
AN1334
Techniques for Robust Touch Sensing Design
INTRODUCTION
The purpose of this application note is to describe the
best design practices when developing capacitive
touch applications for noisy environments. This
application note will begin by defining the problems
caused by noise, and explain how that noise typically
affects systems. Hardware guidelines will then be
provided to help maximize the natural signal-to-noise
ratio (SNR) of the application. Software techniques are
then covered to describe some of the common
methods used to filter a sensor’s signal to increase the
SNR further, and then to make a decoding decision
based on the behavior of the capacitive sensor.

The hardware design topics that will be covered are:

1. Button and slider pad design and spacing
2. Overlay material and thickness
3. Adhesive layer recommendations
4. Sensor trace layout and series resistance
5. Layout techniques for ESD protection
6. Power supply grounding scenarios
7. Choosing VDD and bypass capacitors

mTouch™ and RightTouch™ sensing solution systems
have passed industry test standards in conducted and
radiated susceptibility, and radiated emissions. This
application note describes the important aspects of
capacitive touch design which, when coupled with good
printed circuit board (PCB) techniques, will allow these
systems to continue performing in these extreme
testing conditions.

For information on the basics of capacitive touch
sensing and other more advanced topics, visit the
Microchip touch and input sensing solutions web site at
http://www.microchip.com/mTouch.

Basic Capacitive Touch Review
Capacitive sensors are areas on a PCB that have been
filled with copper and then connected back to the PIC®

device using a trace. The PIC device will then measure
the sensor in some manner that allows it to notice small
shifts in capacitance typically caused by a user’s finger
approaching the sensor. The capacitance is
continuously read in software and when a change
occurs, the system will register a press on that sensor.

In Figure 1, CBASE is the capacitance value when no
object is over the pad. This is referred to as the
sensor’s base capacitance. CF is the capacitance
change caused by a finger touch, and CT is the total
capacitance of the sensor.

FIGURE 1: CAPACITIVE SENSOR
SYSTEM

The capacitances in this system can be calculated by
the parallel plate capacitance shown in Equation 2. It is
important to understand that in real applications the
capacitive sensor system is much more complex than
Equation 1. Generally speaking, the system could be
considered as a network of capacitors, resistors, and
inductors which are a result of the PCB, the overlay, the
human body, and the environment. Therefore, it is very
difficult to calculate the exact characteristics of a
capacitive sensor system.

The recommendations in this application note are
based on lab test results and are not absolute
conditions. Users can always make their own
adjustments based on the capacitance equation and
their own application’s needs.

Author: Burke Davison
Microchip Technology Inc.

Overlay

Sensor
Pad

PCB
Substrate

GND

C0

C0
CF

CT = C0 + CF
 2010-2013 Microchip Technology Inc. DS00001334B-page 1

http://www.microchip.com/mTouch
http://www.microchip.com/mTouch

AN1334

EQUATION 1: PARALLEL PLATE

CAPACITANCE

There are two fundamental methods for detecting a
shift in capacitance using a microcontroller. The first is
to use a voltage measurement where the system
manipulates the pin of the sensor, to place a voltage
based on the amount of capacitance on the pin, and
looks for a shift in the voltage reading on the sensor.
This includes methods such as Microchip’s Charge
Time Measurement Unit (CTMU) and Capacitive
Voltage Divider (CVD). The alternative is to measure
the sensor using a frequency approach, such as the
RightTouch scanning method, which uses a
pseudo-randomized frequency to sense changes in
capacitance. The waveforms for all three scanning
methods can be found below in Figure 2.

FIGURE 2: CAPACITIVE SENSING
ACQUISITION WAVEFORMS

Acquisition Waveforms
This application note will focus on the hardware design
of the system and the sections of firmware not involved
in signal acquisition. For designs implementing the
CVD or CTMU techniques, the source code available in
the Microchip Library of Applications implements this
for the designer. If using a RightTouch turnkey product,
these techniques are built-in as part of the solution.

Noise Immunity vs. Low Power
When developing a capacitive touch system, it is
important to know what your main goal should be from
the very start of product development. For the majority
of applications, how the system is powered will answer
this question. For line-powered systems, conducted
noise immunity is the main concern. For
battery-powered systems, low power is the main
concern.

It is also possible that some systems may overlap
between these two regions. A cell phone that has the
option of being powered through a USB cable is one
example. The majority of the time, it would be
concerned with low power; however, it needs to be
careful of conducted noise when being powered
through the main line. For this reason, only
voltage-based acquisition methods should be used in
these systems.

While noise immunity and low power are not mutually
exclusive, focusing on one will require that design
trade-offs be made to the other. For example, imple-
menting a slew rate limiter filter to reduce susceptibility
to conducted noise will require increasing the sample
rate of the system, which will increase the overall
power consumption. Lowering VDD is an excellent idea
in low-power applications, but doing so will also
decrease your noise immunity (see Section‚ Power
Supply Considerations). This application note focuses
on decreasing noise susceptibility and treats low power
as a secondary goal. If low power is the main goal of
the application, visit http://www.microchip.com/XLP for
more technical details.

EFFECTS OF NOISE ON CAPACITIVE
TOUCH SENSORS

Push Buttons vs. Capacitive Sensors
Before considering how to develop a robust capacitive
touch application, it is important to understand the
fundamental reason why noise is a concern. When
using a mechanical button, the microcontroller’s port
circuitry decides whether the switch’s pin is being
pulled high or low and provides a single-bit digital result
to the user. This result is then debounced to adjust for
ringing, and the state of the button is based on the state
of the debounce variable.

Capacitive touch sensor applications, however, are
analog. The first clear difference is the need to
manually perform the reading process. When using a
mechanical switch, the microcontroller is able to read
the pin using its internal hardware logic. For capacitive
touch applications, separate hardware modules will
need to be used to manipulate the sensor line. Whether
it is using a voltage-based measurement or a
frequency-based measurement, the analog result will
be provided in the form of an integer value. This value
is then typically filtered using different digital signal
processing techniques to amplify the signal and
attenuate the noise. The filter value is then sent
through some form of debounce algorithm and a more
complex decoding process. An extra layer of
complexity is also added when the system is designed
to perform in a closed loop manner, adjusting its
behavior based on the sensor’s current state.

C r0
A
d---=

Where:
εr = relative permittivity of the dielectric material
ε0 = permittivity of space (8.854 x 10-12 F/m)
A = plate area in square meters (m2)
d = distance between the plates in meters (m)

Charge Time Measurement Unit
(CTMU)

Capacitive Voltage Divider
(CVD)

RightTouch® Sensing
(CAPxxxx Devices)
DS00001334B-page 2 2010-2013 Microchip Technology Inc.

http://www.microchip.com/XLP

AN1334

The capacitive touch software process can be
simplified into three distinct phases:

1. Acquisition

Using a voltage-based or frequency-based
measurement technique to obtain a sample from
the capacitive touch sensor.

2. Filtering

Manipulating the incoming sensor samples to
increase the effective SNR of the system by
attenuating the noise.

3. Decoding

Determining whether a sensor is pressed or
released based on the current value of the sen-
sor samples and the sensor’s previous behavior.

Figure 3 illustrates the difference between push
buttons and capacitive touch sensors, and labels the
three main software stages of a capacitive touch
system.

FIGURE 3: PUSH BUTTON VS.
CAPACITIVE SENSOR
SOFTWARE PROCESS

Conducted and Radiated Noise
‘Conducted’ and ‘radiated’ are the two main
classifications of injected noise that can create
instability in capacitive touch systems. Conducted
noise is caused in systems that are powered externally
from the device. This can include systems powered off
the main-line power, desktop-powered USB devices, or
any other situation that may mean the user is not
sharing a ground with the application.

Radiated noise is a common challenge across all
capacitive touch systems. In particular, if the capacitive
touch sensor is a high-impedance input when being
scanned, it essentially performs as a high-frequency
antenna. Thus, electronic devices radiating
electro-magnetic fields near the capacitive touch
system will cause the readings to be affected. This can
include cell phones, high-power communication lines,
and fluorescent lights to name a few.

There are two main reasons why these two types of
noise show up:

1. When a user presses on a capacitive touch sen-
sor, he/she is becoming part of the system, so, if
the user and the system are on different ground
references, the system will interpret the user as
an injected AC signal on the sensor.

2. Analog readings are susceptible to outside
forces pushing them slightly in one direction or
the other. The digital result of a mechanical
switch is either high or low.

This application note will describe the different system
design techniques that are recommended to overcome
these two noise types. In addition to these guidelines,
designers should be aware of the future working
environment of the application and ensure there are no
excessively noisy electronics nearby that may interfere
with the system.

Capacitive Sensor Noise Behavior
Injecting noise on a capacitive touch sensor will cause
the system to become more unstable. Voltage-based
mTouch sensing solution reading methods such as
CTMU and CVD will be affected differently than
frequency-based reading methods, the RightTouch®

scanning method. In voltage-based systems, the
voltage of the sensor at a specific point in time is what
determines the integer value of the reading. In
frequency-based systems, the effect on the readings
will vary based on the frequency of the injected noise
and the frequency of the sensors oscillation.

NOISE BEHAVIOR: FREQUENCY-BASED
ACQUISITION
Frequency-based acquisitions methods must perform
frequency-hopping techniques to eliminate harmonic
noise concerns. This is handled automatically by the
RightTouch turnkey products, and is always enabled.
Additionally, multiple proprietary techniques are used
to sense and adjust for noise in the device.

Read Port Acquisition

Application

Push Buttons

Filtering

Decoding

Capacitive Sensors

 (Digital) (Analog)

 (Digital)
 2010-2013 Microchip Technology Inc. DS00001334B-page 3

AN1334

NOISE BEHAVIOR: VOLTAGE-BASED
ACQUISITION
In voltage-based systems, injected noise can cause a
positive or negative offset away from the natural
sample value. If the sampling rate falls on a harmonic
of the injected noise, resonance can occur. When this
happens, the samples are falling on the peaks or
valleys of the injected noise.
An example of this behavior can be seen in Figure 4.
When sampling at one of these harmonics, the
readings may all fall on the peaks of the noise or
somewhere in the middle based on the starting time of
the acquisition. Because of this, multiple readings at
the same frequency will show a large amount of noise.
This can be seen in Figure 5 where some of the noise
frequencies are harmonics of the sampling rate and
others are not.

FIGURE 4: VOLTAGE-BASED
HARMONIC FREQUENCY
ACQUISITION

The Microchip Library of Applications, available at
http://www.microchip.com/mla, implements acquisition
and filtering techniques to eliminate this behavior from
the sensors’ outputs.

FIGURE 5: VOLTAGE-BASED ACQUISITION NOISE FREQUENCY RESPONSE
DS00001334B-page 4 2010-2013 Microchip Technology Inc.

AN1334

Signal-to-Noise Ratio
In order to understand how hardware and software
changes affect the system, it is necessary to have a
way of measuring the signal’s current performance.
Sensitivity, or the amount that the system shifts, is not
a sufficient measurement to define if a system is stable.
For example, in a system where the average sensor
output value is 20000 and a shift of 2000 is reached,
you could simply subtract 18000 from each reading and
claim a 100%, 2000 count shift was achieved. In reality,
however, the shift or “signal” must be compared with
the amount of noise. If noise was causing the sensor to
drift by 1000 counts at any point in time, the system is
in trouble.
One of the easiest ways to determine how stable a
system is, or how much the system is affected by noise,
is to look at its Signal-to-Noise Ratio (SNR). Just as it
sounds, this is a way of measuring how strong the
signal is when compared to unwanted disturbances of
noise.
For the purpose of this application note, the SNR
formula being used is defined in Equation 2.

EQUATION 2: SIGNAL-TO-NOISE RATIO

The numerator of the equation is the amount that the
system will shift when pressed or the ‘signal’. The
denominator is a measure of how much the noise is
able to affect the readings. Using these as a ratio, a
single number can be used to describe the quality of
the sensor’s signal by answering the question: How
much shift do you require compared to the amount of
noise you are trying to avoid?
If conducted noise is present on the system, the SNR
will change when the sensor is pressed versus
released. It may also change based on the frequency
of the injected noise.

An example SNR calculation is shown below
(Figure 6).

FIGURE 6: SNR CALCULATION

There are other formulas to calculate the SNR of a
system. The important thing is to choose a method that
provides consistent numbers across multiple
measurements so informed decisions can be made
about which of the hardware and software changes
made are good and which are bad.
For reference, Figure 7 is provided to show an example
of what a signal-to-noise ratio of 3.5 would look like
using Equation 2. Note that, since the standard
deviation of the noise and not the peak-to-peak value is
being used, an SNR of 3.5 leaves little room to place a
threshold. To be able to place a fixed threshold on the
system, so that the pressed section plus its noise is
completely separated from the unpressed section plus
its noise, a system with an SNR of at least 7 is needed.
In real applications, system SNRs should ideally be at
least 15 to provide a higher level of reliability.

FIGURE 7: SIGNAL-TO-NOISE RATIO =
3.5

SNR
 µU µP–

------------------------=

Where:
µU = mean value when not pressed
µP= mean value when pressed
σ= standard deviation of the signal

SNR
 µU µP–

------------------------ 13763 13661–

5.52-------------------------------------- 18.5= = =

13763

13661

St. Dev.
5.52
 2010-2013 Microchip Technology Inc. DS00001334B-page 5

AN1334
HARDWARE DESIGN
The hardware design of a capacitive sensor application
is crucial to the system’s overall success. The
decisions made in this step of the process will
determine how difficult it is to get a working, robust
application. If the hardware design guidelines are
followed, the sensor’s sensitivity will be increased and
it will be significantly easier to pass industry noise
standards. Likewise, not following the guidelines will
make success much more difficult and, in some cases,
impossible. Keep this in mind while deciding which of
these guidelines to follow in your designs.

Parallel Plate Capacitance Equation
The most important thing about hardware design is to
remember that the basic capacitance equation, shown
in Equation 1, defines the relationship between
hardware design decisions and the resulting sensitivity
of the system.
For example, if the distance between the finger and the
sensor is decreased by half, the sensitivity will double.
If the area of the sensor is doubled (assuming it is still
smaller than the area of a finger’s press) then the
sensitivity will also double.
Another important characteristic of capacitive touch
sensors is the existence of parasitic capacitance which
determines the sensors base capacitance, CBASE.
Equation 3 explains how CBASE can affect a system’s
sensitivity. You are only able to take a measurement of
the total capacitance on the sensor, CT, so the stronger
the effect of CBASE, the less you may be able to see CF,
the change in capacitance due to a finger.
An illustration of this system was previously provided in
Figure 1.

EQUATION 3: TOTAL SENSOR
CAPACITANCE

Equation 1 and Equation 3 will be the basis of the
hardware design guidelines for capacitive touch. The
equations are simply physics. The guidelines are
recommendations that will attempt to maximize your
system’s SNR and should be followed whenever
possible. In some cases, an application may require
that some of the guidelines not be followed. For
example, a system might have size constraints or may
require a thick covering material to protect it from
damage. If this is the case, extra care should be taken
to ensure a quality signal-to-noise ratio by closely
following the other recommendations.

Design Goals
In general, to optimize performance of a capacitive
sensor system using the mTouch or RightTouch
solutions, designers should strive to:
• Achieve a large change in capacitance, CF,

relative to noise
• Minimize the base capacitance of the sensor,

CBASE
• Avoid conductive overlay material unless it is a

metal-over-capacitive system
• Minimize overlay thickness

PCB Design Considerations
Board Material – No special requirements
Layer Thickness – No special requirements
Recommended two-layer PCB stack-up:
• Layer 1 (top): Capacitive sensor pads and some

sensor traces if they cannot be routed on the
other layer.

• Layer 2: All components, any LED signal traces,
power traces, and communication traces.

Recommended four-layer PCB stack-up:
• Layer 1 (top): Capacitive sensor pads.
• Layer 2: Capacitive sensor traces.
• Layer 3: GND plane, except under capacitive

sensor pads. Every effort should be made to keep
this ground plane contiguous. This is especially
true for the area under the capacitive sensing
controller.

• Layer 4 (bottom): All components, any LED signal
traces, power traces, and communication traces.

For a PCB with more than four layers, always route the
capacitive sensing traces on a layer close to the
capacitive sensing pad layer, and place the GND or
guard layer between the capacitive sensing traces and
other signal layers.

Button Pad Design Considerations
Shape – No special requirements.
Size – 15x15 mm (0.6”x0.6”) is recommended.
Pad-to-Pad Distance – 10mm (0.4”) or 2-3x the
overlay’s thickness is recommended.

BUTTON PAD SHAPE
mTouch and RightTouch capacitive touch sensors work
well with any button shape, including the most
commonly used ones: square, rectangular, round, and
oval. When designing a rectangular or oval sensor pad,
a length-to-width ratio of less than 4:1 is
recommended.

CT CBASE CF+=

Where:
CT= total capacitance / measured value
CBASE= sensor’s base capacitance
CF= finger’s capacitance
DS00001334B-page 6 2010-2013 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

AN1334

BUTTON PAD SIZE
‘A’ in Equation 1 is defined as the overlapping area. For
capacitive touch applications, this means that you are
limited by the smallest capacitive plate. If the sensor is
smaller than a finger’s press, the sensor’s area is the
limiting factor. If the sensor is larger than a finger’s
press, the finger is now the limiting factor.
You cannot change the user’s finger size, but you can
adjust the sensor size to maximize the sensitivity. The
larger the sensor is, the higher the sensor’s base
capacitance will be. This will lower the sensitivity and
allow more conducted noise to be injected into the
system when a user presses. The smaller the sensor,
the greater the chance that it is the limiting factor on
sensitivity instead of the user’s finger size. For this
reason, the ideal sensor size is about the area of a
finger press.
Best Option: The sensor size should be the same as an
average user’s finger press (15x15 mm or 0.6x0.6
inch).

Option 2: Design sensors to be smaller than optimal.

• Overlapping area, ‘A’ in Equation 1, is limited
which reduces the maximum sensitivity.

• Adequate sensor separation will become more
important to minimize the amount of sensor cross-
talk.

• Use a thin cover overlay to gain some extra sensi-
tivity.

Option 3: Design sensors to be larger than optimal.

• Sensor base capacitance, CBASE in Equation 3,
can increase because of the increased proximity
to ground which reduces sensitivity.

• Conducted noise disturbance is increased.
• Press shifts will vary by larger degrees because

small fingers will cause less of a shift than large
fingers due to less overlapping area, ‘A’ in
Equation 1.

• Proximity sensing capability is increased.

PAD-TO-PAD SEPARATION DISTANCE
Crosstalk can become a challenge in capacitive touch
applications if overlays are too thick or sensors are too
closely placed together. Crosstalk is the unwanted shift
of a different sensor from the one you are intending to
press. If crosstalk is a problem in an application, the
software must compare the two sensors and determine
which sensor is “more pressed”. This adds an extra
step to the decoding process, increases the likelihood
of error, and (depending on how it is implemented) can
limit your system to one touch at a time. Following our
guidelines will allow you to avoid implementing a
system that must compare each sensor with every
other sensor.

Figure 8 shows how a finger’s press can affect the
sensors located around the target sensor. By
separating the sensors by 2-3 times the cover’s
thickness, the strength of the finger-to-sensor coupling
is limited to a low and manageable amount. An
alternative way of thinking about this relationship is to
focus on the distance variable, ‘d’, in Equation 1. By
separating the sensors, as shown in Figure 8, the
crosstalk press is equivalent to pressing through an
overlay that is much thicker. This results in a decreased
crosstalk response from the system which increases
the effective signal.

FIGURE 8: CROSSTALK CAUSED BY
FINGER

Sensor-to-sensor coupling is the other form of crosstalk
that can negatively impact a design. Figure 9 shows
how field lines will radiate from a capacitive sensor. The
ability of those field lines to affect a neighboring sensor
is based on the distance it travels and the material it is
traveling through.

FIGURE 9: IDEAL SENSOR ELECTRIC
FIELD

d = 1 d = 2.7
 2010-2013 Microchip Technology Inc. DS00001334B-page 7

AN1334

If the field lines are able to propagate only through the
cover as shown in Figure 10, the effect will be strong.
The amount of crosstalk will be significantly reduced if
the field lines must travel through the overlay, exit into
free space, and then return through the overlay in order
to affect a neighboring sensor, the amount of crosstalk
will be significantly reduced. This is shown in the figure
as the difference between the strong and weak
coupling field lines. By following the first hardware
design guideline, the field lines will be forced to travel
through free space to reach a neighboring sensor and
so the crosstalk caused by sensor-to-sensor coupling
will be insignificant.

FIGURE 10: SENSOR-TO-SENSOR
COUPLING

Alternatively, air gaps could be placed in the cover or
PCB that will require the field lines to travel through free
space. Figure 11 illustrates this possibility. Notice how
the crosstalk path now has a very small capacitor in
series with the normal parasitic capacitances. This
small capacitor will dominate the others and will result
in an overall crosstalk shift that is very low. The larger
the air gap, the smaller the capacitor, and the better this
method will perform.
Finally, another option is to limit the sensitivity of the
sensor by using nearby ground traces to block the field
lines. Before using this technique, review Section‚
Layout Design Considerations to understand the
recommended use of ground near sensors. Reducing
the sensitivity of a system should not be a design
decision that is made lightly and should only be used
when the other possibilities have been exhausted.

FIGURE 11: AIRGAP CROSSTALK
SOLUTION

By following this hardware design guideline, your
designs will have reduced finger-to-sensor coupling
and sensor-to-sensor coupling. This will result in a
system that sees very little crosstalk which will allow the
response time to speed up due to decreased
processing overhead and the reliability of the system
will increase as the sensors’ signals become more
immune to these negative effects.
Best Option: Separate sensors as much as possible.

Ideal minimum separation is 2-3 times the cover’s
thickness.

• The distance, ‘d’ in Equation 1, between the
sensors is kept high compared to the distance
between the finger and the sensor, which results
in reduced sensor crosstalk.

• Parasitic capacitance, CBASE in Equation 3, is
kept low compared to the finger’s capacitance, CF,
which results in increased sensitivity.

Option 2: Create slotted air gaps in the cover.

• The relative permittivity, εr in Equation 1, between
the sensors is lowered to “1”, which results in
decreased coupling between the sensors which
decreases sensor crosstalk.

Option 3: Use guard traces between the sensors.

• The guard creates a low-impedance shield
between the two sensors. Since the guard is at
the same potential as the sensor being scanned,
the field lines of the sensors are forced to move
away from the guard and the neighboring sensor.
This reduces the effect of crosstalk.

Strong
Coupling

Small capacitance
dominates series
DS00001334B-page 8 2010-2013 Microchip Technology Inc.

AN1334

ACTIVE GUARD DRIVES
The base capacitance of a sensor determines how
much sensitivity it will have. This capacitance can be
lowered by making the environment around the sensor
have the same voltage potential as the sensor while it’s
performing its waveform.
How exactly the guard is driven depends on the
mTouch method or RightTouch device being used, but
the voltage does not have to perfectly match the
waveforms. Efficiencies of 60-70% can be achieved by
simply driving an I/O in phase with the sensor.
• One guard trace can be used for all sensors. Sen-

sors are scanned sequentially, so the guard can
be actively driven for the sensor being currently
scanned without affecting the others.

• Any power planes or low-impedance traces
should be guarded from the sensor.

• Around the sensor’s pad, the guard’s trace should
be about 1 mm thick and separated from the
sensor by 2-3 mm.

• Following the sensor’s trace back to the PIC
device’s pin, the guard’s trace can be the same
thickness as the sensor’s trace: 0.1-0.3 mm. The
separation of the guard trace from the sensor
trace can be as small as 0.5 mm.

Figure 12 shows how an active guard can shape a
sensor’s field lines to increase its sensitivity.

FIGURE 12: ACTIVE GUARD FIELD
LINES

MUTUAL DRIVES
Mutual drives are any I/O pin that is driven in phase
with the mTouch waveform with the intention of
measuring changes in the relative permittivity between
the mutual drive (Tx) and the sensor (Rx).
When implementing a mutual sensor, there will be a
base amount of coupling and then a change in the
coupling when a new material is placed in the coupling
path. In order to ensure maximum sensitivity, the
mutual waveform should be driven in phase with the
sensing waveform to ensure that the voltage shift due
to additional capacitance is in the same direction as the
shift due to the permittivity/mutual-coupling change.
There are two main situations where a mutual drive
signal is advantageous to a design:
• If a piece of metal has the possibility of physically

touching the sensor, driving the metal with a
mutual signal will eliminate glitches on the
sensor’s reading when the short occurs.

Guard
 2010-2013 Microchip Technology Inc. DS00001334B-page 9

AN1334

(For example, the metal layer on a
metal-over-capacitive system. This is not required,
but beneficial if the metal layer can short to the
sensor.)

• If the target being detected is isolated from the
sensor’s ground reference, placing a mutual drive
near the sensor will allow the application to detect
changes in the permittivity between the sensor
and the mutual drive.

Depending on the type of capacitive sensing being
used, the mutual drive may be driven differently. The
differential CVD waveform requires that mutual drives
be driven in phase with the waveform, but CTMU’s
single-ended waveform allows any board ground to
behave like a mutual drive.

SLIDER SENSOR DESIGN
Sliders can be implemented using the mTouch
Framework and Libraries, available in the Microchip
Library of Applications, and on some RightTouch
capacitive sensing devices, such as the CAP1114.
A typical slider shape is shown in Figure 13. Similar to
the individual capacitive sensing pad design, the
distance between pads should be greater than 1.3 mm
(~50 mils).
Theoretically, any pad shape used for a button pad can
be used for a slider pad. However, the chevron shape
shown in Figure 13 will provide more linear (smoother)
responses when a finger crosses from one pad to the
next. It will also provide a clear direction indicator for
schematic design, PCB layout, and assembling
processes.

FIGURE 13: RECOMMENDED SLIDER
DESIGNS

The seven-pad slider shown in Figure 13 will provide
good sensitivity, as well as enough accuracy for most
applications, but a slider with less than seven pads
could also be used for some applications. If the pad’s
size cannot meet the minimum requirement and
reduced accuracy is acceptable, the number of pads in
the slider can be reduced down to two.
The width of each pad and the distance between pads
will usually be limited by the total length of the slider.
The height of the slider will usually be limited by the
physical dimensions of the machine.

Overlay Material Considerations
Thickness – As thin as possible. Less than 3mm, ideal
Material – Glass and plastics, typical. Dielectric
constant between 2.0 and 8.0 recommended.
Adhesive – Thin, high permittivity, no air bubbles
In most applications, the capacitive sensor pads will be
covered with an overlay to protect them as illustrated in
Figure 1. The material and thickness of the overlay, as
well as the adhesive used, will affect the performance
of the system.

OVERLAY THICKNESS
The thickness of the covering material is very important
in affecting the sensitivity of capacitive touch systems.
Product designers will try to make the covering material
as thick as they can to increase the durability of the end
product, but thick covers will decrease the system’s
sensitivity. Equation 1 helps to explain why thick covers
are such a concern for capacitive touch applications.
As the distance between the PCB and the finger is
increased, the expected capacitance shift is
decreased.
The relationship between overlay thickness and
sensitivity can be seen in Figure 14. One thing to note
about the graph is the importance that the permittivity
of the material plays in defining the curves. A high
permittivity material will allow for a larger sensitivity
shift than an equally thick, but lower permittivity
material. High permittivity has the negative effect of
increasing the amount of crosstalk, however. If the
covering material is highly conductive, the capacitive
system may fail.
Figure 8 shows the effect that a finger can have on a
neighboring sensor. As the overlay’s permittivity
increases, so does this coupling.
If your application requires a thick covering material,
consider creating a slot in the covering material where
the sensor will be so the sensor can be placed closer to
the user’s finger. Conductive foam products are also
available that can be used to fill the gap if the whole
PCB cannot fit in the slot.

Best Option: Keep the overlay as thin as possible.
Ideally, cover thickness should not exceed 3 mm to
maximize sensitivity.

See Figure 15(a).
Option 2: Overlay is thicker than optimal, but the
sensors’ areas are increased to provide additional
sensitivity.

See Figure 15(b).
Option 3: Overlay is thicker than optimal, but slots in the
covering material are created to allow the sensor closer
to the surface.

See Figure 15(c).

0% 1 – 99% 100%

0% 1 – 99% 100%
DS00001334B-page 10 2010-2013 Microchip Technology Inc.

AN1334

Option 4: Overlay is thicker than optimal, but slots in the
covering material are created to allow EMI gaskets or
springs to bridge the gap between the PCB and the
finger.

See Figure 15(d).
When overlays are thicker than optimal:

• The distance, ‘d’ in Equation 1, between the
sensor and the user’s finger increases, which
causes the capacitance between the finger and
the sensor, CF in Equation 3, to decrease which
results in decreased sensitivity.

• Sensor-to-sensor crosstalk increases, as shown
in Figure 10, due to additional sensor field lines
being able to travel through the high-permittivity
cover compared to the low-permittivity air.

FIGURE 14: OVERLAY EFFECT ON SENSITIVITY

FIGURE 15: THICK OVERLAY OPTIONS

ADHESIVE SELECTION
Adhesive is used to secure the covering material to the
PCB and is another important element to a robust
capacitive touch system. Equation 1 will help to explain
the necessity of a good connection. The relative
permittivity of air is about one. Plastics are usually
between two and three. Glass is about four. If you have

air separating the cover and PCB, your effective
permittivity, �R, will be significantly decreased. For
example, a 1 mm air gap will decrease your sensitivity
to a half or a quarter of what it was. Remember that
when three capacitors are in series, the smallest will
dominate.
For systems using the metal-over-capacitive
technique, it is especially important that a good
adhesive is found for the application. Distances of tens
of microns (10 micron ≈ 0.4 mil) can make a significant
difference in these designs. Talking to a representative
from 3M or another adhesives manufacturer is
recommended to ensure your choice is the best for
your custom application.
There are several other important factors to keep in
mind when choosing or working with a commercial
adhesive:
1. Keep the adhesive thin in order to keep your

sensitivity high. For most regular capacitive
touch systems, 2 mil (50 micron) is a good thick-
ness.

2. Always read the bonding instructions for the
adhesive. Some data sheets specify a required
amount of pressure, temperature, and time to
achieve a secure, lasting grip.

1 2 3 4 5 6

Se
ns

it
iv

it
y
→

Overlay Thickness (mm)
C0 = 5pF CADC = 10pF

Plastic Glass Wood

(A)

(B)

(C)

(D)

Recommended

Thick Overlay, Larger Sensor

Option: Create Slot for PCB

Option: Bridge Gap with Conductive Material
 2010-2013 Microchip Technology Inc. DS00001334B-page 11

AN1334

3. Check the temperature limitations of your adhe-

sive. In some environmental conditions, the glue
can fail which will lead to unpredictable behavior
from your capacitive touch application.

4. Be careful of air bubbles when applying the
adhesive. If there are bubbles in the glue, your
sensitivity will suffer the same as if you had an
air gap between the cover and the PCB.

5. Make sure the adhesive type matches well with
the covering material. Different adhesives are
made for low surface energy and high surface
energy plastics. Most adhesives will adhere to
glass and PCB with few problems.

Some example adhesives that may perform well are:
High Surface Energy Plastics:
Example: ABS or Polycarbonate

3M’s Adhesive Transfer Tape 467MP
Low Surface Energy Plastics:
Example: Polypropylene

3M’s Adhesive Transfer Tape 9626
 3M’s Adhesive Transfer Tape F-9752PC

3M’s Adhesive Transfer Tape 9122
3M’s Optically Clear Adhesive (OCA):

8211, 8212, 8213, 8214, 8215
All of these will adhere to PCB and glass.

CONDUCTIVE OVERLAYS
Unless you are designing a metal-over-capacitive
solution, highly conductive overlays are never
recommended. However, in some capacitive sensor
applications, the overlay may be conductive due to a
conductive coating over the non-conductive plastics or
due to filling with carbon to darken the overlay’s color.
With conductive material over the capacitive sensor,
the resistance of the material will add an equivalent
resistor between neighboring sensors. When a finger
touches a sensor, the capacitance change on one pad
will affect the other untouched sensor to a varying
degree. As the resistance decreases, the change in
capacitance on untouched sensor pins becomes larger.
If the resistance is too small, the signals can become
too similar to determine the difference between a press
on one sensor or the other. This is illustrated in
Figure 16.

FIGURE 16: CONDUCTIVE OVERLAY

Using a conductive overlay is not recommended
because:
• The amount of carbon in the plastic may change

and then make the resistance change over time.
• The resistance from location to location could

vary.
• The resistance from different product groups

(different date codes) could vary.
Any of the above changes will affect the capacitive
sensor input values and cause the device settings
(such as the thresholds) to be incorrect.
If a design must use conductive materials, always test
the overlay samples and determine the allowable range
of conductivity.

Layout Design Considerations
The following rules will ensure a successful capacitive
sensor PCB design. However, these are
recommendations, not requirements.
• LED Output Traces should be isolated from

capacitive sensor pads on different layers with a
GND or guard plane between them.

• Neighboring capacitive sensor traces appear as
GND from the sensor’s perspective. Routing two
sensors traces in parallel is equivalent to routing
both parallel to GND.

• Sensor traces cannot be parallel with LED output
traces on the same layer or on adjacent layers. If
a sensor trace must cross an output signal on
adjacent layers, they must cross at a 90 degree
angle.

• Sensor trace width: 0.1-0.2 mm
• Sensor trace length: Minimized, or guarded
• Sensor series resistance:

- CVD :: 4.7 - 10 kΩ
- CTMU :: 1 - 2.5 kΩ
- RightTouch :: None required

• Minimum sensor trace separation: 0.1 mm
• Minimize via usage in sensor traces. This

increases base capacitance.
• Unused RightTouch sensor and LED pins should

be terminated either with a pull-down resistor or
tied directly to GND.

Conductive
Overlay

R

(Not Recommended)

Note: The same isolation should be observed
for the capacitive sensing pads/traces and
any other switching signals on the PCB,
including signals generated by sources
other than the mTouch or RightTouch
device.

Note: Ensure unused LED/GPIO pins shorted to
GND are not driven by controlling
firmware.
DS00001334B-page 12 2010-2013 Microchip Technology Inc.

AN1334

• Bypass capacitor(s) should be placed close to the

capacitive sensing controller’s VDD pin(s).

CAPACITIVE SENSOR COUPLING
The field lines of an ideal capacitive sensor would
radiate away from the pad without coupling into any
nearby components or low-impedance trace. When a
user approaches the sensor, field lines able to reach
out further will detect changes more quickly. In practice,
coupling will always occur and will distort the ideal field
line pattern in some manner. This behavior is shown in
Figure 17.
The goal of any design should be to minimize the
degree of coupling that is seen between the pad and its
surrounding environment so that the sensor’s field lines
are able to behave as ideally as possible.

FIGURE 17: CAPACITIVE SENSOR FIELD
LINES

CAPACITIVE SENSOR TRACES
Best Option: Keep sensor traces thin and short.

There are two main reasons to follow this advice. First,
keeping trace lengths short will minimize CP which will
increase the sensitivity of the system. Long traces are
also more susceptible to behaving like antennas which
will increase the noise floor of the application.
Communication lines should be kept away from sensor
traces if at all possible. If not, run them perpendicular to
the sensor traces to minimize their disturbance. You
can also guard them with ground traces to couple the
communication lines to ground instead of the more
sensitive capacitive sensor traces. Avoid running
capacitive sensor traces parallel with any
noise-causing lines and keep them separated from
ground and other capacitive sensor lines to reduce
parasitic capacitance.
To keep sensitivities high and noise low, make sensor
trace lengths short.

CAPACITIVE SENSOR SERIES RESISTANCE
Adding a series resistor to CVD and CTMU sensor pins
will stabilize the sensor readings in high frequency
noise environments. The resistor works with the
internal pin capacitance to create a low pass filter. As
the resistance increases, the cutoff frequency of the
filter decreases. However, if the resistance becomes
too large, the settling time of the waveform will increase
which may allow low-frequency noise to be injected on
the signal.
If using the CTMU acquisition method, do not exceed
the module’s maximum input impedance of 2.5 kΩ, or
the scan rate will decrease. The lowest recommended
series resistance is 1 kΩ.
If using the CVD acquisition method, the typical resistor
value is 4.7 kΩ, but can vary from 1-10 kΩ based on
your applications requirements. The settling delay of
the sensor’s waveform may need to be adjusted to
allow the capacitors to fully settle before beginning the
ADC conversion.
If using a RightTouch turnkey product, no series
resistance is required.

ELECTROSTATIC DISCHARGE PROTECTION
Microchip’s capacitive touch sensors are capable of
withstanding high levels of electrostatic discharge
(ESD) without physical damage. In addition,
operational immunity from electromagnetic
interference (EMI) is minimized through hardware and
software filtering. However, excessive environmental
conditions can produce false triggers, activate internal
ESD protective clamps, or affect VDD and ground
resulting in a device Reset. As such, it is important for
electromagnetic compatibility (EMC) to be considered
as early as possible in the system design process.
ESD typically has two distinct points of entry into a
system:
1. Transient charge entering through a

board-to-board connection, requiring circuit
design solutions.

2. Transient charge coupling to the PCB, requiring
layout and system solutions.

For transient charge entering through a board-to-board
connection, there are several approaches that may
help resolve this issue:
• Increase the impedance to high frequencies using

ESD protection device(s) such as a series resis-
tor, ferrite bead, or common-mode choke on the
VDD and ground lines.

• Add these ESD protection devices to the commu-
nication lines.

• Add Transient Voltage Suppression diodes (TVS),
also known as avalanche breakdown diodes,
between VDD and ground to shunt the ESD
current.
 2010-2013 Microchip Technology Inc. DS00001334B-page 13

AN1334

For transient charge coupling to the PCB, there are
several approaches that may help resolve this issue:
• The ESD charge point(s) of entry must be deter-

mined. These can be visible air gaps in the cover-
ing material, areas where two pieces of covering
material come together, around the edges of the
covering material, etc.

• Specific metal on the PCB may be designed as an
ESD-Ground (EGND) for conducting the ESD
charge. The EGND should be exposed as a metal
ring around the outer edge of the PCB to conduct
ESD current to the chassis. This EGND should be
terminated directly to the system chassis using
conductive foam when possible. The EGND ring
should be routed on all layers of the PCB.

• Route the signal ground between the EGND and
all other traces on the PCB, using a spacing of
0.5-1 mm (20-40 mils).

FIGURE 18: GND ROUTING EXAMPLE

There are several additional points to remember:
• Direct coupling of ESD to sensor device pins

should be minimized by directing energy to safe
areas of the system, such as to chassis ground
via a ground strap or similar means.

• Metal covering materials and surfaces are usually
more difficult to protect against ESD than those
made only of plastic. Additionally, plastics may
only require “air discharge” ESD compliance (i.e.,
IEC 61000-4-2) whereas metal overlays and
buttons can require “direct contact discharge”
compliance. It is generally simpler to provide a
safe ESD environment inside a plastic enclosure
than one with exposed metal parts.

• Other PCBs, in particular ones mounted on the
same overlay and directly connected to the
capacitive sensing PCB, should be considered
potential sources of ESD.
Example: A mechanical power button board.

Typically, these boards utilize the same VDD as the
capacitive sensor PCB. It is recommended to sepa-
rate the voltage supply between the two PCBs by a
small value resistor (~50 ohms).

• Radiation of ESD energy from nearby metal
chassis plating should be considered a possible
coupling mechanism. A useful mitigation tech-
nique for this type of coupling is to either shield
the plate or shield the bottom PCB layer with
conductive tape over a thin insulating material.

• If ESD energy cannot be redirected by mechani-
cal means, TVS diodes can be connected to VDD,
MCLR,and long LED traces (especially those
going off-board). The voltage rating of these TVS
devices should match VDD with board placement
ideally being in between the ESD source and the
capacitive sensor controller.

• A full layer board grounding and internal conduc-
tive coatings on plastic enclosures are among the
best mitigation techniques to minimize the effects
of EMI.

• Small bypass capacitors (5 pF-15 pF) can be
placed on the sensor traces, located as close as
possible to the controller pins to help shunt
excess energy to ground rather than having it
enter the device.

Power Supply Considerations
Better, cleaner power supplies lead to better, cleaner
capacitive sensor readings. The following topics should
be considered when evaluating a power supply for your
design.

GROUNDING SCENARIOS
There are three coupling paths that are affected when
a user approaches a capacitive sensor. There is a
change in coupling between the capacitive sensor and
the board’s ground due to the close proximity of the
finger. This is a localized effect and will not be affected
too greatly by the power supply or board layout.
The second coupling path connects the sensor and
earth ground through the user’s body. It adds
capacitance to the sensor and is one of the primary
paths for conducted noise injection. If this is an open
circuit because the user is not sharing a ground with
the board, the capacitance added by this path is
negligible.

Board Circuitry
and

VSS Plane

EGND

(1) Example connector:
- Shield connected to EGND
- VSS pin connected to board’s VSS plane

(2) 0.1µF coupling capacitor

(1)

(2)

The EGND is the strip of metal isolated from the board
ground by a spacing of approximately 0.5 mm (20 mils), and
is AC coupled to the system ground by a 0.1 µF capacitor.

Note: Bypass capacitors on sensors are not rec-
ommended unless other techniques have
failed to produce sufficient ESD protec-
tion. This technique may limit the sensitiv-
ity of the sensors and should not be used
on proximity sensors.
DS00001334B-page 14 2010-2013 Microchip Technology Inc.

AN1334

Finally, the third coupling path is the amount of
additional capacitance to earth ground that is added to
the board’s ground due to the user’s body. If the
board-to-earth capacitance increases, the effect of the
sensor-to-earth coupling will be seen more strongly on
the sensor.
This model, illustrated in Figure 19, leads to some very
significant conclusions in order to best design a quality
capacitive system.
1. The best sensitivity can be achieved by having

a common ground between the user and the
sensor.

2. If this is not possible, the capacitance of the
body-to-earth coupling path should be maxi-
mized.

Shared-ground systems typically have twice as much
sensitivity as systems that do not share a ground with
the user.

FIGURE 19: CAPACITIVE SENSING
GROUNDING MODELS

CHOOSING VDD TO MAXIMIZE NOISE
IMMUNITY
Best Option: Keep VDD as high as possible to maximize
noise immunity.

Although not ideal for low-power applications, high VDD
systems will perform better in conducted noise
environments than low VDD systems. This is due to the
fact that all capacitive touch systems will eventually be
overpowered by the injected noise as the voltage level
of the noise is increased. Making VDD a higher value
will require a higher voltage level of injected noise
before this happens.
In voltage-based acquisition systems, the behavior you
are attempting to delay is the reverse press
phenomenon. Figure 20 shows a regular sensor being
injected with noise of increasing voltage levels. The
noise begins adding voltage to the reading which
eventually overpowers the normal capacitive sensing
behavior and causes a positive shift when pressed.

BY-PASS CAPACITORS
At least one by-pass capacitor to ground (~0.1µF)
should be connected to and placed near each VDD pin
on the controller. Additional filtering is possible by
placing another smaller value, smaller package
capacitor in parallel.

CBASE

CGND

CF

CBODY

CBASECFCBODY

VSS

VSS

Sensor
Input

Sensor
Input

User and Device Share Common Ground

User and Device Do Not Share Ground

User

User

Capacitive
Sensor
CBASE

Device
Ground

Earth
Ground

CGND

CF

CBODY

ΔCGND

ΔCGND
 2010-2013 Microchip Technology Inc. DS00001334B-page 15

AN1334

FIGURE 20: REVERSE SHIFT BEHAVIOR WHEN INJECTING CONDUCTED NOISE ON A

VOLTAGE-BASED ACQUISITION METHOD
DS00001334B-page 16 2010-2013 Microchip Technology Inc.

AN1334
SOFTWARE TECHNIQUES
The software methods described in this section of the
application note are a subset of the techniques already
implemented in the mTouch Framework, mTouch
Library, and RightTouch capacitive sensing controllers.
This section is provided for educational purposes. It is
not necessary to implement these if using any of
Microchip’s capacitive sensing solutions.

Consider Your System Requirements
Your system’s limitations are based on two main
factors. First, your hardware design decisions will result
in a base SNR for the application. If the base SNR is
high, the software will not need to filter the signal as
much and the detection process will be fast and easy.
If the base SNR is low, the software will need to heavily
filter the signal and the detection process will need to
go through more steps to make sure no false triggers
are registered. The second factor to determining your
limitations is the application’s performance
requirements. If the product must have a specific
response time, or if there is a limited amount of memory
available, then some software techniques may not be
applicable.
For example, in gaming systems speed is the most
important requirement. Care should be taken when
choosing a software filtering technique that the
response time does not suffer significantly. The code
size should be kept small to allow for fast execution,
and the sampling rate of our system may need to be
increased.
When considering any of the techniques described in
this section, remember that all of them have a cost in
time, power, and memory usage. The benefits should
always be weighed against the costs.

Sampling Rates
One of the first decisions when creating capacitive
touch firmware is whether to trigger a new scan from
the main loop or from the Interrupt Service Routine. For
applications concerned with noise, the second
approach is recommended.
Fixed-time sampling rates are important to the correct
operation of filters and detection decisions should be
based off a concept of how long, in real-world time, a
new behavior has been measured. If the sample rate of
the system is based on a non-fixed interval, like a
function call from the main loop, other applications in
the system could change the sampling rate. For
example, a system that is actively controlling a power
supply’s output voltage will have priority over mTouch
sensing due to its special timing requirements. If the
power supply control application does not allow
mTouch sensing to regularly scan, the system could
miss a press or release.

The second decision that must be made is: What will
the fixed sampling rate be? This is largely dependent
on the acquisition method that has been chosen as well
as the specific requirements of the system.
Voltage-based acquisition methods scan often and
very quickly, while frequency-based acquisition
methods scan over a longer period of time at a slower
rate. Gaming systems that require a very fast response
time may scan over 100 times a second, while a
battery-powered proximity sensor may only scan three
times a second until it notices a user nearby.
For many systems concerned about noise, the
sampling rate and the decoding rate may be different.
For example, a system could scan a sensor once every
50 µs, continuously updating the filter, but only run the
decoding sequence every 10 ms. This can reduce the
amount of processing overhead while still allowing the
system to adjust constantly to the changing
environment.
Software filters and the decoding algorithm will need to
be designed with the sampling rate of the sensors in
mind. If not, the filters will become too fast and suffer
from too little noise reduction or they will become too
slow and may cause the signal to be dampened or
slowed. Decoding algorithms that do not consider the
sampling rate of the system may have problems
achieving a required response time or may change
states (on/off) too quickly.

Jittering the Sample Rate

VOLTAGE-BASED ACQUISITION METHODS
ONLY
One of the problems that can occur in systems that use
the Interrupt Service Routine to trigger a new scan is
that the scans are then vulnerable to noise being
injected at a harmonic of the sampling rate. Jittering will
help to dampen high-frequency noise being injected on
to the system either through radiated or conducted
noise. Figure 13 shows an example of what this can
look like.
The simplest solution is to change the sampling rate by
a very small amount each time a sample is taken using
the “jittering” technique. For example, if you are
scanning a sensor once every 400 µs, you may decide
to delay the reading by an extra 0-10 µs (an amount
that changes each time a sample is taken) to make
sure you are not hitting any harmonics. Although this
will technically change our sample rate, it will not
change the average sampling rate and the change is
insignificant compared to the total sampling interval.
In the jittering implementation below (Example 1), the
Least Significant bits from our last ADC sample are
used to create the random, short delay. The value is
masked with 0x0F to limit the maximum amount of
delay that is possible.
 2010-2013 Microchip Technology Inc. DS00001334B-page 17

AN1334

EXAMPLE 1: JITTERING THE SAMPLE

RATE

FREQUENCY HOPPING
Frequency-Based Acquisition Methods Only

This is the frequency-based acquisition equivalent to
jittering the sample rate on a voltage-based acquisition.
It is important to change the sampling frequency of the
waveform to avoid issues with harmonic noise. To keep
the signal offset value consistent, the hopping
procedure should be the same for every sampling
period.
RightTouch capacitive sensing controllers will perform
this automatically based on the level of noise in the
system.

OVERSAMPLING
Oversampling is the process of using more than one
acquisition sample per “sensor reading”. For example,
in most systems, the Interrupt Service Routine
determines when a new reading should take place.
When this occurs, the system acquires a value and
saves it as the new reading. To increase the stability of
your readings, you could have the system acquire two
samples off the same sensor by scanning it twice and
then adding the two samples together to create one
“sensor reading”.

There are several reasons why this technique is helpful
to a system:
1. Sampling errors caused by impulse noise will

not affect the system as much since each
sample is only part of a full reading value. The
system effectively averages out some of the
errors during the acquisition process.

2. Samples do not have decimal values. By
allowing the system to scan multiple times per
reading, it is able to gain additional resolution on
the signal.

The benefit of this method to the effective SNR of the
system is shown in Figure 21. The clear diminishing
return of oversampling should be considered against
the system’s time and power consumption
requirements.

FIGURE 21: OVERSAMPLING
TRADE-OFF: TIME VS. SNR

For more information about the effects of oversampling
on an ADC conversion, refer to AN1152, “Achieving
Higher ADC Resolution Using Oversampling,”
available on the Microchip web site at
http://www.microchip.com.

Software Filtering
Filters are algorithms that take an input signal and
output a modified version of the signal. The function it
performs is based on the type of filter it is. The
bandwidth of a filter also plays a large role in how it
performs. From a firmware perspective, the function of
the filter is defined in the code structure and operations
that are performed. The bandwidth is usually set by
constants in the implementation that determine what
number a value should be divided by, how many times
to bit-shift left or right, and what coefficient should be
used to multiply the result by.
With filters, there is a trade-off between noise reduction
and response time delay. This trade-off can be
visualized in the bandwidth of the filter as shown in
Figure 22.

Note: ‘Sample’ is used to refer to a single scan
of a sensor using a hardware module
(e.g., ADC). ‘Reading’ is used to refer to a
group of samples that have been added
together, which are then sent as-is to the
filtering and decoding routines.

void interrupt ISR()

{

 if (T0IE & T0IF)

 {

 // Short Delay

 jitter = ADRESL & 0x0F;

 while(jitter--);

 mTouch_Service();

 }

}

1 :: 10-bit

4 :: 11-bit

16 :: 12-bit

64 :: 13-bit

256 :: 14-bit

60

65

70

75

80

85

90

0 50 100 150 200 250

10
-b

it
AD

C
S

ig
na

l t
o

No
is

e
R

at
io

Samples Taken / Sensor Reading

Graph labels show the number of samples required to reach
the equivalent SNR of a higher resolution ADC.
DS00001334B-page 18 2010-2013 Microchip Technology Inc.

AN1334

FIGURE 22: NOISE REDUCTION VS. RESPONSE TIME TRADE-OFF

If the filter’s bandwidth is narrow, less noise will be able
to pass through, but it may take a long time for the filter
to follow the signal. On the other hand, if the filter’s
bandwidth is wide, more noise will be able to pass
through, but it will follow the signal more closely.
Combining multiple filters can allow the designer to get
the benefits of each while limiting the negative impact.
There are three types of filters that are commonly used
in mTouch sensing solution applications. More filters
could easily be added to this list and may be more
appropriate for a specific application, but these have
been chosen because most designs will be able to use
one or more of them.
The three filter types are:
1. Slew Rate Limiter

Used as the first input filter on new incoming
samples to reject impulse noise and smooth the
signal.
Implemented in the acquisition routine.

2. L-Point Running Average
Used to create a slow-updating (high time
constant) baseline (“average”) for each sensor
as a reference point during decoding. Allows the
system to track environmental changes such as
temperature and humidity.
Implemented in the filtering routine.

3. Low Pass Butterworth
Used to reject white noise on the sensor read-
ings while still maintaining a fast response time
(low time constant).

Implemented on the ‘reading’ variable in the
filtering routine before sending it to the decoding
algorithm.

FIR FILTERS VS. IIR FILTERS
Finite-Impulse Response (FIR) filters take a fixed
number of previous inputs and use them to create the
next output.
Finite-Impulse Response Filter Benefits:
• Simple implementations
• Better filter stability
• Fewer concerns about integer precision
Infinite-Impulse Response (IIR) filters take the input
and use it in combination with the previous output of the
filter to determine the next filter output.
Infinite-Impulse Response Filter Benefits:
• Low memory requirements
• Low processing requirements
Ultimately, both filter types can be useful to an
application. For capacitive touch systems, IIR filters
can be used for slowly-updating environmental
baselines. The filter should be designed so that it can
handle impulse noise without becoming unstable. FIR
filters can be used for quickly-updating sensor
variables like the current reading.

FILTER: SLEW RATE LIMITER
The Slew Rate Limiter (SRL) filter’s main design goal is
to reject impulse noise from sensors’ readings.
Sometimes referred to as a ‘decimation’ filter,
implementing the SRL filter requires a specific
scanning technique that will possibly change the
sample rate of your design.
 2010-2013 Microchip Technology Inc. DS00001334B-page 19

AN1334

The concept of the SRL filter is simple. The PIC device
is maintaining a “current reading” variable for each
sensor. In most systems, when a new sensor reading is
created, the “current reading” variable is replaced by
the new value. In an SRL filtered system, when a new
reading value is generated, the “current reading” value
is then either decremented or incremented by one,
based on whether the latest reading is higher or lower
than the “current reading” variable. For example, if a
sensor’s current reading is 200 and the next acquisition
results in a value of 300, the system will update the
“current reading” to 201. In order for the system to
reach a current reading of 300, the next 99 scans must
be higher than the current reading.
This behavior is very beneficial because it limits the
influence of each sample. If impulse noise is affecting
the system, a single impulse-noise-affected reading will
only cause 1 bit of noise on the reading variable. On the
other hand, because you are updating the current
reading variable so slowly, you need to update the rate
of the samples. When a user presses on a sensor, the
current reading variable needs to be able to move with
the finger’s capacitance at a fast rate. There is also no
need to access the decoding function of the system
after each individual reading, since it can only shift by 1
each time.
There will be several parts to the SRL filter
implementation to take care of these special
requirements. First, the system will scan based on a
timer’s interrupt at a fast rate. After each of these
scans, it will run the SRL filter to increment/decrement
the “current reading” variable. After the Nth sample, a
flag is set that allows the decode function to run. An
example code implementation of this filter can be seen
below in Example 2.

EXAMPLE 2: SLEW RATE LIMITER
FILTER

The benefits of this filter can be seen in Figure 23. The
impulse noise on the system has been rejected and the
signal is now more easily decoded.

FIGURE 23: SLEW RATE LIMITER
FILTER BEHAVIOR

#define SCANS_PER_DECODE 100

uint16_t reading;

uint16_t counter;

void main(void)

{

 // Main Loop
 while(1)

 {

 if (counter >= SCANS_PER_DECODE)

 {

 mTouch_decode();

 counter = 0;

 }

 }

}

void interrupt ISR(void)

{

 uint16_t newReading;

 if (TMR0IE && TMR0IF)

 {

 // Take a reading, store the value

 newReading = mTouch_getReading();

 // Initialize

 if (reading == 0)

 reading = newReading;

 // Slew Rate Limiter

 if (newReading > reading) reading++;

 else reading--;

 counter++;

 }

}

DS00001334B-page 20 2010-2013 Microchip Technology Inc.

AN1334

Care should be taken to make sure the SRL filter is not
moving too slowly. If the sampling rate is too low, the
current reading value will not update fast enough and
can cause problems with response times. An example
of what this too-slow behavior will look like is shown in
Figure 24.

FIGURE 24: EXCESSIVELY SLOW SLEW
RATE LIMITER FILTER
EXAMPLE

To solve this issue, either:
1. Reduce the amount of time between timer inter-

rupts.
2. Change the increment/decrement amount to a

value larger than 1. However, the larger this
value is, the less the filter will be able to reject
impulse noise.

FILTER: L-POINT RUNNING AVERAGES
This filtering technique is used in a vast number of
applications and has been documented thoroughly. Its
behavior is defined in Equation 4. The current value,
x[n], is averaged with the last L-1 values. When
deciding on a value for L, keep in mind the division
operation. If a power of 2 is chosen for the value of L,
the division operation can be simplified to a series of
bit-shifts, reducing the complexity of the filter.

EQUATION 4: L-POINT AVERAGE (FIR)

Also notice that, as implemented in Equation 4, this is
an FIR filter which means that a single reading can only
affect the output for a specific number of samples, L.
After this period, the sample no longer has an influence
on the system’s behavior. For noise-injected situations,
this is a very beneficial characteristic for our filters to
have. However, the memory cost of this filter will make
any filters with a large window difficult to implement.
To solve this limitation of the filter, its behavior can be
changed from FIR to IIR, as shown in Equation 5. This
creates a fixed, low-memory cost for the filter but
degrades some of its features. The IIR version of the
L-Point Running Average will become more distorted
from the original as L gets larger.

EQUATION 5: L-POINT AVERAGE (IIR)

EXAMPLE 3: FIR L-POINT AVERAGE
FILTER

y n 1
L--- x n k– =
L=1

k=0
Where:
y[n]= output at time ‘n’
x[n]= input at time ‘n’
L= memory of the filter
k= counter variable

y n y n 1– x n y n 1– –
L------------------------------------+=

Where:
y[n] = output at time ‘n’
x[n] = input at time ‘n’
L= memory of the filter

#define HISTORY 8 // 'L'

uint16_t reading[HISTORY];

uint8_t index;

uint16_t FIR_Average(uint16_t new)

{

 uint16_t average = 0;

 // Replace oldest reading
 reading[index] = new;

 // Sum all reading values
 for (uint8_t i = 0; i < HISTORY; i++)

 {

 average += reading[i];

 }

 // Divide by the history window size

 // NOTE: This operation is efficient

 // as long as HISTORY is a power of 2.

 average = (uint16_t)(average/HISTORY);

 // Update index for next function call
 index++;

 if (index >= HISTORY) index = 0;

 return average;

}

 2010-2013 Microchip Technology Inc. DS00001334B-page 21

AN1334

EXAMPLE 4: IIR L-POINT AVERAGE

FILTER

Figure 25 shows the difference between the FIR
L-point running average and the IIR L-point running
average estimation. Notice that the estimation
introduces a response time delay in the system. For
this reason, it is not recommended to use this filter
directly on the reading signal. However, the time delay
of this filter is not a problem for the baseline calculation.
Since the baseline should be moving very slowly, the
time delay will not affect its behavior negatively.

FIGURE 25: FIR VS. IIR AVERAGES

FILTER: LOW PASS BUTTERWORTH
This filter implementation is an alternative to the L-point
running average. While both are low pass filters, the
digital low pass filter in this section is based on the
digital implementation of a Butterworth filter, and can
be seen defined in Equation 6. Notice that the only
complex operation in this filter is the multiplication
between K and the previous output of the filter. If K is
chosen wisely, this filter can be easily implemented
with the use of bit-shifts.

EQUATION 6: DIGITAL BUTTERWORTH
LOW PASS FILTER

Smart values for A include: 0.8125, 0.8750, 0.9375,
and 0.9688 to name a few. These factors can be
multiplied easily using only bit-shift operations on the
y[n-1] value. An example of this can be seen below:
As the value of ‘A’ gets closer to 1, the cutoff frequency
of the Butterworth low pass filter approaches zero. This
increases the effectiveness of the filter, but will slightly
increase the filter’s settling time. Also, as ‘A’ gets closer
to 1, the integer value of y[n] will increase quickly. This
puts an upper limit on the value of ‘A’ if you want to
continue representing each sensor’s signal with the
typical 16-bit integer value.
The benefit of this type of filter when compared with the
L-point running average can be seen in Figure 26. The
increase in the effective SNR of the sensor is much
higher when implementing the Butterworth than the
running average; however, the running average
estimate is very inexpensive to implement and
performs the job well as a filter for the sensor’s
baseline.

#define HISTORY 8 // 'L'

uint16_t average;

uint16_t IIR_Average(uint16_t new)

{

 // Update Average

 average -= (uint16_t)(average/HISTORY);

 average += new;

 // NOTE:

 // This filter implementation has a gain

 // of 'HISTORY'. For that reason, we

 // can divide the average by HISTORY

 // or multiply the reading by HISTORY

 // before we compare the two.

 return (uint16_t)(average/HISTORY);

}

y n x n x n 1– Ay n 1– + +=

Where:
y[n] = the output at time ’n’
x[= the input at time ’n’
A = the filter’s coefficient (0 A < 1)
DS00001334B-page 22 2010-2013 Microchip Technology Inc.

AN1334

EXAMPLE 5: DIGITAL BUTTERWORTH

LOW PASS FILTER
#define FILTER_GAIN 3

typedef struct

{

 uint16_t y;

 uint16_t x;

} filter_t;

filter_t filter;

uint16_t LP_Butterworth(uint16_t reading)

{

 // Pointer to the correct filter

 // variables for our sensor...

 filter_t* h = &filter;

 // Temporary variables

 uint16_t x1, y1, ay1;

 uint16_t temp0, temp1;

 // Populate temporary variables

 x1 = (h -> x);

 y1 = (h -> y);

 // Calculate: (a * y[1])

 // Where, a = 0.8125.

 temp0 = y1 >> 2;

 temp1 = y1 >> 4;

 ay1 = y1 - temp0 + temp1;

 // 1st Order Filter Equation:

 // y1 = x[0] + x[1] + (a * y[1])

 y1 = reading + x1 + ay1;

 // Store values for next time

 (h -> y) = y1;

 (h -> x) = reading;

 // Return the filter's new result

 return y1 >> FILTER_GAIN;

}

 2010-2013 Microchip Technology Inc. DS00001334B-page 23

AN1334

FIGURE 26: LOW PASS FILTER COMPARISONS

SETTING SENSOR THRESHOLDS
After the sensor signal has been read and filtered, the
decoding process should begin. During this step, the
sensor’s signal will be compared against a
pre-determined threshold to decide if there is a press.
When establishing a threshold, there are two main
options: setting a fixed threshold or calculating the
threshold at run-time. Setting a fixed threshold is the
easiest and least time/memory intensive, but it may not
work in every situation. For mass production systems,
it is possible there will be slight differences in the
sensor’s default values across boards. If the
application is using a fixed threshold, there is a
possibility that the threshold may not work for all of
them. Calculating the threshold at run-time is the other
option. When this is implemented, the system will take
several readings on power-up and will determine where
the threshold should be set based on the system’s
samples. For the majority of applications, a calculated
threshold will not significantly affect the system’s
behavior and is preferred for its flexibility.
In some cases, two thresholds may be used in the
same way as hysteresis – one used to enter the
pressed state and one used to enter the released state.
A diagram showing this behavior is seen in Figure 27.
Choosing where to place the thresholds for a system
can be one of the most important and difficult tasks of
getting a robust solution working. Assuming the
sensor’s signal moves down when pressed, if the
threshold is too high, false triggers can become a risk.
If the threshold is too low, the system may be unable to
detect a press in all situations.

It is important to remember that your system will be
used by a wide variety of people. People with big hands
will cause more of a shift than those with small hands.
Make sure you are setting the thresholds and testing
them with a cross-section of individuals so that
everyone will be able to activate the sensor.

FIGURE 27: THRESHOLD HYSTERESIS

ENVELOPE DETECTOR
The Envelope Detector is a decoding technique that
uses an extra variable to track the average deviation
from the sensor’s baseline (or “average”). This can be
particularly effective in systems that experience a large
amount of injected noise. Figure 27 illustrates an
example of a system that would benefit from this
decoding technique.

Release Threshold

Press Threshold

Sensor Reading

Sensor enters
pressed state

Sensor enters
released state

User press begins User press ends
DS00001334B-page 24 2010-2013 Microchip Technology Inc.

AN1334

When a high level of injected noise is present on
capacitive touch sensors, press detection can be
difficult if the decoding algorithm is only looking for a
shift in sample values. Some frequencies of noise may
cause the press behavior shown in Figure 28. When
this occurs, an envelope can be created to track the
noise level of the system and this can be used with a
threshold to make press decisions. An example
implementation of this decoding technique has been
provided in Example 6.
Keep in mind while implementing this technique that
the delta value is the absolute value of the difference
between the current sensor reading and the average.
This means that shifts in both the positive and negative
direction will cause the envelope to increase. If this
behavior is not desirable for your system, the absolute
value section of the code example can be removed. For
more information about the envelope detector
decoding algorithm, see application note AN1317,
“mTouch™ Conducted Noise Immunity Techniques for
the CTMU”.

EXAMPLE 6: ENVELOPE DETECTOR

FIGURE 28: ENVELOPE DETECTOR
UNDER HIGH INJECTED
NOISE

COMMON CHALLENGES
There are several behaviors of capacitive touch
systems that commonly appear. In this section, the
main issues seen in these applications will be
discussed and the different possible solutions
described that can be used.
The challenges and solutions covered in this section
are:
• Crosstalk
• Impulse Noise
• Unresponsive Buttons
• Flickering Buttons
• Reversed Operation

Common Challenges: Crosstalk
Crosstalk is the undesired shift of a sensor when an
adjacent sensor is pressed. It is mainly a side effect of
placing sensors too close together, but can be also
significantly affected based on the thickness and
relative permittivity of the covering material.
Best Option: Increase the amount of separation
between sensors.

If possible, reducing the amount of crosstalk using
hardware design techniques is preferred to the
software adjustments that can be made. Crosstalk will
also become more of a problem in systems with thick
covers, so reducing the overlay thickness may also be
a required step.
For more information on the causes of crosstalk and
the available hardware changes to reduce this effect,
see the Section “Pad-to-Pad Separation Distance”
of this application note.

// Speeds from Fastest-Slowest:

// 2, 4, 8, 16, 32

#define SPEED 4

uint16_t envelope;

uint16_t baseline;

uint16_t UpdateEnvelope(uint16_t reading)

{

 int16_t delta = baseline - reading;

 // Absolute Value

 if (delta < 0)

 delta = -delta;

 // Update envelope

 envelope -= (uint16_t)(envelope/SPEED);

 envelope += (uint16_t)(delta);

 return envelope;

}

 2010-2013 Microchip Technology Inc. DS00001334B-page 25

AN1334

Option 2: Adjust the Thresholds

If the above hardware solutions are not adequate or
cannot be used by your specific application, adjusting
the software may be your only alternative. Changing
the threshold by increasing the amount of shift required
to detect a press might be the best option if the system
has more sensitivity than needed.
Eliminate the ability of crosstalk to activate a sensor by
requiring that the sensor’s reading shifts more than the
maximum shift caused by crosstalk in the system. Keep
in mind when doing this, however, that noise on the
system may increase the maximum crosstalk shift
which could cause false triggers in the future.
Option 3: Implement the “Most Pressed” Algorithm

Alternatively, the system’s decoding algorithm can be
changed to compare each sensor’s shift with the other
sensors’ in order to determine which one is the “most
pressed.”
Implementing this algorithm will limit your system’s
capabilities. First, the system will only be able to
support one press at a time since only the highest shift
sensor is always picked. To minimize the effect of this
limitation, only compare nearby sensors to each other.
The second limitation this algorithm places on a design
is on response time. The extra execution time required
by the processor and the requirement that all sensors
must be scanned before the decoding process can
begin will both slow the system down. Depending on
the application, this may or may not be an acceptable
design trade-off.

Common Challenges: Impulse Noise
Impulse noise appears as individual or small groups of
readings that behave in a significantly different manner
than the readings before and after them due to a noise
source and not a finger’s press. These spikes can
quickly destabilize a system if not handled correctly.
Additionally, if noise spikes are a common problem for
the system, they can also lower the effective SNR.
Software filters are usually the easiest method for
removing this problem. The key is to adjust the filter to
reduce the affect of the spikes, but not affect the
response time of the system. For example, if the
decision is made to take the average and just slow it
down to minimize the impact a single reading can have,
it will reduce the noise spikes in the system. However,
it will also slow down the response time since reliance
is now on a much slower average.
Best Solution: Implement the Slew Rate Limiter filter.

Infinite Impulse Response (IIR) filters are not going to
be as effective as Finite Impulse Response (FIR) filters
will be in this case. Since IIR filters allow one reading to
affect the signal for a (theoretically) infinite period of
time into the future, the effect of a noise spike could
cause the filter to become unstable. The best option in
this case is to use the Slew Rate Limiter (also referred

to as ‘Decimation’) filter described in the software
section of this application note. It will eliminate all
impulse noise from the system with a minimal impact
on the overall behavior so long as the sample rate is
increased to adjust for the decrease in response time.

Common Challenges: Unresponsive
Buttons
Unresponsive buttons are sensors that will not change
state when a finger is placed on them. The two main
software features that will affect your sensors to
possibly make them unresponsive are thresholds and
debounce values. Sensor sensitivity can change as
noise is injected on a system. This change can reduce
the sensitivity to the point that the threshold is no longer
crossed. Increased noise on the system will increase
the probability of a single sensor reading falling outside
of the acceptable range to change state. If the
maximum debounce value is high and the noise is high,
it is possible the sensor will never respond.
There are several things that can be done to fix this
problem in a system.
Best Solution: Adjust the Thresholds

First, the threshold can be made easier to cross by
modifying the software. When noise reduces the
sensitivity of the system, the easier threshold will
decrease the possibility of an unresponsive button.
This may not be a solution if making the threshold
easier to cross will introduce false triggers into the
system. The best way to make sure there is plenty of
sensitivity to work with in this situation is to follow the
hardware design guidelines described in this
application note.
Option 2: Check Both Directions for Shifts

Another possibility is that the system is being injected
with a specific amount of noise that has caused it to
reverse its press behavior. When this happens,
pressing on the sensor will cause a shift in the opposite
direction as expected. The solution to this problem is to
place the threshold on both sides of the readings. This
may not be an option, however. In some systems, the
direction of a shift indicates a specific event. For
example, in some water-resistant systems a shift in one
direction is a press while a shift in another direction
indicates the presence of water. Implementing a
shift-check in both directions would eliminate the water
resistance of the application.
DS00001334B-page 26 2010-2013 Microchip Technology Inc.

AN1334

Option 3: Use Hardware to Increase Sensitivity

Finally, if adjusting the thresholds does not solve the
problem, hardware changes may need to be made to
increase your system’s base sensitivity. First, make
sure the application is following all of the design
guidelines. The next step is to begin increasing sensor
area, decreasing crosstalk through sensor separation,
decreasing the cover thickness, or changing its
material. All of these suggestions can be traced back to
their origins in Equation 2, which defines the
relationship between capacitance and hardware
design.

Common Challenges: Flickering Buttons
The term “flickering button” refers to a sensor that will
rapidly toggle its state while a finger is present. This is
distinctly separate from a false trigger, which is a
sensor changing state while there is no finger.
Flickering buttons are caused in the same way as
unresponsive sensors. As noise is injected on a sensor,
the sensitivity of the sensor can change. If the
sensitivity is reduced to the point that it approaches the
threshold, noise can sometimes cause the readings to
jump above and below it. This will result in the sensor
rapidly changing states.
Best Solution: Implement Threshold Hysteresis

The best and most effective solution to this problem is
to adjust your algorithm so that it implements a large
hysteresis on the thresholds. Separate press and
release thresholds will be able to tolerate a much larger
amount of system noise. If sensitivity levels are high,
the thresholds will be able to be placed further apart,
increasing the noise resistance of the system. Similarly,
as the thresholds are placed closer together, the
system begins to return to its single-threshold behavior
and can once again experience flickering buttons. For
these reasons, a combination of hysteresis and
debouncing should be the default solution to this
problem in applications.
Option 2: Increase the Debounce Requirement

The easiest way to reduce this problem is to increase
the maximum debounce value, but this method can
have mixed results. Increasing the debounce count will
decrease the response time of the system and will only
decrease the probability of flickering. The smaller
probability of flickering will translate to a slower flicker,
but most likely not the complete elimination of it.
Option 3: Adjust the Thresholds

A third option is to make the threshold easier to cross
or to increase the sensitivity of the system through
hardware changes. However, if there is a large amount
of noise on the system, this still may not be enough by
itself to solve the problem.

Common Challenges: Reversed
Operation
Reversed operation can occur in systems with a high
amount of injected noise. The noise can cause the
system to shift in the opposite direction as the no-noise
behavior. If the system was shifting down on each
press, it is now shifting up. This can be a problem in
systems that only look for a shift in one direction. Figure
24 shows how a system looking for a “down” shift can
enter a reversed operation state if an “up” shift occurs.
There are two main ways of solving this problem. The
baseline’s speed can be decreased and thresholds can
be placed on both sides of the baseline.
Best Solution: Check Both Directions for Shifts

The more robust solution to this problem is to create a
threshold on either side of the average so that a shift in
either direction will result in a detected press. Not all
systems may work well with this solution, however. For
example, in some systems designed to work in wet
conditions, a shift in one direction means a finger is
present while a shift in the other direction corresponds
to a the effect of water. In a situation such as this, it may
be wiser to ignore any shifts in the wrong direction.
Ultimately, the decision should be based on the specific
application’s requirements.
Option 2: Adjust the Filters’ Time Constants

Slowing down the baseline’s speed would require that
a longer opposite-direction-from-normal shift occur
before the system enters the reversed operation state.
This would cause unresponsive buttons when specific
types of noise are injected onto the application, but
may be the best option for a given system. Just slowing
down the average will not eliminate the problem,
however. If a user were to press on a sensor for a very
long period of time, the slow average will eventually
follow the finger and, when it is finally removed,
reversed operation could still occur. This is a
performance trade-off that must be considered when
using any baseline in a system. Determining the
difference between the environment naturally shifting
the readings and a finger artificially shifting the
readings can sometimes be difficult.
Option 3: Increase the VDD of the system

While this will not eliminate the problem, raising VDD
will fight against the reversing behavior by increasing
the amount of noise that must be injected on the
system before it flips. This option is placed last
because increasing VDD results in a higher current
consumption for the system.
 2010-2013 Microchip Technology Inc. DS00001334B-page 27

AN1334
CONCLUSION
Good hardware design choices are the foundation to a
robust capacitive touch design. By following the
provided design guidelines, your custom application
will have a high base SNR which will decrease your
required software overhead, speed up your system’s
overall response time, and allow your system to
perform well even in noisy conditions.
Although there are many opportunities to adjust a
design to meet a specific application’s needs, the best
design choices for a robust system are summarized in
Table 1.
Acquisition techniques such as jittering the sample rate
and implementing a slew rate limiter will reduce the
amount of noise that is introduced through the
readings. Digital filters such as the L-Point Average
and the low pass Butterworth allow the system to track
environmental changes and further increase the SNR
of the signal. Finally, specific algorithm
implementations such as threshold hysteresis,
debouncing, and the “most pressed” algorithm will
allow the system to react to even the most rare of noise
disturbances.

From start to finish, capacitive touch systems should be
developed with the key focus of increasing the SNR of
the sensors’ signal. Following the given hardware
suggestions and implementing the provided software
algorithms will make the system both cost effective and
robust.
For information on the basics of mTouch sensing and
other more advanced topics, visit the Microchip web
site at http://www.microchip.com/mTouch.

TABLE 1: IDEAL HARDWARE DESIGN RECOMMENDATIONS

Button Pads
Shape No specific requirement.
Size 15 x 15 mm
Pad-to-Pad Distance 10 mm

Overlay
Thickness < 3 mm
Material 2.0 ≤ �r ≤ 8.0
Adhesive Thin, high �r, no bubbles

Layout
Sensor traces Thin, short
Series resistance CVD

CTMU
4.7 - 10 kΩ
1 - 2.5 kΩ

LED/Comm. traces Avoid sensor traces

Power Supply
Shares GND w/User Improve sensitivity by 2x
Best VDD for Noise Higher is better
Bypass Capacitors 0.1µF on all VDD pins
DS00001334B-page 28 2010-2013 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
 2010-2013 Microchip Technology Inc.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash
and UNI/O are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MTP, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA
and Z-Scale are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip
Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2010-2013, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 9781620772126

Microchip received ISO/TS-16949:2009 certification for its worldwide
DS00001334B-page 29

headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00001334B-page 30 2010-2013 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

11/29/12

http://support.microchip.com
http://www.microchip.com

	Introduction
	Basic Capacitive Touch Review
	FIGURE 1: Capacitive Sensor System
	EQUATION 1: Parallel Plate Capacitance
	FIGURE 2: Capacitive Sensing Acquisition Waveforms
	Acquisition Waveforms
	Noise Immunity vs. Low Power

	Effects of Noise on Capacitive Touch Sensors
	Push Buttons vs. Capacitive Sensors
	FIGURE 3: Push Button vs. Capacitive Sensor Software Process
	Conducted and Radiated Noise
	Capacitive Sensor Noise Behavior
	FIGURE 4: Voltage-Based Harmonic Frequency Acquisition
	FIGURE 5: Voltage-Based Acquisition Noise Frequency Response
	Signal-to-Noise Ratio
	EQUATION 2: Signal-to-Noise Ratio
	FIGURE 6: SNR Calculation
	FIGURE 7: Signal-to-Noise Ratio = 3.5

	Hardware Design
	Parallel Plate Capacitance Equation
	EQUATION 3: Total Sensor Capacitance
	Design Goals
	PCB Design Considerations
	Button Pad Design Considerations
	FIGURE 8: Crosstalk Caused by Finger
	FIGURE 9: Ideal Sensor Electric Field
	FIGURE 10: Sensor-to-Sensor Coupling
	FIGURE 11: Airgap Crosstalk Solution
	FIGURE 12: Active Guard Field Lines
	FIGURE 13: Recommended Slider Designs
	Overlay Material Considerations
	FIGURE 14: Overlay Effect on Sensitivity
	FIGURE 15: Thick Overlay Options
	FIGURE 16: Conductive Overlay
	Layout Design Considerations
	FIGURE 17: Capacitive Sensor Field Lines
	FIGURE 18: GND Routing Example
	Power Supply Considerations
	FIGURE 19: Capacitive Sensing Grounding Models
	FIGURE 20: Reverse Shift Behavior when Injecting Conducted Noise on a Voltage-Based Acquisition Method

	Software Techniques
	Consider Your System Requirements
	Sampling Rates
	Jittering the Sample Rate
	EXAMPLE 1: Jittering the Sample Rate
	FIGURE 21: Oversampling Trade-Off: Time vs. SNR
	Software Filtering
	FIGURE 22: Noise Reduction vs. Response Time Trade-Off
	EXAMPLE 2: Slew Rate Limiter Filter
	FIGURE 23: Slew Rate Limiter Filter Behavior
	FIGURE 24: Excessively Slow Slew Rate Limiter Filter Example
	EQUATION 4: L-Point Average (FIR)
	EQUATION 5: L-Point Average (IIR)
	EXAMPLE 3: FIR L-Point Average Filter
	EXAMPLE 4: IIR L-Point Average Filter
	FIGURE 25: FIR vs. IIR Averages
	EQUATION 6: Digital Butterworth Low Pass Filter
	EXAMPLE 5: Digital Butterworth Low Pass Filter
	FIGURE 26: Low Pass Filter Comparisons
	FIGURE 27: Threshold Hysteresis
	EXAMPLE 6: Envelope Detector
	FIGURE 28: Envelope Detector under High Injected Noise

	Common Challenges
	Common Challenges: Crosstalk
	Common Challenges: Impulse Noise
	Common Challenges: Unresponsive Buttons
	Common Challenges: Flickering Buttons
	Common Challenges: Reversed Operation

	Conclusion
	TABLE 1: Ideal Hardware Design Recommendations

	Trademarks
	Worldwide Sales

