The prototypes for these functions are placed in the file stdio.h, located in the ..\INC subdirectory. This file must be #include -ed before using the functions.

The standard C language I/O functions were adapted to work on embedded microcontrollers with limited resources.

The lowest level Input/Output functions are:

char getchar(void)

returns a character received by the UART, using polling.

void putchar(char c)

transmits the character c using the UART, using polling.

Prior to using these functions you must:

·
initialize the UART's Baud rate

·
enable the UART transmitter

·
enable the UART receiver.

Example:

#include <90s8515.h>

#include <stdio.h>

/* quartz crystal frequency [Hz] */

#define xtal 4000000L

/* Baud rate */

#define baud 9600

void main(void) {

char k;

/* initialize the UART's baud rate */

UBRR=xtal/16/baud-1;

/* initialize the UART control register

 RX & TX enabled, no interrupts, 8 data bits */

UCR=0x18;

while (1) {

 /* receive the character */

 k=getchar();

 /* and echo it back */

 putchar(k);

 };

}

You can alternatively initialize the UART's Baud rate using the Project|Configure|C Compiler menu.

If you intend to use other peripherals for Input/Output, you must modify accordingly the getchar and putchar functions. The source code for these functions is available in the

file stdio.h .

All the high level Input/Output functions use getchar and putchar.

void puts(char *str)

outputs, using putchar, the null terminated character string str, located in SRAM, followed by a new line character.

void putsf(char flash *str)

outputs, using putchar, the null terminated character string str, located in FLASH, followed by a new line character.

void printf(char flash *fmtstr [, arg1, arg2, ...])

outputs formatted text, using putchar, according to the format specifiers in the fmtstr string.

The format specifier string fmtstr is constant and must be located in FLASH memory.

The implementation of printf is a reduced version of the standard C function.

This was necessary due to the specific needs of an embedded system and because the full implementation would require a large amount of memory space.

The following format specifiers are available:

%c
outputs the next argument as an ASCII character

%d
outputs the next argument as a decimal integer

%i
outputs the next argument as a decimal integer

%u
outputs the next argument as an unsigned decimal integer

%x
outputs the next argument as an unsigned hexadecimal integer using lower case letters

%X
outputs the next argument as an unsigned hexadecimal integer using upper case letters

%s
outputs the next argument as a null terminated character string, located in SRAM

%%
outputs the % character

All numeric values are right aligned and left padded with spaces.

If a 0 character is inserted between the % and d, i, u, x or X then the number will be left padded with 0’s.

If a - character is inserted between the % and d, i, u, x or X then the number will be left aligned.

A width specifier between 1 and 9 can be inserted between the % and d, i, u, x or X to specify the minimum width of the displayed number.

The displayed number will be right aligned. Placing a - character before the width specifier will left align the number.

void sprintf(char *str, char flash *fmtstr [, arg1, arg2, ...])

this function is identical to printf except that the formatted text is placed in the null terminated character string str.

char *gets(char *str, unsigned char len)

inputs, using getchar, the character string str terminated by the new line character.

The new line character will be replaced with 0.

The maximum length of the string is len. If len characters were read without encountering the new line character, then the string is terminated with 0 and the function ends.

The function returns a pointer to str.

signed char scanf(char flash *fmtstr [, arg1 address, arg2 address, ...])

formatted text input, using getchar, according to the format specifiers in the fmtstr string.

The format specifier string fmtstr is constant and must be located in FLASH memory.

The implementation of scanf is a reduced version of the standard C function.

This was necessary due to the specific needs of an embedded system and because the full implementation would require a large amount of memory space.

The following format specifiers are available:

%c
inputs the next argument as an ASCII character

%d
inputs the next argument as a decimal integer

%i
inputs the next argument as a decimal integer

%u
inputs the next argument as an unsigned decimal integer

%x
inputs the next argument as an unsigned hexadecimal integer

%s
inputs the next argument as a null terminated character string

The function returns the number of successful entries, or -1 on error.

signed char sscanf(char *str, char flash *fmtstr [, arg1 address, arg2 address, ...])

this function is identical to scanf except that the formatted text is inputted from the null terminated character string str, located in SRAM.

