High resolution frequency counters

E. Rubiola
FEMTO-ST Institute, CNRS and Université de Franche Comté

28 May 2008

Outline

1. Digital hardware
2. Basic counters
3. Microwave counters
4. Interpolation

- time-interval amplifier
- frequency vernier
- time-to-voltage converter
- multi-tap delay line

5. Basic statistics
6. Advanced statistics

home page http://rubiola.org

COUNTER

MEASURED TIME MMTERUAL

FREQ. STAMDARD
(i)

1 How to compare the imput sigual $(f, T, T I)$ to the drepriency sterdard
2 How to avold degzadation of the otandard's metrolopical pecforwences

1 - Digital hardware

The resolution is limited by the measurement time T, and by the meximunn switching frequency $200 \mathrm{MHz} \forall y_{y} . \rightarrow$ resolution 5 Ms HIGHER RESOLUTION \rightarrow INTERPOLATION

TRIGGER

TRIVIAL FUNCTIONS

- 50Ω, $A C / D C$
- Level, slope

HySTERESIS
TRiGGER \rightarrow fast devia \rightarrow wide noise bandwidth high slope low slope
fluctuation

$$
\delta=\frac{\delta v}{d v / d b}
$$

FIRST CROSSING of a roubom process difficult mathematical problem

SET-RESET FLIP.FLOP

The SR flip -flop is a dual bunion switch
D. TYPE FLIP. FLOP

The D-type flip. flop samples the inputs during the rising edge of of the clock, and copies $D \rightarrow$ d

COUNTER

Counts the number of rising edges of the clock $\varepsilon \rightarrow$ enable $\quad R \rightarrow$ Reset
DIVIDER counts meodulo M frame θ to M-1

A counter and a divider are almost the same there often a counter has a sufficiently lager no: of bits, for it does not overflow.

2 - Basic counters

TIME INTERVAL COUNTER

Me clock pulses anu counted
estimated $T_{x} \quad T_{x}=N_{c} T_{c}=N_{c} / f_{c}$
RESOLUTION \rightarrow QUANTIZATION $\quad 8 N_{c}=1 \quad(\pm 1)$

$$
\frac{\delta r_{x}}{T_{x}}=\frac{1}{M_{c}} \Leftrightarrow \delta T_{x}=T_{c}
$$

use the highest possible foe

Frequency counter

$$
N_{x} T_{x}=N_{c} T_{c}
$$

Estimate $f_{x}=1 / i x \rightarrow f_{x}=\frac{N_{x}}{M_{c}} f_{c}$
QUANTIZATION $\Leftrightarrow \delta M_{x}=1$

$$
\frac{\delta f_{x}}{f_{x}}=\frac{1}{N_{x}} \Leftrightarrow \frac{\delta f_{x}}{f_{x}}=\frac{1}{f_{x}{ }^{\top} m}
$$

- poor resoluko μ at low fo
- donsteven think to interpolate the period T_{0} (variable in a wide ramps)

PERIOD COUMTER

(meesurement tinue)
Set H_{x} accozdimg to the desieed meassersement time T_{m}

$$
N_{x} T_{x}=N_{c} T_{c}
$$

estimete $f_{x} \longrightarrow f_{x}=\frac{M_{x}}{M_{c}} f_{c}$
QUANTIBATION $\rightarrow P N_{C}=1$

$$
\frac{\delta f x}{f x}=\frac{1}{M_{c}} \leftrightarrow \frac{\delta f_{x}}{f_{x}}=\frac{1}{f_{c} r_{m}}
$$

Choese fo as the highest frequency for the arailable techualogy (22 a round mo. just below it)
fixcod $f_{c} \longrightarrow$ Enterpolattom is pessible.

Practical measurement

3 - Microwave counters

Prescaler

- a prescaler is a n-bit binary divider $\div 2^{n}$
- GaAs dividers work up to $\approx 20 \mathrm{GHz}$
- reciprocal counter => there is no resolution reduction
- Most microwave counters use the prescaler

Transfer-oscillator counter

- The transfer oscillator is a PLL
- Harmonics generation takes place inside the mixer
- Harmonics locking condition: $\mathrm{N} \mathrm{f}_{\mathrm{vco}}=\mathrm{f}_{\mathrm{x}}$
- Frequency modulation Δf is used to identify N (a rather complex scheme, $\times \mathrm{N}=>\mathrm{f}$-> $\mathrm{N} \Delta \mathrm{f}$)

Heterodyne counter

- Down-conversion: $f_{b}=\left|f_{x}-N f_{c}\right|$
- f_{b} is in the range of a classical counter (100-200 MHz max)
- no resolution reduction in the case of a classical frequency counter (no need of reciprocal counter)
- Old scheme, nowadays used only in some special cases (frequency metrology)

4 - Interpolation

DUAL-SLOPE VOLTTETER

FIME IMTERVAL AMPLIFIER

clech
\qquad

an

$$
v_{x}
$$

- amplify T_{a}. tucrease rasolestion
- up/down connter \rightarrow measure $T_{a}-T_{b}$

MINOR TECHNICAL DETAIL

T_{a} (and T_{b}) may be a ray shoot time

- Aresitrapioh
- error due tr the rising edges

The current pulse is inculegated over $T_{a}+T_{c} \quad\left(\geqslant T_{c}\right)$ one T_{e} is added

Measuring $T_{a}-T_{b}$, the added T_{c} rubs out-

EXMMPLE: MANOFAST 536 B (Smithsomian)
Main elock $f_{c}=10 \mathrm{MHz} \rightarrow \delta T=T_{c}=100 \mathrm{~ms}$
Time Interval amplifier $\frac{I_{1}}{I_{2}}=4000$

$$
T_{a}^{\prime} \in(200 \mu s, 400 \mu \mathrm{~s})
$$

aux. Clock 20 MHz for the measurement of r_{2}^{\prime}

$$
\begin{aligned}
& \delta T_{a}^{\prime}=T_{e}^{\prime}=50 \mathrm{~ms} \quad(1 / 20 \mathrm{mHz}) \\
& \delta T_{a}=\frac{I_{2}}{I_{1}} T_{c}^{\prime} \quad \delta T_{e}=\frac{1}{4000} \times 50 \mathrm{~ms}=12.5 \mathrm{ps}
\end{aligned}
$$

The Nouofast 536B conurter is (was?) a part of the Monkiv system 15 in Veny lony Baselime Initaforometryy (VBI) Early TTL Yechuology
Mote: a pulse propajeter in a coble at $c^{\prime} \approx \frac{2}{3} c$ δ_{0} is equivalud to a length of 2.5 mm

VERNIER CALIPER

FREQUENCY VERNIER note that $f_{0}<f_{c}$ here ε \qquad nate
main clod
our for
 carly coincidence
Coincidence occurs offer Mugubes

$$
\begin{aligned}
& \quad T_{a}+N_{v} T_{c}=N_{v v} T_{v} \rightarrow T_{0}=N_{v}\left[T_{v}-T_{c}\right] \\
& T_{v r}=\frac{A n+1}{m} T_{c} \\
& T_{a}=N_{v} \frac{l}{m} T_{c} \\
& \text { ResoLuTION } \delta N_{b}=1 乙 \quad \delta T_{a}=\frac{1}{m} T_{c}
\end{aligned}
$$

SYMCHROHIZED OSCILLATOR
ε

COINCIDENCE DETECTOR

$$
\begin{aligned}
& f_{c}=200 \mathrm{MH/z} \rightarrow \delta T_{x}=5 \mathrm{~ms} \\
&(\varepsilon c L \text { technology }) \\
& M=256 \rightarrow \delta T_{a}=\delta T_{b}=\frac{1}{256} \times 5 \mathrm{~ms}=19.5 \mathrm{ps} \\
&\left(\gamma v=199.22 \pi N N_{z}\right)
\end{aligned}
$$

It takes a mar. of 257 cych of fo fou the two clocks to coincide
conversion time:

$$
257 \times 5 \mathrm{us}=1.285 \mathrm{\mu s}
$$

Light speed in a.cable $x 0.67 \mathrm{C}$

$$
\begin{aligned}
\delta T_{e} \leftrightarrow & 8 l=4 \mathrm{~mm} \\
& (\text { length. })
\end{aligned}
$$

- The method is equiralent to the TI auplifier
- Successive appzor. Conversion is fastar then ded.slope

EXAMPLE STAMFORD SR.620
$f_{c}=90 \mathrm{MH}+$
$T_{c}=111 \mathrm{~ms}$
phose-locked to the 10 MHz refocus.
ECL Technology

12 bit converter, 1 but lost becainse of the
11 bets $\delta r_{a}=\frac{111 \mathrm{~ms}}{2^{11}}=5.4 \mathrm{ps}$

4 - Multi-tap delay line
Interpolation by sampling delayed copies of the clock or of the stop signal

The resolution is determined by the delay t , instead of by the toggling speed of the flip-flops

4 - Multi-tap delay line

Sampling circuits

J. Kalisz, Metrologia 41 (2004) 17-32

4 - Multi-tap delay line

Ring Oscillator used in PLL circuits for clock-frequency multiplication

J. Kalisz, Metrologia 41 (2004) 17-32

5 - Basic statistics

ACCURACY AND PRECISION

FRIGGER

The measured frequency / period is (alrenost) inde. pendent of the triffer treshold, ands. on show flueturations

Accuracy and stability of the trogpes tresholds are critied parametus on Tine-Interval measuremends J!ITER

$$
\delta t=\frac{\delta V}{d v / d t} \Leftarrow \begin{gathered}
\text { TER } \\
\text { Molstoys } \\
\text { melew. } \\
\text { reate }
\end{gathered}
$$

Quantization uncertainty

$$
1 / \sqrt{12}=0.29
$$

Example: 100 MHz clock

$$
\begin{aligned}
& \mathrm{Tx}=10 \mathrm{~ns} \\
& \sigma=2.9 \mathrm{~ns}
\end{aligned}
$$

DON'T BLAME THE TRIGGER

Noise fit um
band width the input cithiuls
THERMAL NOISE

$$
\sqrt{4 k T R} \quad V / V H_{z}
$$

$$
\longrightarrow 0.9 \mu \mathrm{~V} / \sqrt{\mathrm{Hz}}
$$

$$
\text { Boltzmann } k=1.38 \times 10^{-23}
$$

$$
\text { temperature } \quad T=300 \mathrm{~K}
$$

$$
\text { resistama } \quad R=50 \Omega
$$

THERMAL HOUSE INTEGRATED OVER THE BANDWIDTH $\times \sqrt{B}$

$$
\left.\begin{array}{ll}
(H P 5370) & B=225 \mathrm{MHz} \\
(S R-620
\end{array}\right) \quad B=1.3 \mathrm{gHz} \quad \rightarrow \quad V_{n}=13.5 \mu V
$$

Account for the loss $l=20 \mathrm{~dB}$ (muectiply by 10) and for the noise figure $F=1$ dB (welt inly by 1.12)

$$
\begin{aligned}
& B=225 \mathrm{MHz} \rightarrow V_{m}=150 \mu \mathrm{~V} \\
& B=1.3 \mathrm{Kz} \rightarrow V_{\mathrm{M}}=3555_{\mu} V
\end{aligned}
$$

classical reciprocal counter (1)

period measurement (count the clock pulses) is preferred to frequency measurement (count the input pulses) because:

- it provides higher resolution in a given measurement time tau (the clock frequency can be close to the maximum switching speed)
- interpolation (M is rational instead of integer) can be used to reduce the quantization (interpolators only work at a fixed frequency, thus at the clock freq.)

classical reciprocal counter (2)

enhanced-resolution counter

limit $\tau_{0}->0$ of the weight function

$\mathbb{E}\{\nu\}=\frac{1}{n} \sum_{i=0}^{n-1} \bar{\nu}_{i} \quad \bar{\nu}_{i}=N / \tau_{i}$
Λ estimator
$\mathbb{E}\{\nu\}=\int_{-\infty}^{+\infty} \nu(t) w_{\Lambda}(t) d t$
weight
$w_{\Lambda}(t)= \begin{cases}t / \tau & 0<t<\tau \\ 2-t / \tau & \tau<t<2 \tau \\ 0 & \text { elsewhere }\end{cases}$
normalization

$$
\int_{-\infty}^{+\infty} w_{\Lambda}(t) d t=1
$$

white noise: the autocorrelation function is a narrow pulse, about the inverse of the bandwidth
the variance is divided by n

$$
\sigma_{y}^{2}=\frac{1}{n} \frac{2 \sigma_{x}^{2}}{\tau^{2}}
$$

actual formulae look like this

(П) $\quad \sigma_{y}=\frac{1}{\tau} \sqrt{2(\delta t)_{\text {trigger }}^{2}+2(\delta t)_{\text {interpolator }}^{2}}$
(Λ) $\quad \sigma_{y}=\frac{1}{\tau \sqrt{n}} \sqrt{2(\delta t)_{\text {trigger }}^{2}+2(\delta t)_{\text {interpolator }}^{2}}$

$$
n= \begin{cases}\nu_{0} \tau & \nu_{00} \leq \nu_{I} \\ \nu_{I} \tau & \nu_{00}>\nu_{I}\end{cases}
$$

understanding technical information

classical reciprocal counter
enhanced-resolution counter
low frequency:
full speed

$$
\sigma_{y}^{2}=\frac{1}{n} \frac{2 \sigma_{x}^{2}}{\tau^{2}} \quad \begin{aligned}
& \text { classical } \\
& \text { variance }
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{0}=T \quad \Longrightarrow \quad n=\nu_{00} \tau \\
& \sigma_{y}^{2}=\frac{1}{\nu_{00}} \frac{2 \sigma_{x}^{2}}{\tau^{3}} \quad \begin{array}{l}
\text { classical } \\
\text { variance }
\end{array}
\end{aligned}
$$

high frequency: housekeeping takes time

$$
\begin{array}{ll}
\tau_{0}=D T & \text { with } D>1 \quad \Longrightarrow \quad n=\nu_{00} \tau \\
\sigma_{y}^{2}=\frac{1}{\nu_{I}} \frac{2 \sigma_{x}^{2}}{\tau^{3}} \quad \begin{array}{l}
\text { classical } \\
\text { variance }
\end{array}
\end{array}
$$

the slope of the classical variance tells the whole story

$$
\begin{array}{ll}
1 / \tau^{2} & \Longrightarrow \Pi \text { estimator (classical reciprocal) } \\
1 / \tau^{3} & \Longrightarrow \Lambda \text { estimator (enhanced-resolution) }
\end{array}
$$ look for formulae and plots in the instruction manual

examples

$$
\left[\begin{array}{c}
\mathrm{RMS} \\
\text { resolution } \\
\text { (in Hz })
\end{array}\right]=\frac{\text { frequency }}{\text { gate time }} \sqrt{\frac{(25 \mathrm{ps})^{2}+\left[\binom{\text { short term }}{\text { stability }} \times\binom{\text { gate }}{\text { time }}\right]^{2}+2 \times\left[\begin{array}{c}
\text { trigger } \\
\text { jitter }
\end{array}\right]^{2}}{\mathrm{~N}}}
$$

RMS resolution	$\sigma_{\nu}=\nu_{00} \sigma_{y}$
frequency	ν_{00}
gate time	τ

Agilent 53132A

$$
\begin{aligned}
& {\left[\begin{array}{c}
\text { RMS } \\
\text { resolution }
\end{array}\right]=\binom{\text { frequency }}{\text { or period }} \times\left[\frac{4 \times \sqrt{\left(t_{\text {res }}\right)^{2}+2 \times(\text { trigger error })^{2}}}{(\text { gate time }) \times \sqrt{\text { no. of samples }}}+\frac{t_{\text {jitter }}}{\text { gate time }}\right]} \\
& t_{\text {res }}=225 \mathrm{ps} \\
& t_{\text {jitter }}=3 \mathrm{ps} \\
& \text { number of samples }= \begin{cases}(\text { gate time }) \times(\text { frequency }) & \text { for } f<200 \mathrm{kHz} \\
(\text { gate time }) \times 2 \times 10^{5} & \text { for } f \geq 200 \mathrm{kHz}\end{cases}
\end{aligned}
$$

RMS resolution	$\sigma_{\nu}=\nu_{00} \sigma_{y}$ or $\sigma_{T}=T_{00} \sigma_{y}$
frequency	ν_{00}
period	T_{00}
gate time	τ
no. of samples	$n= \begin{cases}\nu_{00} \tau & \nu_{00}<200 \mathrm{kHz} \\ \tau \times 2 \times 10^{5} & \nu_{00} \geq 200 \mathrm{kHz}\end{cases}$

5 - Advanced statistics

Allan variance

definition

$$
\begin{aligned}
\sigma_{y}^{2}(\tau) & =\mathbb{E}\left\{\frac{1}{2}\left[\bar{y}_{k+1}-\bar{y}_{k}\right]^{2}\right\} \\
\sigma_{y}^{2}(\tau) & =\mathbb{E}\left\{\frac{1}{2}\left[\frac{1}{\tau} \int_{(k+1) \tau}^{(k+2) \tau} y(t) d t-\frac{1}{\tau} \int_{k \tau}^{(k+1) \tau} y(t) d t\right]^{2}\right\}
\end{aligned}
$$

wavelet-like variance

$$
\sigma_{y}^{2}(\tau)=\mathbb{E}\left\{\left[\int_{-\infty}^{+\infty} y(t) w_{A}(t) d t\right]^{2}\right\}
$$

$$
w_{A}= \begin{cases}-\frac{1}{\sqrt{2} \tau} & 0<t<\tau \\ \frac{1}{\sqrt{2} \tau} & \tau<t<2 \tau \\ 0 & \text { elsewhere }\end{cases}
$$

energy $\quad E\left\{w_{A}\right\}=\int_{-\infty}^{+\infty} w_{A}^{2}(t) d t=\frac{1}{\tau}$

modified Allan variance

definition

$$
\begin{aligned}
& \bmod \sigma_{y}^{2}(\tau)=\mathbb{E}\left\{\frac{1}{2}\left[\frac{1}{n} \sum_{i=0}^{n-1}\left(\frac{1}{\tau} \int_{(i+n) \tau_{0}}^{(i+2 n) \tau_{0}} y(t) d t-\frac{1}{\tau} \int_{i \tau_{0}}^{(i+n) \tau_{0}} y(t) d t\right)\right]^{2}\right\} \\
& \text { with } \tau=n \tau_{0}
\end{aligned}
$$

wavelet-like

$$
\bmod \sigma_{y}^{2}(\tau)=\mathbb{E}\left\{\left[\int_{-\infty}^{+\infty} y(t) w_{M}(t) d t\right]^{2}\right\}
$$

$$
w_{M}=\left\{\begin{array}{llr}
-\frac{1}{\sqrt{2} \tau^{2}} t & 0<t<\tau \\
\frac{1}{\sqrt{2} \tau^{2}}(2 t-3) & \tau<t<2 \tau & \mathrm{w}_{\mathrm{M}} \uparrow \\
-\frac{1}{\sqrt{2} \tau^{2}}(t-3) & 2 \tau<t<3 \tau & 0 \\
0 & \text { elsewhere } & 0
\end{array}\right.
$$

energy $\quad E\left\{w_{M}\right\}=\int_{-\infty}^{+\infty} w_{M}^{2}(t) d t=\frac{1}{2 \tau}$
compare the energy

$$
E\left\{w_{M}\right\}=\frac{1}{2} E\left\{w_{A}\right\}
$$

this explains why the mod Allan variance is always lower than the Allan variance

spectra and variances

Noise Type	$S_{y}(f)$	Allan $\left(\sigma_{\mathrm{A}}^{2}\right)$	Modified Allan	Triangle
White PM	$h_{2} f^{2}$	$\begin{gathered} \frac{3 f_{H}}{4 \pi^{2}} h_{2} \tau^{-2} \\ =\sigma_{\mathrm{A}}^{2}(\tau) \end{gathered}$	$\begin{aligned} & \frac{3}{8 \pi^{2}} h_{2} \tau^{-3} \\ & =\frac{1}{2 f_{H} \tau} \sigma_{\mathrm{A}}^{2}(\tau) \end{aligned}$	$\begin{aligned} & \frac{2}{\pi^{2}} h_{2} \tau^{-3} \\ = & \frac{8}{3 f_{H} \tau} \sigma_{\mathrm{A}}^{2}(\tau) \end{aligned}$
Flicker PM	$h_{1} f$	$\begin{gathered} \frac{1.038+3 \ln \left(2 \pi f_{H} \tau\right)}{4 \pi^{2}} h_{1} \tau^{-2} \\ =\sigma_{\mathrm{A}}^{2}(\tau) \end{gathered}$	$\begin{aligned} & \frac{3 \ln \left(\frac{256}{27}\right)}{8 \pi^{2}} h_{1} \tau^{-2} \\ & 3.12+3 \ln \pi f_{H} \tau \\ & \sigma_{\mathrm{A}}^{2}(\tau) \end{aligned}$	$\begin{aligned} & =\frac{\frac{6 \ln \left(\frac{27}{16}\right)}{\pi^{2}} h_{1} \tau^{-2}}{3.12+3 \ln \pi f_{H} \tau} \sigma_{\mathrm{A}}^{2}(\tau) \end{aligned}$
White FM	h_{0}	$\begin{aligned} & \frac{1}{2} h_{0} \tau^{-1} \\ & =\sigma_{\mathrm{A}}^{2}(\tau) \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1}{4} h_{0} \tau^{-1} \\ = & 0.50 \sigma_{\mathrm{A}}^{2}(\tau) \end{aligned}$	$\begin{aligned} & \frac{2}{3} h_{0} \tau^{-1} \\ &= 1.33 \sigma_{\mathrm{A}}^{2}(\tau) \\ & \hline \end{aligned}$
Flicker FM	$h_{-1} f^{-1}$	$\begin{gathered} 2 \ln (2) h_{-1} \\ =\sigma_{\mathrm{A}}^{2}(\tau) \end{gathered}$	$\begin{gathered} 2 \ln \left(\frac{33^{11 / 16}}{4}\right) h_{-1} \\ =0.67 \sigma_{\mathrm{A}}^{2}(\tau) \end{gathered}$	$\begin{gathered} \left(24 \ln (2)-\frac{27}{2} \ln (3)\right) h_{-1} \\ =1.30 \sigma_{\mathrm{A}}^{2}(\tau) \end{gathered}$
Random Walk FM	$h_{-2} f^{-2}$	$\begin{gathered} \frac{2}{3} \pi^{2} h_{-2} \tau \\ =\sigma_{\mathrm{A}}^{2}(\tau) \\ \hline \end{gathered}$	$\begin{aligned} & \frac{11}{20} \pi^{2} h_{-2} \tau \\ = & 0.82 \sigma_{\mathrm{A}}^{2}(\tau) \end{aligned}$	$\begin{aligned} & \frac{23}{30} \pi^{2} h_{-2} \tau \\ = & 1.15 \sigma_{\mathrm{A}}^{2}(\tau) \end{aligned}$
Frequency Drift ($\dot{y}=D_{y}$)	-	$\frac{1}{2} D_{y}^{2} \tau^{2}$	$\frac{1}{2} D_{y}^{2} \tau^{2}$	$\frac{1}{2} D_{y}^{2} \tau^{2}$

ν_{00} is replaced with ν_{0} for consistency with the general literature
f_{H} is the high cutoff frequency, needed for the noise power to be finite
S.T. Dawkins, J.J. McFerran, A.N. Luiten, IEEE Trans. UFFC 54(5) p.918-925, May 2007
given a series of contiguous non-overlapped measures

the Allan variance is easily evaluated

$$
\sigma_{y}^{2}(\tau)=\mathbb{E}\left\{\frac{1}{2}\left[\bar{y}_{k+1}-\bar{y}_{k}\right]^{2}\right\}
$$

overlapped Λ estimator \rightarrow MVAR

by feeding a series of Λ-estimates of frequency in the formula of the Allan variance

$$
\sigma_{y}^{2}(\tau)=\mathbb{E}\left\{\frac{1}{2}\left[\bar{y}_{k+1}-\bar{y}_{k}\right]^{2}\right\}
$$

as they were Π-estimates

one gets exactly the modified Allan variance!
$\bmod \sigma_{y}^{2}(\tau)=\mathbb{E}\left\{\frac{1}{2}\left[\frac{1}{n} \sum_{i=0}^{n-1}\left(\frac{1}{\tau} \int_{(i+n) \tau_{0}}^{(i+2 n) \tau_{0}} y(t) d t-\frac{1}{\tau} \int_{i \tau_{0}}^{(i+n) \tau_{0}} y(t) d t\right)\right]^{2}\right\}$
with $\tau=n \tau_{0}$.

graphical proof

There is a mistake in one of my articles: I believed that in the case of the Agilent counters the contiguous measures were overlapped. They are not.
non-overlapped \wedge estimator \rightarrow TrVAR
by feeding a series of Λ-estimates of frequency in the formula of the Allan variance

$$
\sigma_{y}^{2}(\tau)=\mathbb{E}\left\{\frac{1}{2}\left[\bar{y}_{k+1}-\bar{y}_{k}\right]^{2}\right\}
$$

as they were Π-estimates

one gets the triangular variance!
S.T. Dawkins, J.J. McFerran, A.N. Luiten, IEEE Trans. UFFC 54(5) p.918-925, May 2007

Conclusions

- The multi-tap delay-line interpolator is simple with modern FPGAs
- In frequency measurements, the Λ (triangular) estimator provides higher resolution
- The Λ estimator can not be used in single-event timeinterval measurements
- Mistakes are around the corner if the counter inside is not well understood
- Some of the reported ideas are suitable to education laboratories and classroom works (I used a bicycle and milestones to demonstrate the Λ estimator)

Thanks to J. Dick (JPL), C. Greenhall (JPL), D. Howe (NIST) and M. Oxborrow (NPL) for discussions
To know more:
1 - rubiola.org, slides and articles
2 - www.arxiv.org, document arXiv:physics/0503022v1
3 - Rev. of Sci. Instrum. vol. 76 no. 5, art.no. 054703, May 2005.

> home page http://rubiola.org

REFEREMCES
TIAE $\operatorname{lN} E R$ VIAL AMPLIFIER
R. MUTT, Difital time intervalometer Rev. Sci. Iustz. 39(3): 1342 (sep-1968)
B.T. TURta Multichannel intewal tomer IE\&E Trams. Nacl. Sci 31 (1) 167 (feb.l984) NANOFAST Inc. 536 B Time intard metor onstruction mencoal, USA (Entanown date)

EREQuEMCy vermigr

- E.D. Peterson, R. P. Valenti Time Interval meesuring, system employimg dufitel means coarse aurbiyuity zesolvm. 45 patent $3,218,553$, nor. 16,1965
- Hewlett Packand (Nrow Agitent techmiologies) HP. 53 TOM operatong and senvia mannal
- Hewlett Pachout - Fundamentals of eluctionic aocumiers, HP AM. 100,1997
- Eldozads counter, Icinlal not frach the reference
ThE-TO-VOLTAGE CONVERTER
- STamperd SR620 operation manual. Mote: the full sheve included, is diffrcult yo outer prett. No "theosy of queration" cherter * present.

