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ABSTRACT

A new design method for multiplierless IIR halfband
�lters and Hilbert transformers is presented. The coe�-

cients of the halfband �lter and the Hilbert transformer
are determined using the same procedure. The minimal
number of shift-and-add operation design (multiplier-

less) is based on the sensitivity analysis and the phase
tolerance scheme.

1 INTRODUCTION

In this paper we present a new design method for mul-
tiplierless IIR halfband �lters and Hilbert transformers.
\Multiplierless" means that all multiplication constants
are implemented with few shifters and adders. It has
been shown in [1] and [2] that the transfer function of
an IIR halfband �lter can be developed from an elliptic
minimal Q-factor analog prototype. The multiplierless
elliptic IIR �lter design for the structures based on the
parallel connection of two allpass networks has been pre-
sented on [3].
In this paper a new generalized approach for halfband

�lters and Hilbert transformers is given. This paper
examines halfband �lters and Hilbert transformers and

gives new general analytical expressions for amplitude
and phase sensitivities. Using this sensitivity analysis
the new design technique based on the phase tolerance
scheme is presented that may be applied equally for a
halfband �lter or Hilbert transformer speci�cations. Al-
though the sensitivity of an IIR �lter is high, very sharp
multiplierless �lters can be obtained by the choice of the
transfer function parameters.

2 TRANSFER FUNCTION AND

REALIZATION STRUCTURE

A halfband �lter is de�ned by the passband-stopband
symmetry related to !=�=2. If H(z) is the transfer
function of the halfband �lter,H(z=ej�=2) is the transfer
function of the complex �lter with passband-stopband
symmetry related to !=� . This follows from the modu-
lation property of z transform. The real and imaginary
outputs of the complex �lter form a Hilbert transform
pair over the speci�ed frequency range [4].

It has been shown in [1] and [2] that an elliptic min-
imal Q-factors �lter is an analog prototype of the IIR
halfband �lter. Due to the modulation property of the
z-transform, the elliptic minimal Q-factor �lter can be
considered as an analog prototype for Hilbert trans-
former, as well. Therefore, instead of developing a
special computer program for IIR Hilbert transformers
based on elliptic functions, it is straightforward to use
existing programs for digital �lters and then replace z

with z=e
j�=2. For example ellip.m from MATLAB can

be used.

The general property of this class of �lters is that the
passband ripple ap and the stopband attenuation aa are
related by the following relation:

ap = 10 log10

�
1 +

1

10aa=10 � 1

�
(1)

The poles of the halfband �lter are placed on the imag-
inary axis, and the poles of the Hilbert transformer are
rotated for �=2, i.e. they are placed on the real axis of
the z plane. The realization is based on the sum of two
allpass functions Ha(z) and Hb(z) gives:

H(z) =
1

2
(Ha(z) +Hb(z)) (2)

For the halfband �lter Ha(z) and Hb(z) are :
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�2

1 + �iz
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where �i is the square module of the pole zi. Replacing z
with z=ej�=2 inHa(z) and Hb(z), we obtain the complex
�lter:

HHT (z) = HHTa(z) + jHHTb(z) (5)
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�i � z
�2

1� �iz
�2

(6)



HHTb(z) = z
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�i � z
�2
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�2
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HHTa(z) and HHTb(z) present allpass branches of a �=2
phase splitter whose outputs approximate the Hilbert
transform pair [5].
We can rewrite Eqs. (6) and (7)

HHTa(z) =

(n+1)=2Y
i=[(n+7)=4]

(��i) + z
�2

1 + (��i)z�2
(8)

HHTb(z) = (�1)(n+1)=2 z�1
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i=3

(��i) + z
�2
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Eqs. (8) and (9) show that the coe�cients of the Hilbert
transformer are the negative coe�cients of the halfband
�lter. This implies that the procedure derived for mul-
tiplierless elliptic IIR �lter can be used for the design of
the multiplierless Hilbert transformer.

3 TRANSFER FUNCTION DESIGN

The amplitude response A(!) for the realizations based
on Eqs. (2) and (5) can be expressed by the phase dif-
ference function 	(!):

A(!) = cos(	(!)) (10)

where 	(!) is the phase di�erence between Ha(z) and
Hb(z):

	(!) =
'a(!) � 'b(!)

2
=

1

2

(n+1)=2X
i=2

�'i(!) (11)

For 	(!) = �=2 we have A(!) = 0. For the required
minimal stopband attenuation Aa given in dB, we com-
pute the permitted phase tolerance, 	(!) � �=2, in the
stopband which is denoted by Da:

Da =
����2 � cos�1(10(�Aa=20))

��� (12)

Fig. 1 (solid line) illustrates a typical behavior of the
function 	(!) � �=2 for the elliptic halfband �lter for
n = 9, and fa = 0:28. The permitted phase tolerance
�Da is calculated for Aa = 46 dB. Fig. 2 (solid line) is
for the corresponding Hilbert transformer whose rejec-
tion band is de�ned over 0:53 < f < 0:97. This way, the
design of the halfband �lter and the Hilbert transformer
are regarded as a phase approximation problem. Since
the Hilbert transformer is usually considered as a phase
splitting network, the proposed approach is particularly
convenient.
The design starts froma speci�cation S = fFa; Dag or

S = fFa; Aag, where Fa is the stopband edge frequency
of the halfband �lter. First, we determine the �lter order
n (n is odd integer). Next, ifDa is speci�ed, we calculate
Aa from Eq. (12)

Aa = �20 log10(cos(
�

2
�Da)) (13)
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Figure 1: Halfband �lter. Phase tolerance scheme.
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Figure 2: Hilbert transformer. Phase tolerance scheme.

The axillary variable L is found for known Aa

L = 10Aa=10 � 1 (14)

The maximal passband attenuation, ap, depends on Aa

or L only

ap = 10 log10(1 +
1

L
) (15)

We use upper-case letters for the speci�cation quantities
(Da; Aa; Ap; Fa; Fp) and lower-case letters for actual val-
ues (da; aa; ap; fa; fp).
The passband and stopband edge frequencies are func-

tions ofAa only, and can be calculated using the approx-
imate procedure adapted from [6]

t =
1

2

1� 4

q
1� 1
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1 + 4

q
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(16)

q = t+ 2t5 + 15t9 + 150t13 (17)

g = e
log(q)=n (18)

q0 =
g + g
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Finally, the edge frequencies for the halfband �lter are

fa =
1

2
�

1

�
tan�1

1
p

a

(21)

fp =
1

�
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1
p

a

(22)

The calculated edge frequency cannot be larger than
speci�ed: fa � Fa. For fa > Fa we increase the �lter
order and repeat the procedure.
Alternatively, the design can start from speci�cation

S = fFa; Dag and fa = Fa. For that case, the design
procedure is di�erent; �rst we calculate fp

fp =
1

2
� Fa; fa = Fa (23)

The selectivity factor of analog �lter prototype is


a =
1

tan2(
�

2
� �fa)

(24)

and aa, ap and da can be calculated using the procedure
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qp = t+ 2t5 + 15t9 + 150t13
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1

4

r
1
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ap = 10 log10(1 +
1

L
) (27)

aa = 10 log10(1 + L) (28)

da =
����=2� cos�1(10�aa=20)

��� (29)

The calculated phase deviation cannot be larger than
speci�ed: da � Da. For da > Da we have to choose the
larger �lter order n and repeat the procedure.
Finally, we can use any standard program for calcu-

lating the transfer function poles; for example in MAT-
LAB: [z; p; k] = ellip(n; ap; aa; 2fp). Since all poles are
on the imaginary axis, the �lter coe�cients of the second
order sections are �i = jpij2.
Let us consider the speci�cation: Fa = 0:28 and Da =

0:005 rad, or Aa = 46 dB. For n = 9 the two cases are:
a) da = Da, aa = Aa, fa = 0:275 < Fa and
b) da = 0:00138 < Da, Aa < aa = 57:2 and fa = Fa.

The speci�cation is satis�ed for: 0:00138 � da � 0:005,
or 46 � aa � 57:2, or 0:275 � fa � 0:28.

For those two cases we �nd:
a) n = 9, da = Da = 0:005 rad, aa = Aa = 46 dB,

ap = 0:00011, 
a = 1:217, fa = 0:2656, fp = 0:2344 and
�2 = 0:1532, �3 = 0:7336, �4 = 0:4646, �5 = 0:9202.
b) n = 9, da = 0:001384 rad, aa = 57:18 dB,

ap = 0:0000083, 
a = 1:461, fa = 0:28. , fp = 0:2216,
and �2 = 0:1091, �3 = 0:3616, �4 = 0:6335, �5 = 0:8774,
and the permited ranges for quantities are 0:0014 �
da � 0:005, 46 � aa � 57, 0:00001 � ap � 0:0001,
0:2656 � fa � 0:28, 0:2216 � fp � 0:2344 and 0:109 �
�2 � 0:153, 0:634 � �4 � 0:734, 0:362 � �3 � 0:465,
0:877 � �5 � 0:92.

4 SENSITIVITY ANALYSIS

The amplitude response sensitivity of digital �lters re-
alized by a parallel combination of two allpass networks
is considered in [3]. It is shown that the amplitude re-
sponse sensitivity to some constant �i can be expressed
as a product of the �lter re
ectance function and the
phase sensitivity of the section which implements �i. In
this paper, we present new expressions for the phase
sensitivity for halfband �lters. If 'i(!) is the phase
response of the ith-section, and @'i=@�i is the corre-
sponding phase sensitivity, then:

'i(!) = tan�1
�(1� �

2
i ) sin 2!

2�i � (1 + �2i ) cos 2!
(30)

@'i(!)

@�i
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The extreme values of the function
@'i

@�i

are:

max

����@'i(!)
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���� = 2
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i
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and they occur at the frequencies:
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1� �
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i
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1

2
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2
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To obtain the sensitivity functions for Hilbert trans-
formers, we have to shift the sensitivity functions of the
halfband �lter for �=2.

5 MULTIPLIERLESS DESIGN

The aimof our design approach is to replace constants �i
with the new values �iq chosen to be implemented with
as small number of shifters and adders as possible. This
is achieved using a design margin and the sensitivity
functions. Since the passband sensitivity is very low,
only the stopband has to be considered.
The allpass section implementing the pole pair closest

to the unit circle has the highest sensitivity, Eq. (32).
Therefore, the quantization of the largest pole, max(�i),



can signi�cantly degenerate the amplitude and phase
responses. Since the largest pole can be chosen from a
range, (in the previous example 0:877 � �5 � 0:92) we
have to �nd da � Da, aa � Aa, or fa � Fa, so that the
quantization error is 0.

The quantization of remaining less sensitive constants
is performed by the computation of the range of permit-
ted values. For each �i, the new value �iq is chosen from
the range according to the minimal number of shift-and
add operations.
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Figure 3: Halfband �lter. Attenuation characteristics.
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Figure 4: Hilbert transformer. Attenuation characteris-
tics of the complex �lter.

6 DESIGN OF HILBERT TRANSFORMER

The Hilbert transformer can be speci�ed by the lowest
edge frequency and the phase tolerance or the stopband
attenuation: SHT = fFHTa; Dag or SHT = fFHTa; Aag.
The corresponding edge frequency of the halfband �lter
is Fa = FHTa � 0:25. The �lter coe�cients are calcu-
lated for the halfband �lter speci�cation S = fFa; Dag
or S = fFa; Aag. Next, da, aa, or fa is found so that
the quantization error of the largest pole, max(�i), is 0.
The coe�cients of the Hilbert transformer are equal to
��i, where �i are the coe�cients of the halfband �lter.

7 EXAMPLE

Figs. 1 and 2 (dashed lines) display the phase di�erences
of the multiplierless design for the example of 9-th order
halfband �lter and Hilbert transformer. Figs. 3 and 4
display corresponding attenuation characteristics: solid
lines for �2 = 0:1206, �3 = 0:6628, �4 = 0:3900, �5 =
�max = 1 � 1=23 + 1=26, dashed lines for �2q = 1=23 �
1=28, �3q = 1=2+1=23+1=25+1=27 = (1+1=22)(1=2+
1=25), �4q = 1=22 + 1=23 + 1=26, �5 = �max = 1 �
1=23+1=26. For lower order and less selective �lters the
solutions are even simpler.

8 CONCLUSION

A straightforward procedure is developed for the design
of multiplierless halfband elliptic IIR �lters and Hilbert
transformers. The e�ciency of the procedure is demon-
strated by example of a selective �lter that is very sen-
sitive to the coe�cient quantization. The quantization
error can be minimized using simple closed-form sensi-
tivity relations. Thus the halfband �lter and the Hilbert
transformer can be realized with minimal number of
shift-and-add operations.
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