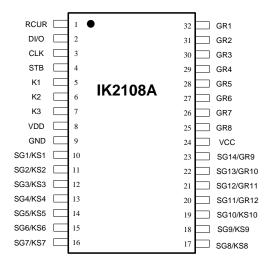

LED Driver IC IK2108A

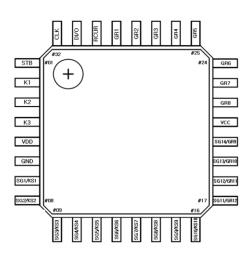
Description

The IK2108A are anode-grid LED display drives 5.0V~18.0V with output size – 8 digits x 14 segments to 12 digits x 10 segments and addition key scan function. Serial interface provides connection with microprocessor.

Features

- Operation voltage for digital part: 3.0V ~ 5.5V
- Operation voltage for output LEDs: 5.0V ~ 18.0V
- 7-step individual dimming control for each grid
- OSC: built in (with external resistor) 500kHz @ R=12.1kΩ
- Pulse segment current: 27mA @ 8 digits x 14 segments
 39mA @ 12 digits x 10 segments
- Key scanning: 10x3 matrix
- Serial Interface
- Operation Temperature : -40 ~ 85°C

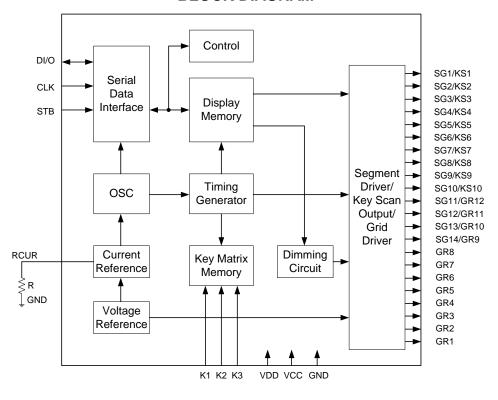

Application


· Washing machine, refregerator, microwave oven, conditioner and other

ORDERING INFORMATION

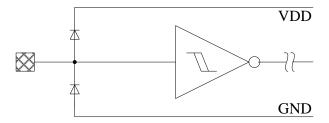
Device	Operating Temperature Range	Package	Shipping
IK2108ADW		SOP 32	Tube
IK2108ADWT	$T_A = -40^{\circ} \text{ to } 85^{\circ} \text{ C}$	SOP 32	Tape&Reel
IK2108ALQ		LQFP-32	Tape&Reel

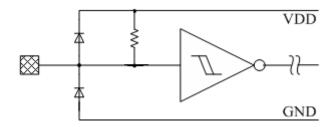
Pin Description IK2108A (32Pins)



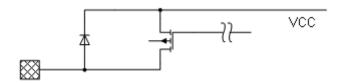
			Pin	Nº
Pin Name	I/O	Description	SOP-32	LQFP- 32
RCUR	I/O	A resistor is connected to this pin to determine the output currents and oscillation frequency.	1	30
DI/O	I/O	Data Input - Output Pin This pin inputs serial data at the rising edge of the shift clock (starting from the bit) Data Output Pin - N-Channel, Open-Drain This pin outputs serial data at the falling edge of the shift clock	2	31
CLK	I	Clock Input Pin This pin reads serial data at the rising edge and output data at the falling edge.	3	32
STB	I	Serial Interface Strobe Pin The data input after the STB has fallen is processed as a command. When this pin is HIGH, CLK is ignored.	4	1
K1 to K3	ı	Key Data Input Pins The data sent to these pins are latched at the end of the display cycle. (Internal Pull-Up Resistor)	5-7	2-4
VDD	-	Power Supply for Digital Part	8	5
VCC	-	Power Supply for Output Part	24	21
SG1/KS1 to SG10/KS10	0	Segment Output Pins (N-channel open drain) Also acts as the Key Source	10-19	7-16
SG11/GR12 to SG14/GR9	0	Segment / Grid Output Pins	20-23	17-20
GR8 to GR1	0	Grid Output Pins (P-Channel, Open Drain)	25-32	22-29
GND	-	Ground Pin	9	6

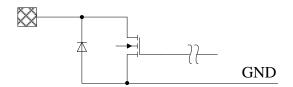
BLOCK DIAGRAM

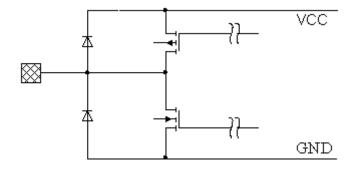


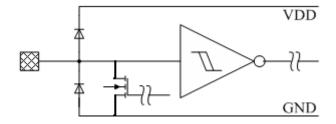

INPUT / OUTPUT CONFIGURATIONS

The schematic diagrams of the input and output circuits of the logic section are shown below.


Input Pins: CLK, STB


Input Pins: K1, K2, K3


Output Pins: GR1 to GR8


Output Pins: SG1/KS1 to SG10/KS10

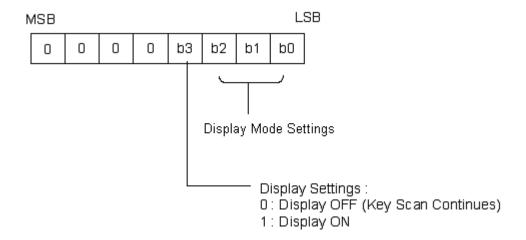
Output Pins: SG11/GR12 to SG14/GR9

Input-Output Pin: DI/O

FUNCTIONAL DESCRIPTION

Commands

A command is the first byte (b0 to b7) inputted to IK2108A via DI/O Pin after STB Pin has changed from "HIGH" to "LOW" state. If for some reason the STB Pin is set "HIGH" while data or commands are being transmitted, the serial communication is initialized, and the data commands being transmitted are considered invalid.


COMMAND 1: DISPLAY MODE SETTING COMMANDS

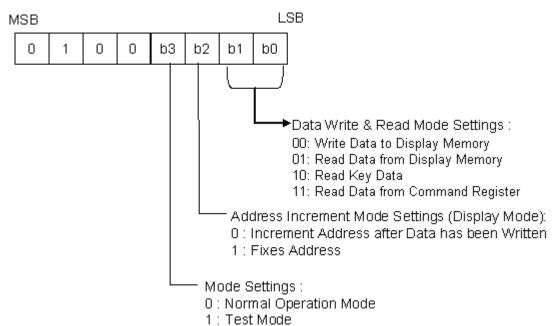
IK2108A provides 5 display modes setting as shown in the diagram below. As stated earlier a command is the first one byte (b0 to b7) transmitted to IK2108A via the DI/O Pin when STB is "LOW". However, for these commands, Bit 5 to Bit 8 (b4 to b7) are given a value of "0".

The Display Mode Setting Commands determine the number of segments and grids are used (14 to 10 segments, 8 to 12 grids). A display commands "ON" must be executed in order to resume display. If the same mode setting is selected, no command execution is take place, therefore, nothing happens.

The Display Mode Setting Commands are also used to turn ON or OFF the display. Please refer to the diagram below.

When the power is turned ON, the display is turned OFF (b3 is "0") and the mode 111 is selected (b2 to b0 are "1").

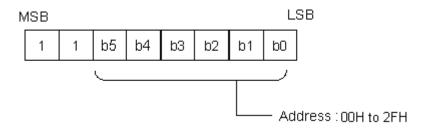
Display Mode Settings:


011: 12 Grids, (10 Segments) 100: 11 Grids, (11 Segments) 101: 10 Grids, (12 Segments) 110: 9 Grids, (13 Segments) 111: 8 Grids, (14 Segments)

COMMAND 2: DATA SETTING COMMANDS

The Data Setting Commands executes the Data Write Mode for IK2108A. The Data Setting Command, the bits5 and 6 (b4, b5) are given the value of "0"., bit7 (b6) is given the value of "1" while bit8 (b7) is given the value of "0". Please refer to the diagram below.

When power is turned ON, bit 4 to bit 1 (b3 to b0) are given the value of "0".


Read Data from Command Register:

				1 st k	oyte				2 nd byte							
DOUT	b0	b1	b2	b3	b4	b5	b6	b7	ь0	b1	b2	b3	b4	b5	b6	b7
	b0-k	3 of c	omma	nd1	b0-b	3 of c	omma	nd2	b0-b5 of command3						don'	t care

COMMAND 3: ADDRESS SETTING COMMANDS

Address Setting Commands are used to set the address of the display memory. The address is considered valid if it has a value of "00H" to 2FH". If the address is set to 30H or higher, the data is ignored until a valid address is set. When power is turned ON, the address is set at "00H".

Please refer to the diagram below.

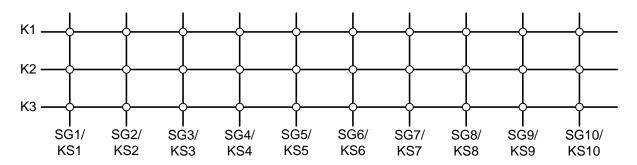
Display Mode and RAM Address

Data transmitted from an external device to IK2108A via the serial interface are stored in the Display RAM and are assigned addresses. When the power is turned ON, the memory is set at "0". The RAM Addresses of IK2108A are given below in 8 bit unit.

	dimming		SG1 SG4	SG5 SG8	SG9 SG14	
GR1	$00H_{L}$	$00H_U$	$01H_{L}$	$01H_{U}$	02H _m	03
GR2	$04H_{L}$	$04H_{U}$	$05H_L$	$05H_U$	06H _m	07
GR3	$08H_L$	$08H_U$	$09H_L$	$09H_U$	$0AH_{m}$	0B
GR4	$0CH_{L}$	$0CH_U$	$0DH_{L}$	$0DH_U$	0EH _m	0F
GR5	$10H_{L}$	$10H_{\rm U}$	$11H_{L}$	$11H_{U}$	12H _m	13
GR6	$14H_L$	$14H_{U}$	$15H_L$	$15H_U$	16H _m	17
GR7	$18H_L$	$18H_U$	$19H_L$	$19H_U$	$1AH_{m}$	1B
GR8	$1CH_{L}$	$1CH_{U}$	$1DH_{L}$	$1DH_{U}$	1EH _m	1F
GR9	$20H_{L}$	$20H_U$	$21H_{L}$	$21H_{U}$	$22H_{\rm m}$	23
GR10	$24H_{L}$	$24H_{U}$	$25H_L$	$25H_U$	26H _m	27
GR11	$28H_L$	$28H_{\rm U}$	29H _L	$29H_U$	2AH _m	2B
GR12	$2CH_L$	$2CH_U$	$2DH_{L}$	$2DH_U$	2EH _m	2F

b0	b4	b0	b4	b0	b0
b3	b7	b3	b7	b5	b7
xxH_L	xxH_U	xxH_L	xxH_U	xxH_m	xx
Lower 4 bits	Higher 4 bits	Lower 4 bits	Higher 4 bits	Lower 6 bits	8 bits

	1'st byte								2'nd byte				3'rd byte						4'th byte													
DIN	b0	b1	b2	b3	b4	b5	b6	b7	b0	b1	b2	b3	b4	b5	b6	b7	b0	b1	b2	b3	b4	b5	b6	b7	b0	b1	b2	b3	b4	b5	b6	b7
	dit	dimming don't care							da	nta f	or S	SG1	-SC	78		da	ta fo	or S	G9	-SG	14				do	n't	car	re				


Dimming Quantity Settings:

b2	b1	b0	Pulse width
0	0	0	1/16
0	0	1	2/16
0	1	0	3/16
0	1	1	5/16
1	0	0	7/16
1	0	1	10/16
1	1	0	14/16
1	1	1	reserved

KEY MATRIX & KEY INPUT DATA STORAGE RAM

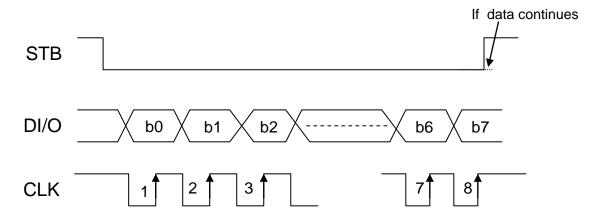
Key Matrix consists of 10 x 3 array as shown below:

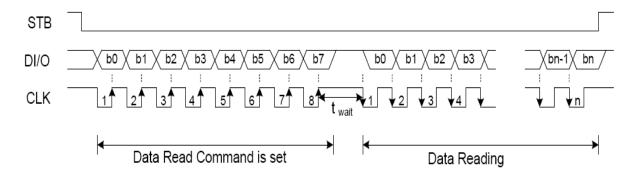
Each data entered by each key (or any combination of keys) is stored as follows and read by a READ Command, starting from the last significant bit. When the most significant bit of the data (b0) has been read, the least significant bit of the next data (b7) is read.

K1	K2	K 1	K2			
K3		K3				
	SG1/KS1		SG2/KS2		X	1'st byte read
	SG3/KS3		SG4/KS4		X	2'nd byte read
	SG5/KS5		SG6/KS6		X	3'rd byte read
	SG7/KS7		SG8/KS8		X	4'th byte read
	SG9/KS9		SG10/KS10		X	5'th byte read
b0	b1	b3	b4	b6		
b2		b5		b7		

Key press="1", Key no press="0" read.

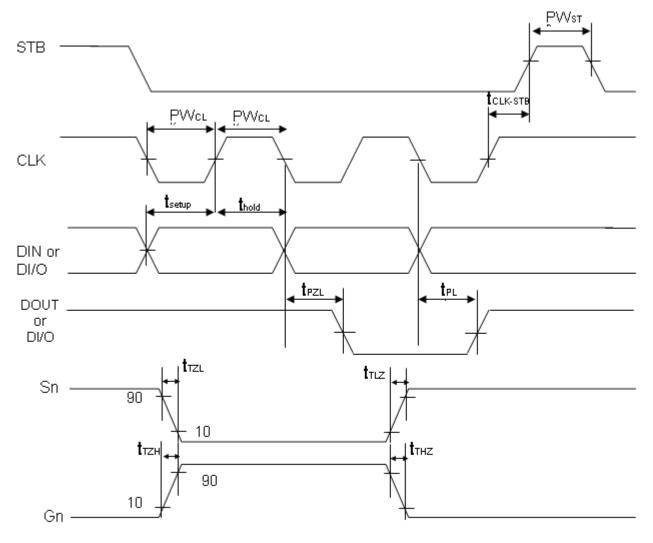
SCANNING AND DISPLAY TIMING




SERIAL COMMUNICATION FORMAT

The following diagram shows the serial communication format.

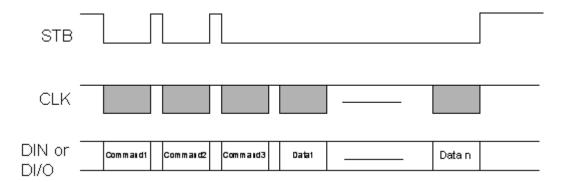
Reception (Data/Command Write)


Transmission (Data Read)

Where: t_{wait} (waiting time) $\ge 1 \mu s$

SWITCHING CHARACTERISTIC WAVEFORM

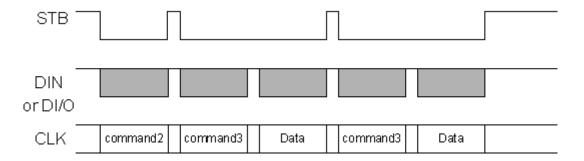
Switching Characteristics Waveform is given below.


PW _{CLK} (Clock Pulse Width) ≥400ns t setup (Data Setup Time) ≥ 100ns t _{CLK-STB} (Clock - Strobe Time) ≥ 1 μ s t _{TZH} (Rise Time) ≤ 1 μ s t _{TZL} <1 μ s

PW_{STB} (Strobe Pulse Width) $\geq 1\mu$ s thold (Data Hold Time) ≥ 100 ns t _{THZ} (Fall Time) $\leq 10\mu$ s fosc = Oscillation Frequency t π Z < 10μ S

APPLICATIONS

Display memory is updated by incrementing addresses. Please refer to the following diagram.



Where: Command 1: Display Mode Setting

Command 2: Data Setting Command Command 3: Address Setting Command

Data 1 to n : Transfer Display Data (48 Bytes max.)

The following diagram shows the waveforms when updating specific addresses.

Where: Command 2 -- Data Setting Command Command 3 -- Address Setting Command

Data -- Display Data

START SET COMMAND 1 SET INITIAL COMMAND 2 SETTING SET COMMAND 3 Clear Display RAM (see Note 4) MAIN PROGRAM SET COMMAND 1 MAIN LOOP SET COMMAND2 SET COMMAND 3

RECOMMENDED SOFTWARE PROGRAMMING FLOWCHART

Note: 1. Command 1: Display Mode Setting

- 2. Command 2: Data Setting Commands
- 3. Command 3: Address Setting Commands

END

4. When IC power is applied for the first time, the contents of the Display RAM are not defined: thus, it is strongly suggested that the contents of the Display RAM must be cleared during the initial setting.

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise stated, Ta=25°C, GND=0V)

Parameter	Symbol	Rating	Units
Supply Voltage	Vcc	-0.5 to +18.0	V
Supply Voltage	V_{DD}	-0.5 to +6.0	V
Logic Input Voltage	V_{I}	-0.5 to V _{DD} +0.5	V
Driver Output Current/Pin	I _{OHGR}	-468	mA
Driver Output Current/Pin	I _{OLSG}	46.8	mA
Maximum Driver Output Current/Total	I _{TOTAL}	470	mA
Operation Temperature	Topr	-40 ~ +85	${\mathbb C}$
Storage Temperature	Tstg	-65 ~ 150	C

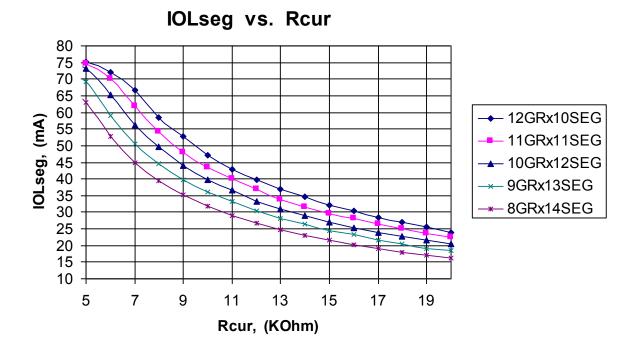
^{*} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

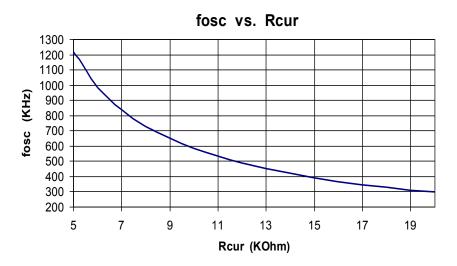
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE

(Unless otherwise stated, Ta= -40 to +85°C, GND=0V)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	5.0	12.0	15.0	V
Logic Supply Voltage	V_{DD}	3.0	5.0	5.5	V
High-Level Input Voltage	V _{IH}	$0.7V_{DD}$		V_{DD}	V
Low-Level Input Voltage	V_{IL}	0	•	0.3 V _{DD}	V


ELECTRICAL CHARACTERISTICS


(Unless otherwise stated, Vcc= $5.0\sim18.0V$, $V_{DD}=3.3\sim5.5V$, GND=0V, Ta= $-40\sim85^{\circ}C$)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Low-Level Output	I _{OLSG}	Vo=1.0V SG1/KS1 to SG10/KS10 SG11/GR12 to SG14/GR9 display 8digitsx14segments	21.6	27	32.4	mA
Guiteria		Vo=0.9V SG1/KS1 to SG10/KS10 display 12digitsx10segments	31.2	39	46.8	
High Lavel Output		Vo=Vcc-1.0V R = 12.1KOhm GR1 to GR8 display 8digitsx14segments	-302.4	-378	-453.6	
High-Level Output Current	I _{OHGR}	Vo=Vcc-1.1V R = 12.1KOhm GR1 to GR8 SG11/GR12 to SG14/GR9 display 12digitsx10segments	-312	-390	-468	mA
Dynamic Current	I_{DDdyn}	-	-	-	1.2	mA
Digital Input Current	I _{DG}	-	-1	-	+1	uA
Low-Level Digital Output Current	I _{OLDOUT}	V _O = 0.4V DOUT	4	-	-	mA
Segment Low- Level Output Current	I _{TOLSG}	Vo=1.0V SG1/KS1 to SG10/KS10 SG11/GR12 to SG14/GR9 display 8digitsx14segments	-	-	±5	%
Tolerance		Vo=0.9V SG1/KS1 to SG10/KS10 display 12digitsx10segments	-	-	±5	
High-Level Input Voltage for DI/O	V_{IH}	-	0.7V _{DD}	-	V_{DD}	V
Low-Level Input Voltage for DI/O	V _{IL}	-	0	-	0.3V _{DD}	V
Oscillation Frequency	f _{OSC}	$(V_{DD}=3.3 \sim 5.5V)$ R = 12.1kOhm	400	500	600	kHz
K1 to K3 Pull Up Resistor	R_{PU}	K1 to K3 V _{DD} =5.0V	22.5	30.0	37.5	ΚΩ

APPLICATION NOTE

1. The graph of I_{OLSG} vs. R_{CUR} is given for the case when only one segment is turn on. Choosing the external resistor R_{CUR} for the setting I_{OLSG} , make sure, that current

 I_{OHGR} =(number of segments)* $I_{OLSG} \le 390$ mA

2. The cell of Display Memory has a dead time zone. If the software program is not correct, it is possible the blinking of display. The blinking frequency for the single segment is:

$$F_{\rm BUNK}^{\rm MAX} = \frac{F_{\rm COMMAND\,2}}{256*G} (1+0.5*\frac{F_{\rm OSC}}{F_{\rm CLK}}), \mbox{ (less value is better)},$$

where $F_{\it COMMAND}$ – frequency of the use of the command2 (Write Data to Display Memory);

G- number of grids in used mode;

 F_{OSC} – frequency of internal OSC;

 F_{CLK} – clock frequency.

So, main rule for update the Display Memory is do it if it really need. Don't do it continually with high speed, but if it something like movie you can. Or another way is turn off the display while the command of Write Data to Display Memory is executed.

3. To determine the Average Consumption Current of IK2108A, you should use the next formula (the current value during key scan period is ignored as this value is very small in compare with segment's current):

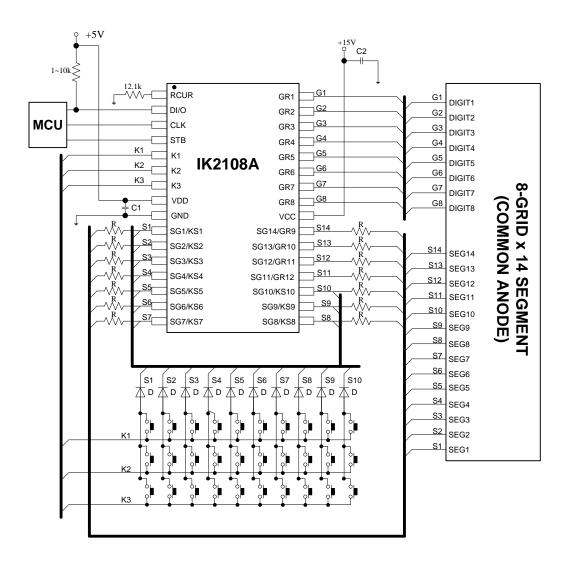
Itotal(avrg) =
$$(N^* I_{OLSG} *Dimming)*(M/(M+1)),$$

where N is segment's number;

M is grid's number;

Dimming is Dimming value (see p.7);

I_{OLSG} is output segment's current (see table Electrical Characteristics).

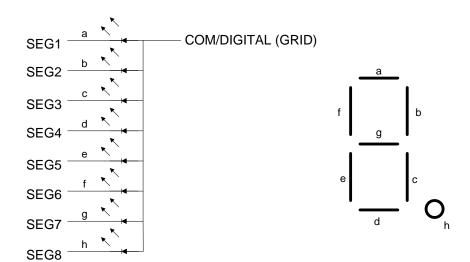

Therefore different display configurations will have different current consumption. Let's consider the maximum case, when Dimming is 14/16 and all segments and grids are used:

8 grids x 14 segments display: Itotal(avrg)=(14*27mA(typical value)*14/16)*(8/9)=294mA;

12 grids x 10 segments display: Itotal(avrg)=(10*39mA(typical value)*14/16)*(12/13)=315mA.

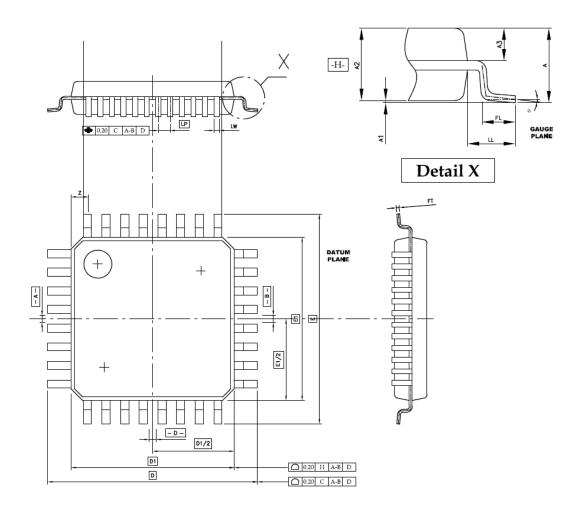
APPLICATION CIRCUIT (FOR 8GRID x 14SEGMENT DISPLAY)

Recommend value:


C1&C2 0.1uF-ceramics

R 160Ohm 0.5W (if one diode is connected)

1100hm 0.25W (if two diodes are connected)

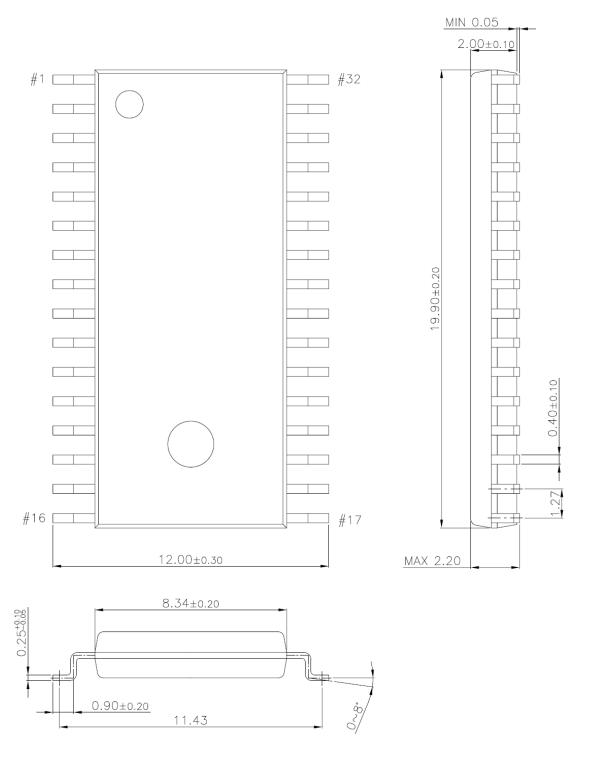

COMMON ANODE TYPE LED PANEL

Package Dimension

LQFP-32

Dimensions

Unit	D1	E1	D/E [TL]	FT	LP	LW	A max.	A1	A2	A3	LL	FL	θ	z
mm	7.10 6.90	7.10 6.90	9.20 8.80	0.127 BSC	0.80	0.390 0.310	1.60	0.15 0.05	1.45 1.35	(0.64)	1.00	0.75 0.45	8	0.75


Notes

- 1. All Dimensions are in Millimeters.
- 2. Dimensions Do Not include Burrs, Mold Flash, and Tie-bar Extrusions.
- 3. JEDEC References : MS-026

32-SOP-450A

Dimensions in milimeters

