

Copyright © MediaTek Inc. All rights reserved.

Baseband design notice

Copyright © MediaTek Inc. All rights reserved.

MT6252 Design notice Quick View

Confidential B

Function	MT6253	MT6252	Importance Quick view
BB	2 HW trapping pins	3 HW trapping pins	1.Pin HW notice 2.SRCLKENAI notice
Memory	ADMUX NOR+PSRAM	Serial Flash	1.Pin connection
PMU	BackLight with booster	BackLight with VBAT	1.Low bat LCM flicker
Charger	Linear charger	Pulse charger	1.Pulse charger 2.Important SW setting 3.Nokia Charger support
Audio	Class-D / AB Amp	Class-AB Amp	1. 2 in 1 application 2. Important part placement
Speech	SW algorithm	Same with 53	1. Important part placement
Camera	2M	VGA	1.Reference design
LCM	2.8V IO LCM	1.8V IO LCM	<u>1. 1.8V IO LCM</u>
MSDC	4 bit IO	1 bit IO	1.IOT 2.DAT3 as Card detect
RF	Quad band SOC	Same with 53	1.Schematic notice 2.Layout notice 3.BPI modification

TXM(PRF88144B) +Rx SAWs

26MHz crystal, must close to BB

MT6252 SOC

Serial Flash , must close to BB

MEDINTEK

C-load, Must close 32.768KHz

32.768KHz crystal, must close to BB

Copyright © MediaTek Inc. All rights reserved. 200

2008/06

MT6252 Chip configuration design notice (BB)Confidential B

1.**TESTMODE**(Pin J6) should be connected to ground. 2.**PMU_TESTMODE**(Pin H5) should be connected to ground. 3.**VMSEL**(Pin J3) should be connected to ground.

Copyright © MediaTek Inc. All rights reserved. 2011/1/17

MT6252 Chip configuration design notice (BB)^{Confidential B}

GPIO

UART

ease for

1.There should be a 100K ohm resistor connected to ground on PWM if PWM is used.

M3

T28

PWM

SD PWREN

UCTS1 B

URTS1_B UTXD1 URXD1

JTXD2

MT6252 Chip configuration design notice (BB)_{Confidential B}

6920

1. There should be a 100K ohm resistor connected to VIO on DAIRST and DAISYNC.

2.You can connect DAIRST and DAISYNC to VIO directly if these 2 pin are not used for any other function. But please must configure this as GPIO input mode and pull down should not be enabled.

MT6252 Chip configuration design notice (BB)^{Confidential B}

1.VM_SEL connected to ground \rightarrow VM = 1.8V.

MT6252 only support 1.8V memory. VMSEL should always be low.

Copyright © MediaTek Inc. All rights reserved. 2011/1/17

MT6252 Chip configuration design notice (BB)^{Confidential B}

MT6252 Chip configuration design notice (MSDC)

Confidential B

- 1.MT6252 only support 1 bit MSDC. If DAT3 is not used as card detection, DAT1~3 on memory card socket side should be pulled to VIO by 47Kohm.
- 2.You also can enable internal pull up but reserving SMT space for external pull up resistors is recommended.

MT6252 Chip configuration design notice(4 SIM) confidential B

Releasu MT6252 Chip configuration design notice (SRCLKENAI) Confidential B

1. Please remember to enable internal Pull down when this pin is used as 26MHz clock tidential Release request from 6252. (In general, this is used by BT)

11

Copyright © MediaTek Inc. All rights reserved. 2011/1/17

sidential Keleaat EMI and Nand interface difference between MT6253/53D and MT6252

	MT6253	MT6253D	MT6252
Interface	NOR+PSRAM	NOR+PSRAM	Serial Flash with stacked PSRAM
Mode	1.Async 2.Sync Burst	1.Async 2.Sync Burst	Sync QPI
Clock Rate	104MHz	52MHz	Serial Flash : 78MHz / 104MHz PSRAM : 104MHz
EMI voltage	1.8V	1.8V	1.8V

1.MT6252 support 78MHz and 104MHz QPI mode Serial Flash.

2. The power domain of Serial flash is same as internal stacked PSRAM. So , please use 1.8V serial flash instead of 3V.

MT6252 Chip memory configuration design noticential B

Confidential B

Copyright © MediaTek Inc. All rights reserved. 2011/1/17

MEDIATEK

(Cont

Confidential B

2eleas

WSON

There are 2 packages(WSON and TSOP) on serial flash. It's recommended that these 2 packages should be reserved on your PCB. Their pins are fully compatible but pin locations are slightly shifted. Please overlap the pins for SMT compatible.

MEDINTEK

Confidential B

The traces of memory should not be crossed by other traces or power. (Nice to have)

Ú

MEDI/ITEK

Copyright © MediaTek Inc. All rights reserved. 2011/1/17

Confidential B

Copyright © MediaTek Inc. All rights reserved. 2011/1/17

MEDINTEK

MEDIATEK

MT6252 PMU Design Notice

2010/12

Copyright © MediaTek Inc. All rights reserved.

Content Confidential Release

- MT6252 Introduction confidential Release for
 - General description
 - Block diagram
 - LDO list
- Comparison
- **Function Description**
- **Reference** design
- Appendix

MT6252 Introduction – General description

- The MT6252 is built-in high performance power management IC.
- Highly integrated functions fulfill all power requirement in handset system
- * 4 ease for * 9 ease for 0.7W@3.7V – LDO Analog LDO **Digital LDO** - Audio Amplifier Class-AB Charger controller AC/USB Pulse-Charger Driver Parallel LCM backlight LED 4 fidential Release for Keypad back-light ΜΕΟΙΛΤΕΚ Copyright © MediaTek Inc. All rights reserved 21

MT6252 Introduction – Block Diagram

MT6252 LDO List

Confidential B

6252 L	.DO List	dential R	eleaso	Confidential B
Regulator	Output Voltage (V)	Output Current (mA)	Output Components	Notes
VCORE	0.8~1.35	200	1uF	Far-end bypass cap
VM	1.8/2.9	150	4.7uF+1uF	Far-end bypass cap
VRF	2.8	150	2.2uF	Far-end bypass cap
VCAMA	1.5/1.8/2.5/2.8	150	2.2uF	Far-end bypass cap
VA	2.8	100	1uF	Far-end bypass cap
VTCXO	2.8	40	1uF	Far-end bypass cap
VCAMD	1.3/1.5/1.8/2.5/ 2.8/3.0/3.3	100	1uF	Far-end bypass cap
VIO	2.8	200	2.2uF	Far-end bypass cap; SS<40uS
VUSB	3.3	50	1uF	Far-end bypass cap
VSIM	1.8/3.0	30	1uF	Far-end bypass cap
VSIM2	1.3/1.5/1.8/2.5 2.8/3.0/3.3	30	1uF	Far-end bypass cap
VIBR	1.3/1.5/1.8/2.5/ 2.8/3.0/3.3	150	1uF	Far-end bypass cap
VRTC	2.8	2	1K + 100uF (可依需求修改)	Backup battery
		dential h		Ú

MEDINTEK

Copyright © MediaTek Inc. All rights reserved

Content Confidential Release

- MT6252 Introduction
- Comparison
- confidential Release for **Function Description**
 - Power on timing
 - Driver _
- **Reference** design
- Appendix

I Release Function Description – Current sink for backlight^{onfidential B}

- Current sink for LCM backlight LED:
 - Max. 4 current sink
 - No external component required
 - Current balance between channels
 - sase for Individual channel current/enable control
- Note 1 : Luminance become lower when low battery.
 - Please follow "Criteria: Vth = Vf + 0.25V" to avoid this issue
 - Ex.
 - Set VBAT low voltage shutdown at 3.5V
 - Select LED (Vf < 3.5 0.25 = 3.25V) will keep luminance equal under normal operation range.
- Note 2 : PWM should set higher to prevent LCM from flickering in

low VBAT. PWM frequency > 20kHz is recommended to

prevent both LCM flickering and audible noise.

тек

Function Description Current sink for backlight

Confidential B

Function Description - tial Release Current sinks **Current sink for backlight (SW Control)**

830109	980h		PMIC	C_ISIN	K0_CO	N0								
830109	90h		PMIC	C_ISIN	K1_CO	N0								
830109A0h PMIC_ISINK2_CON0														
830109B0h PMIC_ISINK3_CON0										ce'	101			
PMIC_I	SINKX_									R		60		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	Т

PMIC_ISINKX_CON0

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name				K	Co		e			RG_I	SINKX_	STEP			RG_ISIN KX_MO DE	RG_ISI NKX_E N
Туре											RW				RW	RW
Reset											0				0	0

RG ISINKX STEP

Coarse 6 step current level for ISINK, 000:4mA ~ 101:24mA, 4mA per step

RG_ISINK0_STEP[6:4]	000	001	010	011	100	101	110	111	50
ISINK0 current (mA)	4	8	12	16	20	24	-	-	6 V
								20	

RG_ISINKX_MODE

ISINKX PWM MODE SEL

1 : Register control mode (see the RG_ISINK0_EN to turn-on)

0: PWM mode, (controlled by PWM3)

Function Description

Copyright © MediaTek Inc. All rights reserved

Function Description

0h		PMIC_	KPLE)_CO	NO									ΡΜΙΟ	C_KPLED	_CON0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name						RG_KP LED_S FSTRE N	RG_K _SFS	PLED TRTC		RG_	KPLED	SED			RG_KP LED_M ODE	RG_ KPLE D_EN
Туре						RW	R	W			RW				RW	RW
Reset						0	(0				0	0

RG_KPLED_SEL 3 bits for KPLED current adjustment.

8 steps in total. The minimal current should be no less than 60mA at <111> step.

RG_KPLED_SEL[2:0]	000	.001	010	011	100	101	110	111
KPLED current	1X	2X	3X	4X	5X	6X	7X	8X

RG_KPLED_MODE KPLED enable mode select

- se for pwm mode, controlled by hardware PWM1 output signal 0
- Register control mode (see the KPLED EN to turn-on) 1

Content Confidential Release

- MT6252 Introduction
- escription والعلم المراجع مراجع المراجع الم
- Appendix

ial Release **Reference design - Schematic** IC Protection: PWRKEY and BAT_ON

Copyright © MediaTek Inc. All rights reserved

ΜΕΟΙΛΤΕΚ

Reference design - Schematic IC Protection: VBAT_{Confidential B}

6922

MT6252 has lower VBAT voltage rating. (Max. 4.3V.) Some protection should reserve to prevent the damage by voltage surge.

•Design notice in Phone side:

1. At least 22uF capacitor. (Included RF PA input capacitor)

2. Add Zener diode (5.1V/500mW) to protect the IC against low frequency voltage surge. Put it between battery connector and MT6252.

Notice: If using IO connector or test point to supply VBAT for download,

manufacture, or repair, should let VBAT trace passing zener diode and 22uF capacitor before entering IC.

Notice: Using 5.1V zener will introduce some leakage when VBAT = 4.2V.

•Design notice in Power Supply side:

Add 1000uF (or above) capacitor at the output of the power supply to reduce the voltage bounce caused by long power cable. And the power cable should be as short as possible.

Also add 1000uF (or above) capacitor at the end of power cable (near phone side).

Zener Diode Selection Guideline

Selection Guideline

- 500mW zener diode has lower ZZT than 200mW and can sink more exceptional surge voltage/current.
- MT6252 must selcet 5.1V/500mW zener to enhance VBAT pin protection.
- Ir<100uA @Vr=4.2V, Ta=25 ° C, Using 5.1V zener will introduce some leakage when VBAT = 4.2V. Large Ir current will introduce more leakage current.

Zener Diode Validation List

- For design in, please notice the parts shipping delivery time.
- •The latest validation list, please access the MTK BBS web.

Item	Vendor	Part number	Power (Watts)	Package	IR(uA) @VR=4.2V	Contact Window
1	On semi	MMSZ5231BT1G	500mW	SOD123	918958	Tony Kao, 886-2-23761153 886-987-265-997 Email: tony.kao@onsemi.com
2	JIANGSU CHANGJIANG (长电科技)	MMSZ5231B	500mW	SOD123	72	Mr. Chan 0510-86858061 13601525970 E-mail: <u>cyz@cj-elec.com</u>
3	Prisemi	PZ3D4V2H	500mW	SOD323	11.5	Bull Tang
4	Prisemi	PZ5D4V2H	500mW	SOD523	4.85	Email: bull1975@gmail.com
5	Vishay	MMSZ4689-V	500mW	SOD123	7	Mike_Wang 886-911313660 mike.wang@Vishay.com

Copyright © MediaTek Inc. All rights reserved

Reference design - Schematic VBAT Input Filter

- All bypass cap. should be as close to MT6252 IC as possible
- _..., vB. Fidential Release fo Recommend reserve 0 ohm between VBAT pin & VBAT_RF, VBAT_ANALOG for analog LDO quality.

Copyright © MediaTek Inc. All rights reserved

35
tial Release **Reference design - Schematic Bypass Capacitor**

VRF, VCAMA, VIO larger than 2uF

Copyright © MediaTek Inc. All rights reserved

tial Release **Reference design - Schematic Bypass Capacitor for AVDD and VDD**

N	C / 1000 / nF / 0402	VEAT IN
	BACKUP AND	
R (0 (obm / 0402		VCC_RTC
1 R1624 2	M0 881 M19	
	M0 882 N5	VDD33 h h h h h h
		VDD33
	MMC_1 Y22	VERDO MODO
R / 0 / ohm / 0402		ADD33_WSDC
1 <u>B1626</u> 2	VCORE_1 T10	
	MB	
	R18	VDDK
R / U / ohm / U4U2	VA DD1 100	
		AVDD28 MBUF
SP5 o	D0	AVDD28 RFE
	VA 884 89	AVDD28_PLL
	0	AVDD28_AFE
		AGND28_AFE
	PWR KEY 1.6	

Reserve 0 ohm resistor for audio quality. tidential Release for

Copyright © MediaTek Inc. All rights reserved

MEDITER

Design Notice - Pulse Charging

MT6252 Charging Feature Comparison

Chip	MT6253	MT6235	MT6252
Feature			
Charging type	CC-CV	CC-CV	Pulse Charging
Maximum charger input voltage	9V	9V	
Support battery type	Li-ion	Li-ion	Li-ion
VCHG OVP	7V	7V	10.5V (Default off)
CV	4.2V	4.2V	4.2V comparator
CC	160mV/R	160mV/R	160mV/R
Pre_ charge	24mV/R	20mV/R	20mV/R
Battery OVP	4.3V	4.3V	4.35V
Watchdog timer	Yes	Yes	Yes
Pre-charge safety timer	NO	NO	50 minutes
Passed element	P-MOSFET +SD	P-MOSFET +SD	BJT+ N-MOSFET
Pre-charge/CC overlap	Yes	No	Yes

Copyright © MediaTek Inc. All rights reserved.

.....

MEDI/ITEK

BJT Validation List or design in • For design in, please notice the parts shipping delivery time.

•The latest validation list, please access the MTK BBS web.

Item	Vendor	Part number	Power (Watts)	Package	hFE (min)	hFE (max)	Ic	Contact Window
1	ST	STTB818	1.2	SOT23- 6L(TSOP6)	100 2	NC.	3A	Peter lui peter.liu@st.com 02-23762971
2	On semi	NSS35200MR6 T1G	Confi	TSOP6	100	400	2A	Tony Kao, tony.kao@onsemi.com 886-2-23761153 886-987-265-997
3	NXP	PBSS5350D	0.7	SC-74(SOT- 457)	200	NC.	3A	Mag Cheng mag.cheng@nxp.com "+886-987-49186 +886-2-8170-9076 (Direct)
4	Presemi	PT236T30E2	1.2	SOT23- 6L(TSOP6)	100	e anc. e	3A	Bull Tang 13502888931 bull1975@gmail.com

MEDINTEK

Copyright © MediaTek Inc. All rights reserved

Fident

ГEК

BJT Power Dissipation and Charge Current

- Charger BJT selection
 - Max. charger voltage 10V
 - Max. battery charge current (0.72C for Li-ion 900mAHr)
 - Max. power dissipation of external BJT (1W), Duty=8/(8+1)
 - (Vchg-3.3)*0.65*0.88 < 1 → Vchg < 5.04V, (I=0.65A)
 - (Vchg-3.3)*0.425*0.88 < 1 → Vchg < 6.0V, (I=0.425A)
 - (Vchg-3.3)*0.20*0.88 < 1 → Vchg < 9.0V (I=0.20A)</p>

Pulse Charging Feature

- - Maximum input voltage up to 30V
 - Support low cost linear and Nokia adaptor charger(9.3V)

tidential Release for

43

- Meet 2010 China charger standard(12V OVP)
- CC mode current control —
- Constant current pre-charging
- Charger OVP and battery OVP
- Pre-charge/CC safety timer
- Watchdog timer

Confider Design Notice – Charge Current Setting

		MT6223	MT6235		MT6253	MT6252
Sense	Resistor	0.2 Ohm	0.2 Ohm	0.1 Ohm	0.2 Ohm	0.2 Ohm
Pre-C	Charge	62.5	100	200	50	100
	0	62.5	62.5	125	50	100
	1	90	90	180	87.5	200
	2	150	150	300	150	400
CC	3	225	225	450	225	425
	4	300	300	600	300	550
	5	450	450	900	450	650
	6	650	Х	Х	650	700
	7	800	Х	X	800	800
sidential						

MEDI/ITEK

Copyright © MediaTek Inc. All rights reserved.

Design Notice – SW Setting Notice

 Must set TRUE for "enable checking charging voltage while charging" in Chr_parameter.c

bmt_customized_struct bmt_custom_chr_def =
{

xxxxxxxxxxxxx

KAL_FALSE, /* enable checking temperature while charging */

KAL_TRUE /* enable checking charging voltage while charging */

This should be TRUE.

Copyright © MediaTek Inc. All rights reserved.

Nokia adaptor charger(9.3V)

Confidential B

- Nokia adaptor has much type adaptor and different out put voltage. For 2-mm DC charging adaptor, the output open voltage will reach 9.3V.
- For HV input adaptor, must care charger OVP and BJT power al Release for dissipation.
- Configure charger OVP for Nokia Charger

Step 1.SW OVP

Modify Chr_parameter.c

6500000 10500000,/*VCHARGER HIGH*/

Step 2 .HW OVP

Please contact MTK to modify HW OVP for SW patch

46

(default is 7V)

- BJT power dissipation.
- lease for **BJT Power Dissipation and Charge Current page**

2011/1/17

Pins Description entitle Release					
Pin	Function				
VCDT	Charger detect, the V_CHG detection threshold voltage is 4.3V at charge off state				
CHR_LDO	Charger power supply source and it's a 2.8V shunt regulator				
VDRV	Charge passed element control pin				
BATSNS	Battery voltage sense pin				
ISENSE	Current sense pin				
BATON	Battery detection pin. If this pin is large than 2.5V will disable charging.				
	tidential Reitor				

MEDINTEK

Charge Detection

- Charger detect, the detection threshold voltage is 4.3V at charge off state.
 Charger over voltage
 protection 1007
- Charger over voltage protection HW default is disable, SW can customize. (Default is 7.5V)

Copyright © MediaTek Inc. All rights reserved.

MEDI/ITEK

Charger OVPonition in the second seco

Charger over voltage protection HW default is disable.

After power on, SW will configure "VCDT_HV_VTH"

	Min	Typical	Max	Ð
09	5.7	6	6.3	
10	6.175	<mark>6.5</mark>	6.825	
11	6.65	7	7.35	
12	7.125	7.5	7.785	
13	8.075	8.5	8.93	
14	9.025	9.5	9.97	
15	9.975	10.5	11.02	

• Other, adding below circuitry to increase a OVP path .

VDRV Driving Control

- If Q1 does not go into saturation, $I_1 = \beta_1 x I_2$.
- Assume I₁=450mA, β₁=200

=> I₂=2.25mA

 If Q1 goes into saturation, look up the on characteristic table to get the relationship between I₁ and I₂.

 Build in 256 steps CSDAC for current driving control.

Copyright © MediaTek Inc. All rights reserved.

MEDINTEK

CSDEC

- rtk Confidential Keleaar Charge current = β_1 *I_CSDEC
 - I_CSDEC (maximum)=14.8mA.
 - I CSDEC selection
- ase for 1 LSB =55uA. Current step = $55uA^{200}(\beta_1)=11mA$ •
- DC Current Gain(β) must be 100~300 at Ic=0.5A

Copyright © MediaTek Inc. All rights reserved.

New Charging State

Confidential B

 Please refer to pulse charging SW customize programming guide for customization. (Please contact with MTK)

Pulse Charge Charging Curve

tidential Keleaat **Application Limitation**

- Must have "Off duty" to detect charger plug-out.
 - Otherwise has reverse current and can't detect charger plugout
- BJT (DC Current Gain) will effect current step and accurate
 - Smaller "DC Current Gain" get more accurate.
 - Too small "DC Current Gain" to charge up zero voltage battery.
 - Vbat <1V, CSDEC will limit at 4 step(0.23mA).

fidential Keleast **Component Selection Glide**

- U200:Current passed Component----PT236T30E2
 - hFE (DC Current Gain) is 100~300 (Typical 200 @-20~80 °C) at Ic=0.5A
 - For thermal dissipation concern, the U200 power dissipation must be large than 1W.
 - VCE(Collector-Emitter Voltage) ≥30V
 - Ic >0.8A (Depend on application)
- U204 N-MOS---PNM723T703E0-2
 - Vgs threshold <1.5V @ld=0.1mA
 - VDS>30V (Depend on application)
 - RDS (ON) <10 ohm @ID = 10 mA, VGS = 2.5 V</p>
 C200 (VCHG input cap)
- C200 (VCHG input cap)
 - If want to support VCHG up to 30V, please change CAP to 1uF/50V.

Charger Layout Notice:

- C216 CHR_LDO decouple cap close to IC.
- R211 (Current sense resistor)close battery connector and trace is 40mil(star connect to connector)
- The exposed pad of the U200(Current passed component) should connect to a large copper ground plane to get good thermal performance.
- ISENSE and BATSNS should be connected as the below figure.
- The trace from Rsense to battery connector should not share with other VBAT traces.
- ISENSE/BATSNS should be routed as differential traces which are away from noisy signals.

57

РСВ

Trace

Kelvin

Sense Traces

Soneo Rosistor

PCB

Trace

Design Notice – Audio

Design Notice – Audio (1/9) Audio Block diagram

Design Notice – Audio (2/9) • MT6252/6253/6236

	22	MT6253	MT6236	MT6252	
MIC	gain range (dB)	-20 ~ +43	-20 ~ +43	1~49 dB	
	gain step size	2dB	2dB	2dB	
	gain range (dB)	-22 ~ +8	-22 ~ +8	-16 ~ 8 dB	
Voice buffer 0	gain step size	2dB	2dB	2dB	
building	Engineer mode range	0 ~ 255	0 ~ 255	0 ~ 255	
<u>.</u>	gain range (dB)	-22 ~ +23	-22 ~ +23	-22 ~ 17 dB	
audio	gain step size	3dB	3dB	3dB	
Buildi	Engineer mode range	0 ~ 255	0 ~ 255	0 ~ 255	
	Атр Туре	ClassAB/D	ClassD	ClassAB	
SPK AMP	gain range (dB)	0~21 (Class-AB) 6~27 (Class-D)	12/18dB	0~22.5dB	
	gain step size	3dB	x	1.5dB	
sidential Released					

Copyright © MediaTek Inc. All rights reserved

Design Notice – Audio (3/9)

Confidential B

- Audio Signal schematic and layout :
 - The signal of Audio block should shielding by GND
 - C218 GND net should connect to C3(AGND28_AFE) pad first then direct through Via to Main GND.

61

Design Notice – Audio (4/9)

- Audio Power schematic and layout :
- C225 GND side should connect to AGND28_AFE first then short to main GND and close to ball C9

Design Notice – Audio (5/9)

Confidential B

- Audio Power schematic and layout :
- C41, C46, C53, C56, R71, R72, R59, R65, R68, R70, C45, C44, C50 須靠近BB, 並放在shielding case 裡面

ial Release **Design Notice – Audio (6/9)**

- - An extra interrupt pin of audio jack for the earpiece detection can get better THD+N (from 71dB to 76dB)

Copyright © MediaTek Inc. All rights reserved

ИЕDIЛТЕК

Design Notice – Audio (7/9)

- Audio Jack :
 - In previous page, EINT status is from Low(earphone plug out) to High (earphone plug-in), so please confirm auxmain.c to fit hardware application

```
•Example for EINT status is from Low (plug out) to High (plug-in)
                                 , nug-in
Jential Release
                     aux state = LEVEL LOW:
     kal bool
     void AUX EINT HISR(void)
     ilm struct *aux ilm;
      if (aux state == LEVEL HIGH)
      #ifdef AUX DEBUG
     dbg_print(" Interrupt: Plugout \n\r"):
      #endif
•Example for EINT status if from High (plug out) to Low (plug in)
                     aux state = LEVEL HIGH;
     kal bool
                                   antial Release for
     void AUX EINT HISR(void)
      ilm struct *aux ilm;
      if (aux state == LEVEL LOW)
      #ifdef AUX DEBUG
     dbg_print(" Interrupt: Plugout \n\r");
#endif
```

Copyright © MediaTek Inc. All rights reserved

65

al Release **Design Notice – Audio (8/9)**

Internal Class-AB : Audio Amplifier Power Output

	MT6252 Class-AB Amplifie		
	THD+N=10%, VDD=4.2V RL = 8Ω	1.0W	50
Pout Maximun output power	THD+N=10%, VDD= 3.3 V RL = 8Ω	650mW	1025e TU
	THD+N=1%, VDD=4.2V RL = 8Ω	850mW	eleas
	THD+N=1%, VDD=3.6V RL = 8Ω	500mW	

Although MT6252 class-AB power output is 0.85W at 8 Ω , because congenital power source limitation is 4.2V from VBAT, but compare with other discrete amplifiers, MT6252 equal other amplifier in performance. tidential Release for

al Release **Design Notice – Audio (9/9)**

- **Internal Class-AB Audio Amplifier :**
 - The trace width of SPK P and SPK N should be greater than 25 mil
 - The Net of SPK_P and SPK_N should be shielded by GND
 - Please select Bead for Amp output filter which R_{DC} < 0.10hm and Rated Current > 1.1A

Copyright © MediaTek Inc. All rights reserved

Notice for 2-on-1 speaker application

MT6252 design note- Speech

Microphone application circuit note

 Layout consideration-Normal mode

- 1. R302, R303, R304, R307, C311, C301 and C312 should be put <u>close to the BB chip</u>
 - R302, R303, R304, R307,
 C311 should be put as close as possible
- 2. L303, L305, C310, C316, C317, T305 and T306 should be close to the microphone
- 3. GND of <u>C316 and C317</u> should be connected <u>together</u> and then to the GND
- 4. GND of <u>T305 and T306</u> should be connected <u>together</u> and then to the GND
- 5. GND of <u>**R307**</u>should connect to the <u>main GND by a single via</u>

MEDINTEK

fidential Keleast **Microphone application circuit note**

Layout consideration-Headset mode

- 1. C326, C332, R311, R310 should be put close to BB
 - The GND of C333 and C334 should connect together and then connect to the GND
 - The GND of C327 and headset should connect together and then to the main **GND by single via**

<u>microphone</u> Release C327 should be put close to

ΜΕΟΙΛΤΕΚ
Placement and routing Example

MEDINTEK

Layout rule Confidential Release

- The AU_VCM cap should be put <u>close to the BB chip</u>, the trace should be <u>as short as possible</u>
 - Prevent cross-over with power signal
 - Prevent to route it in parallel with other traces
- The GND of AU_VCM cap should be <u>connected to the</u> <u>ball C3 first and then connected system GND with</u> <u>single via</u> to make sure the GND is clear
 - For <u>6-layers</u> PCB, the system GND is the <u>GND plan of the PCB</u>
 - For <u>4-layers</u> PCB, the system GND is the <u>GND that has largest</u> <u>GND area</u> (top or bottom layer)
 - The via should be far-way from the high power signal, especially for VBAT (please see the case study in the next slide)

тек

2-in-1 application circuit 2 resistor 10-

- leakage from SPK amp output to the HS (voice buffer)

Image Sensor Design Notice

Parallel Image Sensor Interface

BB Chip (Pin definition)	Camera side	
CMVREF	VSYNC	
CMHREF	HSYNC	
CMPCLK	PCLK	
CMMCLK	MCLK	
SDA CO	SIOD	
SCL	SIOC	
CMRST	RESETB	
CMPDN	PWDN	
CMDAT0~CMDAT7	ΔΑΤΑΟ ~ ΔΑΤΑ Τ	
fident	al Release	Ĵ
opyright © MediaTek Inc. All rights reserved. 76	MEDI	TEK

Serial Image Sensor Interface

Sensor Module Selection

Sensor Module Selection

PCB Design Flow

Design Notice – Image Sensor

• PCB Component Placement recommend :

➤To minimize RF radiation interference, do not place the sensor module near or beneath the antenna.

The sensor module's power supplies(inductors , beads , resistors , capacitors) should be placed as close as possible to the connect

Confidential B

Design Notice – Camera General Routing rect

>With minimum trace lengths, route highspeed clock and high-speed data differential pairs first.

>Route signals using a minimum of vias and corners. This reduces signal reflections and impedance changes.

>When it becomes necessary to turn 90 °, use two 45 ° turns or an arc instead of making a single 90 ° turn. This reduces reflections on the signal by minimizing impedance discontinuities.

>Do not route signal traces under crystals, oscillators, clock synthesizers, magnetic devices.

➢Route all traces over continuous planes

>Keep all signals clear of the core logic set.

Confidential B

MEDINTEK

Design Notice – Camera General Routing rect

Confidential B

1.EMIF shall be placed as close as camera connector.

2.Don't routing the trace to cross EMIF input and output. (L1 & L2)

3.Reduce the routing trace on top layer. 4.Don't routing the unrelated signal on L2 pad. (GND signal is OK)

ential Release for

Design Notice – Single Camera

Confidential B

MEDINTEK

• Single Image Sensor Interface :

The Image Sensor interface is divided up into three groups summarized in below that each group has special routing guidelines. The interconnecting lengths in the controller package should be calculated for the length matching.

Group	Signal Name	Description
Data	DQ[0:7] CMVREF CMHREF	Image sensor data[0:7] input Image sensor vertical reference signal input Image sensor horizontal reference signal input
Clock	MCLK PCLK	Image sensor master clock output Image sensor pixel clock input
Control	SCL SDA CMRST CMPDN CMFLASH	I2C clock output I2C data input/output Image sensor reset signal output Image sensor power down signal output Image sensor Flash signal output

Design Notice – Single Camera

PCB Layout Design Notice (1/3) (nice to have)

This section states the layout recommendations for the image sensor data group routing. Refer to below figure for the data group topology and below table for the routing guidelines. Data group shall be routed surround with ground plan

Parameter	Routing Guideline
Reference plane	Route microstrip over unbroken ground or power plane.
Main trace patterns (Image Sensor Data)	$W = 4$ -mil, $S \ge 4$ -mil.
Break-out/Break-in area (under the BGA package area)	$W \ge 3$ -mil, $S \ge 3$ -mil.
Max. TL0 (BB ball to Image Sensor Connect)	4,800 mils
Length matching	Max. (Trace length) – 500mil \leq (Trace length) \leq Max. (Trace length)
Remark	Data Group shall be routed surround with ground plan

Copyright © MediaTek Inc. All rights reserved.

TEK

Design Notice – Single Camera

• PCB Layout Design Notice (2/3) (high priority-Must!!)

This section states the layout recommendations for the Image Sensor clock signals. Refer to below figure for the clock topology and below table for the routing guidelines. Each clock shall be routed surround with ground plan. The R_d is optional that could be different from 0 or 22 Ω if the different controller I/O is designed or the different driving strength is assigned.

Parameter	Routing Guideline	
Reference plane	Route microstrip over unbroken ground plane.	
Main trace patterns (MCLK PCLK)	W = 4-mil, S \geq 4-mil.Surround the CLK with ground plan.	
Break-out/Break-in area (under the BGA package area)	$W \ge 3$ -mil, $S \ge 3$ -mil.	
Damping resistor (R_d)	Optional, 0 or 22 Ω (Near the Image Sensor).	
Max. (TL0 + TL1)	4,500 mils	
Length matching for Data-to- PCLK	(PCLK length -500 -mil) \leq DQ length \leq (PCLK length $+500$ -mil)	п介
Remark	Each clock shall be routed surround with ground plan (high priority) [MCLK, PCLK]	

Copyright © MediaTek Inc. All rights reserved.

Design Notice – Single Camera

Confidential B

MEDINTEK

PCB Layout Design Notice (3/3) (nice to have)

This section states the layout recommendations for the Image Sensor control signals. Refer to below figure for the control topology and below table for the routing guidelines.

Parameter	Routing Guideline	
Reference plane	Route microstrip over unbroken ground or power plane.	
Main trace patterns	$W = 4$ -mil, $S \ge 4$ -mil.	
Break-out/Break-in area (under the BGA package area)	$W \ge 3$ -mil, $S \ge 3$ -mil.	
Max. TL0	6000 mils	пŶ
Remark	Control Group shall be routed surround with ground plan	\cup

Design Notice – Dual Camera

Confidential B

MEDINTEK

• Dual Image Sensor Interface :

The Image Sensor interface is divided up into three groups summarized in below that each group has special routing guidelines. The interconnecting lengths in the controller package should be calculated for the length matching.

Group	Signal Name	Description
Data	DQ[0:7] CMVREF CMHREF	Image sensor data[0:7] input Image sensor vertical reference signal input Image sensor horizontal reference signal input
Clock	MCLK PCLK	Image sensor master clock output Image sensor pixel clock input
Control	SCL SDA CMRST CMPDN CMFLASH	I2C clock output I2C data input/output Image sensor reset signal output Image sensor power down signal output Image sensor Flash signal output

Design Notice – Dual Camera

PCB Layout Design Notice (1/3) (nice to have)

This section states the layout recommendations for the dual camera image sensor data group routing. Refer to below figure for the data group topology and below table for the routing guidelines. Data group shall be routed surround with ground plan

Parameter	Routing Guideline
Reference plane	Route microstrip over unbroken ground or power plane.
Main trace patterns (Image Sensor Data)	W = 4-mil, S \geq 4-mil.
Break-out/Break-in area (under the BGA package area)	$W \ge 3$ -mil, $S \ge 3$ -mil.
Max. TL0 + TL1 (BB ball to Main Image Sensor Connect)	4,800 mils
Max. TL1 (Branch points to Sub Image Sensor Connect)	1,500 mils
Length matching(TL0+TL1)	Max. (Trace length) – 500 mil \leq (Trace length) \leq Max. (Trace length)
Remark	Data Group shall be routed surround with ground plan

Copyright © MediaTek Inc. All rights reserved.

Release **Design Notice – Dual Camera**

PCB Layout Design Notice (2/3) (high priority-Must!!) This section states the layout recommendations for the Image Sensor

clock signals. Refer to below figure for the clock topology and below table for the routing guidelines. Each clock shall be routed surround with ground plan. The R_d is optional that could be different from 0 or 22 Ω if the different controller I/O is designed or the different driving strength is assigned.

Parameter	Routing Guideline]
Reference plane	Route microstrip over unbroken ground plane.	
Main trace patterns (MCLK PCLK)	W = 4-mil, S \geq 4-mil.Surround the CLK with ground plan.	
Break-out/Break-in area (under the BGA package area)	$W \ge 3$ -mil, $S \ge 3$ -mil.	
Damping resistor (R _d)	Optional, 0 or 22 Ω (Near the Image Sensor).	
Max. TL0 + TL1 (BB ball to Main Image Sensor Connect)	4,500 mils	
Max. TL1 (Branch points to Sub Image Sensor Connect)	1,500 mils	
Length matching for Data-to- PCLK(TL0+TL1)	(PCLK length – 500-mil) \leq DQ length \leq (PCLK length + 500-mil)	口介
Remark	Each clock shall be routed surround with ground plan (high priority) [MCLK, PCLK]	
ight © MediaTek Inc. All rights reserved.	91 ME	DIATER

Copyright © MediaTek Inc. All rights reserved

91

Confidential B

Design Notice – Dual Camera

Confidential B

MEDINTEK

PCB Layout Design Notice (3/3) (nice to have)

This section states the layout recommendations for the dual Image Sensor control signals. Refer to below figure for the control topology and below table for the routing guidelines.

Parameter	Routing Guideline	
Reference plane	Route microstrip over unbroken ground or power plane.	
Main trace patterns	$W = 4$ -mil, $S \ge 4$ -mil.	
Break-out/Break-in area (under the BGA package area)	$W \ge 3$ -mil, $S \ge 3$ -mil.	
Max. TL0 + TL1 (BB ball to Main Image Sensor Connect)	6,000 mils	
Max. TL1 (Branch points to Sub Image Sensor Connect)	2,000 mils	п
Remark	Control Group shall be routed surround with ground plan	

Copyright © MediaTek Inc. All rights reserved.

Design Notice – Serial Camera

Confidential B

• Serial Image Sensor Interface :

The Image Sensor interface is divided up into three groups summarized in below that each group has special routing guidelines. The interconnecting

lengths in the controller package should be calculated for the length matching.

Group	Signal Name	Description	
SPI	CSD CSK	Image sensor SPI data output Image sensor SPI CLK output	
Clock	MCLK	Image sensor master clock output	
Control	SCL SDA CMRST	I2C clock output I2C data input/output Image sensor reset signal output	U

Copyright © MediaTek Inc. All rights reserved.

Design Notice – Serial Camera

PCB Layout Design Notice (1/3) (nice to have)

This section states the layout recommendations for the image sensor SPI group routing. Refer to below figure for the data group topology and below table for the routing guidelines. Data group shall be routed surround with ground plan

Parameter	Routing Guideline
Reference plane	Route microstrip over unbroken ground or power plane.
Main trace patterns (Image Sensor Data)	W = 4-mil, S \geq 4-mil.
Break-out/Break-in area (under the BGA package area)	$W \ge 3$ -mil, $S \ge 3$ -mil.
Max. TL0 (BB ball to Image Sensor Connect)	6,000 mils
Length matching in PCB	100 mils.
Remark	SPI Group shall be routed surround with ground plan

Copyright © MediaTek Inc. All rights reserved.

ΜΕΟΙΛΤΕΚ

Design Notice – Serial Camera

• PCB Layout Design Notice (2/3) (high priority-Must!!)

This section states the layout recommendations for the Image Sensor clock signals. Refer to below figure for the clock topology and below table for the routing guidelines. Each clock shall be routed surround with ground plan. The R_d is optional that could be different from 0 or 22 Ω if the different controller I/O is designed or the different driving strength is assigned.

Parameter	Routing Guideline	
Reference plane	Route microstrip over unbroken ground plane.	
Main trace patterns (MCLK PCLK)	W = 4-mil, S \geq 4-mil.Surround the CLK with ground plan.	
Break-out/Break-in area (under the BGA package area)	$W \ge 3$ -mil, $S \ge 3$ -mil.	
Damping resistor (R _d)	Optional, 0 or 22 Ω (Near the Image Sensor).	
Max. (TL0 + TL1)	6,000 mils	
Remark	Each clock shall be routed surround with ground plan (high priority) [MCLK, CSK]	

Copyright © MediaTek Inc. All rights reserved.

Design Notice – Serial Camera

Confidential B

MEDINTEK

PCB Layout Design Notice (3/3) (nice to have)

This section states the layout recommendations for the Image Sensor control signals. Refer to below figure for the control topology and below table for the routing guidelines.

Parameter	Routing Guideline	
Reference plane	Route microstrip over unbroken ground or power plane.	
Main trace patterns	$W = 4$ -mil, $S \ge 4$ -mil.	
Break-out/Break-in area (under the BGA package area)	$W \ge 3$ -mil, $S \ge 3$ -mil.	
Max. TL0	6000 mils	口介
Remark	Control Group shall be routed surround with ground plan	

Design Notice – Camera Analog Power Routier

Confidential B

This section states the layout recommendations for the image sensor Analog power routing. Refer to below table for the routing guidelines. Analog Power shall be routed surround with ground plan Cat

Parameter	Routing Guideline		
Reference plane	Route microstrip over unbroken ground or power plane.		
Main trace patterns (Analog Power)	$W \ge 12$ -mil, $S = 4$ -mil with GND trace.		
Remark	Analog power must be routed surround with ground plan De-couple cap shall connect to main ground directly.		

Design Notice – Camera Digital Power Routing

Confidential B

This section states the layout recommendations for the image sensor digital power routing. Refer to below table for the routing guidelines. Digital Power shall be routed surround with ground plan ee for

Parameter	Routing Guideline		
Reference plane	Route microstrip over unbroken ground or power plane.		
Main trace patterns (Digital Power)	$W \ge 12$ -mil, $S = 4$ -mil with GND trace.		
Remark	Digital power shall be routed surround with ground plan. De-couple cap shall connect to main ground directly. (Must)		

			noleas		
				4.5	1010
				ontic	
,am	era	DUS COI	naur	ation	
2.	8V 12C	MODE selection	Driving	Pull up	Pull down
CAM_SCL	URXD2	GPIO22 = 3	GPIO22	GPIO22	GPIO22
CAM_SDA	UTXD2	GPIO23 = 3	GPIO23	GPIO23	GPIO23
CAM SCI	KCOL4		GPICA	GPIO3	GDIO3
CAM_SDA	KCOL5	GPI04 = 3	GPIO4	GPIO4	GPIO4
		01104 - 0	01104	01104	
CAM_SCL	GPIO70	GPIO70 = 4	GPIO70	GPIO70	GPIO70
CAM_SDA	KROW7	GPIO45 = 4	GPIO45	GPIO45	GPIO45
	01/100	_			250
1. CAM SCL	BV IZC	MODE selection	Driving	Pull up	Pull down
CAM_SCL	URTS1_B	GPI024 = 2 GPI025 = 2	GPIO24	GPIO24	GPI024
0/4/1_00/1	014101_0	GP1025 = 2	GPI025	GPI023	<u>Griuz</u>
CAM_SCL	ED7 (L only)	GPIO_SPMODE1[10:8] = 5	ACIF_CON1[30:28]	EMI_IOB[4]	EMI_IOB[5]
CAM_SDA	ED6 (L only)	$GPIO_SPMODE1[6:4] = 5$	ACIF_CON1[30:28]	EMI_IOB[4]	EMI_IOB[5]
0.01/0					
2.8V Pa	CMPST	MODE selection	Driving	Pull up	Pull down
		GPIOb0 = 1	GPI060	GPIO60	GPI060
	CMMCLK	GPIOS7 = 1	GPI057	GPIO57	GPIO58
CMPCLK	CMPCLK	GPI050 = 1	GPI059	GPI058	GPIO59
CMHREF	CMHREF	GPI056 = 1	GPIO56	GPIO56	GPIO56
CMVREF	CMVREF	GPI055 = 1	GPIO55	GPIO55	GPIO55
CMDATA0~	7 CMDAT0~7	GPIQ47-54 = 1	GPIO47-54	GPIO47-54	GPIO47-54
4.004.0					
1.8V S	EA12	MODE selection	Driving	Pull up	Pull down
	EA12 EA13	$\frac{\text{GPIO}_\text{SPMODE0}[25:24] = 2}{\text{GPIO}_\text{SPMODE0}[25:24] = 2}$	ACIF_CON0[30:28]	ACIF_CON1[16]	ACIF_CONI[17]
	EA14	$GPIO_SPMODE0[27:26] = 2$ $GPIO_SPMODE0[20:28] = 2$	ACIF_CON0[30:28]	ACIF_CONI[16]	ACIF_CONI[17]
	EA15	$GPIO_SPINODE0[29:28] = 2$ $GPIO_SPMODE0[31:30] = 2$	ACIF_CON0[30:28]	ACIF_CONI[16]	ACIF CONI[17]
		0.10_0100000001000j = 2		Lion Control	222
2.8V S	erial sensor	MODE selection	Driving	Pull up	Pull down
CMMCLK	CMMCLK	GPIO58 = 1	GPIO58	GPIO58	GPIO58
CSK	CMPCLK	GPIO59 = 2	GPIO59	GPIO59	GPIO59
CSD	CMDAT0	GPIO47 = 2	GPIO47	GPIO47	GPIO47
CMPDN	CMPDN	GPIO57 = 1	GPIO57	GPI057	GPIO57

MT6252 MSDC Design Notice V0.3

dential Keleast **Connector with Card Detection Pin**

- Reserve external PU resistors for DAT1/2/3 & MCINS in connector side 1.
- Reserve ESD protection device on CMD/CLK/DAT/MCINS with Cap < 15pF 2.
- VIO must always be on for hot plug detection 3.

2011/1/17

Connector without Card Detection Pin

- Use DAT3 for hot-plug detection
- 1. Reserve external PU resistors for DAT1/2 in connector side
- 2. Reserve ESD protection device on CMD/CLK/DAT/MCINS with Cap < 15pF
- 3. DAT3 must be PD with external 470Kohm resistor
- 4. Compile option for DAT3 detection: __MSDC_TFLASH_DAT3_1BIT_HOT_PLUG__
- 5. VIO must always be on for hot plug detection

AVDD_RTC

VDD33

VDD33

M19

N5

VMC

Better T-card Compatibility An external LDO for T-card (and MT6252 VDD33_MSDC) is suggested

- Output voltage: 3V3 1.
- Output current: >= 200mA 2.
- lease LDO output rising time form 0 to 3V3 <= 50uS 3.

MT6252 Example Circuit

- Reserve external PU resistors for DAT1/2/3 in connector side 1.
- Reserve ESD protection device on CMD/CLK/DAT with Cap < 15pF 2.

Layout Guidelines fidential Release

- DAT, CMD, CLK 一起走 1.
- Release for 若無法全部一起走,優先順序為:((DAT + CLK) + CMD) 2.
- CLK 左右要包GND,避免受到干擾 3.
- DAT, CMD, CLK 線長最大誤差控制在1000mil以內 (預估time difference在 160pS以內) 4. **Confid**

tidential Release for 2011/1/17

MEDIATEK

MT6252 LCM Design Notice

fidential Keleast LCM Design Note – Overview

- **Display Resolution**
 - Support up to Main QVGA (main display) + QVGA (sub display) Release to
- Interface
 - Supports CPU 8/9/16 bit interface
 - Dedicated HW tearing free control
- Power
 - Support 1.8v IO level LCM (6252 only support 1.8V I/O)
 - Support Parallel-4 LCM backlight controller
- Dual display feature is supported
 - dential Release for - Parallel 8/9 (main) + Parallel 8/9 (sub)
 - Parallel 8/9 (main) + SPI (sub)

2011/1/17
IOVDD

GND

/CS

/WR

/RESET

LCM ID 12

D7 30

D5 32

Π4 33

D3 34

D2 35 36

D1

00 37

LEDA 38

LEDK1 39

LEDK2 40

LEDK3 41

LEDK4

BLC EN

XL 45

YD 46 47 XR

42 BLC 43

44

FMARK Fsvnc

RS /RD

10 IM0

11

Power

LCM Control

LCM Data

Backlight

Touch Panel

1uF

1uF

LPCE0B

LWRB

LPA0 LRDB

LRSTB

ADCx

LPTE

NLD8

NLD7

NLD6 NLD5

NLD4

NLD3

NLD2

NLD1

LED K1

LED K2

LED K3

LED K4

BLC EN

TP_YD TP_XR

11/1

tidential Keleast LCM Design Note – Parallel Interface

- Power
 - VCI : connect to 2.8v for LCM analog power
 - IOVDD : connect to 1.8v depends on LCM IO level zelease fo • LCM IO level should follow EMI bus power level
- LCM Control
 - All LCM control pin are reserved at BB side
 - IM[1:0] : Interface Mode should reference IOVDD level
 - LCM_ID pin connetc to Aux_ADC for
- LCM Data
 - All LCM data pin are reserved at BB side
 - For 8 bit interface, some LCM use lower byte D[7:0], some use D[23:16]. Be sure data pin connect to the correct LCM pins.
- Backlight
 - Connect backlight anode to VBAT with a bypass cap
 - Connect backlight cathod to BB dedicated ISINK[0:3] pin
- **Touch Panel**
 - Connect to dedicated 4-wire R-type TP pin

1uF

1uF

LCM Design Note – Parallel Interface

Parallel Interface Pin List

LCM Design Note – Serial Interface

 Sometimes ULC LCM don't support F_Sync function. If supported, please connect to BB LCD_TE(pin AC4)

			fat
			CO TU
		-10	190
		Rei	
MT6252	(Pin definition)	LCM side	- N
LSDA (EA4)	AA17	SDI	$1 \text{uF} \xrightarrow{1} 1 \text{uF} \xrightarrow{1} 1 \text{uF} \xrightarrow{1} 1 \text{J} \xrightarrow{1} 1$
LSDI (EA6)	Y20	SDO	2 VCI IOVCC GND
LSCK (EA3)	AA14	SCK	LED_A
LRSTB	AC5	RESET	$1 \text{uF} \xrightarrow{-} \text{LED}_{K2} \xrightarrow{-} \text{LEDK1}_{\text{LED}_{K2}}$
LSCE0B	Y19	SCS	LSDA LSDI LSCE0B
LCD_TE	AC4	FMARK / F_Sync	SCK LRSTB LPTE 12 SCK RESET FMARK_Fsync LCM
		tial Rero	

Copyright © MediaTek Inc. All rights reserved 2011

2011/1/17

LCM Design Note – Dual LCM

Dual LCM mode

Supporting 1.8V I/O LCM Vendor Survey

No	Vendor	On-going 2.8v/1.8v compatible LCM Percentage	Vendor's feedback
1	Truly	> 90%	 华南地区产品超过一半的OEM型号能兼容2.8V/1.8V 华东、华北地区客户的产品绝大部分都可以兼容2.8/1.8V。 之前较早时期的显示模组,能够同时兼容2.8V/1.8V的比例会少一些 标准品超过90%会做2.8V/1.8V的IOVCC兼容(仅在某款产品是在依据某一客户具体要求而开的标准品中才会出现仅仅支持2.8V的情况) OEM型号,则看客户的要求,之前部分客户的主板只能提供一个电压给LCM,要求的FPC pin数量尽量少会做成仅支援2.8V的方式。
2	WistronOPT	> 90%	• 新開發產品全面支援2.8v/1.8v兼容
3	BYD	TBD CO	目前的产品都尽可能将IO Power Supply单独接口,但是由于个别客户早期的主板只保留了1个2.8V Power Supply的供应,LCD产品不得不将IOVCC与VCI连接在一起使用。这种单电源供应产品不是很多,大部分集中在小尺寸产品上。
4	BOE	~ 81%	目前我司LCM是有一些在接口上只有一路电压(即2.8V),当然这些产品应用的手机平台不全部是MTK的。对于这个问题,我司后续与客户进行项目沟通时会传递这个信息,尽量在新项目中采用分开电压的设计。
5	Tainma (SH)	~90%	绝大部分产品都是2.8v/1.8v IO compatible。
6	Varitronix	TBD	Loge TU
7	SHARP	TBD	Releas
8	LGD	100%	 There is no LGD panel and Module spec supporting 2.8V lovcc only. 2.8v/1.8v io compatible is the normal D-IC spec for Vcc and loves

MTK LCM IO Level Trend

Confidential B

- 不建議與建議的LCM Module Spec

- This LCM has only "One Power Pins" (no separated VCI and IOVCC power pins)
- Supply voltage allows 3V only which means IO level can't support 1.8V

MTK LCM IO Level Trend

Confidential B

MTK recommend LCM connection

MT6252 RF Design Note

Outline

- **Reference design**
- **META** tools
- Key RF components
- ntial Release for Modify BPI and timing for MT6252

rtk Confidential Keleaat

Copyright © MediaTek Inc. All rights reserved 2008/06

118

ΜΕΟΙΛΤΕΚ

tidential Keleast **META Factory Calibration UI (Traditional)**

1. Setting files : •NVRAM DB •CFG file (input file) •LOG file •RST file •INI file (input file) •CAL file •Barcode 2. Calibration items : •AFC •RX path loss •TX PCL 3. PA type and PCL : •Select PA type in the scroll bar 4. Other settings : Select GMSK and/or EPSK mode •AFC type is Crystal 5. Select instrument : •Select CMU or 8960 De-select Reset CMU200 6. Start calibration

Copyright © MediaTek Inc. All rights reserved

120

2008/06

MEDINTEK

META Factory Calibration UI (FHC)

1. Setting files : •NVRAM DB •CFG file (input file) •LOG file •RST file •INI file (input file) •CAL file Barcode 2. Calibration items : •AFC •RX path loss •TX PCL 3. PA type: •Select PA type in the scroll bar 4. Other settings : Select GMSK and/or EPSK mode •AFC type is Crystal 5. Select instrument : •Select CMU or 8960 De-select Reset CMU200 6. Select FHC 7. Start calibration

Copyright © MediaTek Inc. All rights reserved.

121

2008/06

MEDINTEK

tial Release **Calibration File and Initial Files**

Calibration file (traditional calibration)

MT6252.ini

ntial Release for Initial file (traditional calibration)

Key RF Components

Key RF Components: Evaluation

- RX SAW
 - Characteristics: Insertion loss/Attenuation
 - System performance: Sensitivity/Blocking test
- TX SAW
 - Characteristics: Insertion loss/Attenuation
- ase for System performance: Tx output power/Tx noise in Rx band
- ASM (Antenna Switch Module)
 - Characteristics: Insertion loss/Harmonics attenuation/Isolation
 - System performance: under normal and extreme condition
 - RMS and peak phase error/Frequency error/ORFS/Switching transient
 - Sensitivity
 - Spurious emission

FEM (Front-End Module; ASM with RX SAW)

- Characteristics: Insertion loss/Attenuation/Isolation
- System Performance: Under normal and extreme conditions
 - RMS and peak phase error/Frequency error/ORFS/Switching transient
 - Sensitivity/Blocking
 - Spurious emission

PinOut of MT6252 (Same as MT6253)

Confidential B

RX SAWs (MT6252)

•Diplexer SAW (The target is these RF external components should be the same as 6253, but this qualify schedule is TBD)

Vendor	Part Number	Support Bands	Туре	Size(mm2)	RF Chip	Qualified
Murata	SAWEN881MCX0F00R14 SAWEN1G84CV0F00R14	850/900 1800/1900	1 in 4 out	1.8x1.4	MT6253	
Fujitsu	FAR-G5KM-942M50-Y4NY FAR-G6KM-1G9600-Y4NZ	850/900 1800/1900	1 in 4 out	1.8x1.4	MT6253	
SAMSUNG	SFWM81DY102 SFWG42MY002	850/900 1800/1900	1 in 4 out	1.8x1.4	MT6253	
EPCOS	No products, checking develop schedule with engineers	850/900 1800/1900	1 in 4 out	1.8x1.4	MT6253	
Hitachi Media	No products, checking develop schedule with engineers	850/900 1800/1900	1 in 4 out	1.8x1.4	MT6253	

TX Modules (MT6252)(Schedule TBD)

PA/TxM Components Qualified for MT6253					
Type Vendor		Part Number	Size (mm ²)	Band Supported	
Tx Module	RFMD	RF7170	6.63 x 5.24	Semi-Quad	

•Note : The target is these RF external components should be the same as 6253, but this qualify schedule is TBD

fidential Keleast Crystal (MT6252) (Schedule TBD)

Qualified Crystal Components					
Vendor	Part Number	Freq. (MHz)	CL (pF)	Size (mm ²)	Status
TXC	7M26000028	26	7.5	3.2 x 2.5	Approved
	confidentic	3			

- Note: Don't use MT6139/MT6140's, AD6548 Crystal for MT6252.
- Note : The target is these RF external components should be the same as 6253, but this qualify schedule is TBD

MEDIATEK

MT6252 Reference Phone

VRF / VRF1 & VRF2

MEDIATEK

Copyright © MediaTek Inc. All rights reserved. 20

2008/06

Copyright © MediaTek Inc. All rights reserved. 2008/06

	Confident
	Contident
C724 NC C727 NC C727 NC C727 NC C727 NC C727 NC C727 NC C727 NC C727 NC C727 NC C727 NC C727 NC C727 Sob OUT_1 Sob OUT_2 C727 Sob OUT_2 Sob OUT_2 C727 Sob OUT_2 C727 Sob OUT_2 Sob OUT_2 C727 Sob OUT_2 Sob OUT_2 C727 Sob OUT_2 Sob OU	C/2.2/pF/0402 C/2.2/pF/0402 C/2.2/pF/0402 C/2.2/pF/0402 C/2.2/pF/0402 C/2.2/pF/0402 C/2.2/pF/0402 C/2.2/pF/0402 C/2.2/pF/0402
L709 L709 1	C732 C732 C732 C732 C732 C734
1800 GUT_2 © © SAW / EN1 \$84¢wbFo0 R}4	L714) NC C741 1 2 C741 1 2 C741 1 2 C741 1 2 C741 1 2 C741 1 2 C741 1 2 C741 1 2 C741 1 2 C741 1 2 C741 C741 C741 C741 C741 C741 C741 C741

Copyright © MediaTek Inc. All rights reserved. 2008/06

Stack Up (4 Layers)

Layout Rule

Confidential B

			De easo				
	La	Ŋ	out Rule Confidential B				
	MT6252 PCB RF layout rules						
	Do	ne	Item				
1			Crystal place as close as possible to MT6252 PIN XTAL (G23)				
2			Crystal and its trace directly refer to global ground, keep out L1&L2 ground				
3	Crystal ground pin directly connect to global ground, do not connect to other layer GND						
4			PIN XTAL_GND (H22) is directly connected to global ground				
5			PIN FREF (J22) should be shielded in inner layer, and its via should keep far away from				
)			Pin XTAL(G23) and trace				
6			Control signals of ASM or Front-end Module do not cross the antenna port or PA outputs				
7			Keep RF trace as 50Ω				
8			Keep good differential property of RX differential trace				
9			Avoid GND split under MT6252, especially for L2				
10			AVDD28_RF1 (C17) & AVDD28_RF2 (E21&E22) bypass cap. place as close as possible				
10			to MT6252				
11			GND of AVDD28_RF1 (C17) & AVDD28_RF2 (E21 & E22) decoupling cap is directly				
11			connected to global ground				
12			Place AVDD28_TCXO (H20) bypass cap. as close as possible to MT6252				
13			Place AVDD28_RFD (J21) bypass cap. as close as possible to MT6252				
14			For Camera, LCM, and MSDC, the clock and data should have better GND protection.				
14		_	Avoid power trace or other trace routing parallel with clock and data.				
15			Place memory as close as possible to MT6252				

1. Crystal place as close as possible to MT6252 PIN XTAL (G23)

2. Crystal and its trace directly refer to global ground , keep out L1&L2 ground

3. Crystal ground pin directly connect to global ground , do not connect to other layer GND

Confidential I 4. PIN XTAL_GND (H22) is directly connected to global ground

tial Release for 5. PIN FREF (J22) should be shielded in inner layer, and its via should keep far away from Pin XTAL(G23) and trace

6. Control signals of ASM or Front-end Module do not cross the antenna port or PA outputs

Copyright © MediaTek Inc. All rights reserved 2008/06

138

MEDINTEK

7. Keep RF trace as 50Ω dential Release 23

Copyright © MediaTek Inc. All rights reserved. 2008/06

Confidential B

8. Keep good differential property of RX differential trace

- Trace length keep the same between the differential pair
- GND keep at least larger than 4 time of differential pair distance, r>4xd

9. Avoid GND split under MT6252, especially for L2

tial Release 10. AVDD28 RF1 (C17) & AVDD28 RF2 (E21&E22) bypass cap. place as close as possible to MT6252

11. GND of AVDD28 RF1 (C17) & AVDD28 RF2 (E21 & E22) decoupling cap is directly connected to global ground

12. Place AVDD28 TCXO (H20) bypass cap. as close as possible to MT6252

Copyright © MediaTek Inc. All rights reserve

- rfidential Keltaar 13. Place AVDD28 RFD (J21) bypass cap. as close as possible to MT6252
- 14. For Camera, LCM, and MSDC, the clock and data should have better GND protection. Avoid power trace or other trace routing parallel with clock and data.

142

15. Place memory as close as possible to MT6252 COL

MEDIATEK

Modify BPI and Timing for MT6252

Copyright © MediaTek Inc. All rights reserved.
Before prepare

- L1 custom rf .h file
- PA control logic and schematic of RF module
- Due the BPI amount of MT6252 is less than MT6253, it is necessary to modify "Vlogic" pin to BPI BUS 1

144

Defunded function of BPI

.h file form

Confidential B

.h	file form	fidential Release Modify	Confidentia Modify BPI
<pre>#define #define #define</pre>	QB_SR0 QB_SR1 QB_SR2 QB_SR3 QB_SR2M QB_PR1 QB_PR2 QB_PR3 QB_ST0 QB_ST1 QB_ST2 QB_ST3 QB_PT2 QB_PT2B QB_PT2B QB_PT2B QB_PT3 QB_APCON QB_APCON QB_APCOFF QB_APCOFF QB_APCOFF QB_APCDACON TX_PROPAGATION_DELAY	Timing #define PDATA_GSM850_PR1 #define PDATA_GSM850_PR2 #define PDATA_GSM850_PR3 148 #define PDATA_GSM850_PT1 71 #define PDATA_GSM850_PT2 0 #define PDATA_GSM850_PT2 0 #define PDATA_GSM850_PT3 40 #define PDATA_GSM_PR1 33 #define PDATA_GSM_PR2 #define PDATA_GSM_PR3 #define PDATA_GSM_PT2 80 #define PDATA_GSM_PT3 36 #define PDATA_GSM_PT3 36 #define PDATA_GSM_PT3 36 #define PDATA_GSM_PT3 36 #define PDATA_GSM_PT2 20 #define PDATA_GSM_PT3 36 #define PDATA_GSM_PT3 36 #define PDATA_DCS_PR1 0 #define PDATA_DCS_PR1 20 #define PDATA_DCS_PR3 20 #define PDATA_DCS_PR3 20 #define PDATA_DCS_PT3 20 #define PDATA_PCS_PT3 20 #define PDATA_PCS_PT3 20 #define PDATA_PCS_PT3 20 #define PDATA_PCS_PT3 20 #define PDATA_PCS_PT3 20 #define PDATA_PCS_PT3	PDATA_IDLE 0x2 PDATA_IDLE PDATA_IDLE PDATA_IDLE 0x12 PDATA_IDLE 0x2 PDATA_IDLE PDATA_IDLE PDATA_IDLE PDATA_IDLE 0x12 PDATA_IDLE 0x3 PDATA_IDLE PDATA_IDLE 0x13 PDATA_IDLE 0x3 PDATA_IDLE 0x13 PDATA_IDLE 0x3 PDATA_IDLE 0x13 PDATA_IDLE 0x13 PDATA_IDLE 0x13 PDATA_IDLE 0x13 PDATA_IDLE

Copyright © MediaTek Inc. All rights reserved.

2011/1/17 147 **MEDINTEK**

Timing

Confidential B

Timing	fiden	tial Release	Confidenti
For MT6252	COMPACT COMPACT	For MT6253	
QB_SR0 OB_SR1	213 148	OB SR1	213
QB_SR2	71	QB_SR2	71
QB_SR3	0	QB_SR3	0
QB_SR2M	44	QB_SR2M	44
QB_PR1	245	QB_PR1	245
QB_PR2	33	QB_PR2	33
OB_PR3	6_	QB_PR3	6
QB_ST0	325		212
QB_ST1	280	QB_STI	213
QB_ST2	52	QB_ST2	110
QB_ST3	245		245
QB_PTI	245		243
	20		5
OB PT3	35	OB PT3	29
OB APCON	18	OB APCON	18
	26	OB_APCMID	26
OB APCOFF	-9	QB_APCOFF	9
OB APCDACON	99	QB_APCDACON	99
TX_PROPAGATION_DEL	AY 43	TX_PROPAGATION_DELAY	43
*The difference	e between AF	C off and PT3 is 26QE	3
		tial None	Ú

Copyright © MediaTek Inc. All rights reserved. 2011/1/17

BPI

Confidential B

		Release	
BPI	side	ntial	C
For MT6252 PDATA_GSM850_PR1 PDATA_GSM850_PR2 PDATA_GSM850_PR3 PDATA_GSM850_PT1 PDATA_GSM850_PT2 PDATA_GSM850_PT2 PDATA_GSM850_PT3 PDATA_GSM_PR1 PDATA_GSM_PR1 PDATA_GSM_PT2 PDATA_GSM_PT2 PDATA_GSM_PT2 PDATA_GSM_PT2 PDATA_GSM_PT3 PDATA_GSM_PT3 PDATA_DCS_PR1 PDATA_DCS_PR1 PDATA_DCS_PR3 PDATA_DCS_PT2 PDATA_DCS_PT2 PDATA_DCS_PT3 PDATA_PCS_PT3 PDATA_PCS_PT1 PDATA_PCS_PT2 PDATA_PCS_PT2 PDATA_PCS_PT3 PDA	PDATA_IDLE 0x2 PDATA_IDLE	For MT6253 PDATA_GSM850_PR1 PDATA_GSM850_PR3 PDATA_GSM850_PT1 PDATA_GSM850_PT2 PDATA_GSM850_PT2 PDATA_GSM850_PT3 PDATA_GSM_PR1 PDATA_GSM_PR2 PDATA_GSM_PR2 PDATA_GSM_PT2 PDATA_GSM_PT2 PDATA_GSM_PT2 PDATA_GSM_PT28 PDATA_GSM_PT3 PDATA_GSM_PT3 PDATA_DCS_PR1 PDATA_DCS_PR1 PDATA_DCS_PT2 PDATA_DCS_PT28 PDATA_DCS_PT28 PDATA_DCS_PT28 PDATA_DCS_PT28 PDATA_DCS_PT28 PDATA_DCS_PT28 PDATA_DCS_PT3 PDATA_PCS_PT3 PDATA_PCS_PT3 PDATA_PCS_PT3 PDATA_PCS_PT3 PDATA_PCS_PT3 PDATA_PCS_PT3 PDATA_PCS_PT3 PDATA_PCS_PT3 PDATA_PCS_PT3 PDATA_INIT PDATA_IDLE	(0x000 (0x002 (0x000 (0x000 (0x002 (0x002 (0x000 (0x000) (0x000 (0x000) (0x000 (0x000) (0x000 (0x000) (0x000) (0x000) (0x000 (0x000) (0x00) (0x00

2011/1/17 Copyright © MediaTek Inc. All rights reserved.

MEDINTEK

Example for GSM_PR1

Example for GSM_PR2

Example for GSM_PR3

Example for GSM_PT1

Example for GSM_PT2

Example for GSM_PT2B

Example for GSM_PT3

Example for DCS_PR1

Example for DCS_PR3

Example for DCS_PT1

Example for DCS_PT2

Example for DCS_PT3

601

Summery Confidential Release

Timing

- The unit of timing is QB
- The difference between APC off and PT3 is 26QB
- Due the transceiver architecture deference, SR timing have to be modified.
- BPI
 - BPI is expressed by hexadecimal, but edited by binary

