Pesign and Fabrication of High-Fidelity Vacuum Tube Audio-Frequency Power Amplifiers Gregory L. Charvat, by for MIT Haystack Observatory Open Lunch February 3, 2010 Panger: Do not attempt to build anything shown here unless you are experienced and trained in working with high voltage #### Vacuum Tube Audio - * Vacuum tube sound - * musicians prefer it - * High peak power - * Vintage appearance (vacuum tube home theater system) #### Outline - * Simple vacuum tube preamplifier - * Tube power amplifier philosophy - * Class AB power amplifier - * Summary ### Build this Simple Pre-Amplifier - * Triodes are similar to N-channel J-FETS, except they are always negative biased w.r.t. the cathode (Vgc < 0 V) - * biasing is easily achieved by using a cathode resistor ## Tube Power Amplifier Pesign Philosophy - * Time domain audio signal: - * low average power relative to peaks - * low duty cycle of peaks (depending on type of music) - * Ideally suited for power amplification by vacuum tubes # Block Piagram: Class AB Power Amplifier # Vesign Procedure - 1. Construct power supply - 2. Make output - 3. Design phase splitter - 4. Build differential amplifier - 5. Measure open-loop frequency response - 6. Pesign loop compensator - 7. Re-measure open-loop and closed-loop response - 8. Pone! # Construct the Power Supply - * Isolates each stage - * (or else oscillation will occur) - * Provides direct bias ### Make the Push-Pull Output - * Follow data sheets - * Direct bias utilized here, however, cathode bias is STRONGLY RECOMMENDED - * Quiescent current = 60 mA for class AB, 25 mA for class B Pesigna Phase Splitter - * Provides 0/180 deg split to drive push-pull output - * This version provides large output swing and forward loop gain - * Balance gain by adjusting plate resistors #### Build the Differential Amplifier Differential Amplifier - * Similar to the simple pre-amp - * Provides the majority of forward loop gain - * Closes feedback loop # Complete circuit (but not compensated yet!) Warning: this will oscillate # Measure the Open-Loop Transfer Function using a Bode Plot - * temporarily remove the feedback resistor - * measure in decades (1-10, 100-1K, 10K-100K, 100K-300K) - * magnitude (dB relative) = 20*log1 0(Vout/Vin) with 8 ohm load at output - * phase (deg) = 360*frequency*tdelay_between_peaks #### Vesign a Loop Compensator - * Preferred method: Learned, V. "Corrective networks for feedback circuits," Proc. I.R.E. 32.7, (July 1944), 403. - * attenuation and phase slopes to reduce gain and control phase - * developed for placement between tube stages - * summarized in: F. Langford-Smith, Radio Pesigner's Handbook 4th Ed., Reed Educational and Professional Publishing Ltd, London, 1997, pp. 369-371. - * Matlab program <u>www.mit.edu/~gr20603</u> click on <u>Quad Tube Amplifier</u>, scroll down and click on <u>Bode plots and loop compensation network calculations using matlab</u> - * manually enter high and low frequencies just before -180 deg #### Install Compensation Circuit Between Diff Amp. and Phase Splitter #### Re-Plot to Verify Stability and Measure Performance phase > -180 deg everywhere there is gain > 0 dB Open-Loop Transfer Function Closed-Loop Transfer Function Now you are ready to rock! #### Performance - * 480 watts peak power output/ch - * 0.45 % THD at 1 KHz - * 20 Hz 25 KHz BW - * 4 channel amplifier - * 293.7 watts peak power output - * 0.65% THD at 1 KHz - * 10 Hz 25 KHz - * single-channel amplifier #### Summary - * Simple pre-amp shown - * Power-Amp design procedure - * Resources: - * Radio Pesigner's Handbook - * Audio Express Magazine - * gregory.charvat@ll.mit.edu