Pesign and Fabrication of High-Fidelity Vacuum Tube Audio-Frequency Power Amplifiers

Gregory L. Charvat,

by

for MIT Haystack Observatory Open Lunch February 3, 2010

Panger: Do not attempt to build anything shown here unless you are experienced and trained in working with high voltage

Vacuum Tube Audio

- * Vacuum tube sound
 - * musicians prefer it
- * High peak power
- * Vintage appearance

(vacuum tube home theater system)

Outline

- * Simple vacuum tube preamplifier
- * Tube power amplifier philosophy
- * Class AB power amplifier
- * Summary

Build this Simple Pre-Amplifier

- * Triodes are similar to N-channel J-FETS, except they are always negative biased w.r.t. the cathode (Vgc < 0 V)
 - * biasing is easily achieved by using a cathode resistor

Tube Power Amplifier Pesign Philosophy

- * Time domain audio signal:
 - * low average power relative to peaks
 - * low duty cycle of peaks (depending on type of music)
- * Ideally suited for power amplification by vacuum tubes

Block Piagram: Class AB Power Amplifier

Vesign Procedure

- 1. Construct power supply
- 2. Make output
- 3. Design phase splitter
- 4. Build differential amplifier
- 5. Measure open-loop frequency response
- 6. Pesign loop compensator
- 7. Re-measure open-loop and closed-loop response
- 8. Pone!

Construct the Power Supply

- * Isolates each stage
 - * (or else oscillation will occur)
- * Provides direct bias

Make the Push-Pull Output

- * Follow data sheets
- * Direct bias
 utilized here,
 however,
 cathode bias is
 STRONGLY
 RECOMMENDED
- * Quiescent
 current = 60 mA
 for class AB, 25
 mA for class B

Pesigna Phase Splitter

- * Provides 0/180 deg split to drive push-pull output
- * This version provides large output swing and forward loop gain
- * Balance gain by adjusting plate resistors

Build the Differential Amplifier

Differential Amplifier

- * Similar to the simple pre-amp
- * Provides the majority of forward loop gain
- * Closes feedback loop

Complete circuit (but not compensated yet!)

Warning: this will oscillate

Measure the Open-Loop Transfer Function using a Bode Plot

- * temporarily remove the feedback resistor
- * measure in decades (1-10, 100-1K, 10K-100K, 100K-300K)
- * magnitude (dB relative) = 20*log1 0(Vout/Vin) with 8 ohm load at output
- * phase (deg) = 360*frequency*tdelay_between_peaks

Vesign a Loop Compensator

- * Preferred method: Learned, V. "Corrective networks for feedback circuits," Proc. I.R.E. 32.7, (July 1944), 403.
 - * attenuation and phase slopes to reduce gain and control phase
 - * developed for placement between tube stages
 - * summarized in: F. Langford-Smith, Radio Pesigner's Handbook 4th Ed., Reed Educational and Professional Publishing Ltd, London, 1997, pp. 369-371.
- * Matlab program <u>www.mit.edu/~gr20603</u> click on <u>Quad Tube Amplifier</u>, scroll down and click on <u>Bode plots and loop compensation network calculations using matlab</u>
 - * manually enter high and low frequencies just before -180 deg

Install Compensation Circuit Between Diff Amp. and Phase Splitter

Re-Plot to Verify Stability and Measure Performance

phase > -180 deg everywhere there is gain > 0 dB

Open-Loop Transfer Function Closed-Loop Transfer Function

Now you are ready to rock!

Performance

- * 480 watts peak power output/ch
- * 0.45 % THD at 1 KHz
- * 20 Hz 25 KHz BW
- * 4 channel amplifier

- * 293.7 watts peak power output
- * 0.65% THD at 1 KHz
- * 10 Hz 25 KHz
- * single-channel amplifier

Summary

- * Simple pre-amp shown
- * Power-Amp design procedure
- * Resources:
 - * Radio Pesigner's Handbook
 - * Audio Express Magazine
 - * gregory.charvat@ll.mit.edu

