_DET_TMUX
19	VM_OC_INT	VIO_OC_INT	VRF_OC_INT	VTCXO_OC_INT
20	VSIM1_OC_INT	VSIM2_OC_INT	VIBR_OC_INT	SPK_OC_INT

MediaTek Confidential

© 2011 MediaTek Inc.

Page 493 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

21	PMU_RSTB_TMUX	CHRDET_TMUX	PMU_DCXO26M_ON_TMUX	PMU_DCXO26M_DLY_TMUX
22	0	QI_UPLL_PWD	SPK_OC_DET_TMUX	SPK_OC_DEG
23	QI_VUSB_SOFT_STB	QI_VSIMI_SOFT_STB	QI_VSIM2_SOFT_STB	QI_VIBR_SOFT_STB
24	MON_FDSP_CK	MON_FUSB_CK	MON_FGSM_CK	MON_F48M_CK
25	MON_CLKSQ_26M_CK	MON_FMCU_CK	MPLL_FHPRD	MPLL_CLKSWPRD
26	MON_F32K_CK	FQMTR_BUSY	MON_FQMTR_CK	MON_CLK26M_CK
27	QI_CLKSQ_CKSEL	DA_KPLED_EN	RG_VIBR_EN	QI_CLKSQ_DIFF_PWDB
28	QI_VUPG[3]	QI_VUPG[2]	QI_VUPG[1]	QI_VUPG[0]
29	RG_VUSB_EN	QI_CLKSQ_SIN_PWDB	QI_MPLL_PWD	RG_SPK_EN
30	RG_MPLL_FBDIV[3]	RG_MPLL_FBDIV[2]	RG_MPLL_FBDIV[1]	RG_MPLL_FBDIV[0]
31	RG_ISINKS_CH2_EN	RG_ISINKS_CH3_EN	CHR_EN	DA_SPK_EN

83010F14h MIXEDSYS_MON_CON1

MIXEDSYS_MON_CON1

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
Name									MIXEDSYS_MON_OUT											
Туре									RW											
Reset															0					

Set this register for Monitor circuit configuration controls.

MIXEDSYS_MON_OUT monitor debug output

83010F18h MIXEDSYS_MON_CON2

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name											MIX	EDSYS_I	MON_DA	ATA		
Туре						1		III	101			R				
Reset					10					•	•	0	•	•	•	

Set this register for MIXEDSYS Monitor Data configuration controls.

MIXEDSYS_MON_DATA monitor debug output

030 10F	ZUN	ADD_I	MON_C	UNU										ADD_	MUN_C	UNU
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name												•	ABB	MON S	EL	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 494 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

GSM/GPRS Baseband Processor Data Sheet

Confidential A

Туре					-	AY	Y	RW
Reset				7		[7]	5	1Fh

ABB_MON_SEL monitor flags output select

7,55	_MON_SEL monitor mags	output screet		
X	MON[7]	MON[6]	MON[5]	MON[4]
00	0	0	0	MON_ESDM_CK
01		0	0	0
02	DA_AYDL[7]	DA_AYDL[6]	DA_AYDL[5]	DA_AYDL[4]
03	DA_AYDR[7]	DA_AYDR[6]	DA_AYDR[5]	DA_AYDR[4]
04	0	0	QI_EDGERFRX_PWDB	0
05	0	0	0	0
06	0	0	0	VBAT_OV_DET_TMUX
07	0	0	AUX_COMP_TMUX	AUX_PENIRQ_TMUX
08	0	0	RG_PCHR_AUTOMODE	NI_PCHR_TEST_CK
09	0	0	OTG_BVALID_TMUX	RG_CSDAC_EN
10	DA_APC_BUS[7]	DA_APC_BUS[6]	DA_APC_BUS[5]	DA_APC_BUS[4]
11	AUX_ST	AUX_CS_B	AUX_DIN	NI_IRQ_PWDB
12	AUX_COMP_TMUX	AUX_PENIRQ_TMUX	NI_ADC_PWDB	MON_AUX_SCLK
13	GPIO_SRST2_IN	RG_VSIM1_EN	RG_VSIM1_VOSEL	QI_SIMRST
14	GPIO_SCLK2_IN	RG_VSIM2_EN	C2A_SIM2SEL	QI_SIMRST2_OUT
15	0	0	EN_VTCXO	EN_BB
16	0	0	0	0
17	PMU_THR_STATUS_TMUX[2]	PMU_THR_STATUS_TMUX[1]	PMU_THR_STATUS_TMUX[0]	VA_OC_STATUS_TMUX
18	VCAMA_OC_STATUS_TMUX	VCAMD_OC_STATUS_TMUX	VUSB_OC_STATUS_TMUX	VCORE_OC_STATUS_TMUX
19	C2A_INTERNAL_PWM	C2A_INTERNAL_PWM2	PMU_OC_INT	VA_OC_INT
20	VCAMA_OC_INT	VCAMD_OC_INT	VUSB_OC_INT	0
				•

MediaTek Confidential

© 2011 MediaTek Inc.

Page 495 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

21	0	PWRKEY_VCORE_TMUX	PWRKEY_DEB_TMUX	TEST_MODE_POR_TMUX
22	0	0	13 100	0
23	0	0	QI_VCAMA_SOFT_STB	QI_VCAMD_SOFT_STB
24	0	K 0/10	MON_USB_CLK_INT	MON_FMCU_CK
25	0	0	0	0
26	0	0	0	0
27	STRUP_FLAG_OUT_TMUX[3]	STRUP_FLAG_OUT_TMUX[2]	STRUP_FLAG_OUT_TMUX[1]	STRUP_FLAG_OUT_TMUX[0]
28	RG_CHRWDT_WR	QI_UPLL_PWD	QI_VUPG[5]	QI_VUPG[4]
29	QI_VRF_EN	QI_VTCXO_EN	RG_VCAMA_EN	RG_VCAMD_EN
30	RG_MPLL_FBDIV[7]	RG_MPLL_FBDIV[6]	RG_MPLL_FBDIV[5]	RG_MPLL_FBDIV[4]
31	0	0	RG_ISINKS_CH0_EN	RG_ISINKS_CH1_EN
X	MON[3]	MON[2]	MON[1]	MON[0]
00	MON_VSDM_CK	MON_ASDM_CK	A2T_VTXSOUT	NI_ZCD_STATE_TMUX
01	0	0	DA_AYDL[8]	DA_AYDR[8]
02	DA_AYDL[3]	DA_AYDL[2]	DA_AYDL[1]	DA_AYDL[0]
03	DA_AYDR[3]	DA_AYDR[2]	DA_AYDR[1]	DA_AYDR[0]
04	A2T_EDGERFRX_BNI	A2T_EDGERFRX_BPI	A2T_EDGERFRX_BNQ	A2T_EDGERFRX_BPQ
05	CHRWDT_OUT_TMUX	CHRDET_TMUX	CHR_LDO_DET_TMUX	CHR_EN
06	VBAT_CV_DET_TMUX	VBAT_CC_DET_TMUX	VCDT_HV_DET_TMUX	VCDT_LV_DET_TMUX
07	AUX_ST	AUX_CS_B	CS_DET_TMUX	BATON_UNDET_TMUX
08	PCHR_FLAG_OUT_TMUX[3]	PCHR_FLAG_OUT_TMUX[2]	PCHR_FLAG_OUT_TMUX[1]	PCHR_FLAG_OUT_TMUX[0]
09	NI_APC_PWDB	NI_APC_TG	DA_APC_BUS[9]	DA_APC_BUS[8]
10	DA_APC_BUS[3]	DA_APC_BUS[2]	DA_APC_BUS[1]	DA_APC_BUS[0]
11	NI_SEL[3]	NI_SEL[2]	NI_SEL[1]	NI_SEL[0]

MediaTek Confidential

© 2011 MediaTek Inc.

Page 496 of 508

GSM/GPRS Baseband Processor Data Sheet

Confidential A

			1 00	
12	AUX_COMP_TMUX	AUX_PENIRQ_TMUX	A2T_AUX_SFSO	A2T_AUX_SDO
13	NI_SIMCLK	NI_SIMDATA_OE	A2C_SIMDATA_IN	NI_SIMDATA_OUT
14	NI_SIMCLK2_OUT	NI_SIMDATA2_OE	A2C_SIM2DATA_IN	NI_SIMDATA2_OUT
15	EN_EXT	DCXO_DELAY	PLL_PWDB	EN_DCXO
16	SPK_OCP_DET_TMUX	SPK_OCN_DET_TMUX	SPK_OC_DET_TMUX	PMU_THR_PWROFF
17	VM_OC_STATUS_TMUX	VIO_OC_STATUS_TMUX	VRF_OC_STATUS_TMUX	VTCXO_OC_STATUS_TMUX
18	VSIM1_OC_STATUS_TMUX	VSIM2_OC_STATUS_TMUX	VIBR_OC_STATUS_TMUX	SPK_OC_DET_TMUX
19	VM_OC_INT	VIO_OC_INT	VRF_OC_INT	VTCXO_OC_INT
20	VSIM1_OC_INT	VSIM2_OC_INT	VIBR_OC_INT	SPK_OC_INT
21	PMU_RSTB_TMUX	CHRDET_TMUX	PMU_DCXO26M_ON_TMUX	PMU_DCXO26M_DLY_TMUX
22	0	QI_UPLL_PWD	SPK_OC_DET_TMUX	SPK_OC_DEG
23	QI_VUSB_SOFT_STB	QI_VSIM1_SOFT_STB	QI_VSIM2_SOFT_STB	QI_VIBR_SOFT_STB
24	MON_FDSP_CK	MON_FUSB_CK	MON_FGSM_CK	MON_F48M_CK
25	MON_CLKSQ_26M_CK	MON_FMCU_CK	MPLL_FHPRD	MPLL_CLKSWPRD
26	MON_F32K_CK	FQMTR_BUSY	MON_FQMTR_CK	MON_CLK26M_CK
27	QI_CLKSQ_CKSEL	DA_KPLED_EN	RG_VIBR_EN	QI_CLKSQ_DIFF_PWDB
28	QI_VUPG[3]	QI_VUPG[2]	QI_VUPG[1]	QI_VUPG[0]
29	RG_VUSB_EN	QI_CLKSQ_SIN_PWDB	QI_MPLL_PWD	RG_SPK_EN
30	RG_MPLL_FBDIV[3]	RG_MPLL_FBDIV[2]	RG_MPLL_FBDIV[1]	RG_MPLL_FBDIV[0]
31	RG_ISINKS_CH2_EN	RG_ISINKS_CH3_EN	CHR_EN	DA_SPK_EN
			t	L

83010F30h SIM_MON_CON0

SIM_MON_CON0

Bit	15 14	13	12 11	10	9	8	7	6	5	4	3	2	1	0
Name		91 -									7			SIM_MON_SEL
Туре	100								11		7			RW
Reset								10						7h

SIM_MON_SEL monitor flags output select

MediaTek Confidential

© 2011 MediaTek Inc.

Page 497 of 508

This document contains information that is proprietary to MediaTek Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

				Connuc
X		MON[1]	MON[0]	ial Release for
00)	GPIO_SRST2_IN	RG_VSIM1_EN	Ais No
0	1	RG_VSIM1_VOSEL	QI_SIMRST	M. Cross
02	2	NI_SIMCLK	NI_SIMDATA_OE	
0.	8	A2C_SIMDATA_IN	NI_SIMDATA_OUT	
04	4	GPIO_SCLK2_IN	RG_VSIM2_EN	- MON
0:	5	C2A_SIM2SEL	QI_SIMRST2_OUT	- MCV
0	5	NI_SIMCLK2_OUT	NI_SIMDATA2_OE	
0′	7	A2C_SIM2DATA_IN	NI_SIMDATA2_OUT	

6.4 **Programming Guide**

BBRX Register Setup 6.4.1

The register used to control analog base-band receiver is ACIF_BBRX_CON.

6.4.1.1 **Programmable Biasing Current**

To maximize the yield in modern digital process, the receiver features providing 4-bit 9-level programmable current to bias internal analog blocks. The 5-bits registers CALBIAS[3:0] is coded 2358 with 2's complement format.

6.4.1.2 **Offset Calibration**

The base-band downlink receiver (RX) provides analog hardware for DSP algorithm to correct the offset error. The connection for measurement of RX offset error is shown in Figure 58, and the corresponding calibration procedure is described below.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 498 of 508

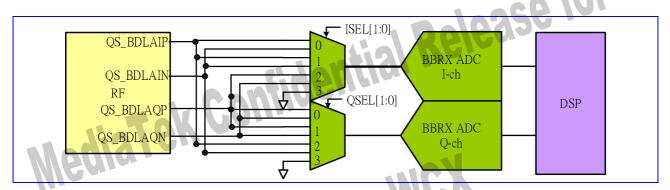


Figure 58 Base-band A/D Offset Calibration

6.4.1.3 Downlink RX Offset Error Calibration

The RX offset measurement is achieved by selecting grounded input to A/D converter (set ISEL [1:0] ='11' and QSEL [1:0] ='11' to select channel 3 of the analog input multiplexer, as shown in **Figure 59**. The output of the ADC is sent to DSP for further offset cancellation. The offset cancellation accuracy depends on the number of samples being converted. That is, more accurate measurement can be obtained by collecting more samples followed by averaging algorithm.

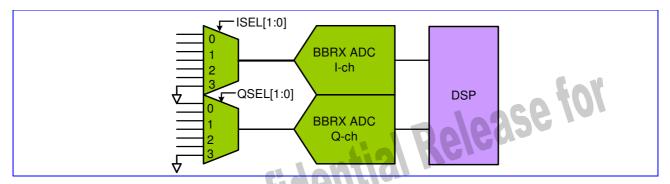


Figure 59 Downlink ADC Offset Error Measurement

6.4.2 APC-DAC Register Setup

The register used to control the APC DAC is ACIF_APC_CON, which providing 4-bit 9-level programmable current to bias internal analog blocks. The 4-bits registers APC_CALI [3:0] is coded with 2's complement format.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 499 of 508

Auxiliary A/D Conversion Register Setup 6.4.3

ase fo The register used to control the Aux-ADC is ACIF AUX CONO. For this register, which providing 2-bit 4-level programmable current to bias internal analog blocks.

Voice-band Blocks Register Setup 6.4.4

The registers used to control AMB are ACIF_VOICE_CON0, ACIF_VOICE_CON1, ACIF VOICE_CON2, and ACIF_VOICE_CON3. For these registers, please refer to chapter "Analog Chip Interface".

6.4.4.1 **Reference Circuit**

The voice-band blocks include internal bias circuits, a differential voltage reference circuit and a single-end microphone bias circuit. Internal bias current could be calibrated by varying VCALI[3:0] (coded with 2's complement format).

For proper operation, there should be an external 1uF capacitor connected to output pin AU_VCM. The VCM voltage (~1.4V, typical). The following table illustrates typical 0dBm0 voltage when uplink/downlink programmable gains are unity. For other gain setting, 0dBm0 reference level should be scaled accordingly.

Symbol	Parameter	Min	Typical	Max	Unit
$V_{0dBm0,UP}$	0dBm0 Voltage for Uplink Path, Applied Differentially Between Positive and Negative Microphone Input Pins		0.2V	258	V-rms
$V_{0dBm0,Dn}$	0dBm0 voltage for Downlink Path, Appeared Differentially Between Positive and Negative Power Amplifier Output Pins		0.6V		V-rms

Table 73 0dBm0 reference level for unity uplink/downlink gain

The microphone bias circuit generates a single-ended output voltage on AU_MICBIAS_P for external electret type microphone. Typical output voltage is 1.9 V. The max current supplied by microphone bias circuit is 2mA.

6.4.4.2 **Uplink Path**

Uplink path of voice-band blocks includes an uplink programmable gain amplifier and a sigma-delta modulator.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 500 of 508

6.4.4.2.1 **Uplink Programmable Gain Amplifier**

ease Input to the PGA is a multiplexer controlled by VCFG [3:0], as described in the following table. In normal operation, only AC coupling is suggested if amplification of input signal is desired

Control Signal	Function	Descriptions
VCFG[0]	Input Selector	0: Input 0 (From AU_VIN0_P / AU_VIN0_N) selected 1: Input 1 (From AU_VIN1_P / AU_VIN1_N) selected
VCFG[1]	Input Selector	1: Input FM (From AU_FMINL / AU_FMINR) Is Selected
VCFG[2]	Coupling Mode	0: AC Coupling (for testing purpose) 1: DC Coupling
VCFG[3]	Gain Mode	0: Amplification Mode (gain range 1~49 dB) 1: Bypass Mode

Table 74 Uplink PGA input configuration setting

The PGA itself provides programmable gain (through VUPG[5:0]) with step of 1.0 dB, as listed in the following table.

	VUPG [5:0]	Gain	VUPG [5:0]	Gain	
	111111	49 dB	011111	17 dB	
	111110	48 dB	011110	16 dB	
	111101	47 dB	011101	15 dB	
	111100	46 dB	011100	14 dB	tat
	111011	45 dB	011011	13 dB	ase for
	111010	44 dB	011010	12 dB	356
	111001	43 dB	011001	11 dB	
	111000	42 dB	011000	10 dB	
	110111	41 dB	010111	9 dB	
	110110	40 dB	010110	8 dB	
	110101	39 dB	010101	7 dB	
Elbora	110100	38 dB	010100	6 dB	
Media	110011	37 dB	010011	5 dB	
144	110010	36 dB	010010	4 dB	

MediaTek Confidential

© 2011 MediaTek Inc.

Page 501 of 508

					Confide
					ase for
	110001	35 dB	010001	3 dB	1920.
	110000	34 dB	010000	2 dB	
	101111	33 dB	001111	1 dB	
	101110	32 dB	001110	N/A-	
	101101	31dB	001101	N/A-	
Media	101100	30 dB	001100	N/A-	
Monia	101011	29 dB	001011	N/A-	
Mean	101010	28 dB	001010	N/A-	
	101001	27 dB	001001	N/A-	
	101000	26 dB	001000	N/A-	
	100111	25 dB	000111	N/A-	
	100110	24 dB	000110	N/A-	
	100101	23 dB	000101	N/A-	
	100100	22 dB	000100	N/A-	
	100011	21 dB	000011	N/A-	
	100010	20 dB	000010	N/A-	
	100001	19 dB	000001	N/A-	
	100000	18 dB	000000	N/A-	

Table 75 Uplink PGA gain setting (VUPG[5:0])

The following table illustrates typically the 0dBm0 voltage applied at the microphone inputs, differentially, for several gain settings.

VCFG [3] ='0'		VCFG [3] ='1' (onl	y valid for input 1)
VUPG [5:0]	0dBm0 (V-rms)	VUPG [5:0]	0dBm0 (V-rms)
111100	2mV	XXXXXX	0.2V
101000	20mV		
100000	50mV		
010100	0.2V		

Table 76 0dBm0 voltage at microphone input pins

MediaTek Confidential

© 2011 MediaTek Inc.

Page 502 of 508

6.4.4.2.2 **Sigma-Delta Modulator**

ease Analog-to-digital conversion in uplink path is made with a second-order sigma-delta modulator (SDM) whose sampling rate is 6500KHz. For test purpose, one can set VADCINMODE to HI to form a look-back path from downlink DAC output to SDM input. The default value of VADCINMODE is zero.

6.4.4.3 **Downlink Path**

Downlink path of voice-band blocks includes a programmable output power amplifiers.

6.4.4.3.1 **Downlink Programmable Power Amplifier**

Voice-band analog blocks include two identical output power amplifiers with programmable gain.

For the amplifier itself, programmable gain setting is described in the following table.

VDPG0[3:0] / VDPG1[3:0]	Gain
1111	8dB
1110	6dB
1101	4dB
1100	2dB
1011	0dB
1010	-2dB
1001	-4dB
1000	-6dB
0111	-8dB
0110	-10dB
0101	-12dB
0100	-14dB
0011	-16dB
0010	N/A
0001	N/A
0000	N/A

Table 77 Downlink power amplifier gain setting

MediaTek Confidential

© 2011 MediaTek Inc.

Page 503 of 508

Control signal VFLOAT, when set to 'HI', is used to make output nodes totally floating in power down mode. If VFLOAT is set to 'LOW" in power down mode, there will be a resistor of 50k ohm (typical) between AU_VOUT0_P and AU_VOUT0_N, as well as between AU_VOUT0_P and AU_VOUT0_N.

The amplifiers deliver signal power to drive external earphone. The minimum resistive load is 28 ohm and the upper limit of the output current is 50mA. On the basis that 3.14dBm0 digital input signal into downlink path produces DAC output differential voltage of 0.87V-rms (typical), the following table illustrates the power amplifier output signal level (in V-rms) and signal power for an external 32 ohm resistive load.

VDPG[3:0]	Output Signal Level (V-rms)	Output Signal Power (mW / dBm)
0010	0.11	0.37/-4.3
0110	0.27	2.28/3.6
1010	0.69	14.8/11.7
1110	1.74	94.6/19.8

Table 78 Output signal level/power for 3.14dBm0 input. External resistive load = 32 ohm

The following table illustrates the output signal level and power for different resistive load when **VDPG** =1110. ase for

RLOAD	Output Signal Level (V-rms)	Output Signal Power (mW / dBm)
30	1.74	101/20
100	1.74	30.3/14.8
600	1.74	5/7

Table 79 Output signal level/power for 3.14dBm0 input, VDPG =1110

6.4.4.4 **Power Down Control**

Each block inside audio mixed-signal blocks features dedicated power-down control, as illustrated in the following table.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 504 of 508

Control Signal	Descriptions
VBIAS_PWDB	Power Down Reference Circuits (Active Low)
VLNA_PWDB	Power Down Uplink PGA (Active Low)
VADC_PWDB	Power Down Uplink SDM (Active Low)
VDAC_PWDB	Power Down DAC (Active Low)
VOUT0_PWDB	Power Down Downlink Power Amp 0 (Active Low)

Table 80 Voice-band blocks power down control

6.4.5 Audio-band Blocks Register Setup

The registers used to control audio blocks are ACIF_AUDIO_CON0, ACIF_AUDIO_CON1, ACIF_AUDIO_CON2 and ACIF_AUDIO_CON3. For these registers, please refer to chapter "Analog Chip Interface"

6.4.5.1 Output Gain Control

Audio blocks include stereo audio DACs and programmable output power amplifiers. The DACs convert input bit-stream to analog signal by sampling rate of Fs*128 where Fs could be 32kHz, 44.1kHz, or 48kHz. Besides, it performs a 2nd-order butterworth filtering. The two identical output power amplifiers with programmable gain are designed to driving external AC-coupled single-end speaker. The minimum resistor load is 16 ohm and the maximum driving current is 50mA. The programmable gain setting, controlled by APGR[3:0] and APGL[3:0], is the same as that of the voice-band amplifiers.

Unlike voice signals, 0dBFS defines the full-scale audio signals amplitude. Based on bandgap reference voltage again, the following table illustrates the power amplifier output signal level (in V-rms) and signal power for an external 16 ohm resistive load.

APGR[3:0]/ APGL[3:0]	Output Signal Level (V-rms)	Output Signal Power (mW / dBm)
0010	0.055	0.19/-7.2
0110	0.135	1.14/0.6
1010	0.345	7.44/8.7
1110	0.87	47.3/16.7

Table 81 Output signal level/power for 0dBFS input. External resistive load = 16 ohm

MediaTek Confidential

MediaT

© 2011 MediaTek Inc.

Page 505 of 508

1358

6.4.5.2 Mute Function and Power Down Control

By setting AMUTER (AMUTEL) to high, right (left) channel output will be muted.

Each block inside audio mixed-signal blocks features dedicated power-down control, as illustrated in the following table.

Control Signal	Descriptions
ABIAS_PWDB	Power Down Reference Circuits (Active Low)
ADACL_PWDB	Power Down L-Channel DAC (Active Low)
ADACR_PWDB	Power Down R-Channel DAC (Active Low)
AOUTL_PWDB	Power Down L-Channel Audio Amplifier (Active Low)
AOUTR_PWDB	Power Down R-Channel Audio Amplifier (Active Low)

Table 82 Audio-band blocks power down control

6.4.6 Multiplexers for Audio and Voice Amplifiers

- The audio/voice amplifiers feature accepting signals from various signal sources including AU_FMINR/AU_FMINL pins, that aimed to receive stereo AM/FM signal from external radio chip:
 - 1) Voice-band amplifier 0 accepts signals from voice DAC output only.
 - 2) Audio left/right channel amplifiers receive signals from either voice DAC, audio DAC, or AM/FM radio input pins (controlled by registers ABUFSELL[2:0] and ABUFSELR[2:0]), too. Left and right channel amplifiers will produce identical output waveforms when receiving mono signals from voice DAC.

6.4.7 Preferred Microphone and Earphone Connections

In this section, preferred microphone and earphone connections are discussed.

Differential connection of microphone is shown below. This is the application circuits compatible with previous products. C1 and Rin form an AC coupling and high-pass network. C1*Rin should be chosen such that the in-band signal will not be attenuated too much. For differential minimum resistance of 13k ohm, minimum value of C1 is 170nF for less than 1dB attenuation at 300Hz. R2 is determined by microphone sensitivity. C2 and R2 form another low-pass filter to filtering noise coming from microphone bias pins. Pole frequency less than 50Hz is recommended.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 506 of 508

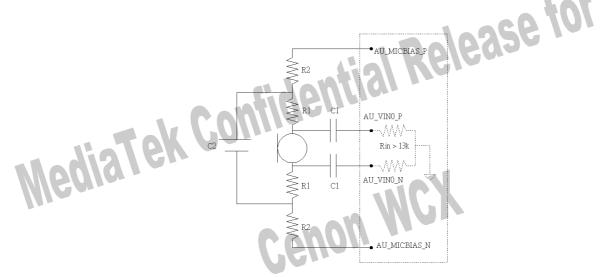


Figure 6 Differential Microphone Connection

Another suggested connection method of microphone is shown below. R1 is chosen based on microphone sensitivity requirement. C1 and Rin form an AC coupling and high-pass network. R2 needs proper adjustment to obtain the best noise performance on the voice uplink input terminals.

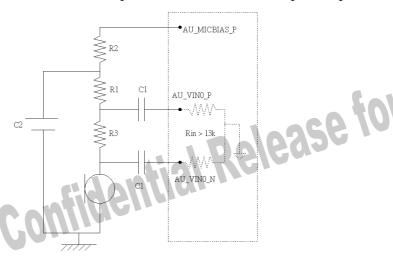


Figure 7 Single-ended Microphone Connection

For earphone, both connections can be used. The application circuit shown in Figure 7 is highly recommended to achieve the better performance.

MediaTek Confidential

© 2011 MediaTek Inc.

Page 507 of 508

Confidential A

ease

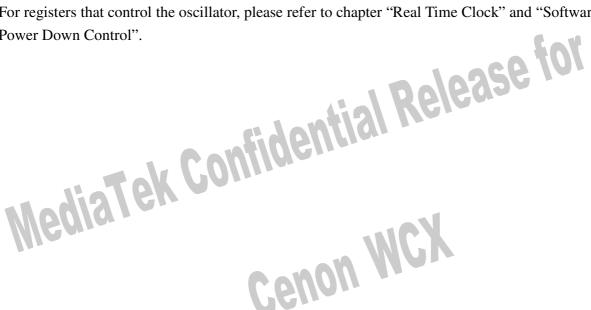
6.4.8 **Clock Squarer Register Setup**

The register used to control clock squarer is CLKSQ_CON. For this register, please refer to chapter "Clocks".

Phase-Locked Loop Register Setup 6.4.9

For registers control the PLL, please refer to chapter "Clocks" and "Software Power Down Control"

6.4.9.1 **Frequency Setup**


The DSP/MCU PLL itself could be programmable to output either 52MHz or 104MHz clocks. Accompanied with additional digital dividers, 13/26/39/52/65/78/104 MHz clock outputs are supported.

6.4.9.2 **Programmable Biasing Current**

The PLLs feature providing 5-bit 32-level programmable current to bias internal analog blocks. The 5-bits registers CALI [4:0] is coded with 2's complement format.

6.4.10 32-khz Crystal Oscillator Register Setup

For registers that control the oscillator, please refer to chapter "Real Time Clock" and "Software Power Down Control".

MediaTek Confidential

© 2011 MediaTek Inc.

Page 508 of 508