
MICROCONTROLLER

40 Elektor Electronics 10/2002

DIY hardware for the PC is usually connected
to the serial RS232 interface. After several
decades of use, this interface is very well
documented and easy to use. Of course, it
also has certain disadvantages One of these is

that you can only connect a device to
it before booting the PC, and another
is  that powering an attached circuit
from the serial interface is awkward
(and only a small amount of power

can be drawn this way).
The USB interface is free of these

disadvantages. However, most users
– including experienced PC hobby-
ists – know little or nothing about
the USB interface. The objective of
this series of article is to enable you
to connect homemade USB devices
to a PC. The key factor here is that
almost everything you need can be
downloaded from the Internet for
free.

There are three elements to the
development of a peripheral USB cir-
cuit:

1. The hardware and a program that
runs in the USB IC.

2. A program that communicates
with the USB IC and displays
responses on the screen.

3. A device driver (SYS file) that pro-
vides communication between the
USB port and the program.

All of this will be discussed one step
at a time, but first we want to see
what’s available on the market.
Many IC manufacturers offer USB
ICs, but only a few companies pro-
vide good support. An outstanding
example in this regard is Cypress
Semiconductor (www.cypress.com).

USB Driver
Programming (1)
a DIY developer’s guide

By M. Müller and C. Ehmer

There are many advantages to connecting hardware via the Universal
Serial Bus (USB), but there are also many obstacles to be overcome. In
this series of articles, we provide you with a map to help you find your
way along the stony path of developing USB applications.

K3
1

2

4 35

USB-B

R4

1k5
X1

12MHz

C2

33p

C1

33p

R1

1
0

k

C6

100n

LM317LZ
IC2

R5

110Ω

R6

1
8

0
Ω C3

100n

C4

22

VDD VCC

VDD

C5

100n

R2

4
k

7

R3

4
k

7

020109 - 11

AN2131SC

WAKEUP

DISCON

CLK24

RESET

USBD+

USBD—

IC1

XOUT

BKPT

PA4

XIN

PA5

PC0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PB5

PB6

PB0

PB1

PB2

PB3

PB4

PB7

SCL

SDA

38

11

39

342312

22 33 4410

40

14

15

16

17

18

19

20

21

29

30

24

25

26

27

28

31

13

37

36

35

42

41

43

32

8

9

2

651 43

7 A

A

3.3V supply rail 

EEPROM
connection

USB connection   (to PC) av
ai

la
b

le
 p

o
rt

s

Cypress 8051 Chip

Figure 1. Minimal configuration for using the Cypress AN2131SC IC. 



MICROCONTROLLER

4110/2002 Elektor Electronics

Web at  www.cypress.com/cfuploads/
img/products/AN2131SC.pdf.

As can be seen from Figure 1, besides the
USB microcontroller the USB connector is the
second special component of the basic circuit.
There are two versions, called ‘Type A’ and
‘Type B’. The Type A version is always
located on the PC or hub side, while the Type
B version is always found in the peripheral
device that logs in to the PC. Power can be
drawn from a Type A connector, while a Type
B connector can receive power. Consequently,
we use exclusively Type B connectors (Fig-
ure 2) in our circuit.  A USB cable is always
wired 1:1.

A maximum of 500 mA can be drawn via
the USB cable, but the Cypress IC must first
report this level of current consumption, since
if the PC does not have this much reserve
power capacity it will automatically switch
off the device. The AN2131SC IC automati-
cally reports a value of 100 mA via its inter-
nal USB communications software. If the
hardware needs more current, you must write
your own software for USB communications.

Basic circuit 
for USB developers
Cypress makes our standard USB

controller, the AN2131SC. The spec-
ifications of this microcontroller are
provided in Table 1, and its data
sheet can be downloaded from the

1

3 2

4 1

2
3
4

23 4

421 1 = +5V
2 = D-
3 = D+
4 = GND

1 = +5V
2 = D-
3 = D+
4 = GND

020109 - 12

3
USB-A

USB-B

Figure 2. USB connector pin assignments.

The USB Controller
The AN2131SC single-chip microcontroller contains an
8051 processor core and a full-speed USB interface. The
microcontroller has 8 KB of RAM, three counter/timers,
two serial interfaces and interrupt inputs. A total of 18
freely programmable I/O pins are available.

A serial EEPROM can be connected to act as program
memory, or the IC can be operated using a program
loaded into the RAM via USB.  Practically no additional
external components are necessary. The AN2131SC runs
on 3.3 V, with the USB port clock frequency being
derived from the 12-MHz oscillator frequency. A fre-
quency doubler is used to generate a 24-MHz clock for
the processor. Thanks to an optimised instruction set,
machine instructions are executed at four times the
usual rate.

Timer 0 and Timer 1 are 8-bit timers, while Timer
2 is a 16-bit timer. The signal applied to a counter/timer
input port must not exceed a frequency of 2 MHz. The
serial interface can be operated at 9600 baud using
Timer 0 or Timer 1. Up to 38,400 baud is possible
using Timer 2. In order to achieve even higher baud
rates, a different frequency must be applied to the timer
input.

The IC can respond individually to five separate
active-low or active-high interrupts. The I2C pins must
be connected to 3.3 V via 4.7-kΩ resistors, and the
Reset input must be wired to a POR network. After this,
all that is necessary is to connect everything to a USB
port so the PC can install a device driver.

Software updates are no longer required with the
second version of the microcontroller, since with Active
Software the appropriate program always runs in the
USB IC. Using the built-in re-numeration feature, the
USB interface can log in to the operating system with a
new VID and PID.

+5V

D+
D-

GND

020109 - 17

USB
Transceiver

USB
Connector

Serial
Interface
Engine
(SIE)

USB
Interface

bytes

bytes

 

IO Ports

AN2131SC

Program
& Data
RAM

8051
General
Purpose

Microprocessor

AN2131SC
44 PQFP

10 x 10 mm

33 VCC
32 BKPT
31 PB2/T2OUT
30 PB6/INT6
29 PB5/INT5#
28 PB4/INT4#
27 PB3/TxD2
26 PB2/RxD2
25 PB1/T2EX
24 PB0/T2
23 GND 

020109 - 18

44
V

C
C

43
D

IS
C

O
N

#
42

U
S

B
D

+

41
U

S
B

D
-

40
PA

5/
FR

D
#

39
PA

4/
/F

W
R

#
38

G
N

D
37

W
A

K
E

U
P

#
36

S
C

L
35

S
D

A
34

G
N

D

12
G

N
D

13
R

E
S

E
T

14
P

C
O

/R
xD

0
15

P
C

1/
Tx

D
0

16
P

C
2/

IN
T0

#
17

P
C

3/
IN

T1
#

18
P

C
4/

T0
19

P
C

5/
T1

20
P

C
6/

W
R

#
21

P
C

7/
R

D
#

22
V

C
C

1GND
2CLK24
3GND
4GND
5GND
6GND
7AGND
8XIN
9XOUT
10AVCC
11VCC



A serial EEPROM can be connected to the
SDA and SCL lines of the Cypress IC. Either
the ID or an ID and a program can be stored
in this EEPROM. If no program is stored in
the EEPROM, the USB portion and the
processor operate fully independently. All
communications take place via the RAM. The
processor can be placed in the Reset mode
using USB driver commands. After this, a pro-
gram can be loaded into the RAM starting at
address 0. Furthermore, the USB driver has
full access to the entire RAM region, even
while the 8051 core is running. It’s not nec-
essary to write even a single line of code for
this, since the USB portion of the microcon-
troller provides this capability on its own.

If you want to make a circuit for yourself,
this basic circuit can serve as a good starting
point. However, you should carefully consider
how you use the ports. Although the port
pins are freely programmable, they can also
be used for timer inputs, interrupts and even
two serial interfaces. If you connect ICs that
have interrupt outputs, you should definitely
use the interrupts. This makes programming
significantly easier, even using C.

Tools from the Net
Before you can get started with actual pro-
gramming, you will need a few programs and
tools from the Internet, as follows:

1. The Cypress EZUSB Development Kit con-
tains a C compiler from Kiel along with code
templates for generating USB device drivers.
In the local search engine, enter the IC des-
ignation and then go to the AN2131-DK001
Developer Kit (Figure 3). Here you can down-
load the EZ-USB Family Complete Tools. The
current version (July 2002) is V2.52.701,
which weighs in at 63,153 kB.

2. Also download the EZ-USB Technical Ref-
erence Manual from the same site.

3. Finally, you will need BinTerm, which is
available at no charge from the author’s home
page (www.mmvisual.de). You can use Bin-
Term to download the generated C program
to the Cypress IC via the USB interface and to
control the entire RAM region. The necessary
device drivers are included in BinTerm.

Install the development kit, taking care to
avoid making any changes to the installation
path. Select the ‘Custom’ installation option,
since the Keil C compiler is only installed
with this option. When installing the Keil uVi-
sion2 C compiler, you must not change any of
the installation directories, since otherwise
the sample programs (which use absolute

path names) will not run properly.
You can consult www.keil.com for

additional tips on using the Keil pro-
gram. One important note is that the
evaluation demo from the Keil home
page does not work correctly with
the Cypress IC. Other compilers,
such as Rigel51, generate code that
is seven times as large as that pro-
duced by the Keil compiler.

Many software developers swear
by assembly-language program-
ming. A full assembly-language pro-
gram is very awkward to work with,
but it is easily possible to incorpo-
rate specific assembly-language rou-
tines in the C code. Code written in
assembly language can only be used
for a particular type of processor,
while C code can be used for all
other types of processors with only

minor modifications.
It’s not necessary to install Bin-

Term; all you have to do is create a
new directory (folder) named Bin-
Term under C:\Programs and simply
copy all the files into it.  Drag the
BinTerm program icon onto the desk-
top to create a shortcut. Then click
on the shortcut icon with the right-
hand mouse button and select ‘Prop-
erties’. Modify the link by adding the
startup parameter ‘/MmVisual’ to
the ‘Target’ field. This will cause an
additional USB-Test tab to appear in
the BinTerm window (see Figure 4).

C code for the AN2131SC
Now you’re ready for the real work.
Start Keil uVision2, which is the C
environment for the 8051. Create a

MICROCONTROLLER

42 Elektor Electronics 10/2002

Figure 3. Download page for the Developer’s Kit.

Figure 4. Entering the additional startup parameter.



‘RamTxt.hex’ generated by the compiler and
download it to the USB IC. Finally, click on the
‘start USB program’ button to cause the
Cypress IC to start running.

Testing the 8051 processor
The processor can be tested by checking the
memory region. This is done by entering and
displaying numerical values in hexadecimal
form, as shown in Figure 5. The option ‘write
in the address’ can be used to write a byte
directly to the RAM while the 8051 processor
is running. In the example shown, the byte
0x02 will be written to address 0x100. The
byte is written when the ‘Send’ button is acti-
vated. The option ‘read from address’ can be
used to specify the start address for reading a
number of bytes (in this example, three bytes
starting at address 0x100). The ‘auto-read
every second’ option causes the displayed
value to be automatically updated.

The small example program has now been
loaded into the Cypress IC and started. As
you can see, the IC works perfectly. The byte
in address 0x100 is copied to address 0x101,
just as desired. But how is it possible for Bin-
Term to communicate with the Cypress IC,
even though you haven’t written a single line
of code to drive the USB interface and haven’t
even set the parameters for any sort of spe-
cial register?

The answer is that the USB portion of the
Cypress IC works completely independently,
together with the Cypress device driver, just
as though a second microcontroller were
managing the USB interface. Furthermore,
this independent portion has full access to
the RAM region of the 8051 at all times. The
processor can even be placed in a Reset state
and restarted via register 0x7F92. All RAM
addresses can be written and read at all
times, and we have taken advantage of this
property. Even if you don’t know anything at
all about C and microcontrollers, you have
just programmed one!

The Keil home page has a large number of
sample programs for downloading. You can
also search the Internet, where you are sure
to find something you can use.

new project under Project → New
Project. Enter the file name
‘RamTest’ and confirm it with ‘OK’.
The next step is to select the proces-
sor (Select Device for Target): select
Cypress Semiconductor → EZUSB
AN21XX → OK. In the Project Win-
dow (the left-hand window), you will
see that the program has created
‘Target 1’ with Source Group 1.

In Target 1, open the popup
menu by clicking with the right-hand
mouse button and then click on
‘Options for Target Target 1’. A con-
venient entry dialog for setting all of
the compiler and linker options will
appear. Select the ‘Output’ tab and
switch on the ‘Create Hex File’
checkbox, then close the dialogue
using ‘OK’.

In order to be able to write code,
you must first create a new, empty
file using the menu command File →
New. Next, use File → Save As to
store the file in the current project
directory with the name ‘eMain.c’.
Then use File → Close to close the
file.

The file is now in the project, but
it still has to be appended. To do
this, select the entry ‘Source Group
1’ in ‘Project Window’, press the
right-hand mouse button and select
‘Add Files to Group Source Group 1’.
The file eMain.c will be proposed,
and you can add it to the project
with ‘Add’. You can now close the
dialogue with ‘Close’.

A new entry named ‘eMain.c’ will
now appear under Source Group 1.
A double click opens the editor,
which now knows that it is dealing
with a C source code and enables
syntax highlighting. A major disad-
vantage of the C language is that the
compiler distinguishes between
upper- and lower-case characters.

Now you can generate a small
program for the Cypress IC by using
the editor to enter the code lines
shown in Listing 1.

Press F1 to generate the project.
The compiler should report ‘0 Errors,
0 Warnings’ if the code has been
correctly typed in.

How the program works
The first two lines generate two vari-
ables with fixed memory assign-
ments. The processor starts the pro-
gram using the function main. The
endless loop while(1) { } is executed
forever (until the next Reset). The
‘meaningful task’ of this routine is to
copy the content of memory address
0x100 to address 0x101.

When the project is generated
using F1, several files are created in
the project directory. The file with
the extension ‘.hex’ can be loaded
into the Cypress IC using BinTerm
and then started.

Start BinTerm with the option
‘/MmVisual’, using the shortcut icon
that you have previously set up on
your desktop. Select the USB-Test
tab. You can control the entire
Cypress IC using this program func-
tion. Plug in a USB device using the
Cypress IC. The device name for the
hardware must be selected accord-
ing to whether you use a USB data
spy or a Cypress IC with no EEP-
ROM.

At this point, BinTerm can gener-
ate a driver diskette containing the
device driver for the USB device.
When the new USB device is
plugged in, the operating system
will attempt to install a device driver
that enables the BinTerm software to
communicate with the Cypress USB
IC.

Built-in communications between
BinTerm and the USB device must be
disabled by switching on the ‘stop
query’ checkbox located under ‘con-
trolling BinTerm’. You will also see a
button with three dots next to the
button labelled ‘send new program.’.
Click on this button to open the file

MICROCONTROLLER

4310/2002 Elektor Electronics

Listing 1.
xdata unsigned char BYTE_IN _at_ 0x0100; // Byte arriving (RAM address)
xdata unsigned char BYTE_OUT _at_ 0x0101; // Byte to be written (RAM address)
void main()
{ while (1) // endless loop

{ BYTE_OUT = BYTE_IN; // Copy byte from BYTE_IN to BYTE_OUT
}

}



Can my own program 
also be so simple?
The sample programs have been generated
using Delphi, which is by far the most effi-
cient programming environment for profes-
sional use and guarantees the easy use of
Visual Basic, classes and C type testing. Del-
phi can even be downloaded for free via the
Internet from www.borland.com.

Now we come to the practical part. First
you have to understand the hierarchy from
the USB device to your program. You have a
device that you connect to the USB interface.
Based on the coding of the resistors attached
to the D+ and D– data leads, the PC recog-
nises the speed of the USB device. The Win-
dows device driver then asks the device for
its Vendor ID and Product ID. If the device is
already known to Windows, the manufac-
turer-specific device driver is loaded. Other-
wise, Windows searches its driver database
for a suitable device driver and offers to
install it. The manufacturer-specific device
driver never communicates directly with the
actual USB device, but only with the Win-
dows driver. For each USB interface, Win-
dows can manage one hub and several
devices connected to this hub. The applica-
tion program can only create a link to the USB
device via the manufacturer-specific device
driver. Windows provides the commands
‘CreateFile’ and ‘DeviceIoControl’ in Ker-
nel32.dll for this purpose.

To produce a program using Delphi,
you first generate a new application
using File → New → Application. An
empty form will appear. Place two
‘TButton’ buttons in this form. Add
the code shown in Listing 2
between the end of the first User
section and the beginning of the first
Type section in the program.

The USB device is operated using
the program RamTest.hex. If the
device is unplugged, the program
must be reloaded using BinTerm
before the device can again be used.
BinTerm can run in the background
using RAM query to check the oper-
ation of the device by monitoring its
RAM. BinTerm will not block the USB
device.

Start the Delphi program from the
Delphi compiler by pressing F9.
When command button ‘Button1’ is
activated, Byte 1 is written to RAM
address 0x100 in the USB device.
The value in address 0x101 can be
read and displayed using ‘Button 2’
(see Figure 6). 

Data in the USB device
The function ‘WrRAM’ can write
data to the RAM of the Cypress IC.
The function ‘RdRAM’ reads a byte

from the specified address. The
device name (which is correct when
operating without EEPROM) is
stored in the variable ‘pGeraet’
(‘pDevice’). If a BinTerm USB data
spy adapter is being used, you must
use the name ‘\\.\binterm-0’ instead
of ‘\\.\ezusb-0’. The command ‘Cre-
ateFile’ generates a virtual file that
creates a link to the device driver.
The command ‘DeviceIoControl’
enables direct communication with
the device driver. A record of type
_VENDOR_REQUEST_IN is used for
run-time monitoring. The command
‘CloseHandle’ terminates the link to
the device driver. Since the link is
closed after each request, it is possi-
ble for multiple programs to appar-
ently access the hardware concur-
rently, without the device being
aware of this.

By the way, if you rename the
above-mentioned functions, all of
this will also work with Visual Basic
or C++.

(020109-1)

The second article in this series will deal
with producing USB device drivers,
which does not require a detailed
understanding of C!

MICROCONTROLLER

44 Elektor Electronics 10/2002

Figure 5. Checking the RAM region.

Listing 2.
type _VENDOR_REQUEST_IN = record

bRequest : Byte;
wValue : Word;
wIndex : Word;
wLength: Word;
direction : Byte;
bData : Byte;

end;

Insert the following code snippet at the line containing “implementation”

Function WrRAM(Adr: Word; Dat: Byte): Boolean; // Write byte to RAM address

Figure 6. A form with two command buttons.



MICROCONTROLLER

4510/2002 Elektor Electronics

var USBDeviceHandle: THandle;
USBTemplateHandle: THandle;
nBytes: DWord;
MyRequest: _VENDOR_REQUEST_IN;
USBError: Boolean;
pGeraet: PChar;

begin
pGeraet := PChar(‘\\.\ezusb-0’); // using BinTerm: ‘\\.\binterm-0’
USBError := False;
myRequest.bRequest := $A0;
myRequest.wValue := Adr;
myRequest.wIndex := 0;
myRequest.wLength := 1;
myRequest.direction := 0;
myRequest.bData := Dat;
USBTemplateHandle := 0;
USBDeviceHandle := CreateFile (pGeraet, Generic_write, File_Share_write, nil, open_existing,

0, USBTemplateHandle);
If USBDeviceHandle = INVALID_HANDLE_VALUE Then

USBError := True;
Result := DeviceIoControl(USBDeviceHandle, $00222014, @myRequest, 10, nil, 0, nBytes, nil);
CloseHandle (USBDeviceHandle);

end;

function RdRAM(Adr: Word): Byte; // Read byte from RAM address
var USBDeviceHandle: THandle;

USBTemplateHandle: THandle;
nBytes: DWord;
MyRequest: _VENDOR_REQUEST_IN;
Buffer: Array [1..2] of Byte;
USBError: Boolean;
pGeraet: PChar;

begin
pGeraet := PChar(‘\\.\ezusb-0’); // using BinTerm: ‘\\.\binterm-0’
USBError := False;
USBTemplateHandle := 0;
myRequest.bRequest := $A0;
myRequest.wValue := Adr;
myRequest.wIndex := 0;
myRequest.wLength := 1;
myRequest.direction := 1;     // Read
myRequest.bData := $00;
USBDeviceHandle := CreateFile (pGeraet, Generic_write, File_Share_write, nil, open_existing, 

0, USBTemplateHandle);
If USBDeviceHandle = INVALID_HANDLE_VALUE Then

USBError := True;
DeviceIoControl(USBDeviceHandle,$00222014,@myRequest,10,@Buffer,SizeOf(Buffer),nBytes,nil);
CloseHandle (USBDeviceHandle);
RdRAM := Buffer[1];

end;

Double-click on the 1st key and complete the code with this:

procedure TForm1.Button1Click(Sender: TObject);
begin

WrRAM($100, 1);
end;

The same for the 2nd key:

procedure TForm1.Button2Click(Sender: TObject);
begin

Button2.Caption := IntToHex(RdRAM($101), 2);
end;


