CHAPTER 9
TUNED CIRCUITS

based on original chapter in previous edition written by L. G. Dobbie, M.E.
Revised by G. Builder, B.Sc., Ph.D., F. Inst. P.
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SECTION 1: INTRODUCTION

When a violin is tuned, the tensions of its strings are adjusted to permit vibration
at particular frequencies. In radio, when an arrangement of L, G, and R responds
to particular frequencices, it is called a *‘ tuned ” circuit.

In principle, the tuned circuit is similar to a pendulum or violin string, tuning fork,
etc.—it has the property of storing energy in an oscillating (vibrating) state, regularly
changing from kinetic form (magnetic field when current flows through the coil)
to potential form (electric field, when the condenser is charged) and back again at a
frequency called the natural resonant frequency.

FI6. 9.1 In Fig. 9.1 let the condenser C be charged. It will discharge its
energy through the inductance L, causing the current to increase all
the while, until it reaches the maximum when there is no potential
across C. At that instant the energy is all magnetic, and the current
continues, fed by the magnetic field, to build a voltage of reversed
polarity across C. When all the energy has been transferred from L to C,
the voltage across C has its original value, but is reversed in sign, and the current is
diminished to zero. The process then reverses, and repeats itself indefinitely, cycle
after cycle.
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408 DAMPED OSCILLATIONS 9.2

SECTION 2: DAMPED OSCILLATIONS

Were there no loss of energy, each cycle would be the same, but this is never the
case in practice, as the coil must have resistance. The rate at which the energy
decreases is proportional to the energy (remaining) in the circuit.

For a detailed account of damped oscillations, as these periodic changes of decreasing
amplitude are called, reference should be made to standard textbooks relating to the
theory of radio circuits. A list of several such books is given in the accompanying
bibliography.

Here we consider briefly the circuit shown in Fig. 9.2a. Let I, be the maximum
value of the current during a given cycle of the oscillation, and let the time ¢ be meas-
ured from the instant of this maximum ; then the value of the current 7 at any subse-
quent nme is given by the equation

= €% cos wgi; @
where ¢« = r/2L = dampmg factor,
ond w, = _}_ —_ L .
LC 4L?

The quantity f, = w,/2n is called the natural resonant frequency. In the above
formulae L is in henrys, C in farads, r in ohms, w, in radians per second and f, in
cycles per second.

The resonant frequency f, (corresponding to r = 0) of the circuit is defined by

2nf, = w, = V1/LC 2)
The ratio of the natural resonant frequency to the resonant frequency is
Salfo =V ; — 1/(40% 3
whére Q = wT— = —ﬂerL
. Teactance of the coil at resonant frequency
coil resistance ’
This relationship shows that in practice there is little difference between these two
frequencies. Q must, for example, be less than four to make f, differ by 1%, from
fo Q normally exceeds fifty, for which value the two frequencies differ by about
one part in twenty thousand.
If now, in the equation for the current, ¢ is increased by an amount 27/w,, the
period of one cycle, we arrive at the corresponding point in the next cycle. Let i’
denote the current at this point, so that

i = I,,e'“(t+2"/w”). cos wu(t + 20/ wn)

i =

— i€—21rex/w,,

or, /i = € <L, since @ = r/2L @

This gives the ratio of the amplitude of one cycle to that immediately preceding.
Logarithmic decrement, 3, is defined by
3 = mr/w,L = log (i/) &)
and is thus the naperian logarithm of the ratio of the amplitudes of two successive
cycles,

See also Sect. 11 Summary of Formulae.
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SECTION 3 : SERIES RESONANCE

The series impedance z of the circuit in Fig. 9.2a at any frequency (f = o/27)
is given by the expression

z =47 ¥ [oL — (1/wC)]? (6)
Thus if an alternating voltage of frequency f be applied in series with the circuit,
when the value of r is fixed, we see that 2 is least, and hence the current reaches its

maximum, when wl — 1/wC = 0, i.e. when « = 1/A/LC = w,, the resonant
frequency.

It is perhaps surprising that the frequency for maximum current is independent
of the circuit resistance r and that maximum current does not occur when the fre-
quency of the applied voltage is equal to the natural frequency f,,. The state of maxi-
mum current flow is called series resonance.

If E be the r.m.s. value of the applied alternating voltage, the r.m.s. value I of the
current produced in the circuit is clearly
E
1 E_ ™
2 A/t 4 [wl —(l/auCﬂ2
= E/r,when o = 1/A/LC = w, (8)

The voltages across the several parts of the circuit under this condition of
series resonance are (Fig. 9.2a) :

rl = E across the resistance 9)
w,L]l across the inductance (10)
and — (1/w,C)I across the capacitance. (49))

The voltages across the inductance and capacitance are equal and opposite in sign,
thus cancelling each other, and usually they are large compared with the voltage
across the resistance. The voltage across the inductance may be expressed as
(w,L/PE, and therefore ite ratio to the voltage applied in series with the circuit is
w.L/r. This ratio, usually denoted by Q, is the ratio of the reactance of the coil
at resonance to the resistance in series with it, and is called the magnification factor
or quality factor, Thus,
wl 1 /L 1
= r C «,Cr
© may also be called the energy factor and is then defined by
peak energy storage
Q= 2"energy dissipated per cycle
peak energy storage .
= © average power loss

That this is equivalent to w,L/r is shown by
_ o ML _ el
Q=wolpmr ~ 77

a2

(a) Fi1G.9.2 [O)

237

r

It is shown in Chapter 4 Sect. 5(vi) that the power factor is approximately equal
to 1/Q ; when Q is greater than 7 the error is less than 1%,.

See also Sect. 11 Summary of Formulae.

The general treatment of series circuits with L, C and R is given in Chapter 4
Sect. 6(ii).
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SECTION 4: PARALLEL RESONANCE

Let us now examine the result of applying an alternating voltage E across the con-
denser C in the circuit shown in Fig. 9.2b., The current divides between the two
branches, and we find that the (r.m.s.) value of the current in L and r is given by

I = i (13
L \/,.z I wil?
and the r.m.s, value of the current in G by
I, = wCE (14)

Adding the two currents, with due regard to their phase relation, the r.m.s. value of
the ;otal current I is found to be

wl 2 r 2
A g o
When wC = oL/(r? 4+ szz)’ the total current I is in phase with the applied
voltage E, and has its minimum value .
r
I=E a9
This condition is termed ° parallel resonance* ”, as distinct from the * seties
resonance ~ considered earlier. At resonance, the currents in the condenser and coil
are large compared with the current in the external circuit and they are very nearly
opposite in phase.
The value of w at which parallel resonance occurs can be determined from the
equation

0y s L an
\/‘C VIt (P ail

It was pomted out in the previous section that oL /r, the ratio of the reactance of the
coil to the resistance in series with it, is usually greater than 50. Thus, with an error
of about one part in 5000 at Q = wL/r = 50 and corrcspondmgly smaller errors at
larger values of Q, we find that the parallel resonant frequency f, is given by

w, = 2af, ~v 1/V/LC.
This is the same result, to the accuracy indicated above, as that obtained in the series
resonance case.

With a similarly small degree of error we may write the following simple relations
for the currents at resonance. The current in the external circuit (Fig. 9.26)
is given by

r E.Cr

R E—5sR—— & E.0,C?,
I Eorsmr E.»:Ch,

E 1 Ew,C

w
where Q = w,L/r as before. The Current in the inductance and resistance
is very closely equal in value to that in the capacitance,
I~ —I,~ E/oJ .~ — «,CE (19)
and is Q times larger than the current in the external circuit

The formulae given so far hold only when the condenser loss is negligible. In
order to generalize our expressions in a simple manner let us first consider the two
circuits shown in Fig. 9.32 and Fig. 9.3b. At (parallel) resonance for Fig. 9.3a we
have found that the current / in the external circuit is

I~ ECr/L &~ E/Quw,L etc. ;

*Paralle] resonance may be defined either as
(a) the frequency at which the parallel impedance of the circuit is a maximum, or
(b) the frequency at which the equivalent reactance of the complete garallel circuit becomes zero
(i.e. when the impedance has unity power factor and acts as though it were a pure resistance at
the resonant frequency). 'This can dalso be expressed by saying that the parallel circuit has
Z€ro susceptance at the resonant frequency.
For further details see Chapter 4 Sect. 6(iii) and (iv).
Definition (b) is used in this chapter,
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and for Fig. 9.3b, to the same approximation, it is evident that

I~ E/R,.
These two circuits are equivalent at resonance provided we set
R,=L/Cr = Qu,L = Q/w,C = QVL/C (20)

Note that O = R A/ C/L, and that R, is the parallel resistance (across C) equivalent
to the series coil resistance 7.

It has been shown that the circuit Fig. 9.3a with a condenser C having no losses
and an inductance L having series coil resistance r may be replaced by the equivalent
circuit Fig. 9.3b having an ideal tuned circuit LC, without losses, shunted by the re~
sistor. R, having a value given by equation (20). It is obvious that the impedance
of the parallel combination LCR, in Fig. 9.3b at resonance is R,, this being the
““ resonant impedance ” of the circuit. At frequencies other than the resonant fre-
quency, the impedance will be less than the * resonant impedance.”

The values of Q in terms of series coil resistance r and equivalent parallel resistance
R, are grouped below for convenience,

In terms of r: =w;’é——l_—1f
r Lr r
In terms of R,: Q = w.i = w,CR, =R JC

We can now consider the important practical case of the circuit shown in Fig. 9.4,
in which a resistance R appears in shunt with the condenser C. R represents the
effect of all insulation losses in condenser, coil, wiring, switches and valves, together
with the plate or input resistance of the valves.

FIG 93 FiG. 9.4

£3 4 43

Fig, 9.3(a). Parallel resonance with series loss resistance.
Fig. 9.3(b). Parallel resonance with parallel loss resistance.
Fig. 9.4. Parallel resonance with both series and parallel loss resistances.

In the present case we have R in parallel with our equivalent parallel coil resistance
R, of Fig. 9.3b. ‘The resultant parallel resistance at resonance, which we will call
the resonant impedance is, of course,

1
B =1RrRT L
Therefore, the resultant value of Q is
c 1 1
=5/ . R, = —— = (22)
Q \/ P a/RWVLJC + rvC/L  (woL/R) + (r/w.L)

Note that at the resonant frequency the expression 4/ L/C is equal to the reactance

of the inductance and also that of the condenser, i.e.

= VL/C = l/w,C. (23)
See also Sect. 11 Summary of Formulze.

@D
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SECTION 5: GENERAL CASE OF SERIES RESONANCE

Fig. 9.5 shows the general type of series resonant circuit. It is often convenient
to express the effect of the two resistances at resonance as a resultant equivalent
series resistance, v’ say. In the circuit of Fig. 9.3 we saw that the effect of a resistance
r in series with L was equivalent at resonance to that of a resistance L/Cr shunted
across C. By similar reasoning it may be shown in the present case (Fig. 9.5) that

FiG.9.5

Fig. 9.5. Series resonance with losses in

I R inductive and capacitive elements.

the effect of R at resonance is equivalent to that of a resistance of value L/CR in
series with L. The resultant equivalent series resistance r’ is thus equal to
r + (LC/R), and the resultant value of Q is w, L/*".

See also Sect. 11 Summary of Formulae.

SECTION 6 : SELECTIVITY AND GAIN

(5) Single tuned circuit (i) Coupled circuits—ituned secondary (i) Coupled
ctrcuits—tuned primary, tuned secondary (iv) Coupled circuits of equal Q (v)
Coupled circuits of unequal Q.

(i) Single tuned circuit

The currents and voltages, and hence the gain, of single tuned circuits at resonance
are determined by the equivalent series resistance (»’ as defined in Sect. 5) and the
resonant impedance (R, as defined in eqn. 21).

At frequencies other than the resonant frequency, the reactances of the coil and the
condenser no longer balance. In the series circuit the resistance r* becomes an im-
pedance z which is greater than #’. In the parallel circuit the resonant impedance
Rp, becomes an impedance Z which is less than R,

The appropriate ratios of these quanrities determine the selectivity or response
of the circuit, and they are related to Q and f by the following expression :

Ao 4 RD /\/ 2(f f o 2
=_— el = = 24
a2=7"7z2 1+ O0\7, —7 (24)
where 4, is the voltage gain at the resonant frequency f, and A the gain at frequency £.
Note that 4,/4 is the ratio of current at resonance to that at frequency f in the
series case, and the ratio of total current at frequency f to that at the resonant fre-
quency in the parallel case (see below).
The phase angle between the applied voltage and the total current is such that

nlf T

tan = Lo Le
¢ =% Q( 7 (25)
the positive sign pertaining to the series case and the negative sign to the parallel case.
The equation (24) leads to a simple method for determining Q from the response
curve. We see that when Q[(f/f.) — (f./f)] = % 1 the total current will be de-
creased by the factor \/ 2 in the series case (i.e. decreased to 70.79, of the resonance
value), and increased by the same factor in the parallel case. It will be observed that
at either of the frequencies satisfying this condition the phase angle 4 is numerically
equal to 45° astan ¢ = + 1, and that the resistance * or R, is equal to the reactance.
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The condition

Qfife = folf) = % 1 (26)
may be written

flfo = Ffolf = £1/Q; 27
and for values of Q not too low (> 50, say) we have, very closely,

24f ffo 5 & 1/Q 28
where Af, = f — f,.

So

Thus Af,, R &+ Z—Q— (29)

and the current is decreased, or increased, by the factor 4/2 at two frequencies 7,
and f;, one on each side of the resonant frequency f,, determined by
fo b
f1=fo—2—Qst=fo+é£Q (30)

Hence, Q ~ f./(f: — f1) (3D
The frequencies f,, f, and f, may be found experimentally, and hence Q may be
calculated.

At frequencies very different from f,, so that 4,/A4 is greater than about 10,
the equation giving the response is very approximately

Ao/A s QUfffo — folf). (32)
Also, the expression for the phase angle may be written in the alternative forms
tané = + Q(J; /fo ; folf Z' from equation (25)
Y AL XC 5 .

fo 1+ (4fo/f2)
Under thede conditions we see that in the series case
(a) Across the coil :
Voltage at resonance _Lwd, Lfd, Q(l _f_gf (34)
Actual voltage when well off resonance =~ Lwi  Lfi Iz
and (b) Across the condenser :
Voltage at resonance Cui, f?
— =Q 7,2 —-1

Actual voltage when well off resonance  Cw
Similarly, in the parallel case, we have
Impedance at resonance B Q(L _fe (36)
Impedance at frequencies well off resonance = ~\f, f
from which it can be shown that

(a) In the coil :
Current at resonance f

Current at frequency f = fo
and (b) in the condenser :
Current at resonance fo

Current at frequency f [

(35

€0}

(38)

(ii) Coupled circuits—tuned secondary

We consider briefly now two examples of coupled circuits. The first example,
shown in Fig. 9.6 illustrates a typical case of a high frequency transformer with
tuned secondary in a radio receiver.

The symbols to be used are set out below :

g» = mutual conductance of the valve in mhos,

r, = plate resistance of the valve in ohms,

L, = primary inductance in henrys,

L, = secondary inductance in henrys,

M = mumal inductance between L, and L, in henrys,

B = M/VL,L, = coupling factor,

Qs = Lya,/r = 1/rCw,

w, = 2m X resonant frequency of secondary in cycles per second,
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R, woL.Q,; = resonant impedance of secondary in ohms,
e; input voltage,
€, output voltage,
and A = stage voltage gain (amplification).
When the secondary is tuned, its impedance (at w,) is simply 7, and it reflects into
the primary a resistance equal to M*w,%/r.  The primary signal current I, is, there-
fore,

I

Em Vo€
\/Xva + (7'11 + 1"12‘"02/7')_2
where X, is the reactance of the primary.
When the conditions are such that the primary reactance can be neglected, we have

»

(39

Ipmgm-rp-ei/(rat +M2woz/r) (40)
It follows that the secondary current I, is given by
Mo, &m €
b= T N My + (e 0

Hence the induced voltage across L, (and C), that is e, is
Em - Ly, -

= 42
= @/Mwy) + Mwory “n

€, é’m
o _ 4, = 43
O o =T @Me 0 + /Ly “3)
- EmkRpV Li/L, (a8)

1 + k¥Rp/r,) . (Li/Ly)

When 7, is very much greater than «,2M?/r[= k2R ;(L,/L,)] we have simply
I, RS g . €5 (45)
Iy~ gm.e;. Mo,/1, (46)
and e,/e; = Ao ™ gnwoMQy = gm . RRVL,/L, 47

If the inductances L, and L, have the same ratio of diameter to length, or form

factor, and the turns are N, and N, respectively, then V4 L,/L, in the above formulae
may be replaced by N;/N,. The plate resistance r, in parallel with the primary is
reflected as a series resistance M?w,2/r, into the secondary. If the value of this
reflected resistance is greater than say 5%, of 7, its effect should be taken into account
when computing the selectivity of the secondary. This selectivity, then, is deter-
mined by means of the formula

2/r' = A1+ Q. f/f, — fJR (48)
where 17 =7 + M2w,?/rp,
and Qg' = wOL2 = 1

v (1/Q) ¥ (BLiwo/ry)
Note that Q," and »” must not be used when calculating the gain A4,.

FI1G. 9.6

FI1G. 9.7
[ ittt 1 M
] ]
M ;
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o b Lz 2R e Ro Qi o R3 W Lz :ER‘ = ¢
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:
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Fig. 9.6. Amplifier stage using a high frequency transformer with a tuned secondary.
Fig. 9.7. Amplifier stage using a double tuned high frequency transformer.

(iii)y Coupled circuits—tuned primary, tuned secondary

The second example of coupled circuits is shown in Fig. 9.7, This is a typical
high frequency transformer with tuned primary and tuned secondary. Intermediate
frequency transformers in super-heterodyne receivers are usually of this type. Very
thorough discussions of such transformers have been given from the theoretical point
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of view by Aiken (Ref. C2). For the design procedure see Chapter 26 Sect. 4. In
this case the resistance in parallel with the primary at resonance is

L,/Cr, + L/CR, = L,/C,R’, where 1'R" = 1/r, + 1/Ry;
and the resistance of the secondary is L,/ C;R., so that the resistance reflected into
the primary is w,*M?CyRs/L;. The primary current I, is, therefore,

Embi 1

I, = w,C,; .Lx/CxR' T @ 2M2CR, /L, (49)
The secondary current I, can readily be shown to be

I, = (Mw,CR:/L)I,, (50)
and the induced voltage ¢, across Ly and C; to be

e, = Lyw,J, = (MCRy0 N,
Therefore the voltage gain at the resonant frequency, A4,, is given by

€0 gmMa,

& = 4o = Li/R'R:C; + w,2M*Cy/L, ' 6D
This relaton for the gain may also be expressed as
a4, =EnkevIds 52
k2 +1/Q°Q,
or, Aa = gM\/R Rg (53)

BQQ: + 1/(k\V'QQ,
where, as before, 2 = M//L,L,, and Q’, Q, have their usual meaning, i.e. R’/L,w,
and R,/L,w, respectively.

The expression for calculating the selectivity is lengthy and complicated and a
graphical treatment described later is preferable (Sect. 7).

As k is increased from low values, the gain increases until V4 0'Q, = 1, after

which it decreases. This value of & = 1/4/ Q’Q, is known as the critical coupling
factor (k).

(iv) Coupled circuits of equal Q

When the primary and secondary circuits are identical, and the coupling factor is
equal to k., and the plate and grid return resistances are very high, we see that the
voltage gain obtained is exactly half that with a single tuned circuit. The critical
coupling factor in this case, of course, is

k. = 1/Q where Q = Q' = Q,.

For values of k less than k., the response curve (gain versus frequency) has a single
maximum at f,, the resonant frequency of each of the circuits. When k exceeds
the critical value, however, the amplification curve becomes double-humped, i.e.
there are two frequencies of maximum response, and these are separated by equal
amounts above and below f,. The distance between these two peaks increases with
k, and very approximately we find that

(fo = F)/fore VRE —1/Q% (59)
~VE — kg, (55)

when f; and f; are the frequencies for maximum response, i.e. (fs — f1) is the band
width between peaks. ~The amplitude of these two peaks is substantially the same
as the maximum possible gain g.R/2, where R = R, = R,.

Frequently, an approximate formula for band-width is used :

(fe —ffor k (56)
While % largely determines the band-width, the depth of the valley at f. and hence
the uniformity of the response in the pass band of frequencies, is determined by the
relation of Q to k. For a constant value of 2 (above critical coupling)'the dip be-
comes more pronounced as Q is increased, while the frequency separation between
peaks becomes greater ; conversely as Q is decreased the dip becomes less pronounced
and the frequency separation between peaks becomes less. The ratio of the response
at £, to that at the two peaks is found to be 2.b/(1 + b%), where b = k/k..



416 (ivy COUPLED CIRCUITS OF EQUAL Q 9.6

A value for % in the order of 1.5 times critical, i.e. RQ = 1.5, is often used for i-f
amplifiers requiring band pass characteristics. However, the exact value chosen for
RQ depends of course, on the bandwidth requirements.

Further points on the resonance curve can be obtained from the result that the fre-
quency band width between the points on either flank of the resonance curve, at which
the response is equal to the minimum in the * valley”* between the two peaks, is /2
times the peak separation. It can be.shown also that, in general, the gain at any
frequency f is given by

4, R ZRE 2QY 7 (67
7=\/[l—1+kzgz +[1+k2,0.2
where Y = f/f, — f./f.

This expression may well be solved graphically according to a procedure developed
by Beatty (Ref. C7) ; this procedure will be described below.

(v) Coupled circuits of unequal Q

In the general case where Q" and Q, are unequal, the two peaks of maximum re-
sponse do not appear immediately % exceeds the critical value k,. The value of %
at which the two peaks just appear has been defined as the transitional coupling
factor by Aiken (Ref. C2). The value of this coupling factor %, is

ko= A3(1/Q + 1/Q:9. (58)
The band width between peaks is found to be
(fo =S /fo = VE — B2 (59)

This useful resultis discussed in an editorial by G. W. O. Howe (Ref. C5). Further
it has been shown that here, as in the symmetrical case, the band width between the
points on the flanks, level with the minimum response in the *‘ valley ’ between the
peaks, is \/ 2 times the peak separation.

In this case, too, the selectivity curve remains symmetrical as % increases (above
k). The amplitude of the peaks decreases, however, as % increases, and also as the
ratio of R,;/R, (or Ry/R,) increases. Aiken (Ref. C2) gives selectivity curves for the
three cases (i) R; = 10R,, (ii) R; = 50R. and (jiii) R, == 200R, with L, = L, and
C, = C,. Some idea of the magnitude of this decrease in peak amplitude may be
obtained from the following figures taken from Aiken’s curves :

R,/R, = 10 R,/R, = 50 Ry/Rs = 200
k/k, AfAone kik, A/A,p k/k, A/ A gy
3 0.67 7 0.33 15 0.17
6 0.62 15 0.28 20 0.15

In this table 4,,, is the optimum value of the gain, i.e. the gain at resonant frequency
with critical coupling (= g,V R,R:/2).

The gain at f, when k2 > k, is given by [2b/(1 + b2)]4,,;, where b = k/k,, as
in the case of equal Q’s ; as the gain at the peaks is less than 4 ,,; however, the re-
sponse curve is flatter in the present case.

See also Sect. 11 Summary of Formulae.

SECTION 7 : SELECTIVITY—GRAPHICAL METHODS
(1) Single tuned circuit (1) Two identical coupled tumed circuits.
(i) Single tuned circuit

A single tuned circuit in the plate load of a valve has the well-known frequency
response shown in Fig. 9.8. At the resonant frequency, where the reactance is zero
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there occurs the maximum value of the response, and the gain falls away on both
sides. This curve may be computed from eqn. (24), namely
A,/A =414+ QY3
and tan ¢ = + QY, from egn. (25)
where Y = (f/fo - fo/f)-

These formulae, however, lend themselves to a simple graphical treatment as in-
dicated in Fig. 9.9,

The ratio of the gain A4, at resonance to the gain A at any other frequency may be
plotted as a vector quantity, OP in Fig. 9.9, having both magnitude and phase. At
resonance, when the frequency is f,, it becomes OP, in Fig. 9.9, where OP, is of unit
length since 4 ,/A is then equal to unity. At any other frequency £, the ratio 4,/4
is then given by OP where the point P is fixed by the relation

length PP = O(f/fo —JSo/f)-
The phase angle is the angle P ,OP.
Near resonance, when f is nearly equal to f,, this may be approximated by
length P P ~ 2Q4f/f, where 4f = f — f,
so that Af measures the amount of detuning. Thus, near resonance, the length P ,P
is nearly proportional to the amount of detuning.
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(ii) Two identical coupled tuned circuits
It is found that when two identical tuned circuits are coupled, either by some com-~
mon reactance in the circuit or by mutual inductance, the locus of the point P is the

parabola

¥t = (y 4+ D4/ + R2Q%.
This parabola is shown in Fig. 9.10 where OP, again represents 4,. To use this
graph to determine the gain, we first compute the quantity OX = 20V /(1 + %2Q%,
then from X draw a line perpendicular to OX to cut the curve at P. The line OP
represents the gain (4,/4) while P ,OP is the phase angle.

The form of the parabola depends upon the magnitude of Q. It is found that
when OT < 4/2, corresponding to kQ > 1, there are two frequencies of maximum
gain as shown by the two vectors marked OP’ in Fig. 9.10. When the attenuation
is plotted against 4f,, as in Fig. 9.11, it becomes clear that a much flatter top may be
obtained by using coupled pairs of circuits than by using single tuned circuits. Fig.
9.11 serves also to show the variation in band width with variations of OT (i.e. changes
of Q). It will be seen that the shape of the skirt of the curve is practically inde-~
pendent of the value of 2Q.

See also Sect. 11 Summary of Formulae.
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SECTION 8 : COUPLING OF CIRCUITS

() Mutual inductive coupling (i) Miscellaneous methads of coupling  (iii) Complex
coupling.

(i) Mutual inductive coupling

As already emphasized, when the mutual inductive coupling between two tuned
circuits is increased above a critical value, &, two peaks appear in the response curve,
symmetrically situated with regard to the resonant frequency f,. No other types of
coupling possess this useful property. Where optimum gain and selectivity are
required it can be shown that these will be obtained with a coupling about 80 per cent
of the critical value—(Ref. C45). Greater selectivity can be achieved with less coup-
ling than this value while increased gain will result from tighter coupling.

When the highest possible selectivity without serious loss of gain is desired
from a pair of tuned coupled circuits, a practical compromise is to reduce coupling
to 0.5 k. at which value the gain is 0.8 times the optimum. The selectivity then
approaches that which would be obtained by separating the two circuits with a valve
(assuming this be done without altering Q' and Q,). For other relationships between
gain and selectivity, refer to Reed (Ref. Cl) or to Aiken (Ref. C2).

(i) Miscellanieous methods of coupling

There are other types of coupling which may be used between tuned circuits as
alternatives to mutual inductance. Four such circuits are shown in Figs. 9.12, 9.13,
9.14 and 9,15. High impedance or “ top "’ coupling is used in the circuits shown
in Figures 9.12 and 9.13 and low impedance, or * bottom ” coupling, is used in the
circuits of Figures 9.14 and 9.15

FiG.9.12 Cen FIG.9.43

174

LAY
Cl;k Ly Lg ;Cz

c L)L ACCe
Fig. 9.12. High impe- Fig, 9.13. High impe- Fig. 9.14. Low
dance capacitive coup- dance inductive coup- impedance capa-

ling. ling. citive  coupling.

A fifth type is link coupling shown in Fig. 9.16A, in which a relatively small
coupling inductance L,’ is coupled to L, and similarly L.’ to L, and L, is connected
directly in series with L,’. The behaviour of this circuit is the same as that to be
described for Fig. 9.15.

-*'The coupling between two circuits, from a general point of view, is the relation

between the possible rate of transfer of energy and the stored energy of the circuits »
(Ref. C5, Sept. 1932). ’

From this definition it follows that for low impedance coupling
X Am
k= Ry
VX + XX, + X VXX,
and that for high impedance coupling
- X, X, ~ VXX,
e- & F X)X + X X, TpenXiandX, <X,

where X  is the coupling reactance and X, and X, are the effective reactances of either
the coils or the condensers* with which the circuits are tuned.

when X; and X, > X,

*X, and X must be of the same * kind ** (i.e. either inductive or capacitive) as X -
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The effective reactances X, and X, in the high impedance case are calculated by
regarding the actual tuning reactances (L, w, and L,w, or 1/C,w, and 1/Cyw,) as
being in parallel with the coupling reactance X,, ; while in the low impedance case,
X, and X, are calculated by taking X, to be in series with the actual tuning reactances.

F16.9.15 FIG.9.16A
' Ca -
L L2
C, it m Ca
L Lo 3 Y+Uz=lm -~
¢, [
M, Mg
Ka S0 K= %‘.’_ Approx
Tilz Umftils
Fig. 9.15. Low
impedance induc- Fig. 9.16A. Link coupling.

tive coupling.

Mutual inductive coupling belongs to the low impedance coupling group ;- here
Xm=Mwy X, = Liwgy Xy = Lyw, } so that B = M/\/L,L,, in agreement with
our previous definition in this particular case.

For a general analysis of the calculation of coupling coefficients see Chapter 26
Sect. 4(vii). ,

Application of the formulae given above to the circuits shown in Figures 9.12, 9.13,
9.14, 9.15 and 9.16A give the following results for the coefficient of coupling A :

Circuit k (exact) | k (approximate)
Fig. 9.12 Cn Cn
~———, when C, C,, C,
V(C, + C.XC: + Cu) oo <G
Fig. 9.13 L,L, WV L.L,, when L L. L
«/(L, + L)Ly + L) L, m > o b
_ Fig. 9.14 C.C, V' C,Cs, hen G, > (Cu G
(C, + C.XC:s + Cm) Cp R Em » b
Fig. 9.15 L L,
~—— , when L Ly, L.
VT Lol + Lo Vi, e ke < G I
Fig. 9.16A MM,

MMs_ yhen individual coup-

M,? M,? LV LiL, lings are small,
LmJ(Ll—ﬁ)(L=—zf) v
or

kik, kyka, when individual coup-
VI = B0 — k) lings are small,
where L, = L, + Ly,
M.
kl = -——A&—-’ and &, = .
VLiLn VLLn

When the coupling increases above %, for the tuned circuits shown in Figs, 9.12,
9.13, 9.14, 9.15 and 9.16A, the two peaks in the response curve of the secondary move
at unequal rates from the original resonant frequency (determined by L,C w,* =
L,Cyw,® = 1). For the first four of these examples in the special case L, = L,,
C, = G,, and for the fifth generaily, one peak remains approximately stationary



420 (iiiy COMPLEX COUPLING 9.8

(at w,), while the other peak moves to one side : the shift of the semi-stationary
peak depends upon the series resistances of the two circuits and decreases with them,
being zero in the ideal case r; = r, = 0 : the second peak is lower in frequency in
Figs. 9.12 and 9.15, but higher in Figs. 9.13, 9.14 and 9.16A. The selectivity and
bandwidth (between peaks) may be calculated from the formulae (57) and (55) re-
spectively—already quoted for transformer coupling—provided the appropriate value
of k is used. It is theoretically possible, although seldom convenient, to combine
two types of coupling in equal amounts to give symmetrical separation of the two peaks.
Normally, when this is required simple mutual inductive coupling is used.

It may be shown that for all types of coupling the centre frequency is determined
by the effective reactances obtained by taking the coupling reactance into account.
Thus, for cxample, for Fig. 9.15, (L; + L)Csw2 = 1, where w, corresponds to
the frequency of the minimum between the peaks; while for Fig. 9.16A,
Ly — M*/L,)Chw,? = 1.

(iif) Complex coupling

With any single type of coupling the gain and the band width vary with the fre-
quency. Clearly, then, a single type of coupling cannot give satisfactory performance
in the tuned radio frequency stages of a receiver where the frequency range is two or
three to one. From the formulae already given it can be seen that for transformer
coupling both the gain and the band width are approximately proportional to the
frequency (assuming that Q, and Q, do not vary greatly) ; for other types of simple
coupling # depends upon the square of the frequency, and hence band width and gain
are functions of frequency.

C C
Iy e .
1C LAY
L Miel. -~ ~
) 2 1 <, TC, ¢l L " L d¢Ca
c, Cf‘ L, La o~ 1 1 T
) TC,“ TNCe
FIG. 9.168 FIG, 9,16 -FIG. 9.160

Fig. 9.16B. Constant bandwidth using inductive and capacitive coupling.
Fig. 9.16C. Gonstant bandwidith using capacitive coupling.
Fig. 9.16D. Complex coupling with mutual inductive and top capacitive coupling.

In practice, a reasonably constant band width over the tuning range can be obtained
by a suitable combination of the types of coupling already described. Two common
arrangements are shown in Figs. 9.16B and 9.16C.

For the circuit shown in Fig, 0.16B the coupling reactance X,, = oM 1 1/C,.,
while for that shown in the Fig. 9.16C it is

L Cu
oC; ' wCCy
The corresponding coupling factors are respectively
M + 1/w?C,
kR —————— k < 0.05
VLL ( )s
: Cy v/ C.C.
and kA = 1
\/CJ,Cz -+ C, (k < 0.05).

Aiken (Ref. C2) gives a practical design procedure for obtaining the values of the com-
ponents which give the best average results over the whole tuning range.

When % has been determined, the band width and selectivity may be calculated
from eqns. (55) and (57) given earlier. Also, for circuits with the same values of Q,
a suitable value of % is given by 2Q = 0.5—as in the case of transformer coupling—
when the greatest possible selectivity without notable loss of gain is desired.
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In Fig. 9.16D there is a combination of mutual inductive coupling and top capacitive
coupling, as commonly used in aerial and r-f coils, and, effectively, in i-f transformers.
The analysis is given in Chapter 26 Sect. 4 (vii).

See also Sect. 11 Summary of Formulae.

SECTION 9 : RESPONSE OF IDENTICAL AMPLIFIER STAGES
IN CASCADE

When two or more amplifier stages having identical circuits and values are con-
nected in cascade, the overall gain is the product of the gains, and the resultant selec-
tivity is the product of the selectivities of all the stages. For »n stages, therefore, the
total gain is 4," ; the selectivity for single tuned circuits is

A/4) = (1 + Q*YyH—n/s,
while for coupled pairs

(A ) [(1 ngz )2 ZQY ) ]"n/z
1 + kaQﬁ 1 + k2Q2

When k?Q? is very small, the selectivity of # coupled pairs is almost the same as
that of 27 single tuned circuits, Thus there is a limit to the improvement of selec-
tivity obtained by reduction of the coupling of coupled pairs of tuned circuits. When
it is possible to increase Q, there is a corresponding improvement in selectivity, The
tendency with several stages of single tuned circuits is to produce a very sharp peak
at the centre frequency, which may seriously attenuate the higher audio frequencies
of a modulated signal. Conditions are much better with coupled pairs, because two
peaks with small separationi appear as Q is increased, if the coupling is not too close.
Difficulties occur when Q is increased so much that a deep * valley »’ or trough occurs
between the peaks. The practical limit is usually a ratio of 1 : 1.5 overall gain be-
tween the response at the bottom of the valley and that at the two peaks. It is then
good practice to add another stage employing a single tuned circuit which substan-
tially removes the * valley » of the preceding circuits. The procedure by which the
best results may be obtained is described by Ho-Shou Loh (Ref. C13). In this
manner a nearly flat response may be obtained over a range of frequencies 10 Kc/s
to 20 Kc/s wide, with very sharp discrimination against frequencies 20 Kc/s or more
away from the centre frequency, 450 to 460 Kc/s.

See also Sect. 11 Summary of Formulae.

SECTION 10 : UNIVERSAL SELECTIVITY CURVES

In Figs. 9.17 and 9.18 are shown universal selectivity curves taken from Maynard’s
data (Ref. D2). These curves apply to a pair of coupled tuned circuits, and are not
restricted to circuits of equal Q. Fig. 9.17 gives the gain at various frequencies off
the centre frequency in terms of the gain at the centre frequency, for various co-
efficients of coupling ; the ordinate scale D is proportional to QA4f,/f,. The Q shown
in Figs. 9.17 and 9.18 is Q, for all expressions containing a and b.

The phase difference between the currents in the primary and secondary circuits
can readily be obtained from Fig. 9.18. There we have plotted an angle 6 as a func-
tion of D for various coefficients of coupling, and the phase shift is ¢ + 90°, the
positive sign being taken when the coupling is negative, and the negative sign when
k is positive.

The parameter b, which is a measure of the coupling, becomes simply %2/%. when
the tuned circuits have equal values of Q ; also, in this case, the variable D becomes
simply 2Q4f,/f,. For convenience, scales have been added to give 4,/4 in terms of
Q4f, for a number of values of f, for two identical coupled circuits.

In deriving the curves of Figs. 9.17 and 9.18 it was assumed that Q and % do not
vary appreciably over the range considered, thus giving symmetrical selectivity curves ;
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and that Q is reasonably high o2 2 4 8 2 1o 2 4
(>> 25 say). Very low values of o X = zoéz:(féf;g,zz:: {I(?: 7 ;,4
Q require 2 different curve for g7 S ba",wﬁ
each value, but the effect is only 93 e \ JUHERE 8- Qjf0,-g5+
to alter slightly the skirts of the \ \ FOR QmQp, D=2aaff]
curves without alfering appreci- s \ ‘\ b= Kfke 6
ably the main portions. N \\ 3\\ \ ISIN([LE o
As an illustration of the use of (.M): \ \\ }\ E’?cfm?u\lr——"i .
Fig. 9.17 consider-the example “A/$ \“t\ ooy ;\\ :v.oil 5
Jo = 1000 Kc/s, Q; = Q, = 200, ] N, — =t e k]
k/k. = 2 = b: we see that the © \\\\ \\Q\ 6\&" -3
peak occurs at Q4f, = 800, i.e. \\\ \&’s ™ 2
dfy = 4 Kc/s, and that the gain \\\\ 6«,4:’3 "N
in the valley compared with the " R Lo X 22
gain at the peak — 0.8; these 50 N> <34
results agree well with those £ DN 3
calculated from the formulae -3 ' i = 53
100g 2 4 s D 8 10 2 14

already given, namely FIG. 817  UNIVERSAL SELECTIVITY CURVES FOR

TWO COUPLED CIRCUITS )

Band width is: fA/k? — k. ~s 8.6 Kc/s.

Ratio of gain in valley to that at peak is :

: 2k/k, _ 2b 4

1+ (k/E) 1 +b  5°

Phase change at 4f, = (+)'4 Kc/s : (from Fig. 9.18) phase change ~ 20 4+ 90°.

In conglusion, we give the selectivity curves of Fig. 9.19 to illustrate some of our
remarks in preceding sections. These curves have been derived from those of
Fig. 9.17, but here the abscissa is 4,,,/4, where A,,, is the gain at the centre fre-
quency where k = k..

These curves are for the case of two identical coupled circuits ; they show how the
maximum gain, band width and depth of the valley between peaks vary with the
ratio k/k..

In all expressions using g, the Q mentioned is the secondary Q, namely Q,.

1 RPN 1 1 [ 1] o°
T P=2a(a./,). 2a/ (+a)_| i 180
b2= [(Zng"‘—é:-a) 2]/ (+a)2 i
| la= a,/az | —] |H|, 150°

11 2D | ] I
TAN = —<2 R
L= b=0Q:22-. ~fb=2:0
} g';rl Da‘l‘ba =05 b=2e45 IZ\OO
PHASE CHANGE b=0-7h_ b3+ 0
=281t90°0R & | b=l0 b=4-0|{
b4k {1190
b=l73. // Z [l <TAN 8
y ~FT
2 ONE—{-- 60°
// “ /TUNED'
7’ CIRCUIT|
/l/ 1// 300
A Lo
===/é 2/
00

0-04 ol 0203 050710 ) 2 3 4567810
FIG.9-18 UNIVERSAL PHASE SHIFT CURVES FO
TWO COUPLED CIRCUITS .
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SECTION 11: SUMMARY OF FORMULAE FOR TUNED
CIRCUITS
(1) NOMENCLATURE

L = inductance (in henrys unless otherwise stated)
C = capacitance (in farads unless otherwise stated)
fo = resonant frequency (in cycles per second unless otherwise stated)
f. = natural resonant frequency (in cycles per second unless otherwise stated)
f = frequency (in cycles/sec. unless otherwise stated)
Af, = f — f, (in cycles/sec.)
Y = (fifo — fo/)
7 = 3.1416 approximately
k = coefficient of coupling
w = 21f, w, = 2nf, w, = 27f, radians per second
r = series resistance (in ohms)
» = resistance of a series resonant circuit at resonance (in ohms)
R = shunt resistance (in ohms)
R, = effective shunt resistance of a parallel resonant circuit at resonance when
R = ¢ (in ohms)
Rp, = resonant impedance (in ohms)
e = voltage across the circuit at a time ¢
E = initial voltage of charged condenser
€ = 2.718 (¢ is the base of Naperian Logarithms)
t = time (in seconds)
« = damping factor
8 = logarithmic decrement
A = wavelength in metres
i = current at frequency f (in amperes)
i, = current at resonant frequency f,
A = gain at frequency f
A, = gain at frequency f,

magnification factor.

FIG.9.19

e 3 ke
30 g
“}30 L
x. % .
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abk

Selectivity Curves for Two Identical Coupled Cirewits ,
Showing the Variation in Maximum Gain,
Band Width ond Depth of Valley with K/Kc
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(2) NATURAL RESONANT FREQUENCY (f,)

Exact formula

—_ l _lw_ — Ii 1 d (¢))
Jo = 2on] LC — apz CSvcles per secon
Approximate formula for use when 7 is small compared with 2\/ L/C:—
1
fn%fa':z"mc/s- (2)
For numerical use this may be put in the form
159 200 L. .
fn f, = —=—=2c/s, where L is in microhenrys (3)
VLC and . C is in microfarads ;
159 200 s .
or f.~ f, = ——=XKc/s, where L is in microhenrys (4)
\/LC and C is in micromicrofarads.
(3) WAVELENGTH (&)
Wavelength (in metres) — 1884V LC, (5)
where L is in microhenrys and C is in microfarads.
Wavelength X frequency = 2.9979 X 10® metres per second (6)

A 3 X 10% metres per second.
Note : Equations (5) and (6) are based on the velocity of electromagnetic radiation
in a vacuum as determined by Dr. Essen and others in 1951 (see Ref. E1).
300 000 300

Wavelength ~ frequency in Kc/s ~ frequency in Mc/s &
(4) DAMPED OSCILLATIONS
e = Ee™™ cos wyt, where o = r/2L (damping factor) ®
8 = r/2f,L (logarithmic decrement) 9)
(5) SERIES RESONANCE
L, C,and v, : L, Candf,:
For resonance For resonance (10)
LCw,® =1 2nf,L = 1/2nf,C ohms
w,l =1/w,C ohms 1
LC ~39.48f 1 (henrys X farads)
2.533 x 10
w, = 1/4/LC radians/second or LC = N pH X uF
wl, = \/ L/C ohms where L is in microhenrys
w,C = 4/ C/L mhos. and C is in microfarads.
Q = wL/r = 1/r'Cw, (€3))

where 7’ is the effective series resistance at resonance,
ie. r =r+4+ L/CR

where r is the series resistance

and R the parallel resistance.

o wely _ !
Therefore Q = r+ L/CR r/w, + 1/RCw,
1 1

(12)

w,Cr + 1/RCa, _ 7/C/L + VL/C/R as

When L/CR< r: Q& w,l/ra 1/w,Cr. 14)

Magnification factor (Q): Ratio of the voltage across either reactance to the
voltage across the circuit.

(6) PARALLEL RESONANCE
1 1 1

TVIC VI frjaglr - vIC 5

At resonance, w,
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Q = Rp/w,L = Rpw,C, (16)
where R, the resonant impedance, is the effective shunt resistance of the circuit at
resonance,
and 1/R; = 1/R + Cr/L.

Therefore Q =

— ——— etc., as in (12), (13) above.
™/C/L +VL/C/R (42, (2
When R is infinite (i.e. no shunt resistance),

Ry =R,=L/Cr=0/w,C = w,LQ = Q% a7
Magnification factor
Ratio of total circulating current to input current = Q (18)

(7) SELECTIVITY
(a) Series Resonant Circuit

iofi = Ao/A = V1 + Q*(f/fo —fo/N)? = V1 + QY2 19)
2 + 4f./f,
tan¢ = QY = Qdfo/fo. T4 af./f. (20

1 lags behind 7, when f > f,, and leads ¢, when f < f,.
When A4f,/f, is small,

/i V1 + 40%Af Jf )% (21)

and tan ¢ A 2Q4f,/f o (22)

When i,/i is large, /i == QY. (23)
(b) Parallel Resonant Circuit

A,JA = Rp/Z = ifi, =1 + QY? (24)

tan ¢ = — QY; (25)

where 7 and 7, are the total currents ;
1 leads 7, when f >- f, and lags behind 7, when f < f,.

When Af,/f,<€ 1,i/i, V1 + 40%4f 2/f,2 (26)
and tan ¢ &~ — 2 Q4f./f,. (27
When i/i, > 1,i/i, ~ QY. (28)

(8) R-F TRANSFORMER, UNTUNED PRIMARY, TUNED SECONDARY
When the primary impedance can be neglected,
gm _ gm
Mo 1 L L kL (29)
7L, MO, kRD L] + L2

The gain may be expressed in a number of alternatxve forms, for example,

Gain 4, =

4 = pow MQ, - poMQ,
T (w M)2Q, 4ot wonz (30)
ry + Twll, Ty

where r is the series resistance of the secondary.

In the special case where w,2M?/r < r,, we have

Aawgmwme (31)

Selectivity

To determine selectivity, the effect of the resistance reflected into the secondary
should be taken into account when its value w,2M2%/r, > 59, of r. The effective
series resistance »’ is r + w,2M?/r, ; so that the effective value of Q,, Q,” say, is

1

Q. = w,L,/r = T—;;—“ . (32)
g, 'y, el
The selectivity is then obtained from
A, /A = V1 F Q.2Y2, (33)
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(9) R.F., TRANSFORMER, TUNED PRIMARY, TUNED SECONDARY
Gain
The gain at resonance (A,) is
4, — —&nVRR, — (39)
/OO, 4 e
VQ Q? + k'\/Q’Qg
where 1/R" = 1/r, + 1/Ryand 1/Q" = Lyw,/R’ = w,Ly/r, + 1/Q,.
Maximum gain occurs when &2 = &, = 1 /x/ Q’Q,, the critical coupling co-
efficient, and is given by
A, (max) = g.\/ R'R;/2. (35)
Also, when & = k./2, the value of 4, is approximately 0.8 of 4, (max.).
Identical circvits (L; = Ly, C;, =Cp, R =R, =R, Q' =0, = Q)
Critical Coupling : %, = 1/0. (36)
Maximum gain (at resonance) = g,R/2. 37
= half gain of a single tuned circuit.
Band width between peaks (f, and f,),

(fo =~ f)/fo = VR — k2 (38)
Selectivity

Qzy? 2 2QY 2
A./4 = \/[1 1+ QR + |31 T Q2 (39)

Gain at peaks, f, and f;, is very closely equal to the optimum value 4, (max.).
Circuits of unequal Q
Transitional coupling factor, k,, is

B, = VE1/Q% + 1/Q%). (40)
Band width between peaks is

(fa = f)lfo =V R — k2 ) (41
Selectivity

I _ QY 1 2y 00, 12

Len [ 1 - 12 o [1 2V90 | 2)
When %%Q% > 1 and 4f,/f, < 1,

A /A A1 — 84,2 /f & (43)

(10) COUPLING COEFFICIENTS
High impedance coupling*

Cn
kRS~ for capacitive coupling (Fig. 9.12) (44)
VGG,
L,L
- ‘LL—‘— for inductive coupling (Fig., 9.13) (45)

m
where C,, = coupling capacitance and L,, = coupling inductance.
Low impedance coupling*

C,C.
Ery v cl * for capacitive coupling (Fig. 5.14) (46)
for inductive coupling (Fig. 9.15) 47
\/ L, .
where C, = coupling capacitance and L, = coupling inductance.

Link couplmg*

L. \/ (Fig. 9.16A), (48)

where M, = mutual inductance between L, and L,
and M, = mutual inductance between L, and L,,.

* For exact values see table in Section 8.
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SECTION 12 : REFERENCES

(A) BOOKS DEALING WITH RADIO TUNED CIRCUIT THEORY

Al. McIlwain, K., and J. G. Brainerd, “ High Frequency Altcrnating Currents *> (John Wiley and
Sons Inc,, New York, Chapman and Hall Ltd., London, 1931).

A2, g%r;well, G. P. ** Principles of Electricity and Magnetism” (McGraw-Hill, New York and London,

A3, ’3I‘edrm.gn, 11;4 % “ Radio Engineering” (McGraw-Hill Book Company In¢., New York and London,
rd ed. . ]

A4, Bveritt, W. L. * Communication Engineering ”* (McGraw-Hill Book Company Inc., New York
and London 2nd ed..1937).

A5, Nilson, A, R,, and J. L. Hornung, ‘“ Practical Radio Communication ** (McGraw-Hill Book Com«
pany Inc,, New York and London, 2nd ed. 1943).

A6. Henney, K. “ Principles of Radio * (Tohn Wiley and Sons Inc., New York, 4th edit. 1942).

A7, gl;%ow, R. 8. *“Principles of Radio Engineering’’ (McGraw-Hill Book Co., New York and London,

A8, Henney, K. “ Radio Engineering Handbook ** (McGraw-Hill Book Company Inc., New York
and London, 4th ed. 1950).

A9, ¢ Admiralty Handbook of Wireless Telegraphy * (FHis Majesty’s Stationery Office, London).

Al0. Sturley, K. R, “ Radio Receiver Design *> (Chapman and Hall Ltd., London, 1943) Part 1.

All.LTcaman,lI;;})Z. “ Radio Engineers’ Handbook ” (McGraw-Hill Book Company, New York and

ondon, 5 .

Al2. Reich, H. J. ““ Theory and Applications of Electron Tubes ”” (McGraw-Hill Book Company,
New York and London, 1944).

Al3. Sandeman, E. K. “Radio Engincering » (Chapman and Hall Ltd., London, 1947).

A14.1§Zglsby, V. G. *“ The Theory and Design of Inductance Coils > (Macdonald and Co., London,

Al5, « Rlc'fzrelxicge Data for Radio Engineers*’ (Federal Telephone and Radio Corp. 3rd ed. 1949)
pp. 114-129. :

(B) REFERENCES TO THE THEORY OF RADIO FREQUENCY SINGLE TUNED
CIRCUITS AND COUPLINGS

Bl. Reed, M. “ The design of high frequency transformers ”” E.W. and W.E. 8.94 (July 1931) 349.

B2. Wheeler, H. A, and W. A. MacDonald, * The theory and operation of tuned radio frequency
igl;f;msgo Zystems ** Proc. LR.E. 19.5 (May 1931) 738 and discussion by L. A. Hazeltine 19.5 (May

B3. ygeelcr, H. A, “ Image suppression in superheterodyne receivers >’ Proc. LR.E. 23.6 (June 1935),

B4. Bayly, B. de F. ‘ Selectivity a simplified mathematical treatment ”” Proc. LR.E. 19.5 (May 1931) 873.
BS5. Purington, E. S. “ Single- and coupled-circuit systems ”* Proc. I.R.E. 18.6 (June 1930) 983.
6. ?gg%:,s\;s G. ““ A mathematical study of radio frequency amplification > Proc. I.R.E. 15.6 (June

B7. Callendar, M. V. * Problems in selective reception *’ Proc. I.R.E. 20,9 (Sept. 1932) 1427.

BS8. Takamura Satoru, * Radio receiver characteristics related to the sideband coefficient of the re-
sonance cirguit > Proc. I.LR.E. 20.11 (Nov. 1932) 1774.

B9. Sandeman, E. K.  Generalised characteristics of linear networks >’ W.E. 8.159 (Dec. 1936) 637.

B10. 1195;§§1t_;,zsw L. “ Output networks for radio frequency power amplifiers > Proc. LR.E. 19.5 (May

Bl1. Walker, I.. E. Q. “ A note on the design of series and parallel resonant circuits >> Marconi Review
No. 63 (Dec. 1936) 7. )

B12. Hughes, D. H. * The design of band-spread tuned circuits for broadcast receivers > Jour. LE.E.
93, Part IIT (March 1946) 87. i

B13. Najork, J. “ Simple L and C Calculations ” Q.S.T. 31.9 (Sept. 1947) 31.

B14. Design Data (15) * Link coupling,” W.W. 53.8 (Aug. 1947) 291,

B15. Hudson, A, C. “ Efficiency of inductive coupling ” Elect. 20.12 (Dec. 1947) 138,

Bi16. ¢ Cathode Ray,” “ Transformers, obvious and otherwise,” W.W. 53.10 (Oct. 1947) 388.

B17. Rehfisch, T. J. “Resonance : an_experimental demonstration of series and parallel resonant
circuits for radio training classes,” Electronic Eng. 17.197 (July 1944) 76.

B18. McComb, C. T., and A. P. Green, “ Single inductor coupling networks > Elect. 17.9 (Sept. 1944)

132,
B19. gilzar?g, S. “ Impulse excitation of a cascade of series tuned circuits ** Proc. LR.E. 32.12 (Dec.
1

B20. Amos, S. W. “ Wavetraps—modern applications of a well-tried device ** W.W. 51.2 (Feb. 1945) 43,
B21. Haworth, J. E. “ The tapped inductor circuit” Electronic Eng. 18.223 (Sept, 1946) 284.

B22. Reed, M. B. ““ Frequency response of parallel resonant circuit > Elect. 14.8 (Aug. 1941) 43.
B23. Brunetti, C., and E. Weiss “ Theory and application of resistance tuning’’ Proc. LR.E. 29.6
(June 1941) 333, . i
B24. Schade, O. H. * Radio~frequency~operated high~voltage squlx_es for cathode-ray tubes ** (gives

summary of theory of coupled circuits) Proc. LR.E. 31.4 (April 1943) 158.
B25. Blow, T. C. ‘ Mutual inductance of concentric coils >’ Elect. 19.11 (Nov. 1946) 138.
B26. Tucker, D. G. “ The transient response of a tuned circuit ” Electronic Eng. 18.226 (Dec. 1946) 379.
B27. Buil)der, G. “'The graphical solution of simple parallel-tuned circuits ” Radio Eng. 16.8 (Aug.
1944) 20.

(C) REFERENCES TO THE THEORY OF TUNED COUPLED CIRCUITS

C1. Reed, M. “The design of high frequency transformers >’ E.W. and W.E. 8.94 (July 1931) 349.

C2. Aiken, C. B. “ Two-mesh tuned coupled circuit filters ” Proc. LR.E. 25.2 (Feb. 1937) 230 and
errata 26.6 (June 1937) 672. K .

C3. Scheer, F. H. “ Notes on intermediate-frequency transformer design” Proc. LR.E. 23.12 (Dec.
1935) 1483.

C4. Bligh), N. R. “The design of the band pass filter ” W.E. and E.W. 9.101 (Feb. 1932) 61.

Cs. How)e, G. W. O., Editorials W.E. 14.165 (June 1937) 289 ; 14.166 (July 1937) 348 ; 9.108 (Sept.
1932) 486.



428 REFERENCES 9.12

C6. Buffery, G. H. “ Resistance in band pass filters >* W.E. 9,108 (Sept. 1932) 504.

C7. Beatty, R. T. “ Two element band pass filters »* W.E. 9,109 (Oct. 1932) 546.

C8. OQatley, C. W. “ The theory of band~pass filters for radio receivers > W.E. 9.110 (Nov. 1932) 608.

C9. Wheeler, H. A., and ]. K. Johnson “ High fidelity receivers with expanding selectors ** Proc. I.R.E.
23.6 (June 1935) 595.

Cl10. Cockm%, W. T. *“ Varigble selectivity and the if. amplifier ” W.E. 13,150 (March 1936) 119;
13.151 (April 1936) 179 ; 13.152 (May 1936) 237,

C11. Reed, M. “ The analysis and design of a chain of resonant circuits * W.E. 9.104 (May 1932) 259 ;
9,105 (June 1932) 320. i . i

C12. Baranovsky, C., and A. Jenkins, “ A graphical design of an intermediate frequency transformer
with variable selectivity > Proc. LR.E. 25.3 (March 1937} 340.

C13. Loh, Ho=Shou, “ On single and coupled circuits having constant response band characteristics **
Proc. LR.E. 26.4 (April 1938) 469 and errata 12 (Dec. 1938) 1430.

C14. Christopher, A, J. * Transformer coupling circuits for high frequency amplifiers ”” B.S.T.].
11 (Oct. 1932) 608.

15. “Tuned impedance of i.f. transformers » (nomogram) Comm. 18.2 (Feb. 1938) 12,

C16. Roberts, W, Van B, “ Variable link coupling ” Q.S.T. 21.5 (May 1937) 27.

C17. “ A generalised theory of coupled circuits > A.R,T.S. and P. No. 73 (May 1939).

C18. Landon, V. D. “ The band-pass—Ilow=-pass analogy >’ Proc. LR.E. 24.12 (Dec. 1936) 1582.

C19. N3%ChOd, C. P. *“ Nomograms for the design of band-pass r-f circuits >* Radio Eng. 16,12 (Dec.

19 .

C20. Erickson, C. V. ““ A graphical presentation of band-pass characteristics * Radio Eng. 17.3 (March
1937) 12 5 17.4 (April 1937) 13, Also see 17.6 (June 1937) 19.

C21. Dudley, H. “A simplified theory of filter selectivity ” Comm. 17.10 (Oct. 1937) 12.

C22. Everitt, W. L. “ Coupling networks >’ Comm. 18.9 (Sept. 1938) 12; 18.10 (Oct. 1948) 12.

C23. Clifford, F. G. “ The design of tuned transformers > Electronic Eng. Part 1, 19.229 (March 1947)
83 ; Part 2, 19,230 (April 1947) 117.

C24. Dishal, M. “Exact design and analysis of double and triple-tuned band-pass amplifiers,” Proc.
LR.E. 35.6 (June 1947) 606.

C25. Tellegen, B. D. H. “ Coupled circuits > Philips Research Reports 2.1 (Feb. 1947) 1.

C26. Rudd, 1. B. “ Theory and design of radio-frequency transformers >’ A.W.A. Tec. Rev. 6.4 (1944)
193 with bibliography. .

C27. “ Theory and design of radio frequency transformers,” A.R.T.S. and P. Bulletin (1) No. 134
(ist May, 1944); (2) No. 135 (12th June, 1944).

C28. Editorial “ Coupled circuits ** W.E. 21.245 (Feb, 1944) 53,

C29. Sturley, K. R. ““ Expression for the voltagps across the primary and secondary of two tuned circuits
(C}?ulglel%t;}y) ;nzutual inductance,” Appendix 1 to article “ The phase discriminator > W.E, 21.245

€D. . - -

C30._Sandeman, E. K. * Coupling circuits as band-pass filters >> W.E. Part (i) 18.216 (Sept. 1941) 361 ;
Part (ii) 18.217 (Oct. 1941) 406 ; Part (iii) 18.218 (Nov, 1941) 450 ; Part (iv) 18.219 (Dec. 1941) 492.

C31. Korman, N. I. “Coupled resonant circuits for transmitters,” Proc, LR.E. 31.1 (Jan. 1943) 28,

C32. Sturley, K. R. “Coupled circuit filters »—generalised selectivity, phase shift and trough and peak
transfer impedance curves—W.E. (1) 20.240 (Sept. 1943) 426 ; (2) 20.241 (Oct. 1943) 473.

C33. Beatty, R. T. “ Two~element band pass filters * W.E. 9,109 (Oct. 1932) 546.

C34. Editorial “Effect of stray capacitance on coupling coefficient ”’ W.E. 21.251 (Aug. 1944) 357.

C35. Editorial “ Coupling coefficient of tuned circuits * W.E, 22.256 (Jan. 1945) 1

ggg %{s]pﬁ’, D. “HKrl;ow 3{_«{)1%1' %yupéeg cir%xlxits » Q.SiT. 29,10 (Oct. 1945) 76.
. Williams, H, P, “ H.F. Band-Pass Filters >’ Electronic Eng. (1) General Properties 18.2 .
1046) 24 ; (2) Similar Circuits 18,216 (Feb. 1946) 51 ; (3) Dissimilar circuits and misce}lin(ggss
properties 18,217 (Mar, 1946) 89 ; (4) Practical example in band-pass design 18.210 (May 1946) 158,

C38. Duerdoth, W. T. * Equivalent capacitances of transformer windings * W.E. 23.273 (June 1946)

161.
823 l'{u%keg D15 C; “’II‘Jransierﬁ response of tuned-circuit cfascadgs » VYE 23.276 (Sept. 1946) 250,
._Richards, P, I. “ Universal optimum-response curves for arbitrari led >
c ISRE 34§ (Selié- }{946)T61]24' " 1ly coupled resonators > Proc.
41, Spangenberg, K. R. “The universal characteristics of triple-resonant-circuit bande »
Proc. LR.E, 34.9 (Sept. 1046) 620, . P circuit band-pass filters
C42.58151erman, J. B. “Some aspects of coupled and resonant circuits ** Proc, LR.E. 30.11 (Nov. 1942)

C43, Va'rrgall, J. E. “ Variable selectivity IF amplifiers ” W.W. 48.9 (Sept. 1942) 202.
gzg igrns, V}/JR “go‘rjne notelsl on coupleg cix'::u.}til > R.C.A. Rev. 5.2 (Oct. 1940) 226.

. ams, J. J. ¢ Undercoupling in tuned coupled ¢ircuits to realize oprim: i ivity »’
o PE%C' I-%E-1\219-5 (a{\ldaydl‘)‘ﬂ) 277}‘ & Ic; opumum gain and selectivity

. Editorial * Natural and resonant frequencies of coupled circuits > W.E. 18,213 (June 19 .
C47. Mather, N. W. “ An analysis of triple-tuned coupled circuits >’ Proc. I.R.E. 38.7({}:.11; 19§(1J; g%

; (D) REFERENCES TO UNIVERSAL SELECTIVITY CURVES
D1. Terman, F. E. (book) *“Radio Engineering.”
D2. Maynard, J. E. ““ Universal performance curves for tuned transformers * Elect. (Feb. 1937) 15.

D3. Budenbom, H. T. “ Some methods for making resonant circuit respo: d i -
tions * Radio Eng. 15.8 (Aug. 1935) 7. csponse and impedance calcula

(E) MISCELLANEOUS REFERENCES
El. Editorial “ The velocity of light ” W.E. 27.331 (April 1951) 99,



