AVR506: Migration from ATmega169 to ATmega169P

Features

- General Porting Considerations
- Register and bit names
- Memory
- Clock sources
- IO pins

1 Introduction

This application note summarizes the relevant differences when migrating from ATmega169 to ATmega169P. For detailed information on the devices please see the respective datasheets.

The ATmega169P is designed to be pin and functionality compatible with ATmega169, but because of improvements mentioned in this application note there may be a need for minor modifications in the application when migrating from ATmega169 to ATmega169P.

8-bit **AVR**[®] Microcontrollers

Application Note

Rev. 8028C-AVR-02/07

2 General Porting Considerations

To make the porting process as easy as possible, we recommend to always refer to registers and bit positions using their defined names, as absolute addresses and values may change from device to device. When porting a design it is then often just necessary to include the correct definition file. Some examples are shown below.

To avoid conflicts with added features and register functionality, never access registers that are marked as reserved. Reserved bits should always be written to zero if accessed. This ensures forward compatibility, and added features will stay in their default states when unused.

3 Register and bit names

Between ATmega169 and ATmega169P some register bits has been added, but none of the existing bits has been removed, nor moved to different locations.

In ATmega169 the USART module is named USART, while in ATmega169P it is called USART0. This has consequences for all USART register and bit names, and depending on the compiler used this might have consequences when porting the code. Table 3-1 shows the register names for ATmega169.

ATmega169 Register name	Atmega169 Bit names	ATmega169P Register name	ATmega169P Bit names
	RXB[7:0]		RXB0[7:0]
UDR	TXB[7:0]	UDRU	TXB0[7:0]
	RXC		RXC0
	TXC		TXC0
	UDRE		UDRE0
UCSRA	FE		FE0
	DOR	UCSRUA	DOR0
	UPE		UPE0
	U2X		U2X0
	MPCM		MPCM0
UCSRB	RXCIE	UCSR0B	RXCIE0
	TXCIE		TXCIE0
	UDRIEN		UDRIEN0
	RXEN		RXEN0
	TXEN		TXEN0
	UCSZ2		UCSZ02
	RXB8		RXB80

 Table 3-1. USART register names

AVR506

	TXB8		TXB80	
UCSRC	-		-	
	UMSEL		UMSEL0	
	UPM1		UPM01	
	UPM0		UPM00	
	USBS	UCSRUC	USBS0	
	UCSZ1		UCSZ01	
	UCSZ0		UCSZ00	
	UCPOL		UCPOL0	
UBRRH	UBRR[11:8]	UBRR0H	UBRR0[11:8]	
UBRRL	UBRR[7:0]	UBRR0L	UBRR0[7:0]	

4 Memory

The EEPROM write times are different, and can be seen Table 4-1

Table 4-1. Wait times when programming EEPROM

Device	Typical programming time		
ATmega169	8.5 ms		
ATmega169P	3.3 ms		

5 Clock sources

The clock sources for ATmega169P have different characteristics from ATmega169 and might have to be taken into account. The differences are described in the following subsections.

5.1 Internal RC oscillator

The internal RC oscillator in ATmega169P is based on a different design than the ATmega169. The OSCCAL register is 8-bit instead of 7-bit, where the high bit selects one of two overlapping frequency ranges. Refer to the datasheets for information on calibration of the oscillators.

5.2 Low-frequency Crystal / Timer/Counter Oscillator

The low frequency / Timer/counter crystal oscillator of the ATmega169P is optimized for very low power consumption and thus the crystal driver strength is reduced compared to the ATmega169. This means that when selecting a crystal, its load capacitance and Equivalent Series Resistance (ESR) must be taken into consideration. Both values are specified by the crystal vendor. Table 5-1 shows the ESR recommendations for ATmega169P. The internal capacitance of ATmega169P low-frequency oscillator is typically 6pF, but the tracks to the crystal will add some additional capacitance.

Table 5-1. ESR and load capacitance recommendation for 32.768 kHz crystals.

Crystal CL [pF]	Max ESR ¹ [kΩ]		
6.5	60		
9	35		

Note: 1. The values stated are for an oscillator allowance safety margin of 5. Since the oscillator's transconductance is temperature compensated one can use a safety margin of 4, thus giving a max ESR of 75 and 45 kΩ respectively.

For examples of crystals that comply with the requirements see Appendix A.

The startup times are also increased as shown in Table 5-2.

Table 5-2. Startup times with 32.768 kHz crystals.

Crystal CL [pF]	Startup time ² [ms] ATmega169	Startup time ² [ms] Atmega169P
6.5	-	800
9	300	1200
12.5	400	-

Note: 2. Crystals usually need ~3000ms before they are completely stable with any oscillator design. The time stated is before the crystal is running with a sufficient amplitude and frequency stability.

6 IO pins

ATmega169P have an option to disable the external reset feature. The /RESET pin then becomes an input only IO pin. The reset disable feature is not available on ATmega169.

7 Appendix A

Table 7-1 is a selection of crystals that meet the ESR requirements of the ATmega169P. The crystals are listed based on datasheet information and are not tested with the ATmega169P. Any other crystal that complies with the ESR requirements can also be used. Availability and RoHS compliance has not been investigated.

Table 7-1. Examples of crystals compliant with ATmega169P Low-frequency Crystal Oscillator requirements.

Vendor	Туре	Mounting (SMD/HOLE)	Frequency Tolerance [±ppm]	Load Capacitance [pF]	Equivalent Series Resistance (ESR) [kΩ]
C-MAC	WATCH CRYSTALS	HOLE	20	6	50
C-MAC	85SMX	SMD	20	6	55
C-MAC	90SMX	SMD	20	6	60
ECLIPTEK	E4WC	HOLE	20	6	50
ENDRICH	90SMX	SMD	5	6	50
EPSON	C-001R	HOLE	20	6	35

AVR506

Vendor	Туре	Mounting (SMD/HOLE)	Frequency Tolerance [±ppm]	Load Capacitance [pF]	Equivalent Series Resistance (ESR) [kΩ]
EPSON	C-002RX	HOLE	20	6	50
EPSON	C-004R	HOLE	20	6	50
EPSON	C-005R	HOLE	20	6	50
EPSON	MC-30A	SMD	20	6	50
EPSON	MC-306	SMD	20	6	50
EPSON	MC-405	SMD	20	6	50
EPSON	MC-406	SMD	20	6	50
GOLLEDGE	GWX	HOLE	5	6	35
GOLLEDGE	GSWX-26	SMD	10	6	35
GOLLEDGE	GDX1	HOLE	10	6	42
GOLLEDGE	GSX-200	SMD	5	6	50
IQD	WATCH CRYSTALS	HOLE	20	6	50
IQD	90SMX	HOLE	10	6	60
IQD	91SMX	HOLE	10	6	60
MICROCRYSTAL	MS2V-T1R	HOLE	20	7	65
MICROCRYSTAL	MS3V-T1R	HOLE	20	7	65
MMD	WC26	HOLE	8	6	35
MMD	WCSMC	SMD	20	6	50
OSCILENT	SERIES 111	HOLE	10	6	30
OSCILENT	SERIES 112	HOLE	10	6	40
OSCILENT	SERIES 223	SMD	20	6	50
RALTRON	SERIES R38	HOLE	5	6	35
RALTRON	SERIES R26	HOLE	5	6	35
RALTRON	SERIES RSE A, B, C, D	SMD	20	6	50
SBTRON	SBX-13	SMD	20	6	50
SBTRON	SBX-20	SMD	20	6	50
SBTRON	SBX-21	SMD	20	6	50
SBTRON	SBX-24	SMD	20	6	50
SBTRON	SBX-23	SMD	20	6	50
SBTRON	SBX-22	SMD	20	6	50
SBTRON	SBX-14	HOLE	20	6	50
SUNTSU	SCT1	HOLE	20	6	40
SUNTSU	SCT2	HOLE	20	6	50
SUNTSU	SCT3	HOLE	20	6	50
SUNTSU	SCP1	SMD	20	6	50
SUNTSU	SCT2G	SMD	20	6	50

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmele makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. ATMEL®, logo and combinations thereof, Everywhere You Are®, AVR®, and others are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.