
Center for New Music and Audio Technologies

Next: The CORDIC-Algorithm for Computing Up: FPGAs for Sound Synthesis Previous: Introduction

Computing the Sine Function

When implementing a sine calculator in digital hardware one has to remember the expense of the

multiplication needed for many algebraical methods. Alternative techniques are based on polynomial

approximation and/or table-lookup [4] as well as shift and add algorithms [5]. Among the various

properties that are desireable, one can cite speed, accuracy or the reasonable amount of resource
1.1

 [6].

The architecture of FPGAs specifies suitable techniques or might even change desireable properties.

Because the number of sequential cells and amount of storage area, needed for table-lookup algorithms,

are limited but combinational logic in terms of LUT in the FPGA's CLBs is sufficiently available, shift and

add algorithms fit perfectly into an FPGA.

Subsections

The CORDIC-Algorithm for Computing a Sine

Implementation of various CORDIC Architectures

A Bit-Parallel Iterative CORDIC

A Bit-Parallel Unrolled CORDIC

A Bit-Serial Iterative CORDIC

Comparison of the Various CORDIC Architectures

Home

Norbert Lindlbauer

2000-01-19

Computing the Sine Function http://web.archive.org/web/20071024195917/http://www.cnmat.berkel...

1 von 1

Center for New Music and Audio Technologies

Next: Implementation of various CORDIC Up: Computing the Sine Function Previous: Computing the

Sine Function

The CORDIC-Algorithm for Computing a Sine

In 1959 Jack E. Volder [7] described the COordinate Rotation DIgital Computer or CORDIC for the
calculation of trigonometric functions, multiplication, division and conversion between binary and mixed

radix number systems. The CORDIC-algorithm provides an iterative method of performing vector

rotations by arbitrary angles using only shifts and adds. Volder's algorithm is derived from the general

equations for vector rotation. If a vector with components is to be rotated through an angle a

new vector with components is formed by:

(1.2)

Figure 1.2 illustrates the rotation of a vector
$
V=\left[\begin{array}{c}x\\
 y\end{array}\right]$

by the angle .

Figure 1.2: Rotation of a vector V by the angle

The individual equations for and can be rewritten as [8]:

(1.3)

(1.4)

The CORDIC-Algorithm for Computing a Sine http://web.archive.org/web/20071024124546/www.cnmat.berkeley.ed...

1 von 3

and rearranged so that:

(1.5)

(1.6)

The multiplication by the tangent term can be avoided if the rotation angles and therefore are

restricted so that . In digital hardware this denotes a simple shift operation. Furthermore, if

those rotations are performed iteratively and in both directions every value of is representable.

With $
\phi=\arctan\left(2^{-i}\right)$

 the cosine term could also be simplified and since it is a

constant for a fixed number of iterations. This iterative rotation can now be expressed as:

(1.7)

(1.8)

where and . The product of the 's represents the so-called K factor

[9]:

(1.9)

This factor can be calculated in advance and applied elsewhere in the system. A good way to

implement the factor is to initialize the iterative rotation with a vector of length which

compensates the gain inherent in the CORDIC algorithm. The resulting vector is the unit vector as
shown in Figure 1.3.

Figure 1.3: Iterative vector rotation, initialized with V0

Equations 1.7 and 1.8 can now be simplified to the basic CORDIC-equations:

The CORDIC-Algorithm for Computing a Sine http://web.archive.org/web/20071024124546/www.cnmat.berkeley.ed...

2 von 3

(1.10)

(1.11)

The direction of each rotation is defined by and the sequence of all 's determines the final vector.

This yields to a third equation which acts like an angle accumulator and keeps track of the angle already

rotated. Each vector can be described by either the vector length and angle or by its coordinates and

. Following this incident, the CORDIC algorithm knows two ways of determining the direction of

rotation: the rotation mode and the vectoring mode. Both methods initialize the angle accumulator with

the desired angle . The rotation mode, determines the right sequence as the angle accumulator

approaches 0 while the vectoring mode minimizes the y component of the input vector1.2.

The angle accumulator is defined by:

(1.12)

where the sum of an infinit number of iterative rotation angles equals the input angle [10]:

(1.13)

Those values of $
\arctan\left(2^{-i}\right)$

 can be stored in a small lookup table or hardwired depending on the way of

implementation. Since the decision is which direction to rotate instead of whether to rotate or not, is

sensitive to the sign of . Therefore can be described as:

 . (1.14)

With equation 1.14 the CORDIC algorithm in rotation mode is described completely. Note, that the

CORDIC method as described performs rotations only within and . This limitation comes from

the use of for the tangent in the first iteration. However, since a sine wave is symmetric from quadrant

to quadrant, every sine value from 0 to can be represented by reflecting and/or inverting the first
quadrant appropriately.

Next: Implementation of various CORDIC Up: Computing the Sine Function Previous: Computing the

Sine Function

Home
Norbert Lindlbauer

2000-01-19

The CORDIC-Algorithm for Computing a Sine http://web.archive.org/web/20071024124546/www.cnmat.berkeley.ed...

3 von 3

Center for New Music and Audio Technologies

Next: Computing the Sine Function Up: FPGAs for Sound Synthesis Previous: FPGAs for Sound

Synthesis

Introduction

In 1906, Thaddeus Cahill demonstrated a new instrument - the Telharmonium, the first and largest sound

synthesizer ever developed [1]. Powered by electricity, but without the benefit of electronic amplification,

the smoothly rotating tone generators of the Telharmonium emitted synthetic tones purer than nature -

sinusoidal waves in the precise integer ratios of just intonation. Moved by the spectacle of this

demonstration, the elderly American author Mark Twain (1835-1910) wrote: ``Every time I see or hear a

new wonder like this I have to postpone my death right off. I couldn't possibly leave this world until I have

heard it again and again!'' [2]. Many efforts on developing and improving sound synthesis followed with a

greater or lesser degree of success. The invention of the stored program electronic digital computer in the

1940s finally opened the way for the present era of sound synthesis and since the first experiments of Max

V. Mathews in 1957, multiple techniques of sound synthesis have been invented.

One of the most successful methods of sound synthesis is based on the summing of time-varying sinusoids,

also known as additive synthesis. This method is described using the following equation:

(1.1)

The structural reconstruction can be carried out either in the time domain (see Figure 1.1) or the

frequency domain.

Figure 1.1: Time-domain additive synthesis

In either case the sinusoids are additively accumulated to create the output [3]. Theoretically any sound

can be reproduced by proper control of the sinusoids over time. However, all the control parameters plus

the sinusoidal function themselves must be calculated at the sampling rate - a quite demanding task even

for todays CPUs. The load on the CPU can be reduced significantly by separating the control and

Introduction http://web.archive.org/web/20070909020048/www.cnmat.berkeley.ed...

1 von 2

synthesis tasks, and assigning the task of computing the sinusoids to a co-processor, such as an FPGA.

The following sections describe how to compute sinusoids and how to control the sinusoids attributes in

such a device.

Next: Computing the Sine Function Up: FPGAs for Sound Synthesis Previous: FPGAs for Sound

Synthesis

Home

Norbert Lindlbauer

2000-01-19

Introduction http://web.archive.org/web/20070909020048/www.cnmat.berkeley.ed...

2 von 2

Center for New Music and Audio Technologies

Next: A Bit-Parallel Iterative CORDIC Up: Computing the Sine Function Previous: The CORDIC-

Algorithm for Computing

Implementation of various CORDIC Architectures

As intended by Jack E. Volder, the CORDIC algorithm only performs shift and add operations and is

therefore easy to implement and resource-friendly. However, when implementing the CORDIC algorithm

one can choose between various design methodologies and must balance circuit complexity with respect

to performance. The most obvious methods of implementing a CORDIC, bit-serial, bit-parallel, unrolled

and iterative, are described and compared in the following sections.

Subsections

A Bit-Parallel Iterative CORDIC

A Bit-Parallel Unrolled CORDIC

A Bit-Serial Iterative CORDIC

Comparison of the Various CORDIC Architectures

Home

Norbert Lindlbauer

2000-01-19

Implementation of various CORDIC Architectures http://web.archive.org/web/20071024195922/http://www.cnmat.berkel...

1 von 1

Center for New Music and Audio Technologies

Next: A Bit-Parallel Unrolled CORDIC Up: Implementation of various CORDIC Previous:

Implementation of various CORDIC

A Bit-Parallel Iterative CORDIC

The CORDIC structure as discribed in equations 1.10, 1.11, 1.12 and 1.14 is represented by the

schematics in Figure 1.4 when directly translated into hardware. Each branch consists of an adder-

subtractor combination, a shift unit and a register for buffering the output. At the beginning of a

calculation initial values are fed into the register by the multiplexer where the MSB of the stored value in

the z-branch determines the operation mode for the adder-subtractor. Signals in the x and y branch pass

the shift units and are then added to or subtracted from the unshifted signal in the opposite path.

Figure 1.4: Iterative CORDIC

The z branch arithmetically combines the registers values with the values taken from a lookup table (LUT)

whose address is changed accordingly to the number of iteration. For iterations the output is mapped

back to the registers before initial values are fed in again and the final sine value can be accessed at the

output. A simple finite-state machine is needed to control the multiplexers, the shift distance and the

addressing of the constant values.

When implemented in an FPGA the initial values for the vector coordinates as well as the constant values

in the LUT can be hardwired in a word wide manner. The adder and the subtractor component are carried

out separately and a multiplexer controlled by the sign of the angle accumulator distinguishes between

addition and subtraction by routing the signals as required. The shift operations as implemented change

the shift distance with the number of iterations but those require a high fan in and reduce the maximum

speed for the application [11]. In addition the output rate is also limited by the fact that operations are

performed iteratively and therefore the maximum output rate equals times the clock rate.

Next: A Bit-Parallel Unrolled CORDIC Up: Implementation of various CORDIC Previous:

Implementation of various CORDIC

Home

Norbert Lindlbauer

A Bit-Parallel Iterative CORDIC http://web.archive.org/web/20070903045824/www.cnmat.berkeley.ed...

1 von 2

2000-01-19

A Bit-Parallel Iterative CORDIC http://web.archive.org/web/20070903045824/www.cnmat.berkeley.ed...

2 von 2

Center for New Music and Audio Technologies

Next: A Bit-Serial Iterative CORDIC Up: Implementation of various CORDIC Previous: A Bit-Parallel

Iterative CORDIC

A Bit-Parallel Unrolled CORDIC

Instead of buffering the output of one iteration and using the same resources again, one could simply

cascade the iterative CORDIC, which means rebuilding the basic CORDIC structure for each iteration.

Consequently, the output of one stage is the input of the next one, as shown in Figure 1.5, and in the face

of seperate stages two simplifications become possible. First, the shift operations for each step can be

performed by wiring the connections between stages appropriately. Second, there is no need for changing

constant values and those can therefore be hardwired as well.

Figure 1.5: Unrolled CORDIC

The purely unrolled design only consists of combinatorial components and computes one sine value per

clock cycle. Input values find their path through the architecture on their own and do not need to be

controlled.

A Bit-Parallel Unrolled CORDIC http://web.archive.org/web/20070904094606/www.cnmat.berkeley.ed...

1 von 2

Obviously the resources in an FPGA are not very suitable for this kind of architecture. As we talk about a

bit-parallel unrolled design with 16 bit wordlength, each stage contains 48 in- and outputs plus a great

number of cross-connections between single stages. Those cross-connections from the x-path through the

shift components to the y-path and vice versa make the design difficult to route in an FPGA and cause

additional delay times. From table 1.1 it can be seen how performance and resource usage change with the

number of iterations if implemented in an XILINX FPGA XC4010E. Naturally, the area and therefore the

maximum path delay increase as stages are added to the design where the path delay is an equivalent to

the speed which the application could run at.

Table 1.1: Performance and CLB usage in an XC4010E

No. of Iterations 8 9 10 11 12 13

complexity [CLB] 184 208 232 256 280 304

max path delay[ns] 163.75 177.17 206.9 225.72 263.86 256.87

As described earlier, the area in FPGAs can be measured in CLBs, each of which consist of two lookup

tables as well as storage cells with additional control components [12]. For the purely combinatorial

design the CLB's function generators perform the add and shift operations and no storage cells are used.

This means registers could be inserted easily without significantly increasing the area. Pipelining adds

some latency, of course, but the application needs to output values at 48kHz and the latency for 14

iterations equals 312.5 s which is known to be inperceptible. However, inserting registers between stages

would also reduce the maximum path delays and correspondingly a higher maximum speed can be

achieved. Table 1.2 shows how the area versus speed trade off is affected by different pipelining methods.

Table 1.2: Performance and CLB usage for various methods of

pipelining in an XC4010E

No. of Iterations between Registers 1 2 3 4 8 13

Complexity [CLB] 313 308 304 304 304 304

max. Frequency [MHz] 24.4 18.3 14.2 9.7 6.2 3.7

The values are taken from report files generated by the XILINX Foundation Series software when

implementing the unrolled designs. It can be seen, that the number of CLBs stays almost the same while

the maximum frequency increases as registers are inserted. The reason for that is the decreasing amount

of combinatorial logic between sequentiell cells. Obviously, the gain of speed when inserting registers

exceeds the cost of area and makes therefore the fully pipelined CORDIC a suitable solution for

generating a sinewave in FPGAs. Especially if a sufficient number of CLBs is at one's disposal, as is the

case in high density devices like XILINX's Virtex or ALTERA's FLEX families, this type of architecture

becomes more and more attractive.

Next: A Bit-Serial Iterative CORDIC Up: Implementation of various CORDIC Previous: A Bit-Parallel

Iterative CORDIC

Home

Norbert Lindlbauer

2000-01-19

A Bit-Parallel Unrolled CORDIC http://web.archive.org/web/20070904094606/www.cnmat.berkeley.ed...

2 von 2

Center for New Music and Audio Technologies

Next: Comparison of the Various Up: Implementation of various CORDIC Previous: A Bit-Parallel

Unrolled CORDIC

A Bit-Serial Iterative CORDIC

Both, the unrolled and the iterative bit-parallel designs, show disadvantages in terms of complexity and

path delays going along with the large number of cross connections between single stages. To reduce this

complexity one could change the design into a completely bit-serial iterative architecture. Bit-serial means

only one bit is processed at a time and hence the cross connections become one bit-wide data paths.

Clearly, the throughput becomes a function of

In spite of this the output rate can be almost as high as achieved with the unrolled design. The reason is

the stuctural simplicity of a bit-serial design and the correspondingly high clock rate achievable. Figure 1.6

shows the basic architecture of the bitserial CORDIC processor as implemented in a XILINX Spartan.

Figure 1.6: Bit-serial CORDIC

In this architecture the bit-serial adder-subtractor component is implemented as a fulladder where the

subtraction is performed by adding the 2's complement of the actual subtrahent [13]. The subtraction is

again indicated by the sign bit of the angle accumulator as described in section 1.2.1. A single bit of state

is stored at the adder to realize the carry chain [14] which at the same time requires the LSB to be fed in

A Bit-Serial Iterative CORDIC http://web.archive.org/web/20070904102631/www.cnmat.berkeley.ed...

1 von 2

first. The shift-by-i operation can be realized by reading the bit i-1 from it's right end in the serial shift

registers. A multiplexer can be used to change position according to the current iteration. The initial

values , and are fed into the array at the left end of the serial-in - serial-out register and as the

data enters the adder component the multiplexer at the input switch and map back the results of the

bit-serial adder into the registers. The constant LUT for this design is implemented as a multiplexer with

hardwired choices. Finally, when all iterations are passed the input multiplexers switch again and initial

values enter the bit-serial CORDIC processor as the computed sine values exit.

The design as implemented runs at a much higher speed than the bit-parallel architectures described

earlier and fits easily in a XILINX SPARTAN device. The reason is the high ratio of sequential

components to combinatorial components. The performance is constrained by the use of multiplexers for

the shift operation and even more for the constant LUT. The latter could be replaced by a RAM or serial

ROM where values are read by simply incrementing the memory's address. This would clearly accelerate

the performance but since optimization for one particular FPGA device falls outside the slope of this

paper, we will not consider it further.

Next: Comparison of the Various Up: Implementation of various CORDIC Previous: A Bit-Parallel

Unrolled CORDIC

Home

Norbert Lindlbauer

2000-01-19

A Bit-Serial Iterative CORDIC http://web.archive.org/web/20070904102631/www.cnmat.berkeley.ed...

2 von 2

Center for New Music and Audio Technologies

Next: Controlling the Oscillator Up: Implementation of various CORDIC Previous: A Bit-Serial Iterative

CORDIC

Comparison of the Various CORDIC Architectures

In the previous sections, we described various methods of implementing the CORDIC algorithm using an

FPGA. The resulting structures show differences in the way of using resources available in the target

FPGA device. Table 1.3 illustrates how the architectures for the iterative bit-serial and iterative

bit-parallel designs for 16 bit resolution vary in terms of speed and area. The bit-serial design stands out

due to it's low area usage and high achievable speed. Whereas the latency and hence the maximum

throughput rate is much lower compared to the bit-parallel designs. The bit-parallel unrolled and fully

pipelined design (see Table 1.2) uses the resources extensively but shows the best latency per sample and

maximum throughput rate. The prototyping environment limited the implementation of the unrolled design

to 13 iterations. The iterative bit-parallel design provides a balance between unrolled and bit-serial design

and shows an optimum usage of the resources in a XILINX XC4010E.

In actual fact it would be more accurate to look at the resources available in the specific target devices

rather than the specific needs in order to determine what architecture to use. The bit-serial structure is

definitely the best choice for relatively small devices, but for FPGAs where sufficient CLBs are available

one might choose the bit-parallel and fully pipelined architecture since latency is minimal and no control

unit is needed.

Table 1.3: Performance and CLB usage for the bit-parallel and

bit-serial iterative designs.

 CLB LUT FF Speed Latency max. Throughput

 [MHz] [s] [Mio. Samples

bit-serial 111 153 108 48 5.33 0.1875

bit-parallel 138 252 52 36 0.44 2.25

Next: Controlling the Oscillator Up: Implementation of various CORDIC Previous: A Bit-Serial Iterative

CORDIC

Home

Norbert Lindlbauer

2000-01-19

Comparison of the Various CORDIC Architectures http://web.archive.org/web/20070906202856/www.cnmat.berkeley.ed...

1 von 1

Center for New Music and Audio Technologies

Next: Frequency Up: FPGAs for Sound Synthesis Previous: Comparison of the Various

Controlling the Oscillator

An important requirement of digital additive synthesis is the accurate and independent mapping of the

control parameters, amplitude, frequency, and phase into sinusoids as described earlier in equation 1.1:

The amplitude represents the maximum displacement of the varying quantity from its average value.

The frequency gives the mumber of peaks per second in a sine wave whereas the reciprocal of , the

period , is the time between amplitude peaks. Finally, the phase , describes the displacement in time

from its origin [15]. The required resolutions for frequency and phase can be estimated from the

just noticeable difference (JND) curve derived for the human ear [16]. The curve shows that the human

ear is capable for noticing pitch differences of percent at Hz which corresponds to a resolution of

 Hz. With a sampling rate of 48kHz the resolution needs to be 16 bit for frequency and phase .

Amplitude resolution is dictated largely by what is considered acceptible in audio terms, and the resources

that are available. With this in mind, 16 bits was chosen for the amplitude parameter.

Subsections

Frequency

Implementation

Phase

Amplitude

Proof

Implementation

Next: Frequency Up: FPGAs for Sound Synthesis Previous: Comparison of the Various

Home

Norbert Lindlbauer

2000-01-19

Controlling the Oscillator http://web.archive.org/web/20070908164321/www.cnmat.berkeley.ed...

1 von 1

Center for New Music and Audio Technologies

Next: Implementation Up: Controlling the Oscillator Previous: Controlling the Oscillator

Frequency

The CORDIC algorithm returns sine values for a given input angle. In order to generate a sine wave a

sequence of input angles corresponding the rotation of a unary vector within the angle range of the

CORDIC algorithm, e.g., to is required. Two such sequences of input angles are depicted in

Figure 1.7.a.

Figure 1.7: a) Sequence of input angles. b) Triangular wave derived from a sawtooth.

The gradient of the side of the triangle determines the period or frequency of the triangular wave and

therefore of the resulting sinusoid.

A triangle wave can be derived from a sawtooth (see Figure 1.7.b), which is easily implementd using an

accumulator. However, the direct translation of an interval to into digital structure is an

involved undertaking. This is because is not a multiple power of - essential for the use of an

accumulator. In this place a feature inherent in the CORDIC algorithm presents a convenient solution. As

stated in equation 1.13, the infinite sum of signed values in the CORDIC lookup table equals the input

angle. Consequently, if the range for the input angles is converted into a more suitable interval, such as

 to , a scaling factor can be described:

(1.15)

with This factor applied to equation 1.13 gives:

(1.16)

Frequency http://web.archive.org/web/20070814105534/www.cnmat.berkeley.ed...

1 von 2

We then gather the rescaled values for use in the CORDIC lookup table. This facilitates the input angle to

be of an interval to , and hence using an accumulator for generating the sequence of

input angles.

Subsections

Implementation

Next: Implementation Up: Controlling the Oscillator Previous: Controlling the Oscillator

Home

Norbert Lindlbauer

2000-01-19

Frequency http://web.archive.org/web/20070814105534/www.cnmat.berkeley.ed...

2 von 2

Center for New Music and Audio Technologies

Next: Phase Up: Frequency Previous: Frequency

Implementation

A triangle wave can be generated by mirroring parts of a sawtooth waveform. As mentioned earlier, a

sawtooth is easily generated using an accumulator, consisting of an adder and a register. The register is

incremented by the input value in synchrony with the sample clock. As a result the input determines the

rate at which the angle increases, and hence the overall oscillator frequency. Periodically the register will

overflow, signifying the end of a complete cycle. In order to derive a triangle wave from the sawtooth we

divide the sawtooth curve into four parts (see Figure 1.7.b) representing the four quadrants of a rotary

system. It can be seen that the upper half of the sawtooth must be inverted. This is within quadrant II and

III. The two MSBs of the accumulator can be used to determin the present position within the four

quadrants, and therefore to control the inversion.

Figure 1.8: VHDL code for inverting a sawtooth into a triangular wave.

The VHDL code in Figure 1.8 illustrates the inversion of the sawtooth. The mapping into hardware

represents a multiplexer between the original and the inverted signal depending on the present position

within the quadrants. The resulting circuit is shown in Figure 1.9 as part of the complete design.

Next: Phase Up: Frequency Previous: Frequency

Home

Norbert Lindlbauer

2000-01-19

Implementation http://web.archive.org/web/20070814182718/www.cnmat.berkeley.ed...

1 von 1

Center for New Music and Audio Technologies

Next: Amplitude Up: Controlling the Oscillator Previous: Implementation

Phase

The phase provides a means to displace the positions of two waveforms in time relative to each other [17].

This equals an offset added to the sawtooth, easily implemented by inserting an adder at the output of the

accumulator (see Figure 1.9).

Home

Norbert Lindlbauer

2000-01-19

Phase http://web.archive.org/web/20070911031013/www.cnmat.berkeley.ed...

1 von 1

Center for New Music and Audio Technologies

Next: Proof Up: Controlling the Oscillator Previous: Phase

Amplitude

Each sinusoid needs to be weighted appropriately to its magnitude within the spectrum. The normal way

to do this is to use a multiplier controlled by the parameter amplitude. At the beginning of this chapter we
mentioned the expense of multiplication in digital hardware and found a way around by using CORDIC

for computing the sine function. At this point a simple replacement of multiplication by the CORDIC

algorithm would be possible but is not necessarily a gain of resources. However, as described by equation
1.2.1 the CORDIC algorithm contains a gain due to the K-factor. We compensated this gain by initializing

the rotation with a vector of length , ($
\vert

) respectively, so that the final vector was the unary

vector. Hence, initializing with different 's would result in a vector with length which is not one. This

leads to the idea of initializing the rotation with the control parameter for amplitude and performing

multiplication and computation of sine using the same resources. Thus, it is to be proved that the gain

inherent in the CORDIC algorithm is linear and indepent of varying conditions, e.g., input angle, sequence
of directions, initial values.

Subsections

Proof

Implementation

Next: Proof Up: Controlling the Oscillator Previous: Phase

Home
Norbert Lindlbauer

2000-01-19

Amplitude http://web.archive.org/web/20070911180605/www.cnmat.berkeley.ed...

1 von 1

Center for New Music and Audio Technologies

Next: Implementation Up: Amplitude Previous: Amplitude

Proof

The sequence of directions is completely defined in Equation 1.12

and Equation 1.14:

(1.17)

be the general term of the iterative system determined by Equation 1.10 and 1.11, where and

are polynomials in the variables d.

Setting the initial vector to we get:

(1.18)

 (1.19)

Now define a new initial Vector :

(1.20)

 (1.21)

From Equation 1.21 it follows that the gain inherent in the CORDIC algorithm is a constant for a constant

number of iterations and independent of the initial values if coordinate . Consequently,

multiplication can be performed by initializing the rotation with the control parameter amplitude. This

eliminates the need for an additional multiplier and reduces the design complexity enormously.

Next: Implementation Up: Amplitude Previous: Amplitude

Home

Norbert Lindlbauer

2000-01-19

Proof http://web.archive.org/web/20070911014211/www.cnmat.berkeley.ed...

1 von 1

Center for New Music and Audio Technologies

Next: Results Up: Amplitude Previous: Proof

Implementation

As demonstrated the amplitude control can be carried out within the CORDIC structure. Instead of

hard-wiring the initial values as proposed in section 1.2.2, the values are now fed into the CORDIC

structure through a separate input. Figure 1.9 illustrates the resulting structure of the complete oscillator.

Figure 1.9: A CORDIC-based Oscillator

Home

Norbert Lindlbauer

2000-01-19

Implementation http://web.archive.org/web/20070815110933/www.cnmat.berkeley.ed...

1 von 1

Center for New Music and Audio Technologies

Next: Area Usage and Performance Up: FPGAs for Sound Synthesis Previous: Implementation

Results

The oscillator described in the previous sections has been implemented and tested in a XILINX XC4010E.

The architecture of this device provides specific resources in terms of CLBs, LUTs, storage cells or

maximum speed. The results obtained when implementing the oscillator are presented in the following

sections.

Subsections

Area Usage and Performance

Error

Home

Norbert Lindlbauer

2000-01-19

Results http://web.archive.org/web/20070815110854/www.cnmat.berkeley.ed...

1 von 1

Center for New Music and Audio Technologies

Next: Error Up: Results Previous: Results

Area Usage and Performance

The various architectures of the implemented CORDIC algorithm use resources in the target FPGA device

differently. We chose the bit-parallel iterative CORDIC architecture to implement a complete oscillator

using an FPGA since this structure shows a trade off between area usage and maximum achievable speed.

Table 1.4 illustrates the exact results obtained using a XILINX XC4010E as the target device. The values

are taken from report files generated by the FPGA implementation software and provide detailed

information about area usage and timing issues.

Table 1.4: Performance and CLB usage for the bit-parallel designs.

 CLB LUT FF Speed Latency max. Throughput

 [MHz] [s] Mio. Samples

Control structure 26 49 17 61.2 0.03 30.6

Cordic 138 252 52 36 0.44 2.25

Oscillator 153 267 69 28 0.64 1.55

Next: Error Up: Results Previous: Results

Home

Norbert Lindlbauer

2000-01-19

Area Usage and Performance http://web.archive.org/web/20070620214452/www.cnmat.berkeley.ed...

1 von 1

Center for New Music and Audio Technologies

Next: Conclusion Up: Results Previous: Area Usage and Performance

Error

The use of CORDIC for computing sine introduces precision errors because of the limited number of

iterations and the limited resolution of values in the CORDIC lookup table. The error results in distortion

of the generated sine wave. Figure 1.10 illustrates the magnitude error of a CORDIC-based sine wave

with a frequency of Hz when compared to a reference sine wave. Both are normalized and sampled at

kHz. The error results in high frequency added to the Hz sine wave, as represented by the

spectrum in Figure 1.11.

The values are taken from data produced by the logic simulation within the XILINX Foundation software

and are analyzed using a FFT
1.3

 with Hamming window in MATLAB.

The energy of the error obtained can be also expressed by the equation:

(1.22)

where is the magnitude error. With is the root-mean-square amplitude of the reference signal

we get for the signal-to-noise ratio:

(1.23)

In the context of additive synthesis, where multiple sinusoids are added together, the SNR obtained here is

an acceptable result.

Error http://web.archive.org/web/20070609162033/www.cnmat.berkeley.ed...

1 von 2

Figure 1.10: Magnitude error of a sine wave generated by a

CORDIC-based oscillator with 16 bit resolution.

Figure 1.11: Spectrum of a sine wave generated by a CORDIC-based

oscillator with 16 bit resolution.

Next: Conclusion Up: Results Previous: Area Usage and Performance

Home

Norbert Lindlbauer

2000-01-19

Error http://web.archive.org/web/20070609162033/www.cnmat.berkeley.ed...

2 von 2

Center for New Music and Audio Technologies

Next: Bibliography Up: FPGAs for Sound Synthesis Previous: Error

Conclusion

FPGAs provide an ideal environment for designing and emulating digital functions. The design

CORDIC-based Oscillator had been successfully implemented and tested under real, performance like

conditions.

The CORDIC algorithm is an iterative method to perform rotation, and therefore to compute sine values.

This makes the CORDIC not the fastest method for calculating a sine function. However, the possibility of

combining multiplication and sine computation in CORDIC makes the CORDIC-based oscillator an

attractive solution since it saves the resources needed by a multiplier.

Clearly, many oscillators are necessary to perform additive synthesis. For 32-note polyphony (or timbre),

with 64 partial components per note, a engine will need to generate 2,048 sine waves in total. This clearly

exceeds the capacity of the prototyping environment used but high density devices provide sufficient

resources for an additive synthesizer. Steadily increasing frequency rates for modern chip technologies,

which make computing a desired value faster than accessing a lookup table, add another interesting aspect

to the decision of what oscillator architecture to use.

Home

Norbert Lindlbauer

2000-01-19

Conclusion http://web.archive.org/web/20070609163241/www.cnmat.berkeley.ed...

1 von 1

Center for New Music and Audio Technologies

Next: About this document ... Up: cordic Previous: Conclusion

Bibliography

1

Roads C.

The Computer Music Tutorial.

MIT Press, 2nd edition, 1995.

2

Rhea T.

The Evoluton of electronic musical instruments in the United States.

PhD thesis, Nashville: George Peabody College for Teachers, 1972.

3

Michal Goodwin.

Frequency-domain analysis-synthesis of musical sounds.

Master's thesis, CNMAT and Department of Electrical Engineering and Computer Science, UCB,

1994.

4

Muller J. M.

Elementary Functions - Algorithms and Implementation, chapter 3, page 19.

Birkhäuser, 1997.

5

Muller J. M.

Elementary Functions - Algorithms and Implementation, chapter 5, page 69.

Birkhäuser, 1997.

6

Muller J. M.

Elementary Functions - Algorithms and Implementation, pages 1,2.

Birkhäuser, 1997.

7

Volder J. E.

The CORDIC trigonometric computing technique.

In IRE Trans. Electronic Computing, volume EC-8, pages 330 - 334, 1959.

8

Considine V.

CORDIC trigonometric function generator for DSP.

In IEEE-89, International Conference on Acoustics, Speech and Signal Processing, pages 2381 -

2384, Glasgow, Scottland, May 1989.

9

Walther J.S.

A unified algorithm for elementary functions.

Bibliography http://web.archive.org/web/20070609163340/www.cnmat.berkeley.ed...

1 von 2

In Spring Joint Computer Conference, pages 379 - 385, 1971.

10

Muller J. M.

Elementary Functions - Algorithms and Implementation, chapter 6, page 102.

Birkhäuser, 1997.

11

Andraka R.

A survey of cordic algorithms for fpga based computers.

In Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field Programmable

Gate Arrays, pages 191-200, Monterey, CA, Feb.22-24 1998.

12

XILINX, Inc.

XC 4000E and XC 4000X series programmable gate arrays - product specification.

www.xilinx.com/partinfo/#4000.pdf, January 1999.

13

Andraka R.

Building a high performance bit serial processor in an fpga.

In On-Chip System Design Conference, Jan. 1996.

14

Warzynek J.

A bit serial cordic architecture.

California Institute of Technology, 1982.

15

Pierce R. J.

The Science of Musical Sound, chapter III, pages 38-39.

Freeman, 1983.

16

Evans E. F.

Basic Physics and Psychophysics of Sound, Functional Anatomy of the Auditory System.

In H. B. Barlow and J. D. Mollon - The Senses. Cambridge University Press, Cambridge, UK, 1982.

17

Jerse T. A. Dodge C.

Computer Music - Synthesis, Composition, and Performance, chapter 4. Synthesis Fundamentals,

pages 75-76.

Schirmer Books, 1997.

Home

Norbert Lindlbauer

2000-01-19

Bibliography http://web.archive.org/web/20070609163340/www.cnmat.berkeley.ed...

2 von 2

