
Aufgabe 2

LC-Schwingkreis (12 Punkte)

Gegeben ist die folgende Schaltung:

Für Zeitpunkte t < 0 befindet sich der Kippschalter in Position 1 und die Reihenschaltung aus R_1 , L und R_2 ist an eine Spannungsquelle mit der Gleichspannung U_0 angeschlossen. Die Schaltung befindet sich in einem stationären Zustand. Der Kondensator im rechten Teil ist ungeladen. Zum Zeitpunkt t = 0 wird der Schalter auf Position 2 umgelegt.

- 2.1 Stellen Sie die Differentialgleichung für die Kondensatorspannung $u_C(t)$ für Zeitpunkte $t \ge 0$ auf. Überlegen Sie sich passende Anfangsbedingungen und lösen Sie die DGL mithilfe von Mathematica. Beachten Sie dabei insbesondere die Richtung der Strom- und Spannungspfeile!
- 2.2 Es soll nun gelten: $U_0 = 1 \text{ V}$, $R_1 = 100 \Omega$, $R_2 = 1 \text{ k}\Omega$, C = 10 nF und L = 10 mH. Plotten Sie die Kondensatorspannung $u_C(t)$ im Zeitintervall $t \in [0, 500] \, \mu\text{s}$. Die Spannung soll im Wertebereich [-1, 1] V dargestellt werden. Bezeichnen Sie die Achsen mit t/s und u/V. Die Kurve soll in grün dargestellt werden.
- 2.3 Berechnen Sie aus der Lösung $u_{\mathbb{C}}(t)$ mithilfe von Mathematica nun auch den Stromverlauf $i_{\mathbb{C}}(t)$.
- 2.4 Es gelten weiterhin die oben genannten Bauteilwerte und Spannungsangaben. Plotten Sie den Kondensatorstrom $i_C(t)$ im Zeitintervall $t \in [0, 500] \mu s$. Der Strom soll im Wertebereich [-1, 1] mA dargestellt werden. Bezeichnen Sie die Achsen mit t/s und i/A. Die Kurve soll in rot dargestellt werden.