
STM32H745 Timer & DMA & DAC

Setting up with STM32CubeIDE

Timer (TIM6)

Mode

• Runtime Context: Cortex-M7

• Activated: Yes (Checked)

• One Pulse Mode: No (Unchecked)

Parameter and Settings

• Prescaler:480

• Counter Mode: Up

• Counter Period (AutoReload Register): 10

• Auto-Reload Preload: Disable

• Trigger Output (TRGO) Trigger Event Selection: Update Event

STM32H745 Timer & DMA & DAC 1. Mar. 2021 1/11 

Figure 1: TIM6 Mode

Figure 2: TIM6 Parameter



User Constants

None.

NVIC Settings

None.

DMA Settings

None.

STM32H745 Timer & DMA & DAC 1. Mar. 2021 2/11 

Figure 3: TIM6 User Constants

Figure 4: TIM6 NVIC Settings

Figure 5: TIM6 DMA Settings



DAC (DAC1)

Mode

• Runtime Context: Cortex-M7

• OUT1 mode: Connected to external pin only

• OUT1 mode: Disable

• External Trigger: No (unchecked)

Parameter Settings (DAC Out 1 Settings) :

• Output Buffer: Enable

• Trigger: Timer 6 Trigger Output Event

• Wave generation mode:  Disabled

• User Trimming: Factory Trimming

• Sample and Hold: Disabled

STM32H745 Timer & DMA & DAC 1. Mar. 2021 3/11 

Figure 6: DAC1 Mode

Figure 7: DAC1 Parameter Setting



User Constant :

None.

NVIC Settings:

• DMA1 stream0 global interrupt: Enabled, Preemption Priority = 0 ; Sub Priority 0

• TIM6 global interrupt, DAC1_CH1 and DAC1_CH2 underrun and error interrupts: 
Disabled, Preemption Priority = 0 ; Sub Priority 0

DMA Settings

• One Channel:

◦ DMA Request: DAC1_CH1 ; 

◦ Stream : DMA1 Stream 0 ; 

◦ Direction: Memory to Peripherial ; 

◦ Priority : Low

STM32H745 Timer & DMA & DAC 1. Mar. 2021 4/11 

Figure 8: DAC1 User Constants

Figure 9: DAC1 NVIC Settings

Figure 10: DAC1 DMA Settings



GPIO Settings

• DAC_CH1 Settings:

◦ Pin Name: PA4

◦ Signal on Pin: DAC1_OUT1

◦ Pin Context Assignment: ARM Cortex M7

◦ GPIO Output Level: n/a

◦ GPIO Mode: Analog Mode

◦ GPIO Pull-up/Pull-down: No Pull-up and no Pull-down

◦ Maximum Output Speed: n/a

◦ Fast Mode: n/a

◦ User Label: Empty

◦ Modified: Yes ( Checked)

DMA

Check if the Settings in the DMA Sections are the same as managed by the DAC-Section.

STM32H745 Timer & DMA & DAC 1. Mar. 2021 5/11 

Figure 11: DAC1 GPIO Settings

Figure 12: DMA Mode and Configuration



Memory Layout, Linker-Scripts, Startupcode(Memory Init) and 
Implementation

Memory Layout

The Memory coupled to the CPU is very fast, but can not be accessed by the DMA. Therefore the 
large AXI-Memory with it’s 512kByte is used in this example, being a very comfortable size for a 
Waveform LUT.

• Address: 0x24000000 – 0x2407FFFF

• Size 512kByte

STM32H745 Timer & DMA & DAC 1. Mar. 2021 6/11 

Figure 13: Reference Manual RM0399 Rev 3, Page 109



Linker Script

In this example the Code is loaded from Flash, so the Linkerfile that needs to be modified is 
STM32H745ZITX_FLASH.ld , which can be found at ..\workspace\Nucleo745_project\CM7\
STM32H745ZITX_FLASH.ld .

First the memory areas need to be defined, add the line marked in blue, you’ll find it at 
approximately line 50, if you use the project default from the code-generator:

Second, global symbols need to be defined and the object-files parsed for the default-values. You’ll 
find it at approximately line 140, if you use the project default from the code-generator:

STM32H745 Timer & DMA & DAC 1. Mar. 2021 7/11 

/* Specify the memory areas */
MEMORY
{
FLASH (rx)      : ORIGIN = 0x08000000, LENGTH = 1024K
RAM (xrw)      : ORIGIN = 0x20000000, LENGTH = 128K
ITCMRAM (xrw)      : ORIGIN = 0x00000000, LENGTH = 64K
RAM_D2 (xrw)      : ORIGIN = 0x30000000, LENGTH = 128K
RAM_AXI (xrw)      : ORIGIN = 0x24000000, LENGTH = 512K
}

/* This is a custom section, created by TilenM, ST */
/* Let's have all DMA buffers in AXI domain. If buffers have default values, copy values from 
flash first */
_si_dma_data = LOADADDR(.dma_buffer);
.dma_buffer :
{
  . = ALIGN(4);
  _s_dma_data = .;  /* create a global symbol at data start */
  *(.dma_buffer)  /* Parse all object files, find any .dma_section and place it here */
  *(.dma_buffer*)  /* Parse all object files (*), find any sub dma_sections and place it here */
  _e_dma_data = .;  /* define a global symbol at data end */
} >RAM_AXI AT> FLASH  /* Add "AT> FLASH" to indicate copy from flash to RAM to initialize 
variables to def values */



Startup Code

If a variable is initialized in C, that requires the copying  the values from Flash into the RAM. The 
file required to be modified is startup_stm32h745zitx.s , which can be found at ..\workspace\
Nucleo745_project\CM7\Core\Startup\startup_stm32h745zitx.s .

STM32H745 Timer & DMA & DAC 1. Mar. 2021 8/11 

/* Copy the data segment initializers from flash to SRAM */  
  movs  r1, #0
  b  LoopCopyDataInit

CopyDataInit:
  ldr  r3, =_sidata
  ldr  r3, [r3, r1]
  str  r3, [r0, r1]
  adds  r1, r1, #4
    
LoopCopyDataInit:
  ldr  r0, =_sdata
  ldr  r3, =_edata
  adds  r2, r0, r1
  cmp  r2, r3
  bcc  CopyDataInit

  movs  r1, #0
  b  LoopDMACopyDataInit
CopyDMADataInit:
  ldr  r3, =_si_dma_data
  ldr  r3, [r3, r1]
  str  r3, [r0, r1]
  adds  r1, r1, #4

LoopDMACopyDataInit:
  ldr  r0, =_s_dma_data
  ldr  r3, =_e_dma_data
  adds  r2, r0, r1
  cmp  r2, r3
  bcc  CopyDMADataInit

  ldr  r2, =_sbss
  b  LoopFillZerobss
/* Zero fill the bss segment. */  



STM32H745 Timer & DMA & DAC 1. Mar. 2021 9/11 

Figure 14: Diff of the startup_stm32h745zitx.s with added initialization.



Implementation

In this example the implementation is in main.c . In order to place a variable into the AXI it requires
to mark it with the attribute __attribute__((section(".dma_buffer"))) , in this example it is 
defined with DMA_Buffer.

In this example we will place a Lookuptable in the AXI Section, it has NS values. The Sine-Table is
longer, but in this example it is kept short. 0X07FF is 50% of the DAC’s value if 
DAC_ALIGN_12B_R is used.

 

In the Main or another function the timer TIM6 needs to be started, it is automatically reloading(see
the configuration done) , after that the DAC need to be started in DMA-Mode. Pleas note that these 
function return values and should be checked and an error-handling performed, depending you like 
to use that

STM32H745 Timer & DMA & DAC 1. Mar. 2021 10/11 

/* Private macro 
-------------------------------------------------------------*/
/* USER CODE BEGIN PM */

#if defined( __ICCARM__ )
  #define DMA_BUFFER \
      _Pragma("location=\".dma_buffer\"")
#else
  #define DMA_BUFFER \
      __attribute__((section(".dma_buffer")))
#endif

/* USER CODE END PM */

DMA_BUFFER uint16_t Wave_LUT[NS] = { 0x07FF,  0x086A, … 0x0794};

HAL_TIM_Base_Start(&htim6);
HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_1, (uint32_t*)Wave_LUT, NS, DAC_ALIGN_12B_R);



Check the Build

To see that the memory is set up correctly, checking the Build-Analyzer can help. To do that, select 
the elf-file(binary) and open the Build-Analyzer.

In the Build-Analyzer you can check the correct implementation of the AXI memory and storing the
default-values in the Flash.

STM32H745 Timer & DMA & DAC 1. Mar. 2021 11/11 

Figure 15: Mark the elf to analyze it.

Figure 16: Build Analyzer


	STM32H745 Timer & DMA & DAC
	Setting up with STM32CubeIDE
	Timer (TIM6)
	Mode
	Parameter and Settings
	User Constants
	NVIC Settings
	DMA Settings

	DAC (DAC1)
	Mode
	Parameter Settings (DAC Out 1 Settings) :
	User Constant :
	NVIC Settings:
	DMA Settings
	GPIO Settings

	DMA

	Memory Layout, Linker-Scripts, Startupcode(Memory Init) and Implementation
	Memory Layout
	Linker Script
	Startup Code
	Implementation
	Check the Build



