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To finish our problem, we need to find an S-parameter model for the 
transistor that is closest to our bias condition. Let us assume that we found such 
a model for the transistor chosen. The negative resistance would look similar 
to Figure 10.5. In this plot we can see we have around −425 ohms at 20 MHz. 
This is greater than three times the ESR and we can conclude that we have 
sufficient gain margin in this design. We can also conclude that the design pro-
cedure outlined above will yield excellent working designs. Once the design is 
synthesized with this procedure, any required changes or optimization can then 
be done with a software suite like GENESYS.

10.4 Colpitts CC Quick Design Procedure Using a Third Overtone 
Parallel- or Series-Resonant Crystal

With third overtone crystals, we need to add mode selection; otherwise, the 
oscillator will always start on the fundamental response. This circuit is shown 
in Figure 6.22. For the design of the bias, we can use the same procedure as the 
Colpitts CC fundamental in Section 10.3.2.

Mode selection is accomplished in Figure 6.22 by designing the parallel 
combination of C2 and L1 to “look” capacitive at the third overtone and induc-
tive at the fundamental mode.

Figure 10.5	 Negative-resistance	simulation	looking	into	the	base	of	Figure	10.4.	In	Agilent’s	
GENESYS	and	using	linear	simulation,	it	is	the	plot	of	real	part	of	the	input	impedance,	that	is,	
re(Zin1).
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10.4.1 Design of the Third Overtone Mode Selection

We will assume that the fundamental response is exactly at f0/3, although we 
know that this is not true. However, this assumption will not affect the mode 
selection design.

Start by letting the reactance of C1 be equal to 70 ohms like before. Now 
we need to have resonance using the parallel combination of C2 and L1, be-
tween the fundamental and third overtone response. I prefer setting this mode 
selection frequency (fms) at the geometric mean between the fundamental and 
third overtone response. That is,

 ( ) 2
0 0 03 3msf f f f= × =  (10.14)

Because we have two unknowns, we need a second condition to solve the 
mode selection tank. That other condition is to set the reactance of the tank 
consisting of C2 and L1 to 70 ohms at f0. Hence, the second condition is
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We can now set up two equations and two unknowns to arrive at the tank 
values. 

10.4.2 Setting a Parallel-Resonant Third Overtone Crystal to Frequency

Setting a parallel-resonant crystal to frequency is the same as in Section 10.3.3 
except that now C2 is a parallel tank. We can even state that the capacitance 
value of the tank at the oscillating frequency is equal to C1. However, a more 
exact solution is
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where Cms is the mode selection tank capacitance at the frequency of oscillation. 
This is given by
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and



226	 Understanding	Quartz	Crystals	and	Oscillators	 	 Colpitts Oscillator	 227

 
( )( )

( ) ( )
0 2 0 1

0 2 0 1

1 2 2

1 2 2ms

f C f L
X

f C f L

π π

π π
=

+  (10.18)

10.4.3 Setting a Series-Resonant Third Overtone Crystal to Frequency

If a series-resonant third overtone crystal is used as shown in Figure 6.22, then 
the oscillator frequency will be wrong. It will actually be high in frequency. 
Therefore, we need to modify this circuit to bring the frequency back down. 
This is easily accomplished by adding an inductor in series with the crystal. One 
may think that just replacing C4 with an inductor would be sufficient, and in 
some cases it is. The problem is that inductors come in few standard values and 
the specific inductance needed may not be available. What we will do is leave 
C4 in place and add the inductor in series with it. The combination of the new 
inductor and C4 will become a variable inductor. There are many more standard 
capacitor values that will facilitate fine trimming of the crystal frequency. Figure 
10.6 is our new circuit for a third overtone, series-resonant calibrated crystal. C4 
has been renamed as Cs and the new added inductor Ls. 

The job of the series combination of Ls and Cs is to resonate out the load 
capacitance presented to the crystal by series combination of C1 and the tank 
consisting of L1 and C2. Mathematically the sum of the reactances in series must 
equal to zero. That is,

 1 0LS CS C msX X X X+ + + =  (10.19)

In practical designs we choose the value of Ls such that it will by itself 
force the crystal frequency below f0. Then one uses Cs to fine trim the frequency 
backup. In some cases, Cs is made up of two or more parallel capacitors to be 
able to set the frequency within a fraction of a part per million. Off-course, a 
trimmer capacitor can also be used in its place instead. However, trimmer ca-
pacitors tend to be large and very vulnerable to vibration and aqueous cleaning 
processes. 

Problem	10.1

Design a Colpitts CC CLOCK at 100 MHz, with a +5-V supply with output 
taken from the emitter. The crystal is described as follows: Mode = third over-
tone, load capacitance = series, R1 = 60 ohms maximum, C0 = 3 pF, C1 = 0.2 fF.

Determine all the component values and prove by simulation that there is 
no negative resistance at the fundamental response of the crystal.
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Solution:

Because the crystal is series-resonant calibrated, we will choose the circuit of 
Figure 10.6. The collector resistor will be 0 ohms because we are taking the 
output from the emitter. Let us choose the identical bias condition as in Prob-
lem 10.1. That is: R1 = R2 = 10 kilo-ohms and RE = 330 ohms. The value of 
C1 becomes

 ( )( )1
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2 100 MHz 70

C
π

= =  

Let us choose C1 = 22 pF, a standard value. The values of C2 and L1 were 
solved on MathCad using its “solve” function after setting up two equations, 
two unknowns. The following is that file: 

This file solves for L and C of 3rd Overtone mode selection tank
Given the frequency of oscillation:

 f: = 100 · 106 

Figure 10.6	 Colpitts,	third	overtone,	for	series-resonant	calibrated	crystal.	If	OUT2	is	used,	
then	RC	becomes	0	ohms.
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The tank frequency is then:
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Enter the desired tank reactance at f:

 Z: = –j · 70 

The C1 split capacitor is: 
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Below we find the mode selection tank values guess
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Selecting standard values:
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Check:
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From the MathCad file we selected C2 = 33 pF and L1 = 220 nH. Because 
C3 and C6 are bypass capacitors, we choose C3 = C6 = 0.1 µF.

Now we need to select the values of Ls and Cs such that the crystal “sees” 
no capacitive load since we have a series-resonant crystal. The load capacitance 
looking into the base is the series combination of C1 and the tank capacitance 
Cms. The reactance of Cms is equal to −j 74 from the MathCad file. Therefore 
this capacitance is equal to
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The series combination of 22.7 pF and 21.5 pF is equal to 11.04 pF. The 
value of Ls then becomes
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The reactance of Ls is therefore equal to 2π (100 MHz)(229.4 mH) = 
+j144.1. We will choose an inductor with a standard value greater than 229.4 
nH and then readjust the reactance with Cs to get us back to +j144.1. Let’s 
choose 270 nH for Ls; its new reactance is then = +j169.6. This is 22.5 above 
+j144.1. We therefore need Cs to be
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The value of 70.7 pF is not a standard but 68 pF is. Our final schematic 
with values is shown in Figure 10.7.
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Simulating the negative resistance of the Figure 10.7, looking into the 
base, we obtain Figure 10.8. At 100 MHz we have about −470 ohms, but at the 
fundamental (around 33.333 MHz) frequency we have more than +800 ohms. 
These results confirm that the oscillator will not oscillate at the fundamental 
and that we have sufficient gain at the third overtone (i.e., 100 MHz).

10.5 Transient Analysis of Colpitts CC

We will now perform transient analysis of the Colpitts to examine the steady-
state, time-domain waveforms at the emitter and the collector. Our first circuit 
is shown in Figure 10.9 where the output is being taken from the emitter. To 
trigger the start of oscillation in the simulator, we have set up three essential 
techniques in Figure 10.9. First, the supply voltage has been replaced with pulse 
function as described in the schematic. Second, the crystal is returned to VDC 
[3] to further facilitate the start of oscillation. Third, we have de-Q the crystal 
resonator by increasing the motional capacitance by the same factor we have 
reduced the motional inductance. The ESR remains the same value. The de-Q 
of the crystal in this way will not affect the steady-state time domain waveform. 
We do this to speed up the simulation time, which can be very long for crystal 
oscillators. 

Figure 10.7	 Final	circuit	for	Problem	10.2.
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Figure 10.10 shows the steady-state time domain output at the emitter of 
Figure 10.9. This output is “close” to a sinusoidal waveform. The crystal being 
only one capacitor away is partly responsible for filtering the output at the emit-
ter. Notice the lack of any clipping of this waveform at the emitter. This signal 
is approximately 1 Vpp. 

In Figure 10.11 we have set up the Colpitts to simulate the output at 
the collector (Colpitts semi-isolated). Figure 10.12 shows the simulated output 
waveform at the collector. It is strikingly different than the emitter waveform. 
First, it is rich in harmonic content due to the limiting action occurring at the 

Figure 10.8	 Negative-resistance	simulation	of	Figure	10.7.	

Figure 10.9	 The	20-MHz	Colpitts	CC	configured	for	transient	analysis.


