
Related articles

Power saving

Laptop Mode Tools

Undervolting CPU

PHC

CPU frequency scaling
CPU frequency scaling enables the operating system to scale the CPU frequency up or
down in order to save power. CPU frequencies can be scaled automatically depending on
the system load, in response to ACPI events, or manually by userspace programs.

CPU frequency scaling is implemented in the Linux kernel, the infrastructure is called
cpufreq. Since kernel 3.4 the necessary modules are loaded automatically. For older kernels
or CPUs, the recommended ondemand governor is enabled by default, whereas for newer
kernels or CPUs, the schedutil governor is enabled by default. However, userspace tools
like cpupower, acpid, Laptop Mode Tools, or GUI tools provided for your desktop
environment, may still be used for advanced configuration.

Userspace tools
thermald
i7z
cpupower
cpupower-gui
turbostat

CPU frequency driver
Setting maximum and minimum frequencies
Disabling Turbo Boost

intel_pstate
acpi-cpufreq
x86_energy_perf_policy

Scaling governors
Tuning the ondemand governor

Switching threshold
Sampling rate
Make changes permanent

Control Intel CPUs energy performance policy

CPU idle driver

Interaction with ACPI events

Privilege granting under GNOME

Troubleshooting
BIOS frequency limitation

See also

thermald (https://archlinux.org/packages/?name=thermald) is a Linux daemon used to prevent the
overheating of Intel CPUs. This daemon monitors temperature and applies compensation using available cooling methods.

Contents

Userspace tools

thermald

https://wiki.archlinux.org/title/Power_saving
https://wiki.archlinux.org/title/Laptop_Mode_Tools
https://wiki.archlinux.org/title/Undervolting_CPU
https://wiki.archlinux.org/title/PHC
https://wiki.archlinux.org/title/Acpid
https://wiki.archlinux.org/title/Laptop_Mode_Tools
https://archlinux.org/packages/?name=thermald

By default, it monitors CPU temperature using available CPU digital temperature sensors and maintains CPU temperature
under control, before HW takes aggressive correction action. If there is a skin temperature sensor in thermal sysfs, then it
tries to keep skin temperature under 45C.

The associated systemd unit is thermald.service , which should be started and enabled.

i7z (https://archlinux.org/packages/?name=i7z) is an i7 (and now i3, i5, i7, i9) CPU reporting tool for
Linux. It can be launched from a Terminal with the command i7z or as GUI with i7z-gui .

cpupower (https://archlinux.org/packages/?name=cpupower) is a set of userspace utilities designed
to assist with CPU frequency scaling. The package is not required to use scaling, but is highly recommended because it
provides useful command-line utilities and a systemd service to change the governor at boot.

The configuration file for cpupower is located in /etc/default/cpupower . This configuration file is read by a bash
script in /usr/lib/systemd/scripts/cpupower which is activated by systemd with cpupower.service .
You may want to enable cpupower.service to start at boot.

cpupower-gui (https://aur.archlinux.org/packages/cpupower-gui/)
AUR is a graphical utility

designed to assist with CPU frequency scaling. The GUI is based on GTK and is meant to provide the same options as
cpupower. cpupower-gui can change the maximum/minimum CPU frequency and governor for each core. The application
handles privilege granting through polkit and allows any logged-in user in the wheel user group to change the
frequency and governor.

turbostat (https://archlinux.org/packages/?name=turbostat) can display the frequency, power
consumption, idle status and other statistics of the modern Intel and AMD CPUs.

Note:

The native CPU module is loaded automatically.
The intel_pstate CPU power scaling driver is used automatically for modern Intel CPUs instead of
the other drivers below. This driver takes priority over other drivers and is built-in as opposed to being a
module. This driver is currently automatically used for Sandy Bridge and newer CPUs. The
intel_pstate may ignore the BIOS P-State settings. intel_pstate may run in "passive mode" via

the intel_cpufreq driver for older CPUs. If you encounter a problem while using this driver, add
intel_pstate=disable to your kernel line in order to revert to using the acpi-cpufreq driver.

Even P State behavior mentioned above can be influenced with
/sys/devices/system/cpu/intel_pstate , e.g. Intel Turbo Boost can be deactivated with
echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo as the root user for keeping

CPU-Temperatures low.
Additional control for modern Intel CPUs is available with the Linux Thermal Daemon (https://01.org/linu
x-thermal-daemon) (available as thermald (https://archlinux.org/packages/?name=therma
ld)), which proactively controls thermal using P-states, T-states, and the Intel power clamp driver.
thermald can also be used for older Intel CPUs. If the latest drivers are not available, then the daemon will
revert to x86 model specific registers and the Linux ‘cpufreq subsystem’ to control system cooling.

i7z

cpupower

cpupower-gui

turbostat

CPU frequency driver

https://wiki.archlinux.org/title/Start
https://wiki.archlinux.org/title/Enable
https://archlinux.org/packages/?name=i7z
https://archlinux.org/packages/?name=cpupower
https://wiki.archlinux.org/title/Systemd
https://wiki.archlinux.org/title/Enable
https://aur.archlinux.org/packages/cpupower-gui/
https://wiki.archlinux.org/title/GTK
https://wiki.archlinux.org/title/Polkit
https://wiki.archlinux.org/title/User_group
https://archlinux.org/packages/?name=turbostat
https://01.org/linux-thermal-daemon
https://archlinux.org/packages/?name=thermald

cpupower requires modules to know the limits of the native CPU:

Module Description

intel_pstate This driver implements a scaling driver with an internal governor for Intel Core (Sandy Bridge and newer) processors.

intel_cpufreq Starting with kernel 5.7, the intel_pstate scaling driver selects "passive mode" aka intel_cpufreq for CPUs that do not
support hardware-managed P-states (HWP), i.e. Intel Core i 5th generation or older.

acpi-cpufreq CPUFreq driver which utilizes the ACPI Processor Performance States. This driver also supports the Intel Enhanced
SpeedStep (previously supported by the deprecated speedstep-centrino module).

speedstep-
lib CPUFreq driver for Intel SpeedStep-enabled processors (mostly Atoms and older Pentiums)

powernow-
k8

CPUFreq driver for K8/K10 Athlon 64/Opteron/Phenom processors. Since Linux 3.7 'acpi-cpufreq' will automatically be
used for more modern AMD CPUs.

pcc-cpufreq This driver supports Processor Clocking Control interface by Hewlett-Packard and Microsoft Corporation which is useful
on some ProLiant servers.

p4-clockmod CPUFreq driver for Intel Pentium 4/Xeon/Celeron processors which lowers the CPU temperature by skipping clocks.
(You probably want to use a SpeedStep driver instead.)

To see a full list of available modules, run:

$ ls /usr/lib/modules/$(uname -r)/kernel/drivers/cpufreq/

Load the appropriate module (see Kernel modules for details). Once the appropriate cpufreq driver is loaded, detailed
information about the CPU(s) can be displayed by running

$ cpupower frequency-info

In some cases, it may be necessary to manually set maximum and minimum frequencies.

To set the maximum clock frequency (clock_freq is a clock frequency with units: GHz, MHz):

cpupower frequency-set -u clock_freq

To set the minimum clock frequency:

cpupower frequency-set -d clock_freq

To set the CPU to run at a specified frequency:

cpupower frequency-set -f clock_freq

Note:

To adjust for only a single CPU core, append -c core_number .
The governor, maximum and minimum frequencies can be set in /etc/default/cpupower .

Alternatively, you can set the frequency manually:

echo value > /sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq

The available values can be found in
/sys/devices/system/cpu/cpu*/cpufreq/scaling_available_frequencies or similar. [1] (http

s://software.intel.com/sites/default/files/comment/1716807/how-to-change-frequency-on-linux-pub.txt)

Setting maximum and minimum frequencies

https://wiki.archlinux.org/title/Kernel_modules
https://software.intel.com/sites/default/files/comment/1716807/how-to-change-frequency-on-linux-pub.txt

echo 1 > /sys/devices/system/cpu/intel_pstate/no_turbo

echo 0 > /sys/devices/system/cpu/cpufreq/boost

With x86_energy_perf_policy (https://archlinux.org/packages/?name=x86_energy_perf_p
olicy):

x86_energy_perf_policy --turbo-enable 0

The change is temporary.

Governors (see table below) are power schemes for the CPU. Only one may be active at a time. For details, see the kernel
documentation (https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt) in the kernel source.

Governor Description

performance Run the CPU at the maximum frequency.
powersave Run the CPU at the minimum frequency.
userspace Run the CPU at user specified frequencies.

ondemand Scales the frequency dynamically according to current load. Jumps to the highest frequency and then possibly back off
as the idle time increases.

conservative Scales the frequency dynamically according to current load. Scales the frequency more gradually than ondemand.

schedutil Scheduler-driven CPU frequency selection [2] (https://lwn.net/Articles/682391/), [3] (https://lkml.org/lkml/2016/3/17/
420).

Depending on the scaling driver, one of these governors will be loaded by default:

powersave for Intel CPUs using the intel_pstate driver (Sandy Bridge and newer)..
powersave (for Linux < 5.10) or schedutil (since Linux 5.10) for CPUs using the acpi-cpufreq

driver.

Note: The intel_pstate driver supports only two governors: powersave and performance . Although they share the
name with the generic governors, they do not work in the same way as the generic governors. Both intel_pstate
governors provide dynamic scaling similar to the schedutil or ondemand generic governors. The performance
governor provided by intel_pstate should give better power saving functionality than the old ondemand
governor (https://www.phoronix.com/scan.php?page=news_item&px=MTM3NDQ).

Warning: Use CPU monitoring tools (for temperatures, voltage, etc.) when changing the default governor.

To activate a particular governor, run:

cpupower frequency-set -g governor

Note:

Disabling Turbo Boost

intel_pstate

acpi-cpufreq

x86_energy_perf_policy

Scaling governors

https://archlinux.org/packages/?name=x86_energy_perf_policy
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://lwn.net/Articles/682391/
https://lkml.org/lkml/2016/3/17/420
https://www.phoronix.com/scan.php?page=news_item&px=MTM3NDQ

To adjust for only a single CPU core, append -c core_number to the command above.
Activating a governor requires that specific kernel module (named cpufreq_governor) is loaded. As
of kernel 3.4, these modules are loaded automatically.

Alternatively, you can activate a governor on every available CPU manually:

echo governor | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

where governor is the name of the governor, mentioned in the above table, that you want to activate.

Tip: To monitor cpu speed in real time, run:

$ watch cat /sys/devices/system/cpu/cpu[0-9]*/cpufreq/scaling_cur_freq

See the kernel documentation (https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt) for details.

To set the threshold for stepping up to another frequency:

echo -n percent > /sys/devices/system/cpu/cpufreq/<governor>/up_threshold

To set the threshold for stepping down to another frequency:

echo -n percent > /sys/devices/system/cpu/cpufreq/<governor>/down_threshold

The sampling rate determines how frequently the governor checks to tune the CPU. sampling_down_factor is a
tunable that multiplies the sampling rate when the CPU is at its highest clock frequency thereby delaying load evaluation
and improving performance. Allowed values for sampling_down_factor are 1 to 100000. This tunable has no effect
on behavior at lower CPU frequencies/loads.

To read the value (default = 1), run:

$ cat /sys/devices/system/cpu/cpufreq/ondemand/sampling_down_factor

To set the value, run:

echo -n value > /sys/devices/system/cpu/cpufreq/ondemand/sampling_down_factor

To have the desired scaling enabled at boot, kernel module options and systemd-tmpfiles are regular methods.

For example, changing the up_threshold to 10:

/etc/tmpfiles.d/ondemand.conf

Tuning the ondemand governor

Switching threshold

Sampling rate

Make changes permanent

https://wiki.archlinux.org/title/Kernel_module
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://wiki.archlinux.org/title/Kernel_modules#Using_files_in_/etc/modprobe.d/
https://wiki.archlinux.org/title/Systemd-tmpfiles

w- /sys/devices/system/cpu/cpufreq/ondemand/up_threshold - - - - 10

However, as noted in systemd-tmpfiles, in some cases race conditions may exist and one can use udev to avoid them.

For example, to set the scaling governor of the CPU core 0 to performance while the scaling driver is acpi_cpufreq ,
create the following udev rule:

/etc/udev/rules.d/50-scaling-governor.rules

SUBSYSTEM=="module", ACTION=="add", KERNEL=="acpi_cpufreq", RUN+="/bin/sh -c 'echo performance > /sys/devices/system/cp

u/cpufreq/policy0/scaling_governor'"

To have the rule already applied in the initramfs, follow the example at udev#Debug output.

Tip:

Since Linux 5.9, it is possible to set the cpufreq.default_governor kernel option.[4] (https://kernel
newbies.org/Linux_5.9#CPU_Frequency_scaling)
Alternatively, configure the cpupower utility and enable its systemd service.

Install x86_energy_perf_policy (https://archlinux.org/packages/?name=x86_energy_perf_
policy):

Enable Hardware P-States:

x86_energy_perf_policy -H 1

x86_energy_perf_policy -U 1

Set "default" policy:

x86_energy_perf_policy default

Set "performance" policy:

x86_energy_perf_policy performance

Set "balance-performance" policy:

x86_energy_perf_policy balance-performance

Set "balance-power" policy:

x86_energy_perf_policy balance-power

Set "power" policy:

x86_energy_perf_policy power

The changes are temporary. See x86_energy_perf_policy(8) (https://man.archlinux.org/man/x86
_energy_perf_policy.8) for more info.

Control Intel CPUs energy performance policy

https://wiki.archlinux.org/title/Systemd-tmpfiles
https://wiki.archlinux.org/title/Udev
https://wiki.archlinux.org/title/Udev#Debug_output
https://kernelnewbies.org/Linux_5.9#CPU_Frequency_scaling
https://wiki.archlinux.org/title/Install
https://archlinux.org/packages/?name=x86_energy_perf_policy
https://man.archlinux.org/man/x86_energy_perf_policy.8

The intel_idle CPU idle driver is used automatically for modern Intel CPUs instead of the acpi_idle driver.
This driver is currently automatically used for Sandy Bridge and newer CPUs. The intel_idle may ignore the BIOS
C-State settings. If you encounter a problem while using this driver, add intel_idle.max_cstate=0 to your kernel
line.

Users may configure scaling governors to switch automatically based on different ACPI events such as connecting the AC
adapter or closing a laptop lid. A quick example is given below, however it may be worth reading full article on acpid.

Events are defined in /etc/acpi/handler.sh . If the acpid (https://archlinux.org/packages/?nam
e=acpid) package is installed, the file should already exist and be executable. For example, to change the scaling
governor from performance to conservative when the AC adapter is disconnected and change it back if
reconnected:

/etc/acpi/handler.sh

[...]

ac_adapter)

 case "$2" in

 AC*)

 case "$4" in

 00000000)

 echo "conservative" >/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

 echo -n $minspeed >$setspeed

 #/etc/laptop-mode/laptop-mode start

 ;;

 00000001)

 echo "performance" >/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

 echo -n $maxspeed >$setspeed

 #/etc/laptop-mode/laptop-mode stop

 ;;

 esac

 ;;

 *) logger "ACPI action undefined: $2" ;;

 esac

;;

[...]

Note: systemd introduced logind which handles consolekit and policykit actions. The following code below does not
work. With logind, simply edit in the file /usr/share/polkit-1/actions/org.gnome.cpufreqselector.policy the
<defaults> elements according to your needs and the polkit manual [5] (https://www.freedesktop.org/software/polkit/d
ocs/latest/polkit.8.html).

GNOME has a nice applet to change the governor on the fly. To use it without the need to enter the root password, simply
create following file:

/var/lib/polkit-1/localauthority/50-local.d/org.gnome.cpufreqselector.pkla

[org.gnome.cpufreqselector]

Identity=unix-user:user

Action=org.gnome.cpufreqselector

ResultAny=no

ResultInactive=no

ResultActive=yes

Where the word user is replaced with the username of interest.

CPU idle driver

Interaction with ACPI events

Privilege granting under GNOME

https://wiki.archlinux.org/title/Acpid
https://archlinux.org/packages/?name=acpid
https://www.freedesktop.org/software/polkit/docs/latest/polkit.8.html
https://wiki.archlinux.org/title/GNOME

The desktop-privileges (https://aur.archlinux.org/packages/desktop-privileges/)
AUR

package in the AUR contains a similar .pkla file for authorizing all users of the power user group to change the
governor.

Some applications, like ntop, do not respond well to automatic frequency scaling. In the case of ntop it can
result in segmentation faults and lots of lost information as even the on-demand governor cannot change
the frequency quickly enough when a lot of packets suddenly arrive at the monitored network interface that
cannot be handled by the current processor speed.

Some CPU's may suffer from poor performance with the default settings of the on-demand governor (e.g.
flash videos not playing smoothly or stuttering window animations). Instead of completely disabling
frequency scaling to resolve these issues, the aggressiveness of frequency scaling can be increased by
lowering the up_threshold sysctl variable for each CPU. See how to change the on-demand governor's
threshold.

Sometimes the on-demand governor may not throttle to the maximum frequency but one step below. This
can be solved by setting max_freq value slightly higher than the real maximum. For example, if frequency
range of the CPU is from 2.00 GHz to 3.00 GHz, setting max_freq to 3.01 GHz can be a good idea.

Some combinations of ALSA drivers and sound chips may cause audio skipping as the governor changes
between frequencies, switching back to a non-changing governor seems to stop the audio skipping.

Some CPU/BIOS configurations may have difficulties to scale to the maximum frequency or scale to higher frequencies at
all. This is most likely caused by BIOS events telling the OS to limit the frequency resulting in
/sys/devices/system/cpu/cpu0/cpufreq/bios_limit set to a lower value.

Either you just made a specific Setting in the BIOS Setup Utility, (Frequency, Thermal Management, etc.) you can blame a
buggy/outdated BIOS or the BIOS might have a serious reason for throttling the CPU on its own.

Reasons like that can be (assuming your machine's a notebook) that the battery is removed (or near death) so you are on
AC-power only. In this case a weak AC-source might not supply enough electricity to fulfill extreme peak demands by the
overall system and as there is no battery to assist this could lead to data loss, data corruption or in worst case even hardware
damage!

Not all BIOS'es limit the CPU-Frequency in this case, but for example most IBM/Lenovo Thinkpads do. Refer to thinkwiki
for more thinkpad related info on this topic
(https://www.thinkwiki.org/wiki/Problem_with_CPU_frequency_scaling).

If you checked there is not just an odd BIOS setting and you know what you are doing you can make the Kernel ignore
these BIOS-limitations.

Warning: Make sure you read and understood the section above. CPU frequency limitation is a safety feature of your
BIOS and you should not need to work around it.

A special parameter has to be passed to the processor module.

For trying this temporarily change the value in /sys/module/processor/parameters/ignore_ppc from 0
to 1 .

For setting it permanently Kernel modules#Setting module options describes alternatives. For example, you can add
processor.ignore_ppc=1 to your kernel boot line, or create

/etc/modprobe.d/ignore_ppc.conf

If the frequency of your machine gets wrongly limited by BIOS, this should help

options processor ignore_ppc=1

Troubleshooting

BIOS frequency limitation

https://aur.archlinux.org/packages/desktop-privileges/
https://wiki.archlinux.org/title/AUR
https://wiki.archlinux.org/title/User_group
https://wiki.archlinux.org/title/Ntop
https://wiki.archlinux.org/title/Sysctl
https://wiki.archlinux.org/title/ALSA
https://www.thinkwiki.org/wiki/Problem_with_CPU_frequency_scaling
https://wiki.archlinux.org/title/Kernel_modules#Setting_module_options

Linux CPUFreq - kernel documentation (https://www.kernel.org/doc/html/latest/cpu-freq/index.html)
Comprehensive explanation of pstate (https://www.reddit.com/r/linux/comments/1hdogn/acpi_cpufre
q_or_intel_pstates/)
Processor boosting control (https://www.kernel.org/doc/Documentation/cpu-freq/boost.txt)
intel_pstate kernel documentation (https://www.kernel.org/doc/html/latest/admin-guide/pm/intel_psta
te.html)
intel_pstate/intel_cpufreq documentation kernel 5.7+ (https://linrunner.de/tlp/settings/processor.htm
l)

Retrieved from "https://wiki.archlinux.org/index.php?title=CPU_frequency_scaling&oldid=688105"

This page was last edited on 14 July 2021, at 21:29.

Content is available under GNU Free Documentation License 1.3 or later unless otherwise noted.

See also

https://www.kernel.org/doc/html/latest/cpu-freq/index.html
https://www.reddit.com/r/linux/comments/1hdogn/acpi_cpufreq_or_intel_pstates/
https://www.kernel.org/doc/Documentation/cpu-freq/boost.txt
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel_pstate.html
https://linrunner.de/tlp/settings/processor.html
https://wiki.archlinux.org/index.php?title=CPU_frequency_scaling&oldid=688105
http://www.gnu.org/copyleft/fdl.html

