
Benchmarking of CNNs for Low-Cost, Low-Power
Robotics Applications

Dexmont Pena, Andrew Forembski, Xiaofan Xu, David Moloney

Abstract—This article presents the first known benchmark of
Convolutional Neural Networks (CNN) with a focus on inference
time and power consumption. This benchmark is important for
low-cost and low-power robots running on batteries where it
is required to obtain good performance at the minimal power
consumption. The CNN are benchmarked either on a Raspberry
Pi, Intel Joule 570X or on a USB Neural Compute Stick (NCS)
based on the Movidius MA2450 Vision Processing Unit (VPU).
Inference performance is evaluated for TensorFlow and Caffe
running either natively on Raspberry Pi or Intel Joule and
compared against hardware acceleration obtained by using the
NCS. The use of the NCS demonstrates up to 4x faster inference
time for some of the networks while keeping a reduced power
consumption. For robotics applications this translates into lower
latency and smoother control of a robot with longer battery
life and corresponding autonomy. As an application example, a
low-cost robot is used to follow a target based on the inference
obtained from a CNN.

I. INTRODUCTION

Recent advances in machine learning have been shown to
increase the ability of machines to classify and locate objects
using Convolutional Neural Networks (CNN). For robotics
applications this translates into increased reliability for tasks
like tracking and following a target. However these networks
typically have a large number of parameters resulting in a large
number of operations.

In order to perform the large number of operations required
by CNNs in real time, current systems typically use setups
including expensive GPUs or distributed systems. This limits
the application of CNNs on low-cost robots typically used by
students and hobbyists.

Due to the popularity of CNNs in recent years a variety
of different frameworks have been proposed, these include
CuDNN (limited to Nvidia GPUs) [13], Caffe [14], MXNet
[12] and Tiny-DNN [6] and more recently Googles Tensor-
Flow [7] which is currently the most popular deep learning
framework. Some of these frameworks have been shown to
work on embedded platforms like Raspberry Pi [3] and the
Intel Joule [2] but due to hardware limitations processing can
be slow, taking a few seconds per frame even for custom
designed networks [25].

One alternative to circumvent the hardware limitations of
low-cost robots is to use a dedicated hardware accelerator
like the Neural Compute Stick (NCS) [1]. This USB device
offloads compute-intensive CNNs while still being low-cost
and low-power. In this paper we benchmark different Con-
volutional Neural Networks (CNN) for image classification
focusing on power consumption and inference times on em-

Fig. 1: Embedded environments used to evaluate the inference
time and power consumption of the CNNs. From left to right:
NCS, Intel Joule 570X, Raspberry Pi 3 Model B.

bedded platforms. Then we show an application of a low-cost
follower robot.

II. RELATED WORK

Current benchmarks for Deep Learning Software tools limit
the scope of their usage to the use of high power CPUs
and GPUs and focus on the training time and accuracy [22].
No benchmarks have been found taking into account power
consumption and running time on embedded systems. The only
available benchmark focused on embedded systems evaluates
only one network with a few layers[20] and provides no power
consumption data.

Due to the processing power limitations of embedded plat-
forms only a few alternatives exist that are able to perform
inference on these low-power platforms. TensorFlow [7], Caffe
[14] and MXNet [12] have been shown to compile on the
Raspberry Pi [5] [20]. Tiny-DNN [6] was developed for low-
resources in mind and is a header only library. Common
libraries for image processing like DLib [15] and OpenCV [10]
have been extended with modules to support DNNs however
the number of networks they support is limited.

Only a few frameworks have been optimized for their use
in low-cost low-power systems. Peter Warden optimized the
DeepBelief SDK for the Raspberry Pi [25] however the current
version requires three seconds to process a single frame using
AlexNet [8]. Other libraries like OpenBLAS [24] focus on
the Linear Algebra routines and can be used by some of the
DNN frameworks to speed-up the processing. Caffe, Torch
and MXNet include support for OpenBLAS to accelerate
processing.

One of the main challenges for using the existing frame-
works is the lack of standardization for storing the network

TABLE I: Software versions used for the evaluation of the
DNN. TensorFlow is compiled with the flags ”-mfpu=neon-
vfpv4 -funsafe-math-optimizations -ftree-vectorize”.

Software GitHub Commit ID / Version
OpenBlas 92058a7
Caffe f731bc4
TensorFlow 1.0.1
NCS v1.02

weights. Although some of frameworks offer parsers for Caffe
[6], [10], [6], [12] the support for importing different network
architectures is limited. The SDK for the NCS provides parsers
for TensorFlow and Caffe, although with some limitations
on the network architectures. Other alternatives for embedded
Deep-Learning include FPGAs [19] but they can have a power
consumption of up to 25W which limits their application for
battery powered robots.

III. EXPERIMENTAL SETUP

Three platforms are used for evaluating the performance
of the CNNs; the Raspberry Pi 3 Model B [3]; the Intel
Joule 570X [2] and the Neural Compute Stick [1]. The Neural
Compute Stick (NCS) is a low-cost and low-power USB device
based on Myriad 2 MA2450 Vision Processing Unit (VPU)
[9]. It supports loading networks designed and trained on
common deep-learning frameworks like TensorFlow[7] and
Caffe [14]. Fig. 1 shows the hardware used for running the
CNNs.

TensorFlow and Caffe are used for performing the inference
on the Raspberry Pi and the Joule, alternatively, the NCS is
attached to each of the platforms over USB for offloading the
inference. The power consumption is measured by using the
INA219 power monitor IC from Texas Instruments. For the
Raspberry Pi and the Intel Joule the INA219 is attached to
the power line and then the power is measured before and
while performing the inference and the difference is taken as
the power required for performing the inferences. For the NCS,
the INA219 is attached to the USB connection directly. The
inference time is measured by using the system clock.

The version of the used frameworks is shown in Table
I. Caffe is compiled with OpenBlas using the branch opti-
mized for deeplearning. Tensor flow is installed by using the
pip package manager. The Raspberry Pi is setup with Raspbian
Jessie and the Intel Joule is setup with Ubuntu 16.04. Other
frameworks compiled were MXNet, Tiny-dnn, OpenCV and
DLib but during the testing they showed unstable behaviour
or lack of support for the tested networks so they are not
included in the evaluation. The networks used for the NCS
were created using the Caffe models as input and setup to use
12 processing cores on Myriad 2 for the inference.

IV. BENCHMARKING

The models and weights for the evaluated networks were
downloaded from the TensorFlow and Caffe repositories.
The tested architectures are: GoogLeNet [23], AlexNet [8],

TABLE II: Benchmarked networks. The models were down-
loaded from the Caffe and TensorFlow repositories.

Network Layers Operations
GoogLeNet [23] 27 ˜5 million
AlexNet [8] 11 ˜60 million
Network in Network [17] 16 ˜2 million
VGG CNN F [11] 13 ˜500 thousand
CIFAR10 [16] 9 ˜45 thousand

VGG CNN F [11], CIFAR10 [16] and Network In Network
(NiN) [17]. Table II show details of the tested DNN.

Figure 2 and 3 show the average time and power consump-
tion for the classification on each of the networks for the
Raspberry Pi 3, the Intel Joule 570X and the NCS. A batch size
of 1 was used as it would be used in a real world application.
The figures show that the fastest inference can be obtained on
the Intel Joule at the cost of higher power consumption. The
NCS provides a middle point in a trade-off between inference
time and power consumption. The setup of the Raspberri Pi
and Caffe provides the least power consumption at a slower
inference time.

Fig. 2 shows that Caffe on the Raspberry Pi is the slowest
performing combination while it is the one with the least
power consumption. The inference on Joule with TensorFlow
is the fastest at the cost of being the setup that requires
the highest amount of power. Using the NCS provides a
middle point in a trade-off between inference time and power
consumption. As no tuning of the NCS is performed, it is
expected that an optimized set of parameters results in a faster
inference while maintaining the low power consumption.

V. OBJECT FOLLOWING

As an application of the CNN inference on low-cost robotics
we setup a robot to follow a target autonomously. We use the
Raspberry Pi to capture images from the PiCam and then the
captured images are sent to the NCS to perform inference.
We used the Sinoning Steering robot as it can be purchased
on-line for less than $30USD [4]. Figure 4 shows our setup.

GoogLeNet is used to classify the contents of at template
and decide if the shown image corresponds to the desired class
as it showed a good accuracy and fast inference. The location
of the target is determined by detecting a predefined template.
The contents of the template are then send to GoogLeNet to
perform inference and determine if the desired target is shown.
The target class can be updated on the fly.

Once the desired target class has been recognized, its loca-
tion and its size within the input image are used to compute
the displacement of the robot. The robot is set to try maintain
the located object at the centre of the input image and maintain
it at a specific size, therefore it moves left/right based on the
location of the object and forwards/backwards based on the
area of the rectangle.

Table III shows the obtained runtime for each of the stages.
The image preprocessing includes the capture of the frame,
and image processing for determining the location of the
target.

0 0.5 1 1.5

NCS

Pi - TF

Pi - Caffe

Joule - Caffe

Joule - TF

0.164

0.671

1.175

0.285

0.216

0.294

0.705

1.803

0.593

0.126

0.427

0.446

0.553

0.142

0.108

0.452

0.662

0.857

0.244

0.108

0.047

0.013

0.015

0.004

0.004

Inference Time (s.)

Average time per inference

GoogLeNet AlexNet NiN VGG F Cifar10

Fig. 2: Average time for a forward pass of the CNN using
a batch size of 1. Pi - TF corresponds to a combination of
the Raspberri Pi and TensorFlow. NCS corresponds to the
time required for performing the inference and transferring
the image over USB. Caffe was found to be highly sensitive
to the number of parameters on the network while TensorFlow
appears to be less sensitive.

TABLE III: Average times obtained for processing the images
from the camera stream for TensorFlow and the NCS. The
speed up obtained by using the NCS translates into processing
frames at a rate of 4FPS which allows the quick control of
the robot. This performance can not be achieved by using
TensorFlow or Caffe on the Raspberry Pi.

Stage Time (ms.)
NCS TensorFlow

Image preprocessing 118 118
Classification 160 670
Total 278 788

VI. CONCLUSIONS

This article presents the first benchmark of CNNs focused
on inference time and power consumption for low-cost low-
power robotics. We compared the performance of different
CNNs using a variety frameworks and embedded platforms.
The use of a dedicated hardware accelerator such as the NCS
showed how to obtain an inference time up to 4x faster
than using the embedded platforms alone while keeping a
low-power consumption. As an application of this low-cost
low-power environment we setup a robot to follow a target

0 1 2 3 4 5

NCS

Pi - TF

Pi - Caffe

Joule - TF

Joule - Caffe

1.420

2.220

0.790

4.330

3.730

1.290

1.160

0.750

4.170

3.270

1.150

2.400

0.840

4.160

3.770

1.090

1.400

0.760

4.570

3.470

1.200

1.600

0.750

3.480

5.100

Power (W.)

Average power consumption per inference

GoogLeNet AlexNet NiN VGG F Cifar10

Fig. 3: Average power consumption during a forward pass of
the CNN using a batch size of 1. The Intel Joule is shown to
require the highest amount of power. The Raspberry Pi with
Caffe requires the least amount of power.

Fig. 4: Robot setup using the Sinoning steering robot, Rasp-
berry Pi and NCS.

autonomously. By using the NCS we were able process a live
stream at 4 FPS which was shown to be enough to allow
smooth movement of the robot. Further research includes the
evaluation of more CNNs like SSD [18] and YOLO [21] used
for object detection. Also as the available frameworks provide
support for more types of networks their performances in this
kind of low-cost environment need to be tested.

REFERENCES

[1] Movidius Announces Deep Learning Accelerator
and Fathom Software Framework. URL https:

https://www.movidius.com/news/movidius-announces-deep -learning-accelerator-and-fathom-software-framework

//www.movidius.com/news/movidius-announces-deep-
learning-accelerator-and-fathom-software-framework.

[2] Intel Joule. URL https://software.intel.com/en-us/iot/
hardware/joule/dev-kit.

[3] Raspberry Pi. URL https://www.raspberrypi.org/.
[4] Sinoning Steering. URL https://www.sinoning.com/

collections/robot-car-chassis/products/steering-engine-
4-wheel-2-motor-smart-robot-car-chassis-kits-diy-for-
arduino.

[5] TensorFlow on the Raspberry Pi. URL https://github.
com/samjabrahams/tensorflow-on-raspberry-pi.

[6] tiny-dnn. URL https://github.com/tiny-dnn/tiny-dnn.
[7] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eu-

gene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mane, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viegas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Distributed Systems.
mar 2016. URL http://download.tensorflow.org/paper/
whitepaper2015.pdfhttp://arxiv.org/abs/1603.04467.

[8] Krizhevsky Alex, Ilya Sutskever, and Geoffrey E
Hinton. Imagenet classification with deep convolutional
neural networks. In Neural Information Processing
Systems (NIPS), pages 1097–1105, 2012. URL
http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.

[9] Brendan Barry, Cormac Brick, Fergal Connor, David
Donohoe, David Moloney, Richard Richmond, Martin
O’Riordan, and Vasile Toma. Always-on Vision Process-
ing Unit for Mobile Applications. IEEE Micro, 35(2):56–
66, mar 2015. ISSN 0272-1732. doi: 10.1109/MM.2015.
10. URL http://ieeexplore.ieee.org/document/7024073/.

[10] Gary Bradski. The opencv library. Doctor Dobbs Journal
of Software Tools, 25(11):120–126, 2000.

[11] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and
Andrew Zisserman. Return of the Devil in the De-
tails: Delving Deep into Convolutional Nets. In Pro-
ceedings of the British Machine Vision Conference
2014, pages 6.1–6.12. British Machine Vision Associ-
ation, 2014. ISBN 1-901725-52-9. doi: 10.5244/C.28.
6. URL http://arxiv.org/abs/1405.3531http://www.bmva.
org/bmvc/2014/papers/paper054/index.html.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed
Systems. eprint arXiv:1512.01274, pages 1–6, 2015.
URL http://arxiv.org/abs/1512.01274.

[13] Sharan Chetlur and Cliff Woolley. cuDNN: Efficient
Primitives for Deep Learning. arXiv preprint arXiv: . . . ,
pages 1–9, 2014. URL http://arxiv.org/abs/1410.0759.

[14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional Archi-
tecture for Fast Feature Embedding. In Proceedings
of the ACM International Conference on Multimedia -
MM ’14, pages 675–678, New York, New York, USA,
2014. ACM Press. ISBN 9781450330633. doi: 10.1145/
2647868.2654889. URL http://dl.acm.org/citation.cfm?
doid=2647868.2654889.

[15] Davis. E. King. Dlib-ml: A Machine Learning Toolkit.
Journal of Machine Learning Research, 10:1755–1758,
2009. ISSN 15324435. doi: 10.1145/1577069.1755843.
URL http://jmlr.csail.mit.edu/papers/v10/king09a.html.

[16] Alex Krizhevsky and G Hinton. Convolutional deep
belief networks on cifar-10. Unpublished manuscript,
pages 1–9, 2010. URL http://scholar.google.com/scholar?
hl=en{&}btnG=Search{&}q=intitle:Convolutional+
Deep+Belief+Networks+on+CIFAR-10{#}0.

[17] Min Lin, Qiang Chen, and Shuicheng Yan. Network
In Network. In International Conference on Learn-
ing Representations (ICLR) 2014, page 10. IEEE, dec
2014. ISBN 9781479972913. doi: 10.1109/ASRU.
2015.7404828. URL http://arxiv.org/abs/1312.4400http:
//ieeexplore.ieee.org/document/7404828/.

[18] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. SSD: Single Shot MultiBox Detector. In Lecture
Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 9905 LNCS, pages 21–37. 2016.
ISBN 9783319464473. doi: 10.1007/978-3-319-46448-
0 2. URL http://link.springer.com/10.1007/978-3-319-
46448-0{ }2.

[19] Kalin Ovtcharov, Olatunji Ruwase, Joo-young Kim,
Jeremy Fowers, Karin Strauss, and Eric S Chung. Ac-
celerating Deep Convolutional Neural Networks Using
Specialized Hardware. Microsoft Research Whitepa-
per, pages 3–6, 2015. ISSN 1098-6596. doi: 10.
1017/CBO9781107415324.004. URL http://research-srv.
microsoft.com/pubs/240715/CNNWhitepaper.pdf.

[20] Dmytro Prylipko. How to run deep neural
networks on weak hardware. URL https:
//www.linkedin.com/pulse/how-run-deep-neural-
networks-weak-hardware-dmytro-prylipko.

[21] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You Only Look Once: Unified, Real-Time
Object Detection. Nuclear Instruments and Methods in
Physics Research, Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment, 794:185–192,
jun 2015. ISSN 01689002. URL http://arxiv.org/abs/
1506.02640.

[22] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen
Chu. Benchmarking State-of-the-Art Deep Learning

https://www.movidius.com/news/movidius-announces-deep -learning-accelerator-and-fathom-software-framework
https://www.movidius.com/news/movidius-announces-deep -learning-accelerator-and-fathom-software-framework
https://software.intel.com/en-us/iot/hardware/joule/dev-kit
https://software.intel.com/en-us/iot/hardware/joule/dev-kit
https://www.raspberrypi.org/
https://www.sinoning.com/collections/robot-car-chassis /products/steering-engine-4-wheel-2-motor-smart-robot-car- chassis-kits-diy-for-arduino
https://www.sinoning.com/collections/robot-car-chassis /products/steering-engine-4-wheel-2-motor-smart-robot-car- chassis-kits-diy-for-arduino
https://www.sinoning.com/collections/robot-car-chassis /products/steering-engine-4-wheel-2-motor-smart-robot-car- chassis-kits-diy-for-arduino
https://www.sinoning.com/collections/robot-car-chassis /products/steering-engine-4-wheel-2-motor-smart-robot-car- chassis-kits-diy-for-arduino
https://github.com/samjabrahams/tensorflow-on-raspberry-pi
https://github.com/samjabrahams/tensorflow-on-raspberry-pi
https://github.com/tiny-dnn/tiny-dnn
http://download.tensorflow.org/paper/whitepaper2015.pdf http://arxiv.org/abs/1603.04467
http://download.tensorflow.org/paper/whitepaper2015.pdf http://arxiv.org/abs/1603.04467
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://ieeexplore.ieee.org/document/7024073/
http://arxiv.org/abs/1405.3531 http://www.bmva.org/bmvc/2014/papers/paper054/index.html
http://arxiv.org/abs/1405.3531 http://www.bmva.org/bmvc/2014/papers/paper054/index.html
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1410.0759
http://dl.acm.org/citation.cfm?doid=2647868.2654889
http://dl.acm.org/citation.cfm?doid=2647868.2654889
http://jmlr.csail.mit.edu/papers/v10/king09a.html
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Convolutional+Deep+Belief+Networks+on+CIFAR-10{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Convolutional+Deep+Belief+Networks+on+CIFAR-10{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Convolutional+Deep+Belief+Networks+on+CIFAR-10{#}0
http://arxiv.org/abs/1312.4400 http://ieeexplore.ieee.org/document/7404828/
http://arxiv.org/abs/1312.4400 http://ieeexplore.ieee.org/document/7404828/
http://link.springer.com/10.1007/978-3-319-46448-0{_}2
http://link.springer.com/10.1007/978-3-319-46448-0{_}2
http://research-srv.microsoft.com/pubs/240715/CNN Whitepaper.pdf
http://research-srv.microsoft.com/pubs/240715/CNN Whitepaper.pdf
https://www.linkedin.com/pulse/how-run-deep-neural-networks-weak-hardware-dmytro-prylipko
https://www.linkedin.com/pulse/how-run-deep-neural-networks-weak-hardware-dmytro-prylipko
https://www.linkedin.com/pulse/how-run-deep-neural-networks-weak-hardware-dmytro-prylipko
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640

Software Tools. arXiv:1608.07249 [cs], page 6, aug
2016. URL http://arxiv.org/abs/1608.07249.

[23] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1–9. IEEE, jun 2015. ISBN 978-1-4673-6964-0. doi:
10.1109/CVPR.2015.7298594. URL http://ieeexplore.
ieee.org/document/7298594/.

[24] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing
Yi. AUGEM: Automatically Generate High Perfor-
mance Dense Linear Algebra Kernels on x86 CPUs.
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Anal-
ysis, pages 25:1—-25:12, 2013. ISSN 21674337. doi:
10.1145/2503210.2503219. URL http://doi.acm.org/10.
1145/2503210.2503219.

[25] Pete Warden. Deep learning on the Raspberry Pi! URL
https://petewarden.com/2014/06/09/deep-learning-
on-the-raspberry-pi/https://github.com/jetpacapp/
DeepBeliefSDK/.

http://arxiv.org/abs/1608.07249
http://ieeexplore.ieee.org/document/7298594/
http://ieeexplore.ieee.org/document/7298594/
http://doi.acm.org/10.1145/2503210.2503219
http://doi.acm.org/10.1145/2503210.2503219
https://petewarden.com/2014/06/09/deep-learning-on-the-raspberry-pi/ https://github.com/jetpacapp/DeepBeliefSDK/
https://petewarden.com/2014/06/09/deep-learning-on-the-raspberry-pi/ https://github.com/jetpacapp/DeepBeliefSDK/
https://petewarden.com/2014/06/09/deep-learning-on-the-raspberry-pi/ https://github.com/jetpacapp/DeepBeliefSDK/

	Introduction
	Related Work
	Experimental setup
	Benchmarking
	Object Following
	Conclusions

