

 Page 1 of 62

Project: My-KIM – A Replica of the KIM-1 Computer

Title: Hardware / Software Documentation

 Name Date

Author: Manfred Langemann 01.04.2021

0
Table of Content

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 2 of 62

Table of Content

Table of Content .. 2

1 Summary ... 4

2 Hardware ... 8

2.1 Overview ...8

2.2 Base Board ...9

2.3 Audio Tape and TTY Board ... 11

2.4 Display Board .. 13

2.5 Keyboard Board ... 14

2.6 LED and Switch Interface Board ... 14

2.7 EEPROM Programmer Board.. 15

2.8 Manufacturing the Boards .. 16

2.9 Housing and Mechanical Push Button Field .. 19

3 My-KIM 6502 Firmware ... 22

3.1 Original KIM-1 Firmware .. 22

3.2 6502 Integrated Development Environment .. 22

3.3 Necessary Changes in the Original KIM-1 Source Code .. 22

3.4 Necessary Changes in the Microsoft BASIC Binary Code .. 23

4 Using My-KIM as Stand-Alone System ... 25

4.1 Overview .. 25

4.2 Operating My-KIM .. 25

4.3 Using the Two Control Switches and LEDs ... 27

4.4 Dumping and Loading a Program to the Smartphone ... 29

5 Integrated Development Environment .. 31

5.1 Overview .. 31

5.2 Architecture and Usage ... 31

5.3 IDE Mode ... 31

5.4 KIM-1 Teletype Mode .. 34

5.5 KIM-1 BASIC Mode ... 38

6 Useful My-KIM User Routines ... 43

6.1 Audio Tape Dump and Load Routines .. 43

6.2 Audio Tape Calibration Routines ... 44

0
Table of Content

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 3 of 62

6.3 Control Switches and LED Subroutines .. 44

6.4 WAIT Subroutine ... 44

6.5 Memory Test Subroutine 1 .. 45

6.6 Memory Test Subroutine 2 .. 45

7 Microsoft BASIC Description .. 47

7.1 Introduction .. 47

7.2 First Steps with BASIC .. 47

7.3 BASIC Syntax .. 48

7.4 Integer Variables .. 52

7.5 Floating Point Variables and Memory Space .. 53

7.6 Rules for Evaluating Expressions .. 53

7.7 Derived Trigonometric Functions ... 53

7.8 BASIC / Machine Language Interface ... 53

7.9 Symbols and Special Keys .. 55

7.10 Error Messages ... 55

8 6502 Instruction Set ... 57

8.1 Instruction Set Op-Code Summary .. 57

8.2 Instruction Set Op-Code Matrix ... 59

8.3 ASCII Table.. 60

9 Project Documentation .. 61

10 Abbreviations ... 62

1
Summary

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 4 of 62

1 Summary

My-KIM represents a replica of the KIM-1 computer, developed in 1975 as a One-Board computer to

become familiar with the MOS technology and their offered 6502 micro-controller family, see Figure

1-1. I bought this board in mid 1976 and learned how to program these controllers. Moreover I

developed a dynamic memory expansion board with 16 KByte (at these times I thought that I would

never get this memory full), added a teletype board and a monitor interface to realise a stand-alone

computer with keyboard and TV monitor. On top of it I bought the Microsoft BASIC interpreter software

for KIM-1, which was just released by the authors Bill Gates, Paul Allen and Monte Davidoff,

representing their first commercial project.

Based on this I was the first student at the university, who wrote his thesis on his own computer –

lucky guy. In the late 90th I disposed the entire computer, including the still functioning KIM-1 board at

a recycling center – at that time I must have been very sick : poor guy, because today these historical

boards are offered in the internet for more than 1000s of dollars.

Because winter time, corona with social restrictions and retirement being fell all on the same day of

the week, I decided to rebuild this computer with mostly the original parts. The result of this work is

described in the next chapters. To distinguish it from KIM-1, I named my developed computer “My-

KIM”, which offers the following features:

 A complete 6502 Integrated Development Environment (IDE) for writing assembler source
code, including editor, assembler, debugger and EEPROM programmer, see Figure 1-3 and
Figure 1-4

 The hardware comes with a 6502 micro-controller, 8 KByte EEPROM, 32 KByte RAM and an
I/O interface based on an Intel 8255 PPI (Programmable Peripheral Interface), offering three
8-bit ports. The audio tape interface is realised by an NE565 PLL and the RS232 serial
interface is based on a MAX232 IC

The built My-KIM computer, see Figure 1-2, and the supporting IDE can be operated in four different

modes:

Stand-alone Keyboard / Display Mode

In this mode the user can enter the source code in hexa-decimal values on the My-KIM
keyboard and the results are shown on six 7-segment display. The user written code can be
saved/loaded to/from a smartphone (headset input/output). User written programs can also
be executed in the so-called Single Step mode, i.e. one instruction after the other.

Integrated Development Environment Mode

In this mode the user can write assembler code for the 6502 processor, including editing,
assembling and debugging. The code can be flashed to an EEPROM or to a file, which can
be loaded into the RAM of the My-KIM computer, see Figure 1-3.

Teletype Mode

In this mode My-KIM can be operated in the IDE via the Teletype mode, realised as a serial
RS232 interface to a PC. My-KIM is then operated from an edit control window within the
IDE. User written source codes can be saved/loaded on/from the PC or as well on a
smartphone, see Figure 1-5.

BASIC Mode

In this IDE mode My-KIM runs the Microsoft BASIC interpreter V1.1 from 1977. The BASIC
interpreter is loaded and operated from an edit control window within the IDE. User written
BASIC programs can be saved/loaded on/from the PC in different files, see Figure 1-6.

1
Summary

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 5 of 62

Figure 1-1: Original KIM-1 Board, the Size is roughly a DIN-A4 Page

Figure 1-2: My-KIM, the Replica of KIM-1

1
Summary

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 6 of 62

Figure 1-3: IDE showing a Debugging Session with the Original KIM-1 ROM Software

Figure 1-4: IDE showing an EEPROM Programming Session

1
Summary

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 7 of 62

Figure 1-5: My-KIM operated in the Teletype Mode

Figure 1-6: My-KIM operated in the Microsoft BASIC Mode

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 8 of 62

2 Hardware

2.1 Overview

Although I tried to mostly follow the design of KIM-1, I made some improvements to get a more flexible

system regarding hardware and software. As shown in Table 2-1, KIM-1 only offers a RAM capacity of

1 KByte based on 8 x 6102 ICs, which was very limiting, in particular when the Microsoft BASIC

interpreter shall be used, which already eats more than 8 KByte of memory. It was therefore decided

to equip My-KIM with a very cheap single 32 KByte RAM of type 62256. To have some flexibility in

adding additional software features in the operating system, an 8 KByte EEPROM was selected.

The two KIM-1 I/O ICs of type 6530 were specifically customised by MOS for the dedicated

requirements of KIM-1 and are today no longer available. It was decided to replace these ICs by the

historical Intel 8255 Programmable Peripheral Interface (PPI) IC, still available as used parts in the

internet. The advantage of this IC is, that it is directly compatible with the control line architecture of

the 6502 processor. However, this device has also disadvantages, which are:

 Only a complete 8-bit port can be set to either output or input, not the individual port lines

 Only the port C output lines can individually be set to 0 or 1 by the so-called BSR feature

 When changing the 8255 configuration (Control Word), all output ports will be reset to 0

These disadvantages have been compensated by suitable software adaptations.

Table 2-1: Hardware Differences between KIM-1 and My-KIM

 KIM-1 My-KIM

RAM 1 KByte, 8 x 6102 32 KByte, 1 x 62256

ROM 2 KByte (in 6530-002/3) 8 KByte (28C64 EEPROM)

I/O Systems 6530-002, 6530-003 with

4 x 8-Bit Ports

8255 PPI

3 x 8-Bit Ports

Audio Tape Based on NE 565 PLL Based on NE 565 PLL

Teletype 20 mA Feedback Loop RS232 UART offering 600 Baud

Based on these design changes, the functional block diagram of My-KIM looks like as shown in Figure

2-1. It took a while to develop the correct control interface scheme of the 6502 processor with the

RAM, EEPROM and 8255 ICs, because I didn’t wanted the unpleasant case, having everything built

up but, but nothing works. The finally chosen memory and I/O control scheme is shown in Figure 2-2.

Figure 2-1: My-KIM Functional Block-Diagram

62256

32 KB
RAM

6502

Micro-
Controller

28C64

8 KB
EEPROM

8255

3 x 8-Bit Port

Port A

Port B

Port C

Keyboard
and

7-Segm. LED

Audio Tape
and

RS232 UART I/F

Control Logic

My-KIM Functional Design

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 9 of 62

Figure 2-2: My-KIM Memory and I/O Control Logic

The favoured solution would have been to design the entire system on a single board, like KIM-1, but I

am using the education version of the EAGLE CAD software (light version). This version only allows to

design boards with a maximum size of 100 x 80 mm. The consequence was, that the entire design

had to be divided into five different boards with the disadvantage of having several connectors to

interface the individual boards, as shown in Figure 2-3.

Figure 2-3: Five Dedicated My-KIM Boards

The schematics of the four hardware boards are shown in the following chapter (see Figure 2-4 to

Figure 2-8).

2.2 Base Board

On the Base board the 6502 processor is driven by a 1 MHz crystal, buffered by a 74LS04 inverter

(IC2A). In this design the C11 capacitor with 10 pF at the PHI2 output is absolutely necessary to

achieve a clean clock pulse signal. The three interrupt input lines RESET, NMI and IRQ are pulled-up

by 3.3 KΩ resistors. In addition, the ready line (RDY) is pulled-up, which allows to operate the

processor in a single step mode (SST), i.e. one instruction at a time. The connector JP3 allows to

create IRQ interrupts, but I have so far not tested this feature. The symbol used for the 6502

A0-A14 A0-A14

D0-D7

74LS145

A13
A14
A15

0
1
2
3

/CS

+5V

6502 62256

PHI-2

R/W

/WE

/OE

D0-D7

32 KB RAM

A
B
C

A0
A1

A0
A1

D0-D7

74LS145

A13
A14
A15

6 /CS

+5V

6502 8255
D0-D7

3 x 8 Bit
Port A,B,C

A
B
C

R/W

/WR

/RD

PHI-2

Alternative
Scheme

Note on 74LS145:
Acts as 8 KByte Address Selector.
Input Pin D is connected to GND !
Address selection output lines not used:
- 4: 8000 - 9FFF
- 5: A000 - BFFF

R/W

A0-A12 A0-A12

D0-D7

74LS145

A13
A14
A15

7

/CS
/OE

+5V

6502 28C64
D0-D7

8 KB ROM

A
B
C

A0-A12 A0-A12

D0-D7

74LS145

A13
A14
A15

7

+5V

6502 28C64
D0-D7

8 KB ROM

A
B
C

/CS

PHI-2

R/W
/OE

Address Map
RAM: 0000 - 7FFF 32 KByte (128 pages), allows to load Microsoft BASIC, Ver. KB9, 1977 with 8 KByte
ROM: E000 - FFFF 8 KByte (32 pages)
8255: I/O IC, Programmable Peripheral Interface:

Port A: C000
Port B: C001
Port C: C002
Control Word Register: C003

62256

32 KB
RAM

6502

Micro-
Controller

28C64

8 KB
EEPROM

8255

3 x 8-Bit Port
A,B,C

Keyboard
Audio Tape

and
RS232 UART I/F

Control Logic

7-Segm. LEDs

Base BoardTape-TTY Board Keyboard Board

Display Board

P
o

rt
 A

P
o

rt
 B

P
o

rt
 C

LED & Switches

LED & Switch Board

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 10 of 62

processor is based on a one from the W65C02 IC, because I didn’t feel like designing an own symbol

for the 6502 processor in EAGLE.

Figure 2-4: Base Board Schematics

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 11 of 62

For security I added a 6.2 V Zener diode D2 in the power supply chain, because you never know what

happens during testing, when the first beer has been drunken. The used dual timers of NE556 are

working as mono-flops, generating a negative pulse for resetting the processor, [RS] key, or to stop a

running program, [ST] key. Having built up everything, it turned out that the 8255 PPI didn’t work

correctly. I therefore inserted a 47 pF capacitor at the output of the NAND gate IC3C, which solved the

problem.

I added the capacitor C12 to the RST input of the processor, which should hold down this input line for

some micro seconds to generate a reset during power on. However it turned out, that this does not

work and you always have to push the [RS] button to generate this signal manually.

For the generation of the NMI interrupts for the single step mode the NAND gate IC3B is driven by two

signals:

 the SYNC signal of the 6502 processor and

 the 74LS145 decoder output address line 7 (pin 9) for selecting the ROM area

The logic of this NAND gate is as follows:

 When a non-EEPROM address is present (pin 9 of IC1=74LS145 is high) and

 the SYNC signal becomes high for fetching an opcode

then the output of the NAND gate shall generate a low level signal at NMI interrupt input line, which in

turn requests the processor to jump to the processor EEPROM address $FFFA, which is pointing to

the RAM address $EC2F.

Because the 74LS145 has open collector outputs, it does not switch so fast like the standard TTL ICs

with a totem pole transistor output network. In addition, the 74LS145 has a propagation delay time of

up to 50 ns.

The result is, that the SYNC high level signal reaches the NAND gate ca. 40 ns earlier than the output

of pin 9 of 74LS145. This creates for EVERY opcode fetch (independent of the current address) a

small negative spike with a duration of 10-15 ns at the output of the NAND gate, hence the NMI

interrupt is executed also when the processor is loading an opcode from the EEPROM, and this is not

what we wanted, because the NMI interrupt shall only be executed for non-EEPROM addresses !

It was therefore necessary to delay the SYNC signal by adding two 74LS04 inverters as shown in the

schematics (IC2C and IC2E). The inserted capacitor of 1 nF delays the SYNC signal by approximately

> 25 ns, which is sufficient to avoid the small negative spike at the output of the NAND gate IC3B.

With these design modifications the 6502 processor runs absolutely stable in both modes, the free

running one and the single step mode ! This however does not answer the question, why this single

step problem didn’t happen in the original KIM-1 hardware design, although I used the same parts and

the same schematics.

2.3 Audio Tape and TTY Board

This board includes three functions:

 The audio tape write and read function

 The RS232 UART serial interface

 A DC-DC up-converter to generate the 12 V power supply for the audio tape ICs

The audio tape design is a 1-to-1 copy of the KIM-1 design with exactly the same ICs, namely the

LM565 PLL circuit and the LM311 comparator. With the 5 KΩ potentiometer R18 we can set the free

running PLL oscillator frequency to the required value of ca. 2765 Hz. Placing the potentiometer to the

mid position is already a good starting point. The firmware in My-KIM offers a suitable small calibration

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 12 of 62

program to correctly set this potentiometer. The jumper JP2 allows to select either the high or the low

level audio tape output signal (high = recorder line input, low = recorder microphone input).

Figure 2-5: Audio Tape and TTY Board Schematics

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 13 of 62

To connect My-KIM to the PC, a RS232 UART serial interface on the basis of the MAX232 is

implemented. However, this is only possible, because we are driving the 6502 processor by a crystal.

A non-crystal driven system would only produce a garbage data stream at the PC side. The output of

the MAX232 (SV2) is connected to a standard D-SUB 9 connector.

The two analogue ICs of the audio tape receive chain need a supply voltage of 12 V, but with only

12 mA. To avoid a dedicated power supply, I implemented a cheap DC-DC up-converter on the basis

of the LT1615 IC. With the given dimensioning, the converter work very accurate and stable, having a

final voltage ripple of only 150 mV peak-to-peak, which doesn’t harm the PLL.

BBBUUUTTTT: The LT1615 comes in an SOT 23-5 outline, which requires a more

than very steady hand and great glasses when soldering. The best is to do this work

before you have your first cup of coffee in the morning. In addition, it is absolutely

necessary to build up the entire electronics on the basis of SMDs (I use 1206

outlines, which are fairly good to solder manually) and to use high quality multi-layer

ceramic capacitors (10 µF) and a 10 µH inductor of type LQH3N from Murata. The

used Shottky diode is of type BAT48, which offers the required forward current of up

to 350 mA. When you don’t consider these guidelines, the up-converter doesn’t

work and only generates all kind of wild frequencies.

Based on this power supply, the audio tape receiving chain works very precisely. I tested it by storing

the audio output signal on a smartphone (use an usual audio recording App) and then replayed the

recorded audio signal, see Figure 5-6. The board has to be connected by SV1 to the Base board at

port C of the 8255 PPI. This connector also provides the 5V power supply for this board.

2.4 Display Board

The Display board design, see Figure 2-6, is also a 1-to-1 copy of KIM-1. I used 14 mm common

anode 7-segment LEDs to avoid always wearing glasses. I replaced the single transistors with

separate driving resistors in the KIM-1 design by digital BCR158 SMD transistors, having already

integrated these resistors.

Figure 2-6: 7-Segment Display Board Schematics

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 14 of 62

The used 82 Ω current limiting resistors are a good choice, because the LEDs are driven by a

multiplexed signal, as generated by the 6502 processor firmware. The board is directly connected via

SV1 to the Base board at the 8255 port B by a ribbon cable. This connector also provides the

necessary power supply of 5V. The only drop of bitterness is the additional 14-pin connector SV2 to

the Keyboard board, which is due to the limiting size of the four individual boards.

2.5 Keyboard Board

The Keyboard board, see Figure 2-7, is straight forward and implements 23 push buttons. The push

button matrix is electrically fully identical with the ones from the KIM-1 design. In addition, it features

the TTY/KB switch, which allows to operate My-KIM either in the Keyboard or the TTY mode. Like the

Display board, this board has to be interfaced with this board by the connector SV2. The connector

SV1 has to be connected to the Base board at port A of the 8255 PPI.

Figure 2-7: Keyboard Board Schematics

2.6 LED and Switch Interface Board

To allow a minimum communication level of My-KIM with the outer world, an additional LED and

Switch interface board has been designed, which is connected to the free lines of port C of the 8255

PPI, see Figure 2-8. It uses the following port lines:

 Port C2 and C3 as output, driving two LEDs

 Port C4 and C5 as input, controlled by two switches

For driving the LEDs we need currents of up to 20 mA. Because the port C lines of the PPI only offer

drive currents of up to 4 mA, additional 74LS04 (SMD type) inverters have been included, see JP3.

The input port lines are pulled up to +5V by 4K7 resistors, which can be pulled down to GND by two

switches, see JP2. The additional connector JP4 allows to drive externally connected electronics, if

required. These output pin are protected against short cuts by 270 Ohm resistors. All resistors are

based on 1206 SMDs, also the 74LS04 is an SMD device.

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 15 of 62

Figure 2-8: Additional LED and Switch (Key) Interface

2.7 EEPROM Programmer Board

The EEPROM programmer board is designed to program 8 KByte EEPROM ICs of type 28C64, see

Figure 2-9. I consist of an ATmega8 controller, running with a crystal frequency of 10 MHz. Because

the ATmega8 doesn’t have enough output lines to fully control all EEPROM input lines (A0-A12 and

D0-D7), it was necessary to realise the address control lines by a shift register based on 2 x 74HC595.

The data lines D0-D7 are directly driven by the ATmega8 output ports. The serial PC interface for

commanding the ATmega8 and programming the EEPROM is realised by a MAX232 IC, which is

directly connected to a serial D-SUB 9 connector. The connector SV1 allows to flash the firmware for

the ATmega8 directly from the Atmel Studio 7. The jack J1 provides the programmer with a regulated

5V power supply. Also here I added a 6.2V Zener diode in the power supply chain, you never know.

Because I don’t use the RDY/BUSY output line (pin 1) of the EEPROM to identify the completion of a

write cycle, the ATmega8 uses a delay period of ca. 6 ms before the next write cycle is initiated.

The programmer works very reliable and was tested with new Atmel (Microchip) AT28C64 devices as

well with older ICs of type M28C64C from STMicroelectronics, manufactured in the late 90th. The

programmer is driven by the 6502 IDE via the serial UART interface.

It is self-explaining, that the EEPROM programmer is placed in a separate housing and not into the

dedicated My-KIM housing, as shown in the next chapter.

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 16 of 62

Figure 2-9: EEPROM Programmer Board Schematics

2.8 Manufacturing the Boards

The layout of the boards were designed with EAGLE. Because of the complexity of the circuits, it was

not possible to design them as single layer boards and I was therefore required to create double sided

boards. However, only the bottom layers were printed, while the minor upper layer paths were hand-

wired by 0.4 mm silvered copper wires. The bottom layer paths as well as the fully equipped boards

are shown in the figures below.

The 1 MHz crystal on the Base board was foreseen as an HC-18 outline. Having built up everything, it

turned out, that this type of crystal is more than difficult to purchase. I therefore took an old bulky one,

having nearly the double size. This looks very ugly, but it works. If someone knows a reliable source

for 1 MHz crystals in an HC-18 housing, I would be happy to get the coordinates of the provider.

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 17 of 62

Base Board

Audio Tape & TTY Board

Display Board

Keyboard Board

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 18 of 62

Additional LED and Switch Interface

EEPROM Programmer Board

Figure 2-10: Bottom Layer and fully equipped Boards

As can be seen, nearly all resistors and capacitors are based on 1206 SMDs, which allows to keep the

boards as small as possible, especially for the Base board. The ICs are based on DIP outlines with the

exception of the NE556 dual timer on the Base board, which comes with an SO-14 SMD outline. To

allow to exchange the DIP ICs, suitable sockets were soldered. For the EEPROM I suggest to use a

high quality socket, because it may be necessary to remove or insert the IC several times, in particular

for the EEPROM programmer. This is what I haven’t done, as you can see in the above picture. As

already mentioned above, the components of the DC-DC up-converter on the Audio Tape & TTY

board are realised by SMDs.

There are several poor men 4-pin connectors. To avoid a wrong plug in of these connectors, one pin

of the female connector is filled with glue, while the corresponding pin of the male connectors is cut.

Figure 2-11 shows the configuration setup during firmware development with the flying ribbon cables,

which are still too long, connecting the boards to one another. This allows to easily dismount the

EEPROM on the Base board for any new firmware update.

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 19 of 62

Figure 2-11: Test Configuration during My-KIM Operating Software Development

2.9 Housing and Mechanical Push Button Field

When working with My-KIM, it is definitively helpful to place the boards into a housing, allowing to

have a cup of coffee in one hand, while typing with the other hand during software development. The

housing is made out of 3 mm white FOREX rigid foam panels, which are very easy to cut, to glue and

to paint. The side walls are glued to the bottom panel and the electronic boards are screwed on

prepositioned rigid foam pads at the bottom panel. The power supply (regulated 5V DC), the RS-232

(D-SUB 9) and the Audio Tape Input / Output (cinch) connectors are mounted on the backside of the

housing.

Figure 2-12: Opened Housing and Internal Layout without Inter-Board Cabling

A real challenge was the reconstruction of the KIM-1 keyboard. Commercial ones do either not have

the required number of buttons, do not have the correct arrangements or are too small or too large.

But in most cases they are far beyond my financial potentials. The final choice was to manufacture a

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 20 of 62

dedicated push-button field with my 3D printer. The result is shown in the figures below, consisting of

an upper cover plate (blue), 23 quadratic push button caps (yellow) and two distance plates (green) to

arrange a kind of guidance for the cylindrical extension rods (red) between the keys on the Keyboard

and the push button caps. The two plates are glued together with two 5 mm rigid foam distance

brackets. This arrangement allows to keep the rods as ‘free hanging’ parts, without any fixation on

either the keyboard or the push button cap side. The only pre-requisite is, that they all shall have

exactly the same length. With the exception of the cylindrical rods, which are made out of 4 mm

aluminium, all parts are 3D printed with black PLA.

Figure 2-13: DIY 3D Printed My-KIM Push-Button Field

The top panel is also made out of 3 mm FOREX rigid foam. Having made the 7-segment display cut-

out and the drill holes for the LEDs and the switches, the plate has been sanded, sprayed with grey

colour paint and finally sprayed with clear coat to protect it from scratches. The panel is fixated to the

black painted side walls of the housing by additional rigid foam brackets, which allows to use small 2

mm recessed head screws to mount the top panel.

Figure 2-14: Completed My-KIM Housing including Annotation Labels

The display frame (also 3D printed) and the key cover plate were sprayed with red paint to give the

case a little bit more colour. Whether you like this colour is a matter of taste, as is usual in life. The

2
Hardware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 21 of 62

annotation labels on the top panel and on the push button caps were printed on self-adhesive paper,

which are in addition protected from the top with self-adhesive book cover transparency film. After this

procedure they are cut-out with a sharp scissors and then glued on the foreseen places.

However I have to note something at the end: designing and building the housing and the push-button

field, in particular the sophisticated three dimensional cut-out for the display and putting everything

together took more time, than designing and testing the electronic boards !

3
My-KIM 6502 Firmware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 22 of 62

3 My-KIM 6502 Firmware

3.1 Original KIM-1 Firmware

In a first step I searched in the internet for the original KIM-1 ROM firmware, but most of them were

incomplete or erroneous. The final choice was therefore to go line by line through the source code in

the appendix 1 of the “KIM-1 User Manual”. The completed and correct assembler source code comes

with several comments to improve the readability of the software. This assembler file is called “KIM-1-

Source-Code.asm”.

3.2 6502 Integrated Development Environment

Having completed the KIM-1 source code doesn’t really help, because we need a suitable assembler

to create the binary code to be flashed to the EEPROM. In the early 90th I found a 6502 assembler

source code, already written in C. The author was:

George V. Wilder, Berkeley University

Address: IX 1A-360 x1937, ihuxp!gvw1

Today I tried to find him in the internet, to get his permission to use it for private purposes, but I didn’t

succeed, I only found some correspondences covering CPM programming issues out of the years

1984/1987 like:

www.retroarchive.org/cpm/cdrom/SIMTEL/ARCHIVES/CPM/8408-1.TXT

www.columbia.edu › apxa2

Therefore I clearly state here, that the 6502 core assembler was written by George V. Wilder, Berkeley

University. I extended this UNIX like console assembler to a window based 6502 Integrated

Development Environment (IDE), offering the following features:

 Loading, editing and saving 6502 assembler source code files

 Assembling the source code and generating Intel Hex files as well as List files

 Debugging the source code including break point definitions

 Showing and editing the total 6502 memory area

 Flashing the binary code to an 8 KByte EEPROM

The result of this software development is described in chapter 5. It shall be mentioned, that the

assembler can only be used for the early 6502 processors, but not for the 65C02 successor, having

additional instructions not supported by this assembler.

3.3 Necessary Changes in the Original KIM-1 Source Code

By means of the developed IDE I was able to update the KIM-1 source code to the My-KIM hardware

environment. Major firmware updates due to hardware changes were in the following areas:

 The KIM-1 firmware is located in two ROM devices with an address range of 0x1800-0x1BFF
(6530-003) and 0x1C00-0x1FFF (6530-002). These addresses had to be changed to the My-
KIM address range 0xE000-0xFFFF.

 The KIM-1 operating system uses the free RAM area in the 6530-002 IC (0x17E7-0x17FF).
My-KIM offers 32 KByte RAM (0x0000-0x7FFF). Hence these KIM-1 RAM addresses had to
be converted to 0x7FE7-07FFF.

 KIM-1 uses the 8-bit ports A and B of the 6530-002 IC. These two ports drive the 7-Segment
LED display, read the key of the keyboard, drives/reads the audio tape and the TTY
input/output lines. In My-KIM we have the 8255 PPI IC with the addresses 0xC000=Port A,
0xC001=Port B, 0xC002=Port A and 0xC003 for the 8255 Control Word. These ports are
used as follows:
- Port A works as input to read the keys or works as output to drive the 7-Segment LEDs
- Port B drives the 74LS145 selector IC for the 7-Segment LED display and the keys

http://www.retroarchive.org/cpm/cdrom/SIMTEL/ARCHIVES/CPM/8408-1.TXT

3
My-KIM 6502 Firmware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 23 of 62

- Port C is used as audio tape and TTY input/output (C0=Tape Out, C6=Tape In, C1=TTY
 Out, C7=TTY In).
Hence all port addresses and their bit positions had to be changed.

 KIM-1 uses the timer in the 6530-003 device to generate the audio tape data stream.
Because My-KIM doesn’t have a hardware timer, the timer functionality is realised in My-KIM
by a dedicated, but accurate delay software (subroutine WAIT).

Beside the hardware based changes I added additional software for the communication with the PC

via the UART (MAX232). These software add-ons allow to transmit complete RAM areas to the PC or

vice versa, using a communication protocol adopted to the Intel Hex file format, including checksum

error detection. Based on these software add-ons it is e.g. possible to save and load user written

codes to a file on PC and to load the Microsoft BASIC interpreter in binary file format.

All changes made to the original KIM-1 firmware are documented in the related My-KIM assembler

source code, which needs only 3 KByte in the EEPROM, hence there is enough space for further

firmware extensions. This assembler source code file is named My-KIM_V1.asm, the associated Intel

Hex file is called My-KIM_V1.hex. The resulting My-KIM memory map is as follows:

Table 3-1: My-KIM Memory Map

Type Address Description

RAM $0000 - $7FFF 32 KByte (128 pages), allows to load Microsoft BASIC, V1.1, KB9, 1977

ROM $E000 - $FFFF 8 KByte (32 pages)

I/O Device
Intel 8255

$C000 - $C003 Port A address = $C000, used for Keyboard, 7-Seg. LEDs and TTY/KB bridge

Port B address = $C001, used for 74LS145 Row and 7-Seg. LED Selector

Port C address = $C002, used for Tape In/Out, TTY (UART) In/Out

8255 Control Word address = $C003

The following RAM address ranges are occupied by the My-KIM operating system:

$00EC - $00FF Page Zero: holding Variables

$0100 - $01FF Page 1: holding the 6502 Stack

$7FE5 - $7FFF Page 127: holding Variables

These memory areas shall not be used by any user program and their content shall not be modified. If

you do so, then the operating system may crash.

3.4 Necessary Changes in the Microsoft BASIC Binary Code

The Microsoft BASIC interpreter for KIM-1 comes as a binary file, named KB9.BIN. By chance I found

the original source code in the internet, which was written on a PDP-10, using the MACRO-10

assembler, see source code snippet example in Figure 3-1. Of particular interest are the macro op-

odes (e.g. LDWX), generating two 6502 op-code instructions (e.g. LDWX  LDX TXTTAB and LDA

TXTTAB+1). Only based on this documentation I was able to customise the necessary patches for the

BASIC binary code and to adapt it to the My-KIM hardware and software environment.

FNDLIN: LDWX TXTTAB ; LOAD [X,A] WITH [TXTTAB]
FNDLNC: LDYI 1
 STWX LOWTR ; STORE [X,A] INTO LOWTR
 LDADY LOWTR ; SEE IF LINK IS 0
 BEQ FLINRT
 INY
 INY
 LDA LINNUM+1 ; COMP HIGH ORDERS OF LINE NUMBERS.
 CMPDY LOWTR
 BCC FLNRTS ; NO SUCH LINE NUMBER.
 BEQ FNDLO1
 DEY

Figure 3-1: Source Code Snippet of the Microsoft BASIC Interpreter for KIM-1

3
My-KIM 6502 Firmware

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 24 of 62

Major patches were necessary for the TTY / UART input and output subroutine addresses (GETCH,

OUTCH symbols), for the LOAD and SAVE commands regarding the start and end addresses from

where to read and where to write a user written BASIC program. BASIC also uses some addresses in

the RAM Volatile Execution Block (VEB) of the KIM-1 operating system, which had to be updated.

Finally we have to make a patch regarding the recognition of the so-called CONTROL-C key to halt a

running BASIC program or to stop the listing of a BASIC program. All patches will be performed by the

My-KIM operating system after having loaded the BASIC interpreter binary file into the RAM. This

means, that the original KB9.BIN file has not been altered.

Based on these patches it is possible to load and start the Microsoft BASIC interpreter in the self-

developed IDE, which among others allows to load and save user written BASIC program to or from

the PC in files via the UART interface with user defined filenames.

In addition, BASIC allows to perform user written assembler code residing in the free RAM area

($0200 - $1FFF) by calling the function USR(). For details on this, see chapter 7.8.

4
Using My-KIM as Stand-Alone System

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 25 of 62

4 Using My-KIM as Stand-Alone System

4.1 Overview

My-KIM can be used as stand-alone system without any connection to a PC. In this mode, My-KIM is

operated by the integrated keyboard, supported by the 7-segment displays. The keyboard features 16

hexa-decimal push buttons [0] … [F] and seven control buttons [GO] … [+]. The use of the control

buttons is described in the next chapter.

The display is divided into an address field and a data field. The address field has four digits, pointing

to a memory address in the range from $0000 to $FFFF. The two digit data field shows the current

content of the addressed memory field represented as hexa-decimal byte, ranging from $00 to $FF.

In this stand-alone mode, the “Mode” switch shall always be in the position “KB”, which stands for

Keyboard. The SST switch (Single Step) shall initially be in the position OFF.

There are two additional switches and LEDs, which can be used as input and output indicators, to

allow a program to check the state of a switch and to show the status of a program indicator. The use

of these are described in chapter 4.3.

Figure 4-1: The Keyboard and the Display with 2 Control LEDs and Switches

4.2 Operating My-KIM

Before applying power to My-KIM, the two switches shall be put to the following positions:

 Single Step (SST) = OFF

 Mode = KB (Keyboard)

After power ON, you first have to push the [RS] button (RESET), which will light up the display. It

shows the current memory address, which is $0000 and its content in hexa-decimal values, which is

an arbitrary value at the beginning. To change the address, push the [AD] button (ADDRESS) followed

by pushing the hexa-decimal address keys [0] … [F] to the address, you want to set. If you want to

increment the displayed address by 1, simply push the [+] button. To change the content of a memory

address, push the [DA] button (DATA) followed by entering the byte value, this address shall become.

4
Using My-KIM as Stand-Alone System

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 26 of 62

Also in this DATA mode you can push the [+] button to change to the next higher address to be

displayed. With these buttons you are ready to enter the program, which counts up to 5, as shown

below. When the program has counted up to 5, it will jump back to the My-KIM operating system,

which will light up the display. In the stand-alone system you should always use for this purpose the

address $EC6B.

Table 4-1: Program 1 – Counting up to 5

Address OP-Codes Assembler Language Equivalent

0200 18 CLC ; Clear Carry

0201 A9 00 LDA #0 ; Set accu to 0

0203 69 01 LOOP ADC #1 ; Add 1 to content of accu

0205 C9 05 CMP #5 ; Compare accu with 5 (accu – 5)

0207 F0 FA BNE LOOP ; Branch to LOOP if Z flag is not 0 (accu – 5 is not 0)

0209 4C 6B EC JMP START ; Jump back to My-KIM operating system (Display ON)

Having typed-in this small program, set the address back to “0200 18” and then push the [GO] button.

The display will go off for a fraction of a second and will then light up with a display of “0209 4C”. This

means, that the processor has counted up to 5 and then jumped back to the operating system by the

last operation performed, which was “4C 6B EC”.

This of course doesn’t really show, what happened. We therefore put the SST switch to the position

ON, allowing to perform the program in single instruction steps. To do so, set the address back to

“0200 18” and then type the [GO] button. The processor will now perform the “CLC” instruction and will

stop at the next instruction, which is “0201 A9”. By repeatedly typing the [GO] button, you can ‘walk’

through the program and you can check the correctness of your typed-in program.

Now we write a second program, which is shown below. This program also counts up to 5, but in

addition, it saves the content of the accumulator to the memory, which is incremented by each loop by

2, to the memory locations $0300 and upwards.

Set the SST switch back to OFF, go to address “0200 18” and then press the [GO] button. When the

display lights up, the program has completed its job and you now can check, that the memory

locations $0300 to $0304 shall have the following contents: $0300=0, $0301=2, $0302=4, $0303=6,

$0304=8.

Table 4-2: Program 2 – Counting up to 5 and Store Data

Address OP-Codes Assembler Language Equivalent

0200 18 CLC ; Clear Carry

0201 A2 00 LDX #0 ; Set X-register to 0

0203 A9 00 LDA #0 ; Set accu to 0

0205 9D 00 03 LOOP STA 0300,X ; Store accu content to address 0300+X

0208 69 02 ADC #2 ; Add 2 to content of accu

020A E8 INX ; Increment X-register (X=X+1)

020B E0 05 CPX #5 ; Compare X-register with 5 (X – 5)

020D D0 F6 BNE LOOP ; Branch to LOOP if Z flag is not 0 (X – 5 is not 0)

020F 4C 6B EC JMP START ; Jump back to My-KIM operating system (Display ON)

The next program 3, only modified at addresses $0308 and $030B, counts up to 255 = $FF hex. When

typing [GO] (SST = OFF), the display will shortly go off while the processor is executing the program.

Having finished, the display will light up and you can check, that the memory locations $0300 to

$03FE shall have the following contents: $0300=0, $0301=1, $0302=2, $0303=3, … , $03FE=FE.

4
Using My-KIM as Stand-Alone System

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 27 of 62

Table 4-3: Program 3 – Counting up to 255 and Store Data

Address OP-Codes Assembler Language Equivalent

0200 18 CLC ; Clear Carry

0201 A2 00 LDX #0 ; Set X-register to 0

0203 A9 00 LDA #0 ; Set accu to 0

0205 9D 00 03 LOOP STA 0300,X ; Store accu content to address 0300+X

0208 69 01 ADC #1 ; Add 1 to content of accu

020A E8 INX ; Increment X-register (X=X+1)

020B E0 FF CPX #255 ; Compare X-register with 255 (X – 255)

020D D0 F6 BNE LOOP ; Branch to LOOP if Z flag is not 0 (X – 255 is not 0)

020F 4C 6B EC JMP START ; Jump back to My-KIM operating system (Display ON)

While the program is running (display is off), you can press the [ST] button (STOP), which terminates

the program and the display will show the memory location, which should have been executed next.

The [PC] button (Program Counter) allows you to recall the value of the Program Counter at the time,

when you have stopped the program. You may have performed a variety of operations since that time

such as inspecting the contents of various machine registers stored at specific memory locations.

When you press the [PC] key, the content of the Program Counter is recalled to the address field of

the display. You now may continue program execution from that point by pressing the [GO] key.

4.3 Using the Two Control Switches and LEDs

The technical background of these two switches and LEDs is described in chapter 6.3. Here we show,

how these control elements can be used within a program.

The program 4 shows how to perform a blinking of the LED 1. The program uses the WAIT subroutine,

which is described in chapter 6.4. Set the SST switch to OFF and start the program at address $0200.

Now the LED 1 shall blink with a frequency of about less than half a second. It shall be noted, that the

program doesn’t work in the single step mode, because the operating system always reset the Port C

(and also the LED) due to the multiplexing the 7-segment display.

Table 4-4: Program 4 – LED 1 Blinking

Address OP-Codes Assembler Language Equivalent

0200 20 9E F1 LOOP JSR $F19E ; Set LED 1 to OFF

0203 20 A8 F1 JSR DELAY ; Delay for 0.25 seconds

0206 20 A3 F1 JSR $F1A3 ; Set LED 1 to ON

0209 20 AD F1 JSR DELAY ; Delay for 0.25 seconds

020C 4C 00 02 JMP LOOP ; Jump back to address $0200

0240 A2 FF DELAY LDX #$FF ; Set X to 255

0242 8E F9 7F STX $7FF9 ; Store X to WAIT_TIME

0245 20 C1 F0 DELAY1 JSR WAIT ; Perform WAIT subroutine

0248 CA DEX ; Decrement X by 1 (X=X-1)

0249 D0 FA BNE DELAY1 ; If X is not 0, branch to DELAY1

024A 60 RTS ; Return from subroutine

The next program 5 will read one of the two switches, which is switch 1. For reading the switch 1 we

use the subroutine RPOC4 (Read Port C4) in the EEPROM, which is defined as follows:

4
Using My-KIM as Stand-Alone System

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 28 of 62

Address Op-Codes Assembler Language Equivalent

F1B5 AD 02 C0 RPOC4 LDA SCD ; Read Port C

F1B8 29 10 AND #$10 ; Mask Bit 4

F1BA 60 RTS

The subroutine RPOC4 returns with a zero flag (Z-Flag) = 0, when the switch is in position OFF. It

returns with Z=1, when the switch is in position ON. Based on this we can write the program 5 for

checking the status of this switch.

First put the SST switch to position OFF. Then place the switch 1 to position ON and start the program

at address $0200 by pushing the [GO] button. As long as the switch 1 is in position ON, the program is

continuously running. When you put the switch 1 to position OFF, then the program will terminate and

jumps back to the operating system. This program can be used in the My-KIM stand-alone mode as

well in the Teletype mode.

Table 4-5: Program 5 – Read Status of Switch 1

Address OP-Codes Assembler Language Equivalent

0200 20 B5 F1 LOOP JSR $F1B5 ; Read switch 1 status

0203 D0 FB BNE LOOP ; Branch to LOOP if Z flag is not equal 0

0210 4C 6B EC JMP START ; Jump back to My-KIM operating system

When we want to check the status of the switch 2, we can use the subroutine RPOC5, see below.

Address Op-Codes Assembler Language Equivalent

F1BB AD 02 C0 RPOC5 LDA SCD ; Read Port C

F1BE 29 20 AND #$20 ; Mask Bit 5

F1C0 60 RTS

The below program 6 is similar, but works as follows: As long as the switch 2 is in position OFF, the

program is continuously running. Set the switch 2 to position OFF and start the program at address

$0200. When you put the switch 2 to position ON, then the program will terminate and jumps back to

the operating system. Also this program can be used in the My-KIM stand-alone mode as well in the

Teletype mode. You should recognise, that we are using here the “BEQ LOOP” statement in contrast

to the “BNE LOOP” statement in program 5.

Table 4-6: Program 6 – Read Status of Switch 2

Address OP-Codes Assembler Language Equivalent

0200 20 BB F1 LOOP JSR $F1BB ; Read switch 2 status

0203 F0 FB BEQ LOOP ; Branch to LOOP if Z flag is equal 0

0210 4C 6B EC JMP START ; Jump back to My-KIM operating system

Based on program 5 and 6 we can modify the program 4 to work as follows:

 When switch 1 is in position ON, the LED 1 shall blink

 When switch 1 is in position OFF, the LED 1 shall not blink

 When switch 2 is set to position OFF, then the program shall terminate

First set both switches to position ON and start the program at address $0200. Now you can set

switch 1 to position OFF and the blinking stops (LED lights up), but the program is still running. When

you set the switch 2 to position OFF, then the program terminates and returns to the operating system.

4
Using My-KIM as Stand-Alone System

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 29 of 62

You should also observe the following behaviour: When switch 1 is in position OFF (no blinking) and

you put the switch 2 to position OFF, nothing happens, the LED is still ON, because the program still

runs in the LOOP1 loop. Only when you put switch 1 to position ON, then the program terminates.

Table 4-7: Program 7 – LED 1 Blinking controlled by Switches

Address OP-Codes Assembler Language Equivalent

0200 20 9E F1 LOOP JSR $F19E ; Set LED 1 to OFF

0203 20 40 02 JSR DELAY ; Delay for 0.25 seconds

0206 20 A3 F1 JSR $F1A3 ; Set LED 1 to ON

0209 20 40 02 JSR DELAY ; Delay for 0.25 seconds

020C 20 B5 F1 LOOP1 JSR $F1B5 ; Read switch 1

020F F0 FB BEQ LOOP1 ; Branch back to LOOP1, if switch 1 is OFF

0211 20 BB F1 JSR $F1BB ; Read switch 2

0214 D0 EA BNE LOOP ; Branch back to $0200, if switch 2 is ON

0216 4C 6B EC JMP START ; Jump back to My-KIM operating system

0240 A2 FF DELAY LDX #$FF ; Set X to 255

0242 8E F9 7F STX $7FF9 ; Store X to WAIT_TIME

0245 20 C1 F0 DELAY1 JSR WAIT ; Perform WAIT subroutine

0248 CA DEX ; Decrement X by 1 (X=X-1)

0249 D0 FA BNE DELAY1 ; If X is not 0, branch to DELAY1

024A 60 RTS ; Return from subroutine

4.4 Dumping and Loading a Program to the Smartphone

Dumping and loading a program to/from the smartphone only works in the My-KIM stand-alone mode.

Before using the following dump and load routines, make sure that the SST switch is in the position

OFF. If you don’t consider this, both programs will not work. Also make sure, that the jumper JP2 on

the TTY / Audio Tape board is set to the “Low” position, which can only be done, when opening the

housing of the My-KIM computer.

Dumping a Program

Having typed-in a program you may save it for later use. This can be achieved by dumping a program

to the smartphone. The procedure is as follows:

 Store the program start address to the memory locations $7FF4 (SAL=low byte) and $7FF5
(SAH=high byte)

 Store the program end start address + 1 to the memory locations $7FF6 (low byte) and
$7FF7 (high byte)

 Store the value $01 to the memory address $7FF8 (Program ID)

 Set the address field of the LED display to the address $E000

 Connect the backside cinch connectors by a suitable adapter cable to your smartphone

 Start a suitable audio App on the smartphone to record the data transmitted by My-KIM

Then push the [GO] button on the keyboard, which starts the transmission and switches the display

off. Having completed the transmission, the display will switch on showing the address $0000 and you

can stop the recording on the smartphone. Optionally you may give the audio recording on the

smartphone a specific name.

Because the logical data rate is 8.3 Byte/s, it will take slightly more than 2 minutes to save 1024 Byte

of a program to the smartphone. Same is true for loading a program.

Loading a Program

Loading a program from the smartphone is performed as follows:

4
Using My-KIM as Stand-Alone System

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 30 of 62

 Store the value $00 to the memory address $7FF8 (Program ID)

 Set the address field of the LED display to the address $E073

Then push the [GO] button on the keyboard, which starts the loading of the program and switches the

display off. Then start the replay of the audio file to be loaded from the smartphone. Having

successfully loaded the program, the display will show the address $0000. In case of an error during

the loading procedure, the display shows the address $FFFF.

The meaning of the used ID value for loading a program is as follows:

ID Meaning

$00 Ignore ID and use Start Address on Audio Recording

$FF Ignore ID and use SAL/SAH content as Start Address

$01 - $FE Load program with exactly this ID and use Start Address on Audio Recording

The usual use of the ID in loading a program is ID = $00. If you want to load the program to a different

address, set ID = $FF and set the SAL/SAH memory addresses to the required load address.

Warning: When loading a program, never load a program into the zero page area $00EC - $00FF,

because there are several My-KIM operating system variables. Same is true for page 1 ($0100 -

$01FF), which holds the stack of the operating system and the high RAM memory area $7FE5 -

$7FFF. If you do so, the operating system crashes and does not respond anymore. This is true in the

My-KIM stand-alone mode, when loading a program from the smartphone, as well as in the Teletype

mode, loading a program from PC. Therefore: when writing a program, it is recommended, that you

use the memory area from $0200 upwards.

The Jumper JP2

When you connect the cinch input / output lines to a PC audio card, set the JP2 jumper on the TTY /

Audio Tape board to position “High” and select the “Line” input of the audio card of your PC. To do so,

you have to open the housing of the My-KIM computer.

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 31 of 62

5 Integrated Development Environment

5.1 Overview

As already outlined in chapter 1, the Integrated Development Environment (IDE) allows to write and

edit 6502 micro controller source code, assembling the code, debug the code and to flash the code to

an 8 KByte EEPROM. In addition, the IDE allows to operate the My-KIM computer via its TTY / UART

interface. Finally the IDE allows to load the Microsoft BASIC interpreter to the My-KIM RAM and to

write and perform BASIC programs, which can be saved on the PC.

5.2 Architecture and Usage

The IDE architecture is based on a Windows Multiple Document Interface (MDI) application and has

been developed with Microsoft Visual Studio. The software is written in C++ and comes with several

.cpp and associated .h files as shown below in the left picture. Having started the IDE the user can

select one of the three operating modes, as shown in the right below figure.

Opening Window of the IDE to select the three different operating modes

Figure 5-1: IDE Source Files and Opening Screen

5.3 IDE Mode

Starting the IDE mode will create a frame window with four MDI client windows as shown in Figure

5-2. To load a 6502 assembler file, to assemble it and to start a debugging session can be performed

by only five mouse clicks, see Figure 5-4. The assembler language syntax is described in the

assembler file “LanguageSyntax.asm” by numerous examples. It supports several pseudo operators

as well as numerical directives. The debugging dialog offers numerous debugging features like

showing the actual 6502 processor register content, single- and multi-instruction debugging, as well as

defining and managing break points. Changes in the RAM can be observed in the lower right 6502

Memory Content window, where you can also modify the content of specific RAM addresses. In case

of an assembler error, the erroneous source code line will be reported in the Report Window. To show

this line in the source code, use the menu item “Show Source Line …”.

The assembler source code in the left upper window can be edited in the usual way with copy, paste,

cut and undo commands including select all and find string functionality. A comfortable programming

dialog is available to immediately flash the assembled binary code into an 8 KByte EEPROM, see

Figure 5-3.

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 32 of 62

Figure 5-2: IDE Multi Document Interface Application

You can also write assembler programs in the IDE mode, which can be

loaded into the RAM area of My-KIM. For this purpose, the IDE

provides an export function (in the Assembler Listing Window), which

converts the generated Hex file into a binary file, which can be loaded

within the Teletype (TTY) mode into the RAM area by the command

‘R’. For details see chapter 5.4.

Figure 5-3: EEPROM Programmer Dialog

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 33 of 62

Figure 5-4: IDE with Running Debugging Dialog

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 34 of 62

5.4 KIM-1 Teletype Mode

In the KIM-1 Teletype mode the My-KIM computer can be operated from the PC. Before starting this

mode, you shall set the mode switch (KB/TTY) to the TTY position and the SST switch to the OFF

position. When connecting to KIM-1, the IDE software automatically checks all physically available

serial COM lines of the PC, whether the My-KIM computer is logically connected. This means that you

don’t have to specify a dedicated serial COM port. The RS232 transmission speed is automatically set

to 600 Baud, which is equivalent to 60 bytes per second with an 8N1 serial link protocol. To ease the

usage in this mode the “Help using Teletype” dialog, which provides all information to successfully

operate My-KIM in this mode, see Figure 5-7.

The following examples shows the use of the keys [Space Bar], [#], [+] and [-]:

Display Field Type the Keys Description

0000 xx 200 [Space Bar] Change to address 0200

0200 xx A9# Write A9 to address 0200

0201 xx FF# Write FF to address 0201

0202 xx 4C# Write 4C to address 0202

0203 xx 00# Write 00 to address 0203

0204 xx 02# Write 02 to address 0204

0205 xx 200 [Space Bar] Change to address 0200

0200 A9 + Show next address

0201 FF + Show next address

0202 4C + Show next address

0203 00 + Show next address

0204 02 - Show previous address

0203 00 - Show previous address

0202 4C - Show previous address

0201 FF 200 [Space Bar] Change to address 0200

0200 A9

The above procedure is shown below in the Teletype Window:

The program just entered is the following:

Address OP-Code Assembler Language Equivalent

0200 A9 FF LOOP LDA #$FF

0202 4C 00 02 JMP LOOP

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 35 of 62

Now set the SST switch to position ON and push the ‘G’ key to execute the program in the single step

mode.

For details on further commands in this mode, use the menu item “Help using Teletype”, see also

Figure 5-7.

In this mode programs can be saved or loaded either as an audio tape signal to/from a smartphone

App or as a file on the PC. Figure 5-6 shows a recorded audio tape signal clearly showing the

recorded FSK signal, as created by the 6502 processor, when writing a user written program with the

command ‘W’. Loading an audio tape file is performed by the command ‘L’. The logic, how the audio

file is loaded into the memory is described in the “Help using Teletype” dialog.

Warning: When dumping or loading an audio tape file, you shall place the SST switch to position

OFF, otherwise it doesn’t work ! This is due to the fact, that the DUMPT and LOADT subroutines use

the so-called VEB (Volatile Execution Block) in the RAM area. When the processor reads an

instruction from this block in the SST mode, then an NMI interrupt will be performed and the procedure

is stopped.

When saving a user written program from My-KIM on the PC with command ‘T’ = Transmit, the

program will be saved to two files named “KIM_DATA_XXX.BIN” and “KIM_ADDR_XXX.BIN”, where

XXX in the filename represents the three digit decimal number, based on the user defined ID number

in memory location $7FF8, e.g. “KIM_DATA_001.BIN”. The ‘DATA’ file includes the user written

program based on the start address in $7FF4/5 and the end address +1 in $7FF6/7, while the ‘ADDR’

file only holds two binary bytes, which represent the start address of the first byte in the ‘DATA’ file.

Having pushed the [RS] button, the dump addresses are set to the following default values:

Start Address
(Low Byte)

Start Address
(High Byte)

End Address
(Low Byte)

End Address
(High Byte)

Program ID

$7FF4 = $00 $7FF5 = $02 $7FF6 = $80 $7FF7 = $02 $7FF8 = $01

This means the following: When typing the command ‘T’, then the memory area from $0200 to $0280

(128 bytes) will be saved to a file on the PC, having the filename “KIM_DATA_001.BIN”. The result is,

that you typically are not required to change these default address values (128 bytes for a program),

but only the program ID, if you want to save the program in a file with a different filename. When

loading a program with the command ‘R’, the addresses in the memory locations $7FF4 - $7FF7 are

ignored and the file on PC with the filename number as defined in $7FF8 will be loaded to the

address, which is saved in the file “KIM_ADDR_XXX.BIN”, that mean to the address at the time of

saving the program. Saving or loading a program with 128 bytes will take less than 2 seconds.

It shall be noted, that none of the values in the start and end addresses and the ID are modified by the

‘T’ and ‘R’ command.

Warning: When loading a program, never load a program into the zero page area $00EC - $00FF,

because there are several My-KIM operating system variables. Same is true for page 1 ($0100 -

$01FF), which holds the stack of the operating system and the high RAM memory area $7FE5 -

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 36 of 62

$7FFF. If you do so, the operating system crashes and does not respond anymore. This is true in the

My-KIM stand-alone mode, when loading a program from the smartphone, as well as in the Teletype

mode, when loading a program from PC.

Therefore: when writing a program, it is recommended, that you use the memory area from $0200

upwards, which can easily be saved by the command ‘T’ without setting any saving parameters.

Figure 5-5: My-KIM in the “Teletype” Mode: Transmitting / Receiving a Program from PC

When executing a program with the ‘G’ command (SST switch in OFF position), it is recommended to

place a “JMP SHOW” (4C 03 ED) instruction at the end of your program to safely return to the My-KIM

operating system. An endless running program can only be stopped by pressing the [ST] button

(STOP) on the My-KIM keyboard. As in the Keyboard mode, also in this Teletype mode you can

perform single step instructions by setting the SST switch to position ON and then pressing the ‘G’

key.

Figure 5-6: Recorded Audio Tape FSK Signal

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 37 of 62

Figure 5-7: Help Information for the “Teletype” Mode

Using the command ‘S’ (Show) will list the memory content, as specified by the entries in $7FF4-

$7FF7, which is shown in the Figure 5-8 below. It also shows how to perform single step instructions

by the command ‘G’ of a user written program (SST switch to position ON).

When performing single instruction steps, the result of the single step is immediately listed in terms of

the content of the accumulator, the X- and Y-Register, the stack pointer and the most important

condition flags, like N, Z, C and V Flag.

When the Single Step switch is set to OFF and using the GO command ‘G’, the user defined program

starting at the currently shown address will be executed.

To safely return to the My-KIM operating system after having completed your user program, the last

operation in your program shall always be a jump to either the symbol “SHOW” at address $ED03 or

the symbol “START” at address $EC6B. This is accomplished by writing the op-code “4C 03 ED” or

“4C 6B EC” respectively as last instruction to your program. The response of My-KIM is as follows:

Return Symbol / Address Response Suggested in

SHOW $ED03 XXXX yy Teletype Mode

START $EC6B KIM

XXXX yy

Teletype Mode

START $EC6B XXXX yy Stand-alone Keyboard Mode

where “XXXX “is the actual content of the address POINTL/H and “yy” is the content of where

POINTL/H is pointing to, while POINTL/H has the addresses $00F8/$00F9.

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 38 of 62

Figure 5-8: Memory Content Listing with Command ‘S’ and Single Step Instructions with
Command ‘G’

When you are working in the stand-alone keyboard mode, it is suggested to use the return address

“START” = $EC6B, because the SHOW procedure will send status data to the PC, which is not

connected in this mode. When working in the Teletype mode, it is suggested to use the return address

“SHOW” = $ED03.

5.5 KIM-1 BASIC Mode

In this mode the Microsoft BASIC interpreter will be loaded into the RAM of the My-KIM computer. A

prerequisite is, that the file “KB9.BIN” is in the same directory as the started IDE exe file. As in the

Teletype mode, My-KIM is automatically connected to a serial COM port. When you type the key ‘M’,

Microsoft BASIC is loaded from the binary file “KB9.BIN”, as shown in Figure 5-9. The load procedure

takes less than 3 minutes, which is indicated by a progress bar in the edit control window. During the

load procedure the window is inactive.

As for the Teletype mode, also in this mode the SST switch shall be in the OFF position, because

BASIC is reading instructions from the RAM area, which would generate an NMI interrupt, immediately

stopping the BASIC interpreter.

The Figure 5-10 shows the loading of a BASIC program from the default file “BASIC_001.BIN”. Having

changed the source line 30, we define by a “POKE 240,2” command, that the program will be saved

by the command “SAVE” to the new file “BASIC_002.BIN”.

Having started a BASIC program by the “RUN” command, see Figure 5-11, it can be halted by holding

down the Escape key (“Esc”) until BASIC breaks with the message “BREAK IN xx”, where xx is the

line number, where BASIC stopped the execution. The program can be resumed by issuing the

command “CONT”, as shown in Figure 5-12.

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 39 of 62

Figure 5-9: Loading Microsoft BASIC into the RAM of the My-KIM Computer

Figure 5-10: Loading a BASIC Program, Editing and Saving in a New File

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 40 of 62

Figure 5-11: Executing a BASIC Program

Figure 5-12: Halting and Resuming a BASIC Program (by Holding Down the Escape Key)

Improved Editing of Source Code

The editing of a BASIC source code has been improved with regard to the standard procedure, which

is as follows: Having typed in a source code line with a typing error, you are required to type in the

complete source code line once more, i.e. editing is not possible.

The new feature implemented in My-KIM is as follows: you can edit a wrong source code line in the

BASIC window or in a separate editor, copy it to the clipboard by the menu item “Copy” and finally use

the menu item “Insert to BASIC”, which stores the corrected source code line automatically into the

BASIC memory of the My-KIM computer. This can be performed for a single source code line as well

as for multiple source code lines. When editing a line in the BASIC window, you shall not use the

Carriage Return (Enter) key !

This procedure is shown in the following Figure 5-13 to Figure 5-15, where we have completely

deleted the source code in the My-KIM computer by the command “NEW” and then inserted the

copied source code to BASIC by the above mentioned “Insert to BASIC” procedure.

If you wish to make a print out of your BASIC program, copy the source code listing to the clipboard

and insert it into your favourite editor program, from where you can send it to a printer.

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 41 of 62

Figure 5-13: Step 1: Selecting and Copying the Source Code

Figure 5-14: Step 2: Inserting the copied Source Code to the BASIC Program

Figure 5-15: Step 3: Final Result

The below shown ‘Help’ dialog shows the most important information how to work with Microsoft

BASIC. First steps on using BASIC are described in chapter 7.2, while the BASIC language syntax is

summarised in chapter 7.3.

5
Integrated Development Environment

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 42 of 62

Figure 5-16: Help Information for the Microsoft BASIC Mode

6
Useful My-KIM User Routines

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 43 of 62

6 Useful My-KIM User Routines

6.1 Audio Tape Dump and Load Routines

A program or a memory range can be dumped or loaded to/from an audio tape in the stand-alone My-

KIM keyboard mode. These procedures are described below.

Dump to Audio Tape

To dump a program or the content of a memory range to the audio tape, call the routine DUMPT,

which is located at memory address $E000.

To specify the memory range to be dumped to the audio tape, the following memory locations have to

be set to the required values:

$7FF4: holds the low byte of the start address

$7FF5: holds the high byte of the start address

$7FF6: holds the low byte of the (end address + 1)

$7FF7: holds the high byte of the (end address + 1)

$7FF8: holds the program ID, which shall be in the range between $01 and $FE

Having pushed the reset button [RS], these addresses hold the following default values:

Start Address: $0200 ($7FF4 = $00, $7FF5 = $02)

End Address: $0280 ($7FF6 = $80, $7FF7 = $02)

ID: $01

To start the dumping, set the SST switch to OFF, set the address in the display to “E000” and then

start the dump program by pressing the [GO] button. The display will go off. When the routine returns

with a display of “0000 xx”, the routine was successful. In case of an error, the display shows “FFFF

xx”. The audio tape dumping procedure can be performed in the My-KIM stand-alone mode as well as

in the Teletype mode.

Load from Audio Tape

To load a program from the audio tape, call the routine LOADT, which is located at memory address

$E073. The associated hex op-code to start the load routine is “4C 73 E0”.

To specify, where the loaded program or data shall be stored in the RAM area of the My-KIM

computer, the following memory locations have to be set to the required values:

$7FF4: holds the low byte of the start address

$7FF5: holds the high byte of the start address

$7FF8: holds the program ID

Here the program ID has the following meaning:

ID = $00: Ignore ID and use the Start Address in the Audio Tape Data

ID = $FF: Ignore ID and use the specified Start Address

ID = $01 - $FE: Load Program with exactly this ID and use the Start Address in the Audio
Tape Data

The nominal case is to use $00 for the ID without specifying a start address. To start the loading, set

the SST switch to OFF, set the address in the display to “E073” and then press the [GO] button, which

will switch off the display. When the routine returns with a display of “0000 xx”, the routine was

successful. In case of an error, the display shows “FFFF xx”. The audio tape loading procedure can be

performed in the My-KIM stand-alone mode as well as in the Teletype mode.

6
Useful My-KIM User Routines

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 44 of 62

6.2 Audio Tape Calibration Routines

In case of problems in loading the audio tape data, it might be necessary to re-calibrate the receive

chain of the audio tape hardware, in particular setting the calibration potentiometer R18 on the Tape /

TTY interface board, see Figure 2-5. In this case use the subroutines as defined in the assembler

source code “My-KIM_V1.asm” under the heading “DIAGNOSIC PLLCAL TEST FOR NE565”,

beginning at label and address PLLCAL = $E269.

6.3 Control Switches and LED Subroutines

The My-KIM computer has two control switches and LEDs.

These control elements are also driven by the four non-used

I/O pin of the port C 8255 Programmable Peripheral Interface

IC (PPI), implemented as two input ports (C4, C5) and two

output ports (C2, C3), see Figure 2-8. The output ports are

connected to two LEDs and the input ports are connected to

two ON/OFF switches (keys). The ports can be set and read by

the subroutines in the EEPROM as shown in the following

tables. When calling the subroutines to set a port (LED), none of the registers A, X and Y are modified.

The subroutines use the Single Bit Set/Reset feature of the 8255 IC.

Table 6-1: Subroutines to Set the Two Output Port Pins (LEDs)

Port Subroutine Address Function Remark

C2 SPC2_0 $F19E Set Port C2 to 0 (OFF) Port C2 is driving the LED 1

C2 SPC2_1 $F1A3 Set Port C2 to 1 (ON)

C3 SPC3_0 $F1A8 Set Port C3 to 0 (OFF) Port C3 is driving the LED 2

C3 SPC3_1 $F1AD Set Port C3 to 1 (ON)

When calling the subroutines to read the ports (switches), none of the registers X and Y are modified,

while the accumulator returns the current status of the read switch.

Table 6-2: Subroutines to Read the Two Input Port Pins (Switches)

Port Subroutine Address Function Return Value Remark

C4 RPOC4 $F1B5 Read Port C4 Accumulator returns:
 00 hex when switch is OFF
 10 hex when switch is ON

Reads status of Switch 1

C5 RPOC5 $F1BB Read Port C5 Accumulator returns:
 00 hex when switch is OFF
 20 hex when switch is ON

Reads status of Switch 2

6.4 WAIT Subroutine

For some applications it is necessary to delay the execution of a program sequence. Because My-KIM

doesn’t have a timer, this is implemented by a delay loop. The delay loop is called by the subroutine

WAIT, which is located at memory location $F0C1. The associated subroutine call hex op-code is “20

C1 F0”. Before you call this subroutine, you have to specify, how long the delay time shall be. This is

accomplished by specifying the WAIT_TIME value, which has to be stored to the memory location

$7FF9 and is defined as follows (6502 is running with a 1 MHz crystal):

WAIT_TIME = 1  13 + 5 + 10 = 23 cycles = 23 micro seconds

WAIT_TIME = 2  13 + 10 + 10 = 28 cycles = 28 micro seconds

WAIT_TIME = 3  13 + 15 + 10 = 33 cycles = 33 micro seconds

:

WAIT_TIME = 255  13 + 1275 + 10 = 1298 cycles = 1298 micro seconds

6
Useful My-KIM User Routines

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 45 of 62

Based on this we can write:

WAIT_TIME = Delay time in micro seconds / 5.02 – 3.58 with 256 > WAIT_TIME > 0

For realising delay times longer than 1298 micro seconds, use multiple calls of the WAIT subroutine.

When calling the WAIT subroutine, none of the registers A, X and Y are modified.

6.5 Memory Test Subroutine 1

If you want to test the RAM memory on correct operation, you can use the subroutine beginning at

symbol MT_START, which is located at memory address $F0CB. The associated hex op-code

subroutine call is “20 CB F0”. The test program is based on the algorithm, written by Jim Butterfield,

published in 1977 in the book “The First Book of KIM”. Before you call this subroutine, you have to

specify, which RAM memory area you want to test.

The RAM area to be tested has to be specified by a start page and an end page, where a ‘page’ is

defined as 256 bytes. It shall be noted, that the 32 KByte RAM area is between address $0000 and

$7FFF. Based on this, the page numbers are defined as:

Page 0 = $00: $0000 - $00FF

Page 1 = $01: $0100 - $01FF

Page 2 = $02: $0200 - $02FF

:

Page 127 = $FF: $7F00 - $7FFF

Set the addresses of the first and last memory page you wish to test to memory locations $0000 and

$0001, respectively. Start the program at symbol MT_START. It will stop with a memory address on

the display. If no faults were found, the address will be one location past the last address tested. If a

fault is found, its address will be displayed.

WARNING:

 Do NOT test the zero page ($0000 - $00FF), because there are our test variables and some
KIM-1 variables.

 Do NOT test page 1 ($0100 - $01FF), because there is the KIM-1 stack.

 Do NOT test the last RAM page 127 ($7F00 - $7FFF), because there are some KIM-1
operating system variables.

To test the 32 KByte RAM (excluding page 0, 1 and 127), define the following:

$0000 = $02 (Start = $0200)

$0001 = $7E = page 126 (End = $7EFF)

Then start the memory test program at symbol MT_START = $F0CB and the LED display goes OFF.

The test program takes about 8 seconds. The result of the RAM test can be as follows:

 The LED display shows the address “$7F00 xx”, which is the first non-tested RAM address,
hence the test was successful.

 If the display shows another RAM address, then the RAM at this address does not work
correctly.

It is worth to mention, that this also works in the stand-alone Keyboard and in the TTY mode !

6.6 Memory Test Subroutine 2

There is a second RAM memory test subroutine implemented, which starts at symbol TR = $F134.

The associated hex op-code subroutine call is “20 34 F1”. This test subroutine uses the following

algorithm:

 Fill the specified RAM range with value $00

 Then set one byte at address TE_AD to $FF (TE_AD = $0201)

6
Useful My-KIM User Routines

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 46 of 62

 You can define any other address, if necessary for testing, however it should be within the
RAM test address range.

 Then check that only this byte has changed in the specified RAM.

WARNING:

 Do NOT test the zero page, because there are our variables and some KIM-1 variables.

 Do NOT test page 1, because there is the KIM-1 stack.

 Do NOT test page 127 ($7E), because there are some KIM-1 operating system variables.

Hence we can check in My-KIM from $0200 to $7EFF (page 2 to page 126).

Example:

Enter to the RAM addresses $0001 and $0002 the RAM page range you want to test, e.g.:

0000 = $02

0001 = $7E

Then start the program at label “TR” = $F134. At the end of the test we can have two situations:

 if NO error occurred, then the LED display shows “$0000 02”

 if an error occurred, then the error address is shown on the LED display.

It is worth to mention, that this also works in the Keyboard and in the TTY mode !

7
Microsoft BASIC Description

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 47 of 62

7 Microsoft BASIC Description

7.1 Introduction

Microsoft BASIC was the first commercial project, developed in 1976/7 by Bill Gates, Paul Allen and

Monte Davidoff. The first version developed is called KB6 and computes numbers with a precision of 6

digits. The second version, which is used here, is called KB9 and computes numbers with a precision

of 9 digits.

The binary code of the KB9 version is stored in the file KB9.BIN. To load BASIC, use the menu item

“Start KIM-1 BASIC” in the IDE. BASIC will then be loaded into the memory location, starting at $2000.

It has a size of 8815 bytes, i.e. slightly more than 8 K Bytes. Because My-KIM has a RAM size of 32 K

Bytes, there are ca. 15550 bytes free for writing a program and storing numerical and string variables.

The remaining address range $0200 - $1FFF can be used by the user for other purposes. Starting

BASIC will automatically be performed by starting at address 4065 hex. Having loaded BASIC, My-

KIM will change some BASIC binary codes to adapt it to the specific environment of My-KIM. One

example is, that BASIC can now save a user written program directly to a file on PC, which was not

foreseen in the original version, because it could only dump a user program to an audio tape. Loading

a user written program from PC is of course also possible. Details on this subject are described in

chapter 3.3 and in the My-KIM firmware source code.

BASIC will also use the zero page memory for holding intermediate computational result and

housekeeping data in the range $0000-$00DC and at position $00FF. The content of these memory

location shall therefore not be changed by the user by e.g. POKE instructions.

When BASIC has been loaded into the My-KIM memory, you are asked the following questions:

Question Type

MEMORY SIZE? 32000

TERMINAL WIDTH? 100

WANT SIN-COS-TAN-ATAN? Y

You can type lower- or uppercase letters, but all letters are printed as uppercase ones. Having

answered these questions, BASIC will start and prints the available memory space for a program and

the variables. For a quick overview on how to use BASIC, open the Help menu item in the IDE, see

also Figure 5-16.

7.2 First Steps with BASIC

A note at the beginning:

 all letters typed are automatically converted to uppercase letters (A – Z)

 all commands shall end with a carriage return (CR) key = Enter key

 if you make a typing error, use the backspace key (←) to eliminate the last typed character

 repeated use of the ← key will eliminate previously typed characters

 use the @ key to eliminate the entire line you have typed in

Typing “PRINT 10-4” will result in:

6

OK

Typing “PRINT 1/2,3*10” will result in:

.5 30

OK

7
Microsoft BASIC Description

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 48 of 62

Instead of typing “PRINT”, you can also use the question mark character like “? 10-4”. The above

commands are call “Direct” commands or statements, because the result will immediately evaluated

and printed. By using indirect commands, you can type in a program, which can be executed one line

after the other. Each indirect command begins with a line number, which can be between 1 and

64000.

Type the following (always with a CR at the end of a line):

1 PRINT 2+3

2 PRINT 2-3

When typing “LIST”, the following is printed:

1 PRINT 2+3

2 PRINT 2-3

OK

Now type “RUN” to execute the program, which results in:

5

-1

OK

When you type “SAVE”, then this small program will be saved on the PC in a file with the filename

“BASIC_001.BIN”. When you type “NEW”, then the program will be deleted in the memory of the My-

KIM computer. Typing “LOAD” will load the program back from the PC into the My-KIM computer. You

can change the filename for saving and loading by using the direct command POKE X,Y. For

example, the command:

POKE 240,10

will change the filename to “BASIC_010.BIN” for all following SAVE and LOAD commands. It shall be

noted that no other value than 240 shall be used in this POKE command. If you use another value, it

may happen that BASIC crashes !

The complete list of available direct and indirect commands / statements is summarised in chapter 7.3.

7.3 BASIC Syntax

In the following an argument of V or W denotes a numeric variable, X denotes a numeric expression,

X$ denotes a string expression and an I or J denotes an expression that is truncated to an integer

before the statement is executed. Truncation means that any fractional part of the number is lost, e.g.

3.9 becomes 3.

An expression is a series of variables, operators, function calls and constants which after the

operations and function calls are performed using the precedence rules, evaluates to a numeric or

string value. A constant is either a number (e.g. 3.14) or a string literal (Zeichenkette).

Table 7-1: Microsoft BASIC Syntax

Statement Description Examples

AND Performs a logical or binary AND operation:

Logical AND Example: If expression 1 (A>5) AND expression 2 (B>2)
are both true, then branch to line 7

Binary AND Example: 107=01101011, 217=11011001.
AND-ing both will result in X=01001001 = 73 = 49 hex

2 IF A>5 AND B>2 THEN 7

10 X=107 AND 217  X=73

ASC(X$) Returns the ASCII numeric value of the first character of the string
expression X$. An FC (Function Call) error will occur if X$ is the null
string.

10 X$ = “HELLO”

20 I = ASC(X$)  I = 72

ATN(X)

Gives the arctangent of the argument X. The result is returned in

radians and ranges from –π/2 to +π/2, where π/2 = 1.5708…

7
Microsoft BASIC Description

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 49 of 62

Statement Description Examples

ABS(X) Gives the absolute values of the expression X. ABS(1) = 1, ABS(-1) = 1

CHR$(I) Returns a one character string whose single character is the ASCII
equivalent of the value of the argument (I), which must be >= 0 and <=
255.

CLEAR Clears all variables, resets FOR and GOSUB state and RESTORE
data.

CONT Continues program execution after the ESC is typed or after a STOP
statement. You cannot continue after any error, after modifying your
program, or before your program has been run.

COS(X) Gives the cosine of expression X. X is interpreted as being in radians.

DATA Specifies data, to be read by a “READ” statement from left to right. Data
shall be separated by comma. To restart reading from the beginning,
place a “RESTORE” statement.

See also “RESTORE” description below.

10 DATA 10.5, 20.7, 30.8

20 READ X : READ Y : READ Z

30 PRINT X,Y,Z

40 RESTORE

50 READ X : READ Y : READ Z

60 PRINT X,Y,Z

DEF The user can define functions like the built-in functions (SQR, SGN,
ABS, etc.) through the use of the DEF statement. The name of the
function is “FN” followed by any legal variable name, for example: FNX,
FNJ7, FNK0, FNR2. User defined functions are restricted to one line. A
function may be defined to be any expression, but may only have one
argument. In the example, B and C are variables, that are used in the
program. Executing the DEF statement defines the function. User
defined functions can be redefined by executing another DEF statement
for the same function. User defined string functions are not allowed. “V”
is called the dummy variable.

100 DEF FNA(V)=V/B+C

110 Z=FNA(3)

Execution of this statement
cause Z to be set to 3/B+C, but
the value of V would be
unchanged

DIM Allocate space for arrays. All array elements are set to zero by the DIM
statement. Arrays can have more than one dimension. Up to 255
dimensions are allowed, but due to the restriction of 72 characters per
line the practical maximum is about 34 dimensions. Arrays can be
dimensioned dynamically during program execution. If an array is not
explicitly dimensioned with a DIM statement, it is assumed to be a
single dimensioned matrix of whose single subscript may range from 0
to 10 (eleven elements). If the statement in line 117 is encountered,
before a DIM statement for A was found in the program, it would be as if
a DIM(10) statement had been executed previous to the execution of
line 117. All subscripts start at zero (0), which means that DIM X(100)
really allocates 101 matrix elements.

113 DIM A(3), B(19)

114 DIM R3(5,5), D$(2,2,2)

117 A(8)=4

END Terminates program execution without printing a BREAK message (see
STOP). CONT after an END statement causes execution to resume at
the statement after the END statement. END can be used anywhere in
the program, and is optionally.

EXP(X) Gives the constant e=2.71828… raised to the power X. The maximum
argument that can be passed to EXP without overflow occurring is
87.3365

X=EXP(2.3)  X=9.97418245

FOR .. NEXT See example 300: V is set equal to the value of the expression following
the equal sign, in this case 1. This value is called the initial value. Then
the statements between FOR and NEXT are executed. The final value
is the value of the expression following the TO. The step is the value of
the expression following STEP. When the NEXT statement is
encountered, the step is added to the variable V.

If no STEP was specified, it is assumed to be 1. If the step is positive
and the new value of the variable V is <= the final value (9.3 in the
example) or the step value is negative and the new value of the variable
V is >= the final value, then the first statement following the FOR
statement is executed. Otherwise the statement following the NEXT
statement is executed.

All FOR loops execute the statements between FOR and NEXT at least
once even the cases like FOR V=1 TO 0.

Note that expressions (formulas) may be used for the initial, final and
step value of a FOR loop. The values of the expression are computed
only once before the body of the FOR…NEXT loop is executed.

When the statement after the NEXT is executed, the loop variable (here
V) is never equal to the final value, but is equal to whatever value
caused the FOR…NEXT loop to terminate.

The statements between the FOR…NEXT statements in both examples

300 FOR V=1 TO 9.3 STEP 0.6
:
NEXT V (or simply NEXT)

400 FOR V=1 TO 9.3
:
NEXT

500 FOR V=10*N TO 3.4/Q
STEP SQR(R)

600 FOR V=9 TO 1 STEP -1

7
Microsoft BASIC Description

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 50 of 62

Statement Description Examples

(400, 600) would be executed 9 times.

Do not use nested FOR loops with the same index variable (here W), as
in example 700, which will cause an error. FOR loop nesting is limited
only by the available memory.

700 FOR W=1 TO 10 : FOR
W=1 TO 20: NEXT W : NEXT W

FRE(X) or
FRE(X$)

Gives the number of memory bytes currently unused by BASIC.
Memory allocated for STRING memory is not included in the count
returned by FRE. The argument passed to the function has no meaning!

270 PRINT FRE(0) or

? FRE(0)

GOTO Branches to the statement specified by the following line number 130 GOTO 250

GOSUB Branches to the specified statement until a RETURN is encountered
and a branch is then made to a statement after to the GOSUB. GOSUB
nesting is limited only by the available memory.

10 I=0

20 GOSUB 100

30 PRINT I

40 END

100 I=I+10

110 RETURN

IF … GOTO Equivalent to IF … THEN, except that IF … GOTO must be followed by
a line number.

150 IF A>5 GOTO 210

IF … THEN Branches to the specified statement (here line 5) if the relation is true.

Executes all of the statement in the remainder of the line 60 after the
THEN if the relation (X<0) is true.

50 IF X>10 THEN 5

60 IF X<0 THEN PRINT “X
LESS THAN 0”

INPUT Requests input from the terminal (to be typed in). Each value must be
preceded from the previous value by a comma (,). The last value typed
should be followed by a carriage return. A ‘?’ is typed as a prompt
character. If more data was requested in an INPUT statement than was
typed in, a ‘??’ is printed and the rest of the data should be typed in. If
more data was typed in than requested, the extra data will be ignored.
Strings must be input in the same format as they are specified in DATA
statements.

This INPUT statement (see line 5) optionally types a prompt string
(“VALUE”) before requesting data from the terminal. If carriage return is
typed to an input statement, BASIC interrupts and returns to the
command mode. Typing CONT after an INPUT command has been
interrupted will cause execution to resume at the INPUT statement.

2 INPUT X

5 INPUT “VALUE”; V

7 INPUT “ENTER X”; X,“ENTER
Y”;Y

8 INPUT “ENTER STRING”;S$

INT(X) Returns the largest integer less than or equal to its argument X.

The last example will round X to D decimal places.

INT(0.23) = 0, INT(7) = 0

INT(-1) = -1, INT(1.1) = 1

INT(X*10^D+0.5)/10^D

LEFT$(X$, I) Gives the leftmost I characters of the string expression X$. If I<0 or
I>255 an FC error occurs.

? LEFT$(“HELLO”,2) gives “HE”

LEN(X$) Gives the length of the string expression X$ in characters (Bytes). Non-
printing characters and blanks are counted as part of the length.

? LEN(“HELLO”) gives 5

LET Assigns a value to a variable. “LET” is optionally.

LIST Lists current program optionally starting at specified line. List can be
stopped by holding down the ESC key. BASIC will then finish listing the
current line.

LIST or LIST 100-

LIST 100

LIST 100-200

LOAD Loads a BASIC program from the PC. A NEW command is
automatically done before the LOAD command is executed. When
done, the LOAD command will print “OK” as a confirmation.

The program loaded from PC has the default filename
“BASIC_001.BIN”. You can change the number in the filename by
issuing a POKE command. For example “POKE 240,10” followed by a
LOAD command will load the program with the filename
“BASIC_010.BIN”. The user defined number shall be between 0 and
255. You can identify the currently used filename number by issuing the
command “? PEEK(240)”.

LOAD  Loads program file
“BASIC_001.BIN”

POKE 240,130

LOAD  Loads program file
“BASIC_130.BIN”

LOG(X) Gives the natural (base e) logarithm of its argument X. To obtain the
base Y logarithm of X use the formula LOG(X)/LOG(Y).

Example: the base 10 (common) log of 7 = LOG(7)/LOG(10).

X = LOG(5.6)  X = 1.7227666

MID$(XS, I) MID$ called with two arguments returns characters from the string
expression X$ starting at character position I. If I>LEN(I$), then MID$
returns a null (zero length) string. If I<0 or I>255, an FC error occur.

X$=MID$(“ABCDE”,2) 
X$=”BCDE”

MID$(X$,I,J) MID$ called with three arguments returns a string expression composed
of the composed of the characters of the string expression X$ starting at
the I-th characters for J characters. If I>LEN(I$), then MID$ returns a
null (zero length) string. If I or J <0 or I or J>255, an FC error occur. If J
specifies more characters than are left in the string, all characters from
the I-th on are returned.

X$=MID$(“ABCDEFG”,3,3) 
X$=”CDE”

7
Microsoft BASIC Description

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 51 of 62

Statement Description Examples

NEW Deletes current program and all variables.

NEXT Marks the end of a FOR loop. If no variable is given, matches the most
recent FOR loop. A single NEXT may be used to match multiple FOR
statements. NEXT V,W is equivalent to NEXT V : NEXT W

NOT Example: IF NOT Q3 THEN 4: If expression “NOT Q3” is true (because
Q3 is false), then branch to line 4. Note: NOT -1 = 0 (NOT true = false)

NULL Example: “NULL 3”. Sets the number of null (ASCII 0) characters
printed after carriage return / line feed. Not needed for electronic
terminals.

ON …
GOSUB

Identical to “ON … GOTO” except that a subroutine call (GOSUB) is
executed instead of a GOTO. RETURN from the GOSUB branches to
the statement after the ON … GOSUB.

ON … GOTO The example branches to the line by the I-th number after the GOTO.
That is: if I=1 then go to line 10, if I=2 then go to line 20, if I=3 then go to
line 30, if I=4 then go to line 40. If I=0 or I attempts to select a non-
existing line (I>=5 in this case), the statement after the ON statement is
executed. However, if I<0 or I>255 an FC error message will result. As
many line numbers will fit on a line can follow an ON … GOTO.

The next example statement will branch to line 40 if the expression X is
less than zero, to line 50 if it equals zero and to line 60 if it is greater
than zero.

100 ON I GOTO 10,20,30,40

105 ON SGN(X)+2 GOTO
40,50,60

OR Performs a logical or binary OR operation:

Logical OR Example: If either expression A<1 or expression B<2 is true,
then branch to line 2

Binary OR Example: 107=01101011, 217=11011001.
OR-ing both will result in X=11111011 = 251 = FB hex

IF A<1 OR B<2 THEN 2

X=107 OR 217  X=251

PEEK(I) The PEEK function returns the contents of the memory address I. The
value returned will be between 0 and 255 ($FF). If I>65535 ($FFFF) or
I<0, an FC error will occur. An attempt to read a non-existing memory
address will return an unknown value, see POKE statement.

J = PEEK(6125)

Read the memory location
$17ED and write it to the
variable J

POKE I,J The POKE statement stores the byte specified by the argument J into
the memory location given by the argument I. The byte to be stored
must be between 0 and 255 ($FF) or an FC error will occur. The
address I must be between 0 and 65535 ($FFFF) or an FC error will
occur.

Careless use of the POKE statement will probably cause you to ‘poke’
BASIC to death. That is, the machine will hang and you have to reload
BASIC and will lose any program you had typed in. A POKE to a non-
existing memory location is harmless. You can use POKE to pass
arguments to machine language subroutines, see USR() description.

POKE 6125,10

Write the Byte $0A to memory
location $17ED

POS(I) Gives the current position of the terminal print head (or cursor in
window). The leftmost character position on the terminal is position zero
and the default right most is 71. If you have entered after loading BASIC
“TERMINAL WIDTH?” = 100, the right most position is 99.

PRINT Prints the value of expressions on the terminal. Instead of using ‘PRINT’
you can also use the ‘?’ character. If the list of values to be printed out
does not end with a comma ‘,’ or a semicolon ‘;’, then a carriage return /
line feed is executed after all the values have been printed. Strings in
quotes (“) may also be printed.

If a semicolon separates two expression in the list, their values are
printed next to each other. If a comma appears after an expression in
the list, and the print head is at position 56 or more, then a carriage
return / line feed is executed. If the print head is before print position 56,
then spaces are printed until the carriage is at column 14, 28, 42 or 56.
If there is no list of expressions to be printed, then a carriage return /
line feed is executed.

10 X=10.5

20 Y=124.7

30 PRINT X

40 ? X

50 PRINT X,Y

60 PRINT X;Y

70 PRINT “X=”;X,”Y=”;Y

REM Allows the programmer to put comments in his program. REM
statements are not executed, but can be branched to. A REM statement
is terminated by an end of line, but not by a ’:’.

20 REM THIS IS A COMMENT

RESTORE Allows to re-reading of DATA statements. After a RESTORE, the next
piece of data read will be the first piece listed in the first DATA
statement of a program. The second piece of data will be the second
piece listed in the first DATA statement, and so on as in a normal READ
operation. See examples under “DATA”

RETURN Causes a subroutine to return to the statement after the most recently
executed GOSUB. See example at GOSUB.

RIGHT$(X$,I) Gives the rightmost I characters of the string expression X$. When I<=0
or I>255 an FC error will occur. If I>LEN(X$) then RIGHT$ returns all of

7
Microsoft BASIC Description

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 52 of 62

Statement Description Examples

X$.

RND(X) Generates a random number between 0 and 1. The argument X
controls the generation of random numbers as follows: X<0 starts a new
sequence of random numbers using X. Calling RND with the same X
starts the same random number sequence. X=0 gives the last random
number generated. X>0 generates a new random number between 0
and 1.

The shown example will generate random numbers between 100 and
200.

A=100

B=200

V=(B-A)*RND(1)+A

SAVE Saves the user typed BASIC program into a file on the PC. The
program in memory is unchanged.

The program saved to the PC has the default filename
“BASIC_001.BIN”. You can change the number in the filename by
issuing a POKE command. For example “POKE 240,10” followed by a
SAVE command will save the program in a file with the filename
“BASIC_010.BIN”. The user defined number shall be between 0 and
255. You can identify the currently used filename number by issuing the
command “? PEEK(240)”.

SAVE  Saves to file
“BASIC_001.BIN”

POKE 240,130

SAVE  Saves to file
“BASIC_130.BIN”

SGN(X) Gives 1 if X>0, 0 if X=0 and -1 if X<0

SIN(X) Gives the sine of the expression X. X is interpreted as being in radians.

SPC(I) Prints I spaces (or blank) characters on the terminal. Shall be used only
in a PRINT statement. X must be between 0 and 255 or an FC error
occurs.

SQR(X) Gives the square root of the argument X. An FC error will occur if X is
less than zero.

STOP Causes a program to stop execution and to enter command mode and
prints for example “BREAK IN LINE 9000”. CONT after a STOP
branches to the statement following STOP.

9000 STOP

STR$(X) Gives a string which is the character expression of the numeric
expression X.

10 U$=STR$(3.1) gives
U$=“3.1”

TAB(I) Spaces to the specified print position (column) on the terminal. May be
used only in PRINT statements. Zero is the leftmost column on the
terminal, 71 the most right. If the carriage is beyond position I, then no
printing is done. I must be between 0 and 255.

240 PRINT TAB(I)

TAN(X) Gives the tangent of the expression X. X is interpreted as being in
radians.

USR(I) Call the user’s machine language subroutine with the argument I. See
‘USR’ function description in chapter 7.8

10 I=5

20 J=USR(I)

VAL(X$) Returns the string expression X$ converted to a number. If the first non-
space character of the string is not a plus ‘+’ or minus ‘-‘ sign, a digit or
a decimal point ‘.’, then zero will be returned.

10 X=VAL(“-3.1”) will give

X=-3.1

WAIT The first WAIT example reads the memory (or I/O port) location I,
exclusive OR’s K with the read memory content, and then AND’s the
result with J until a non-zero result is obtained. Execution of the
program continues at the statement following the WAIT statement. If
you are waiting for a bit of a byte to become zero, there should be a ‘1’-
bit in the corresponding position of byte J and K. I must be between 0
and 65535 and J, K must be between 0 and 255.

The second WAIT example has only two arguments. Here K is assumed
to be zero.

Examples:

WAIT 6125,1  Wait until bit 0 of byte in address 6125 (17ED hex)
becomes 1

WAIT 3502,64,64  Wait until bit 6 of byte in address 3502 (0DAE hex)
becomes 0

800 WAIT I,J,K

810 WAIT I,J

7.4 Integer Variables

Integer variables can be used in the 9-digit KB9 version of KIM-1 BASIC. Their name must be followed

by a % wherever they are used. Note that an integer variable is distinct from a floating point variable of

the same name. Integer arrays are also allowed. Integer variables are signed 2 byte values in the

range between -32768 to +32767 and hence requires 2 bytes of storage, whereas floating point values

require 4 bytes. Non-integer values assigned to an integer variable will be truncated. Integer variables

7
Microsoft BASIC Description

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 53 of 62

cannot be used in user defined functions (USR) or “FOR” loops. Integer variables should be used to

conserve memory space. They do not save time, in fact, they are usually slower to use than floating

point values.

7.5 Floating Point Variables and Memory Space

Simple non-array floating point variables use 6 bytes: 2 bytes for the variable name and 4 for the

value. Simple non-array string variables also use 6 bytes: 2 bytes for the variable name and 2 bytes

for the length and 2 bytes for the point, where this variable is saved.

Array variables us as minimum 12 bytes: 2 bytes for the variables name, 2 bytes for the size of the

array, 2 bytes for the number of dimensions along with 4 bytes for each of the array elements.

7.6 Rules for Evaluating Expressions

Operations of higher precedence are performed before lower precedence operations. This means that

multiplications and divisions are performed before additions and subtractions. When operations of

equal precedence are found in a formula, the left hand one is executed first.

The precedence of operations used in evaluating expressions is as follows, beginning with the highest

precedence: 1) Formulas enclosed in parenthesis; 2) ^ = raise to the power; 3) . = Negation; 4) * / ; 5)

+ – ; 6) Relational operators like = <> < > >= <= ; 7) NOT; 8) AND; 9) OR.

Relational operator expressions will always have a value of TRUE = -1 or FALSE = 0.

The operators AND, OR and NOT can also be used for bit manipulation and for performing Boolean

operations, e.g. “63 AND 16” results in 16 or “4 OR 2” results in 6. These operators convert their

arguments to 16 bit signed integer values in the range from -32768 to +32767. If the arguments of

these operators are not in this range, an “FC” error results, see Table 7-5.

7.7 Derived Trigonometric Functions

BASIC offers three intrinsic trigonometric functions: SIN(), COS() and ATAN(). Table 7-2 lists the most

used trigonometric functions, which can be calculated by existing BASIC functions.

Table 7-2: Derived Trigonometric Functions

Function Name Function expressed in Terms of intrinsic BASIC Functions

TANGENT TAN(X) = SIN(X)/COS(X)

INVERSE SINE ARCSIN(X) = ATN(X/SQR(1-X*X))

INVERSE COSINE ARCCOS(X) = -ATN(X/SQR(1-X*X))+1.5708

HYPERBOLIC SINE SINH(X) = (EXP(X)-EXP(-X))/2

HYPERBOLIC COSINE COSH(X) = (EXP(X)+EXP(-X))/2

INVERSE HYPERBOLIC SINE ARCSINH(X) = LOG(X+SQR(X*X+1))

INVERSE HYPERBOLIC COSINE ARCCOSH(X) = LOG(X+SQR(X*X-1))

7.8 BASIC / Machine Language Interface

BASIC allows to perform machine language routines, also call user functions, which are written e.g. by

an assembler. A user function can receive an integer value from BASIC and can pass an integer value

back to BASIC. There are four steps required to use machine language routines:

1. The KIM-1 version of Microsoft 6502 BASIC starts in memory at address 2000 hex. A
machine language routine shall therefore be placed between 0200 hex and 1FFF hex.

2. Store the routine into memory. This can be done either before or after BASIC is loaded:

7
Microsoft BASIC Description

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 54 of 62

 Before: By loading a machine program in the TTY mode from the PC

 After: By using POKE instructions

3. Notify BASIC of the location of the user routine by ‘USRLOC’ which is at address 2040 hex.
It must be POKEd to contain the address of the ‘USR’ machine language routine. 2040 hex
(8256 decimal) must be given the low 8 bits of the address and 2041 hex (8257 decimal)
must be given the high 8 bits of the address. Invoking the ‘USR’ function before modifying
USRLOC will cause an “ILLEGAL QUANTITY” error since the original content of USRLOC
contains the address of the “ILLEGAL QUANTITY” printing error routine.

4. Then the machine language routine has to be called by the ‘USR’ instruction. BASIC will
then jump to the address contained in ’USRLOC’. The ‘USR’ routine may modify all of the
6502 registers. An RTS op-code (60 hex) should be performed when the routine is
completed.

Data can be passed to the machine language routine in two ways:

1. A call (JSR op-code) to the BASIC subroutine (20 C2 F2 = JSR $2FC2) will convert the
passed argument of the USR() function to a 16 bit signed integer value in the range of {-
32768 to +32767}, which is placed to the zero page address $B1 and $B2. The address
$B1 holds the high byte and $B2 holds the low byte of the converted integer value. If the
passed argument of the USR() function is outside the range of {-32768 to +32767} an
“ILLEGAL QUANTITY” error will result. The original Microsoft documentation states, that the
converted value is in the Accumulator and Y-register, but this is not correct and should
therefore not be considered. Here Bill made a severe mistake !

2. Data may be written to the unused memory ($0200 - $1FFF) by ‘POKE’ functions, which can
then be processed by the ‘USR’ routine.

Values may be returned in two ways:

1. A call (JSR op-code) to the BASIC subroutine (20 95 31 = JSR $3195) will cause the 16 bit
signed integer in the Y- and A-registers to be returned as the result of the ‘USR’ function.
The Y-register shall hold the low order byte and the Accumulator shall hold the high order
byte of the signed 16 bit integer value to be returned to BASIC.

2. The ‘USR’ routine can store values in memory unused by BASIC, which may be read in by
BASIC through ‘PEEK’ functions.

3. It shall be noted, that the returned value of the USR() user function is only a signed 16 bit
integer value.

Based on the above we can summarise the following:

 Using the argument of the ‘USR’ function we can only transfer a signed integer value to a
user routine

 Using the ‘POKE’ and ‘PEEK’ functions we can transfer several arbitrary numbers to a user
routine

The following table shows an example how to call a user defined machine language routine from

BASIC, located at address 0200 hex. The user defined function USR(X) adds 15 to the value passed

as argument (X=8120). The USR() routine then returns this value to the BASIC variable Z, which

becomes 8135.

7
Microsoft BASIC Description

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 55 of 62

Table 7-3: Example of a Machine Language User Function, called by Microsoft BASIC

BASIC Code Machine Language Code of User Function (Assembler)

10 REM DEFINE USRLOC AT $0200 0200 20 C2 2F JSR $2FC2 ; Convert argument X, saved in $B1-$B2

20 POKE 8256,0 0203 18 CLC ; Clear Carry to prepare ADC

30 POKE 8257,2 0204 A5 B2 LDA $B2 ; Get low order byte of passed integer

40 X=8120 0206 69 0F ADC #15 ; Add 15 to low order byte

50 REM CALL THE USR FUNCTION 0208 A8 TAY ; Transfer Accu to Y (low order byte in Y)

60 Z=USR(X) 0209 A5 B1 LDA $B1 ; Get high order byte of passed integer

70 PRINT Z 020B 69 00 ADC #0 ; Add 0 to high order byte

 020D 20 95 31 JSR $3195 ; Prepare to return the USR() result in (A,Y)

 0210 60 RTS ; Return to BASIC

7.9 Symbols and Special Keys

BASIC uses the symbols and keys as summarised in Table 7-4.

Table 7-4: Symbols and Key

Symbol / Key Description Examples

= Assigns a value to a variable. The ‘LET’ statement is optional

. Negation: “B.A” is subtraction (B-A), while “.A” is negation (-A)

^ Raise to the power 0^1=1, A^B with A negative
and B not an integer gives
an FC error

* Multiplication

/ Division

+ Numerical addition and string concatenation. The resulting string must be
less than 256 characters in length or an LS error will occur.

10 C1$=”WE “ : C2$=”ARE”

20 C3$=C1$+C2$

 C3$ is the “WE ARE”

- Subtraction

= < > Number and string comparison operators.

String comparison is made on the basis of ASCII codes, a character at a
time until a difference is found. If during the comparison of two strings, the
end of one is reached, the shorter string is considered smaller. Note that
“A “ is greater than “A” since trailing spaces are significant.

 =, <, >, <=, >=, <>

: A colon is used to separate statements in the same line. Colons may be
used in direct or indirect statements. The only limit on the number of
statements per line is the line length. It is not possible to place ‘GOTO’ and
‘GOSUB’ to the middle of a line.

10 A=1 : B=2

? Question mark is equivalent to ‘PRINT’. Question marks can also be used
in indirect statements.

? 2+2 will print 4

“10 ? X” is equivalent to
“10 PRINT X”

@ Erases the current line being typed and types a carriage return / line feed.

Back-Arrow

←

Back arrow erases the last character typed. If no more characters are left
in the line, a carriage return / line feed is issued.

ESC Holding down the Escape key will halt a running BASIC program or stops
the listing of a program. A halted program can be resumed by issuing the
command ‘CONT’.

7.10 Error Messages

After an error occurs, BASIC returns to command level mode and types OK. Variable values and the

program text remain intact, but the program cannot be continued and all GOSUB and FOR content is

lost.

When an error occurs in a direct statement, no line number is printed, e.g.:

Direct Statement: ?“XXXXXXX” ERROR

Indirect Statement: ?“XXXXXXX” ERROR IN YYYY

7
Microsoft BASIC Description

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 56 of 62

In both of the above examples “XXXXXXX” will be the error message, while “YYYY” will be the line

number where the error occurred for the indirect statement. The following table lists the possible error

message (codes) and their description.

Table 7-5: Error Messages

Code Error Message Description

BS Bad Subscript An attempt was made to reference an array element which is outside the dimension of the
array. This error can occur if the wrong number of dimensions are used in a matrix
reference. For instance: A(1,1,1)=Z when A has been dimensioned DIM A(2,2).

DD Double Dimension After an array was dimensioned, another dimension statement for the same array was
encountered. This error often occurs if the array has been given the default dimension 10,
because a statement like A(I)=3 is encountered and then later in the program a DIM A(100)
is found.

FC Function Call Error The parameter passed to a math or string function was out of range. FC errors can occur to:
a) a negative array subscript “A(-1)=0”, b) an unreasonable large array subscript >32767, c)
LOG-negative or zero argument, d) SQR-negative argument, e) A^B with A negative and B
not an integer, f) a call to a ‘USR’ before the address of the machine language subroutine
has been patched in, g) calls to MID$, LEFT$, RIGHT$, INT, WAIT, PEEK, POKE, TAB,
SPC or ON … GOTO with an improper argument.

ID Illegal Direct You cannot use an INPUT or DEF statement as a direct command.

NF NEXT without FOR The variable in a NEXT statement corresponds to no previously executed FOR statement

OD Out of Data A READ statement was executed but all of the DATA statements in the program have
already been read. The program tried to read too much data or insufficient data was
included in the program.

OM Out of Memory Program too large, too many variables, too many FOR loops, to many GOSUB’s, too
complicated expression or any combination of the above.

OV Overflow The result of a calculation was too large to be represented in BASIC’s number format. If an
underflow occurs, zero is given as the result and execution continues without any error
message being printed.

SN Syntax Error Missing parenthesis in an expression, illegal character in a line, incorrect punctuation, etc.

RG RETURN without
GOSUB

A RETURN statement was encountered without a previous GOSUB statement being
executed.

US Undefined
Statement

An attempt was made by GOTO, GOSUB or THEN to a statement which does not exist.

/0 Division by Zero

CN Continue Error Attempt to continue a program when none exists, an error occurred, or after a new line was
typed into a program.

LS Long String A string expression was too complex. Break it into two or more shorter ones.

TM Type Mismatch The left-hand side of an assignment statement was a numeric variable and the right-hand
side was a string, or vice versa, or a function which expected a string argument was given a
numeric one or vice versa.

UF Undefined Function Reference was made to a user defined function which had never been defined.

8
6502 Instruction Set

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 57 of 62

8 6502 Instruction Set

8.1 Instruction Set Op-Code Summary

M
N
E
M
O
N
I
C

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

N
Z

C
I

D
V

A

D

C

A

+

M

+

C

→

A

(
4
)
(
1
)
6
9

2
2

6
D

4
3

6
5

3
2

6
1

6
2

7
1

5
2

7
5

4
2

7
D

4
3

7
9

4
3

√
√

√
-

-
√

A

N

D

A

˄

M

→

A

(
1
)
2
9

2
2

2
D

4
3

2
5

3
2

2
1

6
2

3
1

5
2

3
5

4
2

3
D

4
3

3
9

4
3

√
√

-
-

-
-

A

S

L

C

←

7
∙
∙
∙
∙
∙
0

←

0

0
E

6
3

0
6

5
2

0
A

2
1

1
6

6
2

1
E

7
3

√
√

√
-

-
-

B

C

C

B
R
A
N
C
H

O
N

C
=
0

(
2
)

9
0

2
2

-
-

-
-

-
-

B

C

S

B
R
A
N
C
H

O
N

C
=
1

(
2
)

B
0

2
2

-
-

-
-

-
-

B

E

Q

B
R
A
N
C
H

O
N

Z
=
1

(
2
)

F
0

2
2

-
-

-
-

-
-

B

I

T

A

˄

M

2
C

4
3

2
4

3
2

M
7
√

-
-

-
M
6

B

M

I

B
R
A
N
C
H

O
N

N
=
1

(
2
)

3
0

2
2

-
-

-
-

-
-

B

N

E

B
R
A
N
C
H

O
N

Z
=
0

(
2
)

D
0

2
2

-
-

-
-

-
-

B

P

L

B
R
A
N
C
H

O
N

N
=
0

(
2
)

1
0

2
2

-
-

-
-

-
-

B

R

K

(
S
e
e

F
i
g

1
)

0
0

7
1

-
-

-
√

-
-

B

V

C

B
R
A
N
C
H

O
N

V
=
0

(
2
)

5
0

2
2

-
-

-
-

-
-

B

V

S

B
R
A
N
C
H

O
N

V
=
1

(
2
)

7
0

2
2

-
-

-
-

-
-

C

L

C

0

→

C

1
8

2
1

-
-

0
-

-
-

C

L

D

0

→

D

D
8

2
1

-
-

-
-

0
-

C

L

I

0

→

I

5
8

2
1

-
-

-
0

-
-

C

L

V

0

→
 V

B
8

2
1

-
-

-
-

-
0

C

M

P

A

-

M

(
1
)
C
9

2
2

C
D

4
3

C
5

3
2

C
1

6
2

D
1

5
2

D
5

4
2

D
D

4
3

D
9

4
3

√
√

√
-

-
-

C

P

X

X

-

M

E
0

2
2

E
C

4
3

E
4

3
2

√
√

√
-

-
-

C

P

Y

Y

-

M

C
0

2
2

C
C

4
3

C
4

3
2

√
√

√
-

-
-

D

E

C

M

-

1

→

M

C
E

6
3

C
6

5
2

D
6

6
2

D
E

7
3

√
√

-
-

-
-

D

E

X

X

-

1

→

X

C
A

2
1

√
√

-
-

-
-

D

E

Y

Y

-

1

→
 Y

8
8

2
1

√
√

-
-

-
-

E

O

R

A

◊

M

→

A

(
1
)
4
9

2
2

4
D

4
3

4
5

3
2

4
1

6
2

5
1

5
2

5
5

4
2

5
D

4
3

5
9

4
3

√
√

-
-

-
-

I

N

C

M

+

1

→
 M

E
E

6
3

E
6

5
2

F
6

6
2

F
E

7
3

√
√

-
-

-
-

I

N

X

X

+

1

→

X

E
8

2
1

√
√

-
-

-
-

I

N

Y

Y

+

1

→

Y

C
8

2
1

√
√

-
-

-
-

J

M

P

J
U
M
P

T
O

N
E
W

L
O
C
A
T
I
O
N

4
C

3
3

6
C

5
3

-
-

-
-

-
-

J

S

R

J
U
M
P

I
N
T
O

S
U
B
R
O
U
T
I
N
E

2
0

6
3

-
-

-
-

-
-

L

D

A

M

→
 A

(
1
)
A
9

2
2

A
D

4
3

A
5

3
2

A
1

6
2

B
1

5
2

B
5

4
2

B
D

4
3

B
9

4
3

√
√

-
-

-
-

C
O
N
D
I
T
I
O
N

C
O
D
E
S

O
P
E
R
A
T
I
O
N

I
N
S
T
R
U
C
T
I
O
N
S

Z
.
P
A
G
E
,
Y

(
I
N
D
)
,
Y

Z
.
P
A
G
E
,
X

A
B
S
,
X

A
B
S
,
Y

R
E
L
A
T
I
V
E

I
N
D
I
R
E
C
T

I
M
M
E
D
I
A
T
E
A
B
S
O
L
U
T
E
Z
E
R
O

P
A
G
E

A
C
C
U
M
.

I
M
P
L
I
E
D

(
I
N
D
,
X
)

8
6502 Instruction Set

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 58 of 62

M
N
E
M
O
N
I
C

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

O
P

N
#

N
Z

C
I

D
V

L

D

X

M

→

X

(
1
)
A
2

2
2

A
E

4
3

A
6

3
2

B
E

4
3

B
6

4
2

√
√

-
-

-
-

L

D

Y

M

→
 Y

(
1
)
A
0

2
2

A
C

4
3

A
4

3
2

B
4

4
2

B
C

4
3

√
√

-
-

-
-

L

S

R

0

→

7
∙
∙
∙
∙
∙
0

→

C

4
E

6
3

4
6

5
2

4
A

2
1

5
6

6
2

5
E

7
3

0
√

√
-

-
-

N

O

P

N
O

O
P
E
R
A
T
I
O
N

E
A

2
1

-
-

-
-

-
-

O

R

A

A

v

M

→

A

0
9

2
2

0
D

4
3

0
5

3
2

0
1

6
2

1
1

5
2

1
5

4
2

1
D

4
3

1
9

4
3

√
√

-
-

-
-

P

H

A

A

→

M
s
,

S

-

1

→

S

4
8

3
1

-
-

-
-

-
-

P

H

P

P

→

M
s
,

S

-

1

→

S

0
8

3
1

-
-

-
-

-
-

P

L

A

S

+

1

→

S
,

M
s

→

A

6
8

4
1

√
√

-
-

-
-

P

L

P

S

+

1

→

S
,

M
s

→

P

2
8

4
1

R

O

L

C

←

7
∙
∙
∙
∙
∙
0

←

C

2
E

6
3

2
6

5
2

2
A

2
1

3
6

6
2

3
E

7
3

√
√

√
-

-
-

R

O

R

C

→

7
∙
∙
∙
∙
∙
0

→

C

6
E

6
3

6
6

5
2

6
A

2
1

7
6

6
2

7
E

7
3

√
√

√
-

-
-

R

T

I

R
E
T
U
R
N

F
R
O
M

I
N
T
E
R
R
U
P
T

4
0

6
1

R

T

S

R
E
T
U
R
N

F
R
O
M

S
U
B
R
O
U
T
I
N
E

6
0

6
1

-
-

-
-

-
-

S

B

C

A

-

M

-

C

→
 A

(
1
)
(
3
)
E
9

2
2

E
D

4
3

E
5

3
2

E
1

6
2

F
1

5
2

F
5

4
2

F
D

4
3

√
√
(
3
)
-

-
√

S

E

C

1

→

C

3
8

2
1

-
-

1
-

-
-

S

E

D

1

→

D

F
8

2
1

-
-

-
-

1
-

S

E

I

1

→

I

-
-

-
1

-
-

S

T

A

A

→

M

8
D

4
3

8
5

3
2

8
1

6
2

9
1

6
2

9
5

4
2

9
D

5
3

9
9

5
3

-
-

-
-

-
-

S

T

X

X

→

M

8
E

4
3

8
6

3
2

9
6

4
2

-
-

-
-

-
-

S

T

Y

Y

→

M

8
C

4
3

8
4

3
2

9
4

4
2

-
-

-
-

-
-

T

A

X

A

→

X

A
A

2
1

√
√

-
-

-
-

T

A

Y

A

→

Y

A
B

2
1

√
√

-
-

-
-

T

S

X

S

→

X

B
A

2
1

√
√

-
-

-
-

T

X

A

X

→

A

8
A

2
1

√
√

-
-

-
-

T

X

S

X

→

S

9
A

2
1

-
-

-
-

-
-

T

Y

A

Y

→

A

9
8

2
1

√
√

-
-

-
-

M
7
 M

EM
O

R
Y

B
IT

 7

M
6
 M

EM
O

R
Y

B
IT

 6

N
 N

U
M

B
ER

 O
F

C
YC

LE
S

Y
=

Y
R

EG
IS

TE
R

A
 =

 A
C

C
U

M
U

LA
TO

R

C
O
N
D
I
T
I
O
N

C
O
D
E
S

O
P
E
R
A
T
I
O
N

R
E
S
T
O
R
E
D

R
E
S
T
O
R
E
D

I
M
M
E
D
I
A
T
E
A
B
S
O
L
U
T
E
Z
E
R
O

P
A
G
E

 N

U
M

B
ER

 O
F

B
YT

ES

+
 A

D
D

-
 S

U
B

TR
A

C
T

˄
 A

N
D

v
 O

R

◊
 E

X
C

LU
SI

V
E

O
R

√
 M

O
D

IF
IE

D

-
 N

O
T

M
O

D
IF

IE
D

M
s

=
M

EM
O

R
Y

P
ER

 S
TA

C
K

 P
O

IN
TE

R

S
=

ST
A

C
K

 P
O

IN
TE

R

(1
)

A
D

D
 1

 T
O

 "
N

"
IF

 P
A

G
E

B
O

U
N

D
A

R
Y

IS
 C

O
R

SS
ED

(2
)

A
D

D
 1

 T
O

 "
N

"
IF

 B
R

A
N

C
H

 O
C

C
U

R
S

TO
 S

A
M

E
P

A
G

E

A
D

D
 2

 T
O

 "
N

"
IF

 B
R

A
N

C
H

 O
C

C
U

R
S

TO
 D

IF
FE

R
EN

T
P

A
G

E

(3
)

C
 =

 C
A

R
R

Y
N

O
T

=
B

O
R

R
O

W

(4
)

IF
 IN

 D
EC

IM
A

L
M

O
D

E,
 Z

 F
LA

G
 IS

 IN
V

A
LI

D

A
C

C
U

M
U

LA
TO

R
 M

U
ST

 B
E

C
H

EC
K

ED
 F

O
R

 Z
ER

O
 R

ES
U

LT

X
 =

 X
 R

EG
IS

TE
R

M
 =

 M
EM

O
R

Y
P

ER
 E

FF
EC

TI
V

E
A

D
D

R
ES

S

A
B
S
,
Y

R
E
L
A
T
I
V
E

I
N
D
I
R
E
C
T

I
N
S
T
R
U
C
T
I
O
N
S

A
C
C
U
M
.

I
M
P
L
I
E
D

(
I
N
D
,
X
)

(
I
N
D
)
,
Y

Z
.
P
A
G
E
,
X

Z
.
P
A
G
E
,
Y

A
B
S
,
X

8
6502 Instruction Set

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 59 of 62

8.2 Instruction Set Op-Code Matrix

LSD

0 1 2 3 4 5 6 7 8 9 A B C D E F

BRK ORA ORA ASL PHP ORA ASL ORA ASL

0 Implied (IND, X) ZP ZP Implied IMM Accum ABS ABS

1 7 2 6 2 3 2 5 1 3 2 2 1 2 3 4 3 6

BPL ORA ORA ASL CLC ORA ORA ASL

1 Relative (IND), Y ZP, X ZP, X Implied ABS, Y ABS, X ABS, X

2 2** 2 5* 2 4 2 6 1 2 3 4* 3 4* 3 7

JSR AND BIT AND ROL PLP AND ROL BIT AND ROL

2 ABS (IND, X) ZP ZP ZP Implied IMM Accum ABS ABS ABS

2 3 2 6 2 3 2 3 2 5 1 4 2 2 1 2 3 4 3 4 3 6

BMI AND AND ROL SEC AND AND ROL

3 Relative (IND), Y ZP, X ZP, X Implied ABS, Y ABS, X ABS, X

2 2** 2 5* 2 4 2 6 1 2 3 4* 3 4* 3 7

RTI EOR EOR LSR PHA EOR LSR JMP EOR LSR

4 Implied (IND, X) ZP ZP Implied IMM Accum ABS ABS ABS

1 6 2 6 2 3 2 5 1 3 2 2 1 2 3 3 3 4 3 6

BVC EOR EOR LSR CLI EOR EOR LSR

5 Relative (IND), Y ZP, X ZP, X Implied ABS, Y ABS, X ABS, X

2 2** 2 5* 2 4 2 6 1 2 3 4* 3 4* 3 7

RTS ADC ADC ROR PLA ADC ROR JMP ADC ROR

6 Implied (IND, X) ZP ZP Implied IMM Accum (ABS) ABS ABS

1 6 2 6$ 2 3$ 2 5 1 4 2 2$ 1 2 3 6 3 4$ 3 6

BVS ADC ADC ROR SEI ADC ADC ROR

7 Relative (IND), Y ZP, X ZP, X Implied ABS, Y ABS, X ABS, X

2 2** 2 5*$ 2 4$ 2 6 1 2 3 4*$ 3 4*$ 3 7

STA STY STA STX DEY TXA STY STA STX

8 (IND, X) ZP ZP ZP Implied Implied ABS ABS ABS

2 6 2 3 2 3 2 3 1 2 1 2 3 4 3 4 3 4

BCC STA STY STA STX TYA STA TXS STA

9 Relative (IND), Y ZP, X ZP, X ZP, Y Implied ABS, Y Implied ABS, X

2 2** 2 6 2 4 2 4 2 4 1 2 3 5 1 2 3 5

LDY LDA LDX LDY LDA LDX TAY LDA TAX LDY LDA LDX

A IMM (IND, X) IMM ZP ZP ZP Implied IMM Implied ABS ABS ABS

2 2 2 6 2 2 2 3 2 3 2 3 1 2 2 2 1 2 3 4 3 4 3 4

BCS LDA LDY LDA LDX CLV LDA TSX LDY LDA LDX

B Relative (IND), Y ZP, X ZP, X ZP, Y Implied ABS, Y Implied ABS, X ABS, X ABS, Y

2 2** 2 5* 2 4 2 4 2 4 1 2 3 4* 1 2 3 4* 3 4* 3 4*

CPY CMP CPY CMP DEC INY CMP DEX CPY CMP DEC

C IMM (IND, X) ZP ZP ZP Implied IMM Implied ABS ABS ABS

2 2 2 6 2 3 2 3 2 3 1 2 2 2 1 2 3 4 3 4 3 6

BNE CMP CMP DEC CLD CMP CMP DEC

D Relative (IND), Y ZP, X ZP, X Implied ABS, Y ABS, X ABS, X

2 2** 2 5* 2 4 2 6 1 2 3 4* 3 4* 3 7

CPX SBC CPX SBC INC INX SBC NOP CPX SBC INC

E IMM (IND, X) ZP ZP ZP Implied IMM Implied ABS ABS ABS

2 2 2 6$ 2 3 2 3$ 2 5 1 2 2 2$ 1 2 3 4 3 4$ 3 6

BEQ SBC SBC INC SED SBC SBC INC

F Relative (IND), Y ZP, X ZP, X Implied ABS, Y ABS, X ABS, X

2 2** 2 5*$ 2 4$ 2 6 1 2 3 4*$ 3 4*$ 3 7

0 1 2 3 4 5 6 7 8 9 A B C D E F

BRK -> OP Code $ Add 1 to N if in decimal mode

Implied -> Addressing Mode * Add 1 to N if page boundary is crossed

1 7 -> Instruction Bytes, N = Machine Cycles ** Add 1 to N if branch occurs to same page

Add 2 to N if branch occurs to different page

6502 MICROPROCESSOR
INSTRUCTION SET OP CODE MATRIX

M
SD

8
6502 Instruction Set

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 60 of 62

8.3 ASCII Table

Decimal Hex Char. Decimal Hex Char. Decimal Hex Char. Decimal Hex Char.

000 00 NULL 032 20 Space 064 40 @ 096 60 `

001 01 SOH 033 21 ! 065 41 A 097 61 a

002 02 STX 034 22 “ 066 42 B 098 62 b

003 03 ETX 035 23 # 067 43 C 099 63 c

004 04 EOT 036 24 $ 068 44 D 100 64 d

005 05 ENQ 037 25 % 069 45 E 101 65 e

006 06 ACK 038 26 & 070 46 F 102 66 f

007 07 BEL 039 27 ‘ 071 47 G 103 67 g

008 08 BS 040 28 (072 48 H 104 68 h

009 09 HT 041 29) 073 49 I 105 69 i

010 0A LF 042 2A * 074 4A J 106 6A j

011 0B VF 043 2B + 075 4B K 107 6B k

012 0C FF 044 2C , 076 4C L 108 6C l

013 0D CR 045 2D - 077 4D M 109 6D m

014 0E SO 046 2E . 078 4E N 110 6E n

015 0F SI 047 2F / 079 4F O 111 6F o

016 10 DLE 048 30 0 080 50 P 112 70 p

017 11 DC1 049 31 1 081 51 Q 113 71 q

018 12 DC2 050 32 2 082 52 R 114 72 r

019 13 DC3 051 33 3 083 53 S 115 73 s

020 14 DC4 052 34 4 084 54 T 116 74 t

021 15 NAK 053 35 5 085 55 U 117 75 u

022 16 SYN 054 36 6 086 56 V 118 76 v

023 17 ETB 055 37 7 087 57 W 119 77 w

024 18 CAN 056 38 8 088 58 X 120 78 x

025 19 EM 057 39 9 089 59 Y 121 79 y

026 1A SUB 058 3A : 090 5A Z 122 7A z

027 1B ESC 059 3B ; 091 5B [123 7B {

028 1C FS 060 3C < 092 5C \ 124 7C |

029 1D GS 061 3D = 093 5D] 125 7D }

030 1E RS 062 3E > 094 5E ^ 126 7E ~

031 1F US 063 3F ? 095 5F _ 127 7F DEL

9
Project Documentation

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 61 of 62

9 Project Documentation

Beside this document, the project comes with a My-KIM.zip file, holding supporting documents as

shown in the table below.

Directory Filename Description

6502_IDE

My-KIM_IDE.exe

IDE executable file as created by Visual Studio. There is no need for
any installation

 BASIC_001.BIN Example BASIC source code file

 BASIC_ERR.BIN BASIC error source code file, which will be loaded, when a requested
BASIC program file does not exist. If this file doesn’t exist, it will be
created

 KB9.BIN Microsoft BASIC interpreter, V1.1, 1977, binary file

 My-KIM_V1.asm My-KIM assembler source code to be flashed to the 8 KByte EEPROM

 LanguageSyntax.asm Assembler Language Syntax Examples, assembler source code file

EAGLE BaseBoard.brd,
BaseBoard.sch

EAGLE schematics and board file for the Base Board

 Display.brd, Display.sch EAGLE schematics and board file for the Display Board

 Keyboard.brd, Keyboard.sch EAGLE schematics and board file for the Keyboard Board

 Programmer.brd,
Programmer.sch

EAGLE schematics and board file for the EEPROM Programmer Board

 Tape_TTY.brd, Tape_TTY.sch EAGLE schematics and board file for the Audio Tape and TTY Board

 LED_Switch.brd,
LED_Switch.sch

EAGLE schematics and board file for LED and Switch Board

EEPROM
Programmer

Several C source code files C source code files. Having compiled, the hex file has to be flashed to
the ATmega8 controller of the EEPROM Programmer Board via Atmel
Studio 7

8255 PPI I/O 8255 Intel Programmable
Peripheral Interface.pdf

8255 Data Sheet

KIM-1
Documentation

6502 Instruction Set.pdf 6502 Instruction Set Summary

 KIM-1 Hardware Manual.pdf Original KIM-1 Hardware Manual

 KIM-1 Programming
Manual.pdf

Original KIM-1 Programming Manual

 KIM-1 User Manual.pdf Original KIM-1 User Manual

 KIM-1-Source-Code.asm Original KIM-1 Assembler source code as in ROM of 6530-002 / 003

 The First Book of KIM.pdf The First Book of KIM, published in 1977

Microsoft BASIC KB9.BIN Microsoft BASIC, V1.1, 1977, KB9, binary file

 Microsoft BASIC KB9 Source-
Code.txt

Assembler source code of Microsoft BASIC, as developed on a PDP-
10 with MACRO-10 Assembler

My-KIM
Documentation

My-KIM.pdf This document

 My-KIM_V1.asm, My-
KIM_V1.hex

My-KIM assembler source code file. In addition the associated Intel
Hex file to be flashed to the 8 KByte EEPROM

 LanguageSyntax.asm 6502 Assembler Language Syntax Examples (Test File)

10
Abbreviations

Doc. No.: My-KIM-001
Issue.: 1
Date: 01.04.2021

Hardware / Software Documentation. File: My_KIM.docx Page 62 of 62

10 Abbreviations

ASCII American Standard Code for Information Interchange

BASIC Beginner’s All-purpose Symbolic Instruction Code

BSR Bit Set Reset feature of Intel 8255 PPI

CAD Computer Aided Design

CPM Control Program for Microcomputer

DIP Dual In-line Package

EAGLE Einfach Anzuwendender Graphischer Layout Editor

EEPROM Electrically Erasable Programmable Read Only Memory

FSK Frequency Shift Keying

IDE Integrated Development Environment

IRQ Interrupt Request

KB Keyboard / Keyboard Mode

KIM Keyboard Input Monitor

MDI Multiple Document Interface

NMI Non Maskable Interrupt

PC Personal Computer

PLL Phase Locked Loop

PPI Programmable Peripheral Interface, Intel 8255

RAM Random Access Memory

RDY Ready

ROM Read Only Memory

RS Reset

RS232 Recommended Standard 232

SMD Surface Mounted Device

SST Single Step

ST Stop

TTY Teletype / Teletype Mode

UART Universal Asynchronous Receiver Transmitter

VEB Volatile Execution Block

