STM32H745 Timer & DMA & DAC

Setting up with STM32CubeIDE

Timer (TIM6)

Mode

- Runtime Context: Cortex-M7
- Activated: Yes (Checked)
- One Pulse Mode: No (Unchecked)

Figure 1: TIM6 Mode

Parameter and Settings

- Prescaler:480
- Counter Mode: Up
- Counter Period (AutoReload Register): 10
- Auto-Reload Preload: Disable
- Trigger Output (TRGO) Trigger Event Selection: Update Event

⊘ NVIC Settings	🥝 DMA Settings	
		0
480		
Up		
16 bit 10		
Disable		
Update Ever	nt	
	♦ NVIC Settings 480 Up 16 bit 10 Disable Update Ever	 ◇ NVIC Settings ◇ DMA Settings 480 Up 16 bit 10 Disable Update Event

Figure 2: TIM6 Parameter

User Constants

None.

🥺 Parameter Settings	😔 User Constants	🥝 NVIC Settings	📀 DMA Settings		
Search Constants					
Search (CrtI+F)				add	remove
Const	ant Name		Constant Val	ue	

Figure 3: TIM6 User Constants

NVIC Settings

None.

😔 Parameter Settings	🥝 User Constants	⊘ NVIC Settings	😔 DMA	Settings		
	NVIC1 Interrupt Table		Enab	ed Preer	mption Priority	Sub Priority
TIM6 global interrupt, DAC	1_CH1 and DAC1_CH2	2 underrun error interru	pts 🗌	0		0

Figure 4: TIM6 NVIC Settings

DMA Settings

None.

🥝 Parameter Settings	📀 User Constants	⊘ NVIC Settings	😔 DMA Setting	s
DMA Request	Stream	Di	rection	Priority

Figure 5: TIM6 DMA Settings

DAC (DAC1)

Mode

- Runtime Context: Cortex-M7
- OUT1 mode: Connected to external pin only
- OUT1 mode: Disable
- External Trigger: No (unchecked)

	DAC1 Mode and Configuration		
	Mode		
Runtime contexts:			
Cortex-M7	Cortex-M4	PowerDomain	
✓		D2	
OUT1 mode Connected to external pin only			
OUT2 mode Disable		~	
External Trigger			

Figure 6: DAC1 Mode

Parameter Settings (DAC Out 1 Settings) :

- Output Buffer: Enable
- Trigger: Timer 6 Trigger Output Event
- Wave generation mode: Disabled
- User Trimming: Factory Trimming
- Sample and Hold: Disabled

📀 Parameter Settings 🛛 📀 User	Constants	⊘ NVIC Settings	🥝 DMA Settings	📀 GPIO Settings
Configure the below parameters :				
Q Search (CrtI+F) ()				0
✓ DAC Out1 Settings				
Output Buffer	Enable			
Trigger	Timer 6	Trigger Out event		
Wave generation mode	Disable	ł		
User Trimming	Factory	trimming		
Sample And Hold	Sample	andhold Disable		

Figure 7: DAC1 Parameter Setting

User Constant :

None.

🥝 Parameter Settings 🛛 🔗 User Constants	🥝 NVIC Settings	🥝 DMA Settings	🥝 GPIO Settings
Search Constants			
Search (CrtI+F)			add remove
Constant Name		Constant Valu	e

Figure 8: DAC1 User Constants

NVIC Settings:

- DMA1 stream0 global interrupt: Enabled, Preemption Priority = 0; Sub Priority 0
- TIM6 global interrupt, DAC1_CH1 and DAC1_CH2 underrun and error interrupts: Disabled, Preemption Priority = 0 ; Sub Priority 0

📀 Parameter Settings	📀 User Constants	⊘ NVIC Settings	0	DMA Set	tings	📀 GPIO Setti	ngs
	NVIC1 Interrupt Table			Enabled	Pree	mption Priority	Sub Priority
DMA1 stream0 global interrupt			\checkmark	0		0	
TIM6 global interrupt, DAC	1_CH1 and DAC1_CH2	2 underrun error interru	ipts		0		0

Figure 9: DAC1 NVIC Settings

DMA Settings

- One Channel:
 - DMA Request: DAC1_CH1 ;
 - Stream : DMA1 Stream 0 ;
 - Direction: Memory to Peripherial ;
 - Priority : Low

Figure 10: DAC1 DMA Settings

GPIO Settings

- DAC_CH1 Settings:
 - Pin Name: PA4
 - Signal on Pin: DAC1_OUT1
 - Pin Context Assignment: ARM Cortex M7
 - GPIO Output Level: n/a
 - GPIO Mode: Analog Mode
 - GPIO Pull-up/Pull-down: No Pull-up and no Pull-down
 - Maximum Output Speed: n/a
 - Fast Mode: n/a
 - User Label: Empty
 - Modified: Yes (Checked)

😔 Par	ameter Setting	is 🛛 📀 User Constants	i Set ⊘ NVIC Set	tings 🛛 📀 DI	MA Settings	Settings	5			
Search	Signals									
Search	n (Crtl+F)							Sho	w only Mod	lified Pins
Pin 🗢	Signal on	Pin Context Assignem	.GPIO output	GPIO mode	GPIO Pull-u	ıp/Pull-down M	laximum output speed	Fast Mode	User Label	Modified
PA4	DAC1_OUT1	ARM Cortex-M7	n/a	Analog mode	No pull-up and	no pull-down n/	а	n/a		~

Figure 11: DAC1 GPIO Settings

DMA

Check if the Settings in the DMA Sections are the same as managed by the DAC-Section.

DMA Mode and Configuration				
Configuration				
🛛 🛇 DMA1, DMA2 🔤 😒 N	VlemToMem			
DMA Request	Stream	Direction	Priority	
DAC1_CH1	DMA1 Stream 0	Memory To Peripheral	Low	

Figure 12: DMA Mode and Configuration

Memory Layout, Linker-Scripts, Startupcode(Memory Init) and Implementation

Memory Layout

The Memory coupled to the CPU is very fast, but can not be accessed by the DMA. Therefore the large AXI-Memory with it's 512kByte is used in this example, being a very comfortable size for a Waveform LUT.

- Address: 0x24000000 0x2407FFFF
- Size 512kByte

Figure 1. System architecture for STM32H745/55/47/57xx devices

Figure 13: Reference Manual RM0399 Rev 3, Page 109

Linker Script

In this example the Code is loaded from Flash, so the Linkerfile that needs to be modified is STM32H745ZITX_FLASH.ld , which can be found at ..\workspace\Nucleo745_project\CM7\ STM32H745ZITX_FLASH.ld .

First the memory areas need to be defined, add the line marked in blue, you'll find it at approximately line 50, if you use the project default from the code-generator:

```
/* Specify the memory areas */
MEMORY
{
FLASH (rx) : ORIGIN = 0x08000000, LENGTH = 1024K
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
ITCMRAM (xrw) : ORIGIN = 0x00000000, LENGTH = 64K
RAM_D2 (xrw) : ORIGIN = 0x30000000, LENGTH = 128K
RAM_AXI (xrw) : ORIGIN = 0x24000000, LENGTH = 512K
}
```

Second, global symbols need to be defined and the object-files parsed for the default-values. You'll

```
find it at approximately line 140, if you use the project default from the code-generator:
    /* This is a custom section, created by TilenM, ST */
    /* Let's have all DMA buffers in AXI domain. If buffers have default values, copy values from
    flash first */
    _si_dma_data = LOADADDR(.dma_buffer);
    .dma_buffer :
    {
        . = ALIGN(4);
        _s_dma_data = .; /* create a global symbol at data start */
        *(.dma_buffer) /* Parse all object files, find any .dma_section and place it here */
        *(.dma_buffer*) /* Parse all object files (*), find any sub dma_sections and place it here */
        _e_dma_data = .; /* define a global symbol at data end */
    } >RAM_AXI AT> FLASH /* Add "AT> FLASH" to indicate copy from flash to RAM to initialize
        variables to def values */
```

Startup Code

If a variable is initialized in C, that requires the copying the values from Flash into the RAM. The file required to be modified is **startup_stm32h745zitx.s**, which can be found at ..\workspace\ Nucleo745_project\CM7\Core\Startup\startup_stm32h745zitx.s.

```
/* Copy the data segment initializers from flash to SRAM */
  movs r1, #0
  b LoopCopyDataInit
CopyDataInit:
  ldr r3, =_sidata
 ldr r3, [r3, r1]
 str r3, [r0, r1]
 adds r1, r1, #4
LoopCopyDataInit:
  ldr r0, =_sdata
  ldr r3, =_edata
  adds r2, r0, r1
  cmp r2, r3
 bcc CopyDataInit
 movs r1, #0
 b LoopDMACopyDataInit
CopyDMADataInit:
  ldr r3, =_si_dma_data
  ldr r3, [r3, r1]
  str r3, [r0, r1]
  adds r1, r1, #4
LoopDMACopyDataInit:
 ldr r0, =_s_dma_data
  ldr r3, =_e_dma_data
  adds r2, r0, r1
  cmp r2, r3
  bcc CopyDMADataInit
  ldr r2, =_sbss
  b LoopFillZerobss
 * Zero fill the bss segment. */
```

🗟 startup_stm32h745zitx.s 🗈 main.c 🔤 Nucleo745_UsbTest.ioc 📑	STM32H745ZITX_FLASH.Id
S Assembly Compare Viewer ▼	M 🖻 🗭 🖘 🌆 🖧
Nucleo745_UsbTest_CM7/Core/Startup/startup_stm32h745zitx.s	Nucleo745_UsbTest_CM7/Core/Startup/startup_stm32h745zitx2.old
77 LoopCopyDataInit:	77 LoopCopyDataInit:
78 ldr r0, =_sdata	78 ldr r0, =_sdata
79 ldr r3, =_edata	79 ldr r3, =_edata
80 adds r2, r0, r1	80 adds r2, r0, r1
81 cmp r2, r3	81 cmp r2, r3
	$\sqrt{\frac{82}{83}}$ dr $n^2 - shee$
84 movs r1 #0	84 h LoopFillZerobss
85 b LoopDMACopyDataInit	85/* Zero fill the bss segment. */
86 CopyDMADataInit:	86 FillZerobss:
87 ldr r3, =_si_dma_data	87 movs r3, #0
88 ldr r3, [r3, r1]	88 str r3, [r2], #4
89 str r3, [r0, r1]	89
90 adds r1, r1, #4	90 LoopFillZerobss:
	91 Idr r3, = _ebss
92 LOOPDMACOPYDataInit:	92 cmp r2, r3
93 Iur r0, = s_uma_uata 94 Idn n2 = e dwa data	
95 adds r^2 r^0 r^1	95/* Call static constructors */
$96 \text{ cmp } r^2, r^3$	96 bl libc init array
97 bcc CopyDMADataInit	97 /* Call the application's entry point.*/
98	98 bl main
99 ldr r2, =_sbss	99 bx lr
100 b LoopFillZerobss	100.size Reset_Handler,Reset_Handler
101/* Zero fill the bss segment. */	101
102 FillZerobss:	102 /**
103 movs r3, #0	104 * unexpected interpret This circle ant
< > >	< >>

Figure 14: Diff of the startup_stm32h745zitx.s with added initialization.

Implementation

In this example the implementation is in main.c . In order to place a variable into the AXI it requires to mark it with the attribute ___((section(".dma_buffer"))), in this example it is defined with DMA_Buffer.

In this example we will place a Lookuptable in the AXI Section, it has NS values. The Sine-Table is longer, but in this example it is kept short. 0X07FF is 50% of the DAC's value if DAC_ALIGN_12B_R is used.

DMA_BUFFER uint16_t Wave_LUT[NS] = { 0x07FF, 0x086A, ... 0x0794};

In the Main or another function the timer TIM6 needs to be started, it is automatically reloading(see the configuration done), after that the DAC need to be started in DMA-Mode. Pleas note that these function return values and should be checked and an error-handling performed, depending you like to use that

```
HAL_TIM_Base_Start(&htim6);
HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_1, (uint32_t*)Wave_LUT, NS, DAC_ALIGN_12B_R);
```

Check the Build

To see that the memory is set up correctly, checking the Build-Analyzer can help. To do that, select the elf-file(binary) and open the Build-Analyzer.

Figure 15: Mark the elf to analyze it.

In the Build-Analyzer you can check the correct implementation of the AXI memory and storing the default-values in the Flash.

🗟 Build Analyzer 🕺 🚊 Static Stack Analyzer 🔅 Debug 🔗 Search 📑 😤 🖻 🗖					
Nucleo745_UsbTest_CM7.elf	- /Nucleo745_UsbTest_(CM7/Debug - Feb 24,	2021 9:20:25 AM		
Memory Regions Memory Detai	ls	_			
Selection: 480 B					
Search					
Name	Run address (VMA)	Load address (LMA)	Size		
	0x0000000		64 KB		
V III FLASH	0x08000000		1024 KB		
> 🗄 .isr vector	0x08000000	0x0800000	664 B		
> 🗄 .text	0x080002a0	0x080002a0	102,34 KB		
> 🗄 .rodata	0x08019c00	0x08019c00	3,7 KB		
🗉 .ARM	0x0801aad0	0x0801aad0	8 B		
> 🛱 .init_array	0x0801aad8	0x0801aad8	4 B		
> 🗯 .fini_array	0x0801aadc	0x0801aadc	4 B		
> 🛱 .data	0x20000000	0x0801aae0	916 B		
> 🗄 .RxDecripSection	0x20000394	0x0801ae74	96 B		
> 🗄 .TxDecripSection	0x200003f4	0x0801aed4	96 B		
> 🗄 .dma_buffer	0x24000000	0x0801af34	480 B		
~ 📟 RAM	0x20000000		128 KB		
> 🖼 .data	0x20000000	0x0801aae0	916 B		
> 🗄 .RxDecripSection	0x20000394	0x0801ae74	96 B		
> 🖼 .TxDecripSection	0x200003f4	0x0801aed4	96 B		
> 🖼 .bss	0x20000454		23,2 KB		
🗄user_heap_stack	0x20006124		8 KB		
~ 📟 RAM_AXI	0x24000000		512 KB		
> 🗄 .dma_buffer	0x24000000	0x0801af34	480 B		
I RAM_D2	0x30000000		128 KB		

Figure 16: Build Analyzer