
Big Endian versus Little Endian — Define Byte

To help understand the difference between Big and Little Endian let’s take a closer look
at how data is stored in Flash Program Memory. We will first look at the Define Byte
(.DB) Assembly Directive and then at the Define Word (.DW) Assembly Directive.

// gfedcba gfedbca gfedbca gfedbca gfedbca gfedbca

000036 063f

000037 4f5b

000038 6d66 table: .DB 0b00111111, 0b00000110, 0b01011011, 0b01001111, 0b01100110, 0b01101101

// 0 1 2 3 4 5

000039 077d

00003a 677f

00003b 7c77 .DB 0b01111101, 0b00000111, 0b01111111, 0b01100111, 0b01110111, 0b01111100

// 6 7 8 9 A B

00003c 5e39

00003d 7179 .DB 0b00111001, 0b01011110, 0b01111001, 0b01110001

// C D E F

Each table entry (.DB) contains one byte. If we look at the first table entry we see
0b00111111 which corresponds to 3f in hexadecimal. Comparing this with the corre-
sponding address and data fields on the left . . . Wait a minute – where did 06 come
from? The the second entry in the table (0b00000110 = 0616). The bytes are backwards
and here is why.

There are two basic ways information can be saved in memory known as Big Endian and
Little endian. For Big Endian the most significant byte (big end) is saved in the lowest
order byte, so 0x3f06 woud be saved as bytes 0x3f 0x 0x06. For Little Endian the least
sigfificant byte (little end) is saved in the lowest order byte; so 0x3f06 is saved as bytes
0x06 and 0x3f. As you hopefully have guessed by now the AVR processor is designed to
work with data words saved as little endian.


