UNI-T 210E Hacking Info : Part 2

Found online at EEVBlog, Kerry Wong's Website etc.

My Wiring (KBird)

I held a grounded jumper wire on the side of the capacitor shown in diagram. No need to solder to it. It only takes 3 seconds to dump/flash.

Switch UT210E to \sim V mode then plug in Arduino into the USB. Open the attached i2cArduino210E.ino sketch in Arduino IDE. Open Serial Monitor window (CTRL+SHIFT+M). Now upload the sketch. You should see your eeprom dump in Serial Monitor window. You better Copy/Paste it for backup.

Now you must edit line 9 and 10 by using data from your dump.
Code: [Select]
//Dotless mode calibration data, copied from 0x50, 0×51
writeByte(I2C_ADDR, 0x56, (byte) 0x83);
writeByte(I2C_ADDR, 0x57, (byte) 0x75);

If all good, you can edit MODeeprom() as you like, uncomment the //MODeeprom() inside setup() function and Re-Upload to Arduino. Arduino will reset and flash the eeprom. You will see ...Flashing EEPROM... between Before/After dumps in the Serial Monitor window. I hope others will find this useful.

Thank you everyone!

The changes I've done to my eeprom so far:

ADDR | OLD | NEW

6200 Count

Code: [Select]

12:	98	38
13:	08	18

All Alarms disabled
Code: [Select]

16:	3D	FF
17:	$3 D$	$F F$
18:	$3 C$	$F F$
19:	3C	FF
1C:	OA	FF

2A Dotless mode calibration data device specific, copy yours from 0×50 to $0 \times 56,0 \times 51$ to 0x57. Required if you enable Dotless 2A mode.
Code: [Select]

$56:$	00	$? ?$
$57:$	80	$? ?$

2A modes: 1. Dotless DCA, 2. Dotless ACA, 3. Dot DCA, 4. Dot ACA Code: [Select]

87:	17	$1 C$
97:	16	$1 D$
A7:	00	16
B7:	00	17

20A modes: 1 Dot DCA, 2. Dot ACA
Code: [Select]

8B:	19	18
9B:	18	19

100A modes: 1 Dot DCA, 2. Dot ACA
Code: [Select]

8D:	$1 B$	$1 A$
$9 D$	$1 A$	$1 B$

V modes: 1. DCV, 2. ACV, 3. DCmV, 4. ACmV

Code: [Select]

8E:	04	03
9E:	05	04
AE:	00	05
BE:	00	06

NCV, NCV mV

Code: [Select]
9C: 0002
AC: 00 1D

30 min Auto power off

Code: [Select]
FB: 0 F 1E

3 min Backlight off

Code: [Select]
FC: OF B4
credits: People in this thread and on Russian and Chinese forums.

Anyone willing to test two new eeprom mods? It gives two new functions in 2 A mode. Its reported on the Russian site that these functions still have the full count even after zeroing out (i.e. doesn't go back to 2000). The LCD does not show a "." in the read out.

Update: Tested the DCA 0000 function in 2A and it truly works even after zeroing out.
Code: [Select]

```
    old new
A7: 00 1C - DCA 0000 in 2A mode / SELECT slot 3
B7: 00 1D - ACA 0000 in 2A mode / SELECT slot 4
```

Offset	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
00000000	FF	FF	FF	FF	FF	00	80	E8	03	E8	03	FA	00	00	BE	03
00000010	70	17	38	18	BE	00	3D	3D	3 C	OB	FF	FF	OR	FF	40	FF
00000020	7A	98	06	81	64	00	96	00	00	80	17	80	FB	7 E	8	75
00000030	4	02	09	5A	02	09	A0	FF	OA	3D	13	OA	5D	03	OA	00
00000040	00	01	00	01	00	07	98	00	64	00	64	00	64	00	00	00
00000050	83	75	EC	70	00	80	00	80	00	00	00	00	01	00	00	00
00000060	E	7 F	48	7 E	01	00	BA	2A	00	00	00	00	00	00	00	00
00000070	C2	7 F	00	80	OA	80	EO	7 C	07	06	00	00	00	00	00	00
00000080	00	00	00	00	00	00	00	16	00	00	00	18	1 E	1 A	03	07
00000090	00	00	00	00	00	00	00	17	00	00	00	19	02	1B	04	09
000000A0	00	00	00	00	00	00	00	1C	00	00	00	00	1D	00	05	OA
000000BO	00	00	00	00	00	00	00	1D	00	00	00	00	00	00	06	OB
000000C0	OD	00	02	30	OD	00	03	20	20	00	03	20	20	00	03	10
000000D0	41	00	03	08	41	00	03	05	41	00	03	05	OD	00	02	30
000000EO	00	80	00	80	00	80	00	80	00	80	49	02	E5	03	59	05
000000F0	4A	02	EB	03	6 E	05	00	80	5 A	C7	EF	OF	B4	80	00	00

Another interesting mod is at address 19h. It turns on beeping warning alarm when you hit $60 x . x$ volts on display (default $3 C$ value $=60$). I've changed it to $0 B$ which is 11 x and now it starts beeping when checking mains voltage. One negative side affect is its starts beeping in 2A 0000 function when it reads 11xx. Oh well.

Offset	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
00000000	FF	FF	FF	FF	FF	00	80	E8	03	E8	03	FA	00	00	BE	03
00000010	70	17	98	08	BE	00	3D	3D	3 C	3C	FF	FF	OA	FF	40	FF
00000020	7A	98	06	81	64	00	96	00	00	80	17	80	FB	7 E	38	5
00000030	4 E	02	09	5A	02	09	A0	FF	0 A	3D	13	0 A	5D	03	A	0
00000040	00	01	00	01	00	07	98	00	64	00	64	00	64	00	00	00
00000050	83	75	EC	70	00	80	00	80	00	00	00	00	01	00	00	0
00000060	E3	7 F	48	7 E	01	00	BA	2A	00	00	00	00	00	00	00	0
00000070	C2	7 F	00	80	OA	80	EO	7 C	07	06	00	00	00	00	00	00
00000080	00	00	00	00	00	00	00	17	00	00	00	19	1E	1B	04	07
00000090	00	00	00	00	00	00	00	16	00	00	00	18	00	1 A	05	09
000000A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	OR
000000BO	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	OB
000000c0	OD	00	02	30	OD	00	03	20	20	00	03	20	20	00	03	10
000000D0	41	00	03	08	41	00	03	05	41	00	03	05	OD	00	02	30
000000E0	00	80	00	80	00	80	00	80	00	80	49	02	E5	03	59	05
000000F0	4A	02	EB	03	6 E	05	00	80	5 A	C7	EF	OF	OF	80	00	00

Code: [Select]

19: | old | new | |
| :--- | :--- | :--- |
| $3 C$ | OB | |

Adding bytes 1C and 1D to locations A7 and B7 will add 6000(/2000)DCA and 6000(/2000)ACA modes to 2A switch position. these modes revert back to 2000 counts after zeroing, because
these modes are not used in the meter, unlike the lower ranges. The IC doesn't actually know if it measuring 6 or 6000 amps , rest of the circuit will handle scaling the input... Tell IC that you are measuring higher range, but don't change anything else -> decimal point moves, making reading 10x, 100x, 1000x higher/lower.

Turn the meter back off and on, then again select the 2 A mode. Select $A C$, the decimal is shown. Now select DC, the decimal goes away. Don't zero out the meter and place more than 2A through the meter. It does not over range and reads the correct value. However the meter now starts beeping at about 600 mA .

Turn the meter back off and on, then again select the $2 A$ mode. Select $A C$ and then $D C$. Zero out the meter and place more than 2 A through the meter. It does not over range and reads the correct value. However the meter still beeps at about 600 mA and there is no decimal.

So it's not a real clean setup IMO. Maybe I missed something.

In post \#182 I wrote some info about beeping. Perhaps you can try set FFh at address 19h. Are you sure its starts beeping with 600 mA or 6000 which is actually 6 A ?

Correct location would be 0x1C. That sets the alarm limit in hundreds of milliamps for "dotless $2 A$ " mode. Value is originally 0x0A or 10, making the limit $10 * 100 \mathrm{~mA}=1 \mathrm{~A}=" 1000$ " on the display.

So you can have the alarm in volts mode when measuring mains, without having ridiculously low alarm limit in current mode. It was probably just coincidence that original value was so close to the value you set for voltage mode.

Thanks for clarifying it. I test the address 19 h is for V mode. Now I wonder what 16 h to 18 h affect?

16h - "OL" limit for DCV.
17h - "OL" limit for DCA.
18h - Alarm/beep limit for DCV.
For each of those, limit $=$ value * 10 V .

I still had it set to 1A. Turned off all the alarms. Too bad the thing just didn't handle the zero in normal without reverting back to 2 K counts. Not a bad work around (the dotless mode).

There appears to be another difference with the dotless mode. Curious if this is normal.

Using a fixed current source of 2.0A. Power up the 210E. place into DCA 2A scale. Zero as
normal and attach the clamp. Write down your reading. Remove the clamp and set to dotless mode. Zero and attach the clamp and write down this reading.

Now power cycle the meter and go back to 2ADC range. Don't zero and attach the clamp. Take the reading. Now without disconnecting the clamp, switch to dotless mode and take the reading.

It appears there are different calibrations for dotless and normal. With dotless mode and 1A applied I get about 38mA of error.

There appears to be another difference with the dotless mode. Curious if this is normal.
Using a fixed current source of 2.0A. Power up the 210E. place into DCA 2A scale. Zero as normal and attach the clamp. Write down your reading. Remove the clamp and set to dotless mode. Zero and attach the clamp and write down this reading.

Now power cycle the meter and go back to 2ADC range. Don't zero and attach the clamp. Take the reading. Now without disconnecting the clamp, switch to dotless mode and take the reading.

It appears there are different calibrations for dotless and normal. With dotless mode and 1A applied I get about 38 mA of error.
I would have totally missed that, if you hadn't mentioned it!
Copy bytes from 50h and 51h (locations of 2A calibration data) to locations 56h and 57h (2000A/ dotless 2A calibration data). That should fix it.

Had to ground WP and Reset in order to write to the EEPROM. I am using the MiniPro programmer.

I've tried the 8000 count mode by changing 10 H --> 40 and 11 H --> 1 F by it is still in the 6000 count mode! I've only tested Volts and Resistance.

Do I have to change any other byte as well for the 8000 count mode?
I've also changed 19 H to 3 C because the alarm was a bit annoying...
I think you should change 12 H and 13 H as well. They are range-up threshold.
On the VC921 multimeter I use $12 \mathrm{H}=4 \mathrm{~A}$ and $13 \mathrm{H}=1 \mathrm{~F}$. This gives range-up at 8010 .
Flywheelz has not mentioned in his page8 post about it. I found about by studying the datasheet by changing the range down point to be 14 h and 15 h and posted it in page11. Since I set mine to
range-up at 6200, mine should range down at 5800 so it was set to 244 h . (44h at 14 h and 02 h at 15h).

If you want it to range-down at 7800d, you should put in 30Ch so that would be 0C @ 14h, 03 @ 15h. I think that should do the trick.

Is there some benefit to have it range down at a different value than range up value? e.g. 1900 vs 2200,5800 vs 6200

When you are testing from zero going up in range, you still get the full 6000 count but when going down, you only get 2000 count.
example: when reading a changing voltage (charging cap etc) it counts from 1.000 to 2.000 5.000-6.000 then 07.00-08.00 but when going down, it had to go 08.00-07.00 ... 04.00-03.00 - 02.00 then 1.000. I hope you get what I mean.

Yes I get what you are saying. I set my to range up at 6200 ($@ 12 h-13 h$) and range down at 5900 (@14h-15h) just like they do it on UT211E. After some thinking, I believe they set different limits so that it will not constantly change the range up/down when you are measuring varying voltage at the limit you set.
From the Russian forum a user posted some tests results that caught my eye. If I understand correctly then anything over 7200 counts shows false reading measuring 220ACV. So if you do set 8000 or 10000 count remember not to use with AC high voltage.

So, did you check the down ranging? Does it stay at 8000 counts when the voltage starts decreasing?
I checked the down ranging and it works beautifully. Mine set at 5900 and as soon as voltage drops below that level it switches to 3 decimal digits. I suggest you set the down ranging slightly lower (100 to 300 mV) than up ranging so that if you measure fluctuating 8 volts the meter won't be going crazy.
Seems like our friends in Russia have more to tell:
NCV added substate level in millivolts $-9 \mathrm{Ch}=02 \mathrm{~h}!!!$
NCV mode can now operate as a voltmeter electromagnetic field without sound, can now be more accurately find a wire in the wall. In normal mode, the maximum beeps and can not see how to change values ??after pinning. This feature is found by chance in the search for the frequency!

Just did a mod using your Arduino sketch and schematic. Worked beautifully!
Here's my backup (in case it would be useful for somebody):

```
...Before EEPROM Dump...
FF FF FF FF FF 00 80 E8 03 E8 03 FA 00 00 BE 03
70 179808 BE 00 3D 3D 3C 3C FF FF OA FF 40 FF
4498 8A 81 6400 9600 00 80 1780 FB 7E 3875
4E 0209 EF 01 09 01 FE OA ED 15 OA F2 02 OA 00
00010001000798006400640064000000
8289 B6 8300 80 00 80 00 00 00 00 0100 00 00 copy82+89 over 80+00
E3 7F 5B 7F 01 00 A9 2A 00 00 00 00 00 000000 see below
558000 80 5C 80 EO 7C FA 05 00 00 00 00 00 00
00000000000000 1700 00 00 19 1E 1B 0407
000000 00 00 00 00 1600 00 00 18 00 1A 05 09
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0A
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0B
OD 00 02 30 OD 00 03 20 200003 2020 00 03 10
41000308410003054100 0305 0D 00 0230
00800080 00 80 00 80 00 80 F8 01 65 03 B8 04
FA 01 6903 C5 0400 80 5A C7 EF OF OF 80 00 00
```

...Flashing EEPROM...
...After EEPROM Dump...
FF FF FF FF FF 0080 E8 03 E8 03 FA 0000 BE 03 70173818 BE 00 FF FF FF FF FF FF FF FF 40 FF 44988 A 816400960000801780 FB 7E 3875 4E 0209 EF 010901 FE OA ED 15 OA F2 02 OA 00 00010001000798006400640064000000 8289 B6 83008082890000000001000000 E3 7F 5B 7F 0100 A9 2A 0000000000000000 558000805 C 80 EO 7C FA 05000000000000 000000000000001600000018 1E 1A 0307 00000000000000170000001902 1B 0409 00000000000000 1C 00000000 1D 0005 0A 00000000000000 1D 00000000000006 0B 0D 000230 OD 0003202000032020000310 4100030841000305410003050 D 000230 00800080008000800080 F8 016503 B8 04 FA 016903 C5 040080 5A C7 EF 1E B4 800000
the early UT210E uses the same uC of the AN8002, the DTM0660.
But the latest units are using the same uC of the AN8008, the DM1106EN.
the ut210e uses the packaged chip - not a blob.
and the newer chip is designed to run at 10,000 so the 6000-8000 limit does not apply - thats for the older 0660 chip.
i made myself some notes! ;D
make continuity>ohms instead of ohms>continuity
$8 \mathrm{f}=09$ (normally 07)
$9 f=07$ (normally 09)
make Vdc>Vac instead of Vac>Vdc
$8 e=05$ (normally 04)
$9 e=04$ (normally 05)
make $\mathrm{Vdc}>\operatorname{Vac}$ (with $m v$) instead of $\mathrm{Vac}>\mathrm{Vdc}$
$8 e=05$ (normally 04)
$9 e=06$ (normally 05)
make Vac support mv (dont use with above patch)
$8 \mathrm{e}=06$ (normally 04)
add NCV field level range
$9 c=02$ (normally 00)
ac $=1 d$ (normally 00) < wtf?
make 2 A range $\mathrm{dc}>\mathrm{ac}$ instead of $\mathrm{ac}>\mathrm{dc}$
$87=16$ (normally 17)
$97=17$ (normally 16)
make 20A range dc>ac instead of $a c>d c$
$8 \mathrm{~b}=18$ (normally 19)
$9 \mathrm{~b}=19$ (normally 18)
make 100A range dc>ac instead of ac>dc
8d = 1a (normally 1b)
9d = 1b (normally 1a)
expand 100A range to 600A
$07=70$ (normally e8)
$08=17$ (normally 03)
$07=10$ (normally e8)
$08=27$ (normally 03)

2A Dotless mode
*Copy bytes from 50h and 51h (locations of 2A calibration data) to locations 56h and 57h (2000A/ dotless 2A calibration data).
a7 $=1 \mathrm{c}$ (normally 00) - DCA 0000 in 2A mode / SELECT slot 3
b7 = 1d (normally 00) - ACA 0000 in 2A mode / SELECT slot 4
kill backlight timeout
$\mathrm{fc}=00$ (normally 0 f)
make auto-poweroff 1hour
$\mathrm{fb}=3 \mathrm{c}$ (nomally 0 f)
make low battery warning 15 seconds
$\mathrm{fd}=8 \mathrm{f}$ (normally 80)

Alarms
For each of those, limit = value * 10 V , ff to disable warning.
$16=3 d(61)-$ "OL" limit for DCV. (10V units)
$17=3 \mathrm{~d}(61)-$ "OL" limit for ACV. (10V units)
$18=3 c(60)-$ Alarm/beep limit for DCV. (10V units)
$19=3 c(60)-$ Alarm/beep limit for ACV. (10V units)
$1 b=f f(d i s)-m A$ range warning current. (100mA units)
$1 \mathrm{c}=0 \mathrm{a}(10)-\mathrm{A}$ range warning current. (1A units)
make 6000 count
$10=70$ (normally 70) default count:6000??? 2000>8000
$11=17$ (normally 17)
$12=38$ (normally 98) upper switch point $2200>6200$
$13=18$ (normally 08)
$14=44$ (normally be) lower switch point $190>580$
$15=02$ (normally 00)
make 10,000 count \lll only DM1106 chip, will fuck AC readings on DTM0660 chip
$10=10$ (normally 70) default count:6000??? 2000>10000
$11=27$ (normally 17)
$12=\mathrm{d} 8$ (normally 98) upper switch point 2200>10200
$13=27$ (normally 08)
$14=d 4$ (normally be) lower switch point $190>980$
$15=03$ (normally 00)
« Last Edit: October 06, 2017, 04:59:31 AM by stj »

Nulling the Meter

VR- = Offset adjustment
VR+ = Clamp Head Nulling Pot
VR4 = Clamp Head Nulling Pot

Turn meter to 2A DC mode, turn meter on and rotate noting varation, Then adjust VR+ and VR4 until the is no variation, then zero out the Offset with VR

