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Introduction

It is common practice to design RC-active filter circuits by treating operational
amplifiers (OA’s) as ideal devices. This simplification, however, can lead 1o si-
gnificant deviations from the desired frequency response - primarily due'to the
finite gain-bandwidth product (G'B) of real amplifiers. In the past, some me-
thods have been proposed to reduce the influence of amplifier imperfections,
€.g. passive/active phase compensation, prewarping and composite amplifier
configurations. However, these techniques are not very effective since they
consider only a simplified single pole frequency response of the OA or require
dual matched amplifiers tending to instabilities, Moreover, real input and output

impedances of the amplifiers are not taken into account.

In this contribution, a novel

technique of ,,pole tuning* is
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into consideration - as well as other error sources, e.g. deviations from calculated
component values, load impedances or parasitic capacitances and inductances.
By applying this technique the accuracy of the filter response is improved consi-
derably. As illustrated in Fig. 1 where the pole parameters O, resp. f, are com-
pared for different compensation methods it is possible to shift the dominant

pole very close to the ideal position.

The method of ,,Pole Tuning*

The proposed technique is based on the ,Substitution Theorem of Network
Theory* [1] according to which an arbitrary branch Z of a time-invariant net-
work can be replaced by an independent source without influencing node volta-
ges or branch currents - provided the network matrix has a singular solution.
Therefore, as far as voltage-to-current ratios (i.e. impedance values) are con-
cerned, the theorem can be applied also to linear feedback systems which have
for these ratios only one solution if the loop gain is unity (4,=1). However, the

idea behind the presented method applies the theorem in its reverse direction:

Sentence: If an arbitrary element or branch Z of a circuit with feedback is sub-
stituted by a sinusoidal voltage source V, with a frequency f;, the voltage-to-
current ratio V,/I, equals a complex impedance which can be used instead of

the source in order to produce a loop gain A,=1 at the frequency f,

This property of feedback systems can be advantageously applied for correcting
second-order filter stages, if the circuit to be ,,tuned” is part of an artificial loop
as illustrated in Fig. 2. First, the circuit under concern (block NETWORK) is
designed conventionally on the basis of ideal amplifiers using standard textbook

routines or filter software.

Then, the parameters of the block TUNER are chosen in accordance with the
Substitution Theorem (4;=1 at the desired frequency 7).
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Nevertheless, if the block NETWORK contains a
circuit with real amplifiers, the loop gain will not

be unity - unless a suitable part of the filter network | IN=—] NETWORKI=—0 OUT

is modified accordingly. Based on the Substitution

. . ouT TUNER |4 IN
Theorem, and with the aid of a program for analo-

gue circuit analysis, the modifications necessary to

i : ig. 2: Pole tuning loo
correct this ,.error™ are calculated within one simu- Fig. 2: Po g loop

lation run only. As a result, the transfer function of
the block NETWORK thereby is forced to assume

its ideal value (in phase and magnitude) at frequency Iz

However, it is the primary aim of the procedure to shift the pole of the filter to-
wards the ideal position ! Because, on the other hand, the pole location is di-
rectly related to the circuits loop gain at pole frequency fp, the block NET-
WORK must contain, therefore, the filter circuit with an open feedback loop.
Thus, the basic idea of the method is to set the filter’s loop gain at f;=fp to its

proper value (in magnitude and phase), thereby correcting the pole parameters.

In the following, the ,,pole tuning® method is explained in detail by applying it to
an example bandpass circuit. It is to be mentioned that an alternative tuning

techmique - applicable to Jowpass filters only - is described in [2].

Example

The proposed optimization technique has been succesfully applied to several
well-known filter topologies. As an example, Fig. 3 shows a second-order band-
pass stage with a bridged-T feedback network (multiloop-feedback, MLF).
With a specified center frequency f;=f,=100 kHz and employing a 741-type OA
(fy~1MHz) the pole-to-transit frequency ratio is f3//;=0.1. Note that this ratio is

higher by a factor of 10 than usual recommendations [3].

Using standard design formulas or suitable filter software the following set of
element values is calculated (OA ideal) for a relative bandwidth of 10% (Q=10):
R1=964.58 Q R2=50.77 Q

R5=19.29 kQ) C3=C4=].65nF .

However, since the optimization process comi-
prises also element deviations, the values as gi-

ven in Fig. 3 (out of the E24 series) are used as

a starting point. As expected, a first simulation

run based on a three-pole LM741-macromodel

Fig. 3: Example circuit:
MLF-Bandpass

(National Semiconductor Inc.) reveals serious
deviations from the specified frequency respon-

se (fp #52 kHz; O, ~42), see Fig. 1.

As mentioned earlier, bandpass optimization requires adjusting the loop gain at
/» . Note that the MLF-topology is one of the exceptional cases where the OA is
not used as a controlled source with local feedback. Therefore, the ideal loop
gain of the filter approaches infinity, and only one sub-loop (in this case branch
R5) may be considered.

(Hint: The same restriction applies to the popular GIC-block.)

Opening the sub-loop of R5, point A in Fig. 3, and simulating the circuit at
fp using an ideal OA (controlled voltage source with a gain as high as 1E12)
yields ideal sub-loop gain values of  4;=1.0244 and ¢ =5.5725 deg.

To produce a closed loop gain of unity the TUNER, therefore, must have the two
transfer parameters: A=1/4;=1/1.0244 and ¢=—-¢,=-5.5725 deg.

For simulation purposes, the following artificial transfer function is recommen-
ded: Higner=Arexplgrn-s/(180-s))]  (s: complex frequency variable).
Additionally, to preserve proper loading of the OA output by the RS branch the

TUNER subcircuit should contain at its input a correct mirror of this branch.
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A universal model can be used for this purpose in form of an artificial current
Source : L oap=IrALexpl g -m-s/(180-|s])]
with I being the current flowing through the TUNER output .

Next, one element of the feedback network must be replaced by a voltage sti-
mulus ¥, to find at f, =f, the ratio I,/V; (or ¥/I;), which gives the real and ima-
ginary parts of a complex conductance (resp. impedance) to be used instead of
the selected element. This is the most important and most critical design step of
the procedure as it requires some understanding of the filtering function of the

circuit! In this context, the following criterion has to be applied.

Selection criterion: Any circuit modification with the aim of correcting the

passband region of the filter must not influence the DC as well as the high-
frequency behaviour. Therefore, even after substitution of an element by any
parallel or series resistor-capacitor combination the filter function must still

approach zero for very low and very high frequencies.

This criterion can be fulfilled by replacing R5 by a parallel combination R,[|C,
because, after that, there is still 100% feedback for low and high frequencies.
Thus, running an AC analysis of Fig. 3 at ;=100 kHz, with the TUNER block
inserted between points A and B and with a source ¥, between B and C, gives
the elements: Rp=V,/Re(I,)=6.21kQ Cp=Img(I)/(V,2mfp)=20.53pF .

(Remark: In case of negative results another branch fulfilling the selection crite-

rion is to be used. Otherwise, the deviations are too large to be compensated.)

Thereafter, replacing R5=20kQ by Ry||IC; (as calculated above) another AC
analysis of the filter circuit confirms that the modified frequency response clo-
sely matches the ideal characteristic exhibiting the following parameters (see

also Fig. 1): /,=f,=101.4kHz and Qp=104.

Conclusion and summary

A simple computer-aided method of ,,tuning“ the dominant pole pair of second-
order bandpass stages has been introduced. Since all calculations are performed
by a circuit analysis program, amplifier macromodels provided by manufacturers
for a variety of active devices can be used to advantage (e.g. operational ampli-
fiers, current-feedback amplifiers, transconductance amplifiers, current con-
veyors). If necessary, these macromodels can be enhanced by additional appli-
cation-specific elements like load impedances and pin or socket capacitances.
Moreover, the proposed compensation technique can take into account also ele-
ment deviations from their calculated values.

The usefulness of the method has been illustrated by means of an example cir-
cuit. All results obtained through computer simulations can be transferred to real
circuits as long as the utilized amplifier macromodels reflect the actual device
characteristics properly.

Finally, it should be mentioned that the desribed method is to be regarded not
only as an alternative to some other ,,conventional* optimization techniques (see
Introduction). For example, as can be seen from Fig. 1, it seems to be most pro-
mising to apply the ,,pole tuning* procedure to filter circuits containing either

actively phase compensated or composite amplifiers.
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